Non symmetric diffusions on a Riemannian manifold

Ichiro Shigekawa

Kyoto University

August 8, 2008 The 1st MSJ-SI in Kyoto

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

- 1. Non-symmetric Diffusion on a Riemannian manifold
- 2. Domain of the generator
- 3. L^p semigroup
- 4. Ultracontractivity

1. Non-symmetric Diffusion on a Riemannian manifold

- (M, g): d-dimensional connected complete Riemannian manifold.
- m = vol: the Riemannian volume. **b**: a vector field on M.

We consider the following opetaror in $L^2(m)$:

(1)
$$\mathfrak{A} = \frac{1}{2} \triangle + \nabla_b.$$

The dual operator is

$$\mathfrak{A}^* = rac{1}{2} riangle -
abla_b - \mathrm{div}\,b$$

and the symmetrization is

(2)
$$\frac{1}{2}(\mathfrak{A} + \mathfrak{A}^*) = \frac{1}{2} \bigtriangleup - \frac{1}{2} \operatorname{div} b$$

They are well-defined in $C_0^{\infty}(M)$.

The bilinear form $\mathcal E$ associated with $\mathfrak A$ is

(3)
$$\mathcal{E}(u,v) = -(\mathfrak{A}u,v) = \frac{1}{2} \int_M (\nabla u, \nabla v) \, dm - \int_M (\nabla_b u) v \, dm.$$

The symmetrization of this is

(4)
$$\tilde{\mathcal{E}}(u,v) = \frac{1}{2} \int_{M} (\nabla u, \nabla v) \, dm + \frac{1}{2} \int_{M} uv \operatorname{div} b \, dm.$$

This coresspond the operator $\frac{1}{2}(\mathfrak{A} + \mathfrak{A}^*)$ in (2).

We are interested in when the semigroup associated to \mathfrak{A} exists in L^2 .

We impose the following condition to ensure that $-\mathfrak{A}$ is bounded from below.

$$(A.1) \quad \exists \gamma \in \mathbb{R} : \frac{1}{2} \operatorname{div} b \geq -\gamma.$$

Under this condition, $\tilde{\mathcal{E}}$ is bounded from below and closable.

- **d**: the distance function
- $p \in M$
- $\rho(x) = d(p, x)$

We add the following condition for b:

(A.2) $\exists \,\kappa\colon [0,\infty) o [0,1]$ with $\int_0^\infty \kappa(x)\,dx = \infty$ so that $\kappa(
ho)
abla_b
ho \geq -1.$

• A typical example is $\kappa(x) = \frac{1}{x}$. $\nabla_b \rho(x) \ge -\rho(x)$.

Theorem 1. Under the assumptions (A.1) and (A.2), the closure of $(\mathfrak{A}, C_0^{\infty}(M))$ generates a Markovian C_0 -semigroup in $L^2(m)$.

We claim the following:

- the dissipertivity: $((\mathfrak{A}-\gamma)u,u)_2\leq 0.$
- the maximality: $(\mathfrak{A} \gamma 1)(C_0^{\infty}(M))$ is dense in L^2 .

In fact,

$$((\mathfrak{A}-\gamma)u,u)_2=-rac{1}{2}\int_M (|
abla u|^2+u^2\operatorname{div} b)\,dm-\int_M \gamma u^2\,dm\leq 0.$$

$$(\mathfrak{A} - \gamma - 1)^* u = 0 \quad \Rightarrow \quad u \in C^{\infty}(M) \ \Rightarrow \quad (u, (\mathfrak{A} - \gamma - 1)(\chi_n u))_2 = 0 \ \Rightarrow \quad u = 0$$

The Markovian property is checked by the following criterion:

(5)
$$(\mathfrak{A}u, u - u \wedge 1)_2 \leq \gamma \|u - u \wedge 1\|_2^2$$

Here $a \wedge b = \min\{a, b\}$.

We can also show the L^1 -contraction property.

Proposition 2. Under the assumptions (A.1) and (A.2), $\{e^{-2t\gamma}T_t\}$ satisfies the L^1 -contraction property.

We check the following criterion:

$$((\mathfrak{A}-2\gamma)u,u_+\wedge 1)_2\leq -\gamma\|u_+\wedge 1\|_2^2.$$

As for \mathfrak{A}^*

$$\mathfrak{A}^* = rac{1}{2} riangle -
abla_b - \operatorname{div} b$$

We need the following condition:

(A.2)* $\exists \, \kappa \colon [0,\infty) o [0,1]$ with $\int_0^\infty \kappa(x) \, dx = \infty$ so that $\kappa(
ho)
abla_b
ho \leq 1.$

Theorem 3. Under the assumptions (A.1), (A.2)*, the closure of $(\mathfrak{A}^*, C_0^{\infty}(M))$ generates a C_0 -semigroup in $L^2(m)$. It satisfies L^1 -contraction property. If, in addition, $\operatorname{div} b \geq 0$, then the semigroup is Markovian.

2. Generator domain

If the Ricci curvature is bounded from below, then $Dom(\triangle) = Dom(\nabla^2)$. We can get similar result for \mathfrak{A} . To do so, we need the intertwining property. The following intertwining property is well known:

$\nabla \triangle = \Box_1 \nabla.$

Here $\Box_1 = -(dd^* + d^*d)$ is the Hodge-Kodaira operator.

Now we define an operator $\vec{\mathfrak{A}}$ acting on 1-forms by

$$ec{\mathfrak{A}} heta=rac{1}{2}\Box_1 heta+
abla_b heta+\langle
abla.b, heta
angle.$$

Then we have

$$abla \mathfrak{A} = \vec{\mathfrak{A}}
abla.$$

As before, the bilinear form associated with the symmetrization of $\vec{\mathfrak{A}}$ is given by

$$ec{\mathcal{E}}(heta,\eta) = rac{1}{2} (
abla heta,
abla \eta)_2 + \int_M \{rac{1}{2}\operatorname{Ric}(heta,\eta) + rac{1}{2}\operatorname{div} b(heta,\eta) - (B heta,\eta)\}\,dm.$$

where *B* is the symmetrization of ∇b : $B = \frac{1}{2}(\nabla b + (\nabla b)^*)$. We have

$$(-\vec{\mathfrak{A}} heta, heta)_2 = \vec{\mathcal{E}}(heta, heta)_2$$

We impose the following condition so that $\vec{\mathcal{E}}$ is bounded from below.

(A.3) Ric is bounded from below and $\exists \delta : \frac{1}{2} \operatorname{Ric} + \frac{1}{2} \operatorname{div} b - B \geq -\delta$.

Note that

$$rac{1}{2} \|
abla heta \|_2^2 \leq ec{\mathcal{E}_\delta}(heta, heta).$$

Theorem 4. Assume (A.1), (A.2), (A.2)^{*} and (A.3). Then $u \in \text{Dom}(\mathfrak{A})$ if and only if $u \in \text{Dom}(\triangle)$ and $\nabla_b u \in L^2(m)$.

$$egin{aligned} &((\mathfrak{A}-\delta-1)u, \bigtriangleup u) = -((\mathfrak{A}-\delta-1)u, \nabla^*
abla u) \ &= -(
abla (\mathfrak{A}-\delta-1)u,
abla u) \ &= -((ec{\mathfrak{A}}-\delta-1)
abla u,
abla u) \ &= ec{\mathcal{E}}_{\delta+1}(
abla u,
abla u). \end{aligned}$$

<u>As for \mathfrak{A}^* </u>

We have to handle $\operatorname{div} b$.

Define an operator $\vec{\mathfrak{D}}$ acting on 1-forms by

$$ec{\mathfrak{D}} heta = rac{1}{2} \Box_1 heta -
abla_b heta - \langle
abla_. b, heta
angle - heta \operatorname{div} b.$$

The intertwining property holds as

$$abla \mathfrak{A}^* u = \mathfrak{\bar{D}} \nabla u - u \nabla \operatorname{div} b.$$

The bilinear form associated with the symmetrization of $\vec{\mathfrak{D}}$ is

$$ec{\mathcal{E}'}(heta,\eta) = rac{1}{2} (
abla heta,
abla \eta)_2 + \int_M \{rac{1}{2}\operatorname{Ric}(heta,\eta) + rac{1}{2}(heta,\eta)\operatorname{div} b + (B heta,\eta)\}\,dm$$

We impose the following condition:

(A.4) Ric is bounded from below and $\exists \delta : \operatorname{Ric} + \frac{1}{2} \operatorname{div} b + B \ge -\delta'$ and $\frac{\nabla \operatorname{div} b}{\operatorname{div} b + 2\gamma + 2}$ is bounded.

Theorem 5. Assume (A.1), (A.2), (A.2)* and (A.4). Then $u \in \text{Dom}(\mathfrak{A})$ if and only if $u \in \text{Dom}(\triangle)$ and $\nabla_b u + \frac{1}{2}u \operatorname{div} b \in L^2$.

$$((\mathfrak{A}^* - \delta' - 1)u, \bigtriangleup u)_2$$

$$= -((\mathfrak{A}^* - \delta' - 1)u, \nabla^* \nabla u)_2$$

$$= -((\nabla(\mathfrak{A}^* - \delta' - 1)u, \nabla u)_2 + (u\nabla \operatorname{div} b, \nabla u)_2$$

$$= \vec{\mathcal{E}}'_{\delta'+1}(\nabla u, \nabla u) + (u\nabla \operatorname{div} b, \nabla u)_2.$$

$$\stackrel{\nabla \operatorname{div} b}{\operatorname{div} b + 2\gamma + 2} \text{ is bounded}$$

3. L^p semigroup

So far, we have considered in L^2 setting. What about in L^p case? (1)

Theorem 6. Under the assumptions (A.1) and (A.2), the closure of $(\mathfrak{A}, C_0^{\infty}(M))$ generate a C_0 -semigroup in L^p . The semigroup satisfies Markovian property. Further $\{e^{-2t\gamma}T_t\}$ satisfies the L^1 -contraction property.

We set $\gamma_p = rac{p}{2}\gamma$.

We claim the following:

• the dissipertivity:
$$\int_M (\mathfrak{A}-\gamma_p) u \operatorname{sgn}(u) |u|^{p-1} \, dm \leq 0.$$

• the maximality: $(\mathfrak{A} - \gamma - 1)(C_0^\infty(M))$ is dense in L^p .

To see

(6)
$$\int_{M} \bigtriangleup u \, \operatorname{sgn}(u) |u|^{p-1} \, dm \leq 0,$$

define $arphi_arepsilon$ (arepsilon > 0) by

$$\varphi_{\varepsilon}(t) = t(t^2 + \varepsilon)^{(p/2)-1}.$$

 $\varphi_{\varepsilon}'(t) \geq 0$. Hence

$$\int_M riangle u \, arphi_arepsilon(u) \, dm = - \int_M
abla u \, arphi'_arepsilon(u)
abla u \, dm = - \int_M arphi'_arepsilon(u) |
abla u|^2 \, dm \leq 0.$$

Letting $\varepsilon \to 0$, we have (6).

As for $\nabla_b u$, set $\varphi(t) = |t|^p$. Then $\varphi'(t) = p \operatorname{sgn}(t) |t|^{p-1}$.

$$abla_b(|u|^p) =
abla_b arphi(u) = p \operatorname{sgn}(u) |u|^{p-1}
abla_b u.$$

Hence

$$\int_M \nabla_b u \operatorname{sgn}(u) |u|^{p-1} \, dm = \frac{1}{p} \int_M \nabla_b (|u|^p) \, dm = -\frac{1}{p} \int_M |u|^p \operatorname{div} b \, dm.$$

So

$$egin{aligned} &\int_M (\mathfrak{A}-\gamma_p) u \operatorname{sgn}(u) |u|^{p-1} \, dm \ &= \int_M riangle u \operatorname{sgn}(u) |u|^{p-1} - \int_M (rac{1}{p} \operatorname{div} b + \gamma_p) |u|^p \, dm \leq 0. \end{aligned}$$

• the Markovian property:

$$\int_M \mathfrak{A} u \left(u - 1
ight)_+^{p-1} dm \leq rac{2\gamma}{p} \| \left(u - 1
ight)_+ \|_p^p$$

• the L^1 -contraction property:

$$\int_M (\mathfrak{A}-2\gamma) u \, (u_+\wedge 1)^{p-1} \, dm \leq 2\gamma (rac{1}{p}-1) \|u_+\wedge 1\|_p^p.$$

4. Ultracontractivity

A semigroup $\{T_t\}$ is called ultracontractive if $T_t \colon L^1 \to L^\infty$ is bounded for all t > 0.

It is well-known that the following three conditions are equivalent for a Markovian symmetric semigroup.

Let $\mu > 0$ be given.

(i)
$$\exists c_1 > 0, \forall t > 0, \forall f \in L^1$$
:

 $\|T_t f\|_{\infty} \leq c_1 t^{-\mu/2} \|f\|_1.$

(ii) $\exists c_2 > 0, \forall f \in \text{Dom}(\mathcal{E}) \cap L^{\infty}$:

 $\|f\|_2^{2+4/\mu} \leq c_2 \, \mathcal{E}(f,f) \, \|f\|_1^{4/\mu}.$

(iii) $\mu > 2, \exists c_3 > 0, \forall f \in \operatorname{Dom}(\mathcal{E})$:

 $\|f\|_{2\mu/(\mu-2)}^2 \leq c_3 \, \mathcal{E}(f,f).$

We assume that $\operatorname{div} b \ge 0$ and (A.2) and (A.2)*. Then the following inplication holds:

19

$$egin{aligned} \|T_t f\|_\infty &\leq c_1 t^{-\mu/2} \|f\|_1 \ &\uparrow \ \|f\|_2^{2+4/\mu} &\leq c_2 \, ilde{\mathcal{E}}(f,f) \, \|f\|_1^{4/\mu} \ &\uparrow \ \|f\|_{2\mu/(\mu-2)}^2 &\leq c_3 \, ilde{\mathcal{E}}(f,f) \end{aligned}$$

To show this, set $u(t) = ||T_t f||_2^2$. Then

$$-\frac{du}{dt} = -2(\mathfrak{A}T_t f, T_t f) \ge 2\|T_t f\|_2^{2+4/\mu} / (c_2 \|T_t f\|_1^{4/\mu}) \ge 2u^{1+2/\mu} / (c_2 \|f\|_1^{4/\mu})$$

Hence

$$\frac{d}{dt}(u^{-2/\mu}) \geq \frac{4}{c_2 \mu \|f\|_1^{4/\mu}}.$$

The rest is the same as the symmetric case.

Theorem 7. Assume that div $b \ge 0$ and (A.2), (A.2)*. If there exists $c_2 > 0$ so that

$$\|f\|_2^{2+4/\mu} \le c_2 \, ilde{\mathcal{E}}(f,f) \, \|f\|_1^{4/\mu}$$

then, there exists $c_1 > 0$ so that

 $\|T_t f\|_\infty \leq c_1 t^{-\mu/2} \|f\|_1.$

Remark 1. Under the above condition, we have

$$rac{1}{2}\int_M |
abla u|^2\,dm\leq ilde{\mathcal{E}}(u,u).$$

20-1

Thanks a lot!