Non symmetric diffusions on a Riemannian manifold

Ichiro Shigekawa
Kyoto University
August 8, 2008
The 1st MSJ-SI in Kyoto
URL: http://www.math.kyoto-u.ac.jp/iichiro/

Contents

1. Non-symmetric Diffusion on a Riemannian manifold
2. Domain of the generator
3. L^{p} semigroup
4. Ultracontractivity

1. Non-symmetric Diffusion on a Riemannian manifold

- $(M, g): d$-dimensional connected complete Riemannian manifold.
- $m=$ vol : the Riemannian volume. $\quad b$: a vector field on M.

We consider the following opetaror in $L^{2}(m)$:

$$
\begin{equation*}
\mathfrak{A}=\frac{1}{2} \triangle+\nabla_{b} . \tag{1}
\end{equation*}
$$

The dual operator is

$$
\mathfrak{A}^{*}=\frac{1}{2} \triangle-\nabla_{b}-\operatorname{div} b
$$

and the symmetrization is

$$
\begin{equation*}
\frac{1}{2}\left(\mathfrak{A}+\mathfrak{A}^{*}\right)=\frac{1}{2} \triangle-\frac{1}{2} \operatorname{div} b \tag{2}
\end{equation*}
$$

They are well-defined in $C_{0}^{\infty}(M)$.

The bilinear form \mathcal{E} associated with \mathfrak{A} is

$$
\begin{equation*}
\mathcal{E}(u, v)=-(\mathfrak{A} u, v)=\frac{1}{2} \int_{M}(\nabla u, \nabla v) d m-\int_{M}\left(\nabla_{b} u\right) v d m . \tag{3}
\end{equation*}
$$

The symmetrization of this is

$$
\begin{equation*}
\tilde{\mathcal{E}}(u, v)=\frac{1}{2} \int_{M}(\nabla u, \nabla v) d m+\frac{1}{2} \int_{M} u v \operatorname{div} b d m \tag{4}
\end{equation*}
$$

This coresspond the operator $\frac{1}{2}\left(\mathfrak{A}+\mathfrak{A}^{*}\right)$ in (2).
We are interested in when the semigroup associated to \mathfrak{A} exists in L^{2}.
We impose the following condition to ensure that $\boldsymbol{-} \boldsymbol{A}$ is bounded from below.
(A.1) $\exists \gamma \in \mathbb{R}: \frac{1}{2} \operatorname{div} b \geq-\gamma$.

Under this condition, $\tilde{\mathcal{E}}$ is bounded from below and closable.

- d : the distance function
- $p \in M$
- $\rho(x)=d(p, x)$

We add the following condition for \boldsymbol{b} :
(A.2) $\exists \kappa:[0, \infty) \rightarrow[0,1]$ with $\int_{0}^{\infty} \kappa(x) d x=\infty$ so that

$$
\kappa(\rho) \nabla_{b} \rho \geq-1 .
$$

- A typical example is $\kappa(x)=\frac{1}{x} . \quad \nabla_{b} \rho(x) \geq-\rho(x)$.

No problem

OK

No!

Theorem 1. Under the assumptions (A.1) and (A.2), the closure of ($\left.\mathfrak{A}, C_{0}^{\infty}(M)\right)$ generates a Markovian C_{0}-semigroup in $L^{2}(m)$.

We claim the following:

- the dissipertivity: $((\mathfrak{A}-\gamma) \boldsymbol{u}, \boldsymbol{u})_{2} \leq 0$.
- the maximality: $(\mathfrak{A}-\gamma-1)\left(C_{0}^{\infty}(M)\right)$ is dense in L^{2}.

In fact,

$$
\begin{aligned}
&((\mathfrak{A}-\gamma) u, u)_{2}=-\frac{1}{2} \int_{M}\left(|\nabla u|^{2}+u^{2} \operatorname{div} b\right) d m-\int_{M} \gamma u^{2} d m \leq 0 . \\
&(\mathfrak{A}-\gamma-1)^{*} u=0 \Rightarrow u \in C^{\infty}(M) \\
& \Rightarrow\left(u,(\mathfrak{A}-\gamma-1)\left(\chi_{n} u\right)\right)_{2}=0 \\
& \Rightarrow u=0
\end{aligned}
$$

The Markovian property is checked by the following criterion:

$$
\begin{equation*}
(\mathfrak{A} u, u-u \wedge 1)_{2} \leq \gamma\|u-u \wedge 1\|_{2}^{2} \tag{5}
\end{equation*}
$$

Here $a \wedge b=\min \{a, b\}$.
We can also show the L^{1}-contraction property.
Proposition 2. Under the assumptions (A.1) and (A.2), $\left\{e^{-2 t \gamma} \boldsymbol{T}_{t}\right\}$ satisfies the L^{1}-contraction property.

We check the following criterion:

$$
\left((\mathfrak{A}-2 \gamma) u, u_{+} \wedge 1\right)_{2} \leq-\gamma\left\|u_{+} \wedge 1\right\|_{2}^{2} .
$$

As for \boldsymbol{A}^{*}

$$
\mathfrak{A}^{*}=\frac{1}{2} \triangle-\nabla_{b}-\operatorname{div} b
$$

We need the following condition:
$(\mathrm{A} .2)^{*} \exists \kappa:[0, \infty) \rightarrow[0,1]$ with $\int_{0}^{\infty} \kappa(x) d x=\infty$ so that

$$
\kappa(\rho) \nabla_{b} \rho \leq 1
$$

Theorem 3. Under the assumptions (A.1), (A.2)*, the closure of ($\left.\mathfrak{A}^{*}, C_{0}^{\infty}(M)\right)$ generates a C_{0}-semigroup in $L^{2}(m)$. It satisfies L^{1}-contraction property. If, in addition, $\operatorname{div} \boldsymbol{b} \geq \mathbf{0}$, then the semigroup is Markovian.

2. Generator domain

If the Ricci curvature is bounded from below, then $\operatorname{Dom}(\triangle)=\operatorname{Dom}\left(\nabla^{2}\right)$. We can get similar result for \mathfrak{A}. To do so, we need the intertwining property. The following intertwining property is well known:

$$
\nabla \triangle=\square_{1} \nabla .
$$

Here $\square_{1}=-\left(d d^{*}+d^{*} d\right)$ is the Hodge-Kodaira operator.
Now we define an operator $\overrightarrow{\mathfrak{A}}$ acting on 1 -forms by

$$
\overrightarrow{\mathfrak{A}} \theta=\frac{1}{2} \square_{1} \theta+\nabla_{b} \theta+\langle\nabla \cdot b, \theta\rangle .
$$

Then we have

$$
\nabla \mathfrak{A}=\overrightarrow{\mathfrak{A}} \nabla .
$$

As before, the bilinear form associated with the symmetrization of $\overrightarrow{\mathfrak{A}}$ is given by

$$
\overrightarrow{\mathcal{E}}(\theta, \eta)=\frac{1}{2}(\nabla \theta, \nabla \eta)_{2}+\int_{M}\left\{\frac{1}{2} \operatorname{Ric}(\theta, \eta)+\frac{1}{2} \operatorname{div} b(\theta, \eta)-(B \theta, \eta)\right\} d m .
$$

where B is the symmetrization of $\nabla b: B=\frac{1}{2}\left(\nabla b+(\nabla b)^{*}\right)$.
We have

$$
(-\overrightarrow{\mathfrak{A}} \theta, \theta)_{2}=\overrightarrow{\mathcal{E}}(\theta, \theta) .
$$

We impose the following condition so that $\overrightarrow{\mathcal{E}}$ is bounded from below.
(A.3) Ric is bounded from below and $\exists \delta: \frac{1}{2} \operatorname{Ric}+\frac{1}{2} \operatorname{div} b-B \geq-\delta$.

Note that

$$
\frac{1}{2}\|\nabla \theta\|_{2}^{2} \leq \overrightarrow{\mathcal{E}}_{\delta}(\theta, \theta)
$$

Theorem 4. Assume (A.1), (A.2), (A.2)* and (A.3). Then $u \in \operatorname{Dom}(\mathfrak{A})$ if and only if $u \in \operatorname{Dom}(\triangle)$ and $\nabla_{b} u \in L^{2}(m)$.

$$
\begin{aligned}
((\mathfrak{A}-\delta-1) u, \triangle u) & =-\left((\mathfrak{\mathfrak { A }}-\boldsymbol{\delta}-\mathbf{1}) u, \nabla^{*} \nabla u\right) \\
& =-(\nabla(\mathfrak{\mathfrak { A }}-\delta-\mathbf{1}) u, \nabla u) \\
& =-((\overrightarrow{\mathfrak{\mathfrak { A }}}-\delta-\mathbf{1}) \nabla u, \nabla u) \\
& =\overrightarrow{\mathcal{E}}_{\delta+1}(\nabla u, \nabla u)
\end{aligned}
$$

As for \mathfrak{A}^{*}

We have to handle $\operatorname{div} b$.
Define an operator $\overrightarrow{\mathfrak{D}}$ acting on 1 -fomrs by

$$
\overrightarrow{\mathfrak{D}} \theta=\frac{1}{2} \square_{1} \theta-\nabla_{b} \theta-\langle\nabla . b, \theta\rangle-\theta \operatorname{div} b .
$$

The intertwining property holds as

$$
\nabla \mathfrak{A}^{*} u=\overrightarrow{\mathfrak{D}} \nabla u-u \nabla \operatorname{div} b .
$$

The bilinear form associated with the symmetrization of $\overrightarrow{\mathfrak{D}}$ is

$$
\overrightarrow{\mathcal{E}}^{\prime}(\theta, \eta)=\frac{1}{2}(\nabla \theta, \nabla \eta)_{2}+\int_{M}\left\{\frac{1}{2} \operatorname{Ric}(\theta, \eta)+\frac{1}{2}(\theta, \eta) \operatorname{div} b+(B \theta, \eta)\right\} d m
$$

We impose the following condition:
(A.4) Ric is bounded from below and $\exists \delta: \operatorname{Ric}+\frac{1}{2} \operatorname{div} b+B \geq-\delta^{\prime}$ and $\frac{\nabla \operatorname{div} b}{\operatorname{div} b+2 \gamma+2}$ is bounded.

Theorem 5. Assume (A.1), (A.2), (A.2)* and (A.4). Then $u \in \operatorname{Dom(A)}$) if and only if $u \in \operatorname{Dom}(\triangle)$ and $\nabla_{b} u+\frac{1}{2} u \operatorname{div} b \in L^{2}$.

$$
\begin{aligned}
&\left(\left(\mathfrak{A}^{*}-\delta^{\prime}\right.\right.-1) u, \triangle u)_{2} \\
& \quad=-\left(\left(\mathfrak{A}^{*}-\delta^{\prime}-1\right) u, \nabla^{*} \nabla u\right)_{2} \\
& \quad=-\left(\nabla\left(\mathfrak{A}^{*}-\delta^{\prime}-1\right) u, \nabla u\right)_{2} \\
& \quad=-\left(\left(\overrightarrow{\mathfrak{D}}-\delta^{\prime}-1\right) \nabla u, \nabla u\right)_{2}+(u \nabla \operatorname{div} b, \nabla u)_{2} \\
& \quad=\overrightarrow{\mathcal{E}}_{\delta^{\prime}+1}^{\prime}(\nabla u, \nabla u)+(u \nabla \operatorname{div} b, \nabla u)_{2}
\end{aligned}
$$

$$
\frac{\nabla \operatorname{div} b}{\operatorname{div} b+2 \gamma+2} \text { is bounded }
$$

3. L^{p} semigroup

So far, we have considered in L^{2} setting. What about in L^{p} case? $(1<p<\infty)$
Theorem 6. Under the assumptions (A.1) and (A.2), the closure of ($\left.\mathfrak{A}, C_{0}^{\infty}(M)\right)$ generate a C_{0}-semigroup in L^{p}. The semigroup satisfies Markovian property. Further $\left\{e^{-2 t \gamma} T_{t}\right\}$ satisfies the L^{1}-contraction property.

We set $\gamma_{p}=\frac{p}{2} \gamma$.
We claim the following:

- the dissipertivity: $\int_{M}\left(\mathfrak{A}-\gamma_{p}\right) u \operatorname{sgn}(u)|u|^{p-1} d m \leq 0$.
- the maximality: $(\mathfrak{A}-\gamma-1)\left(C_{0}^{\infty}(M)\right)$ is dense in L^{p}.

To see

$$
\begin{equation*}
\int_{M} \triangle u \operatorname{sgn}(u)|u|^{p-1} d m \leq 0 \tag{6}
\end{equation*}
$$

define $\varphi_{\varepsilon}(\varepsilon>0)$ by

$$
\varphi_{\varepsilon}(t)=t\left(t^{2}+\varepsilon\right)^{(p / 2)-1}
$$

$\varphi_{\varepsilon}^{\prime}(t) \geq 0$. Hence

$$
\int_{M} \triangle u \varphi_{\varepsilon}(u) d m=-\int_{M} \nabla u \varphi_{\varepsilon}^{\prime}(u) \nabla u d m=-\int_{M} \varphi_{\varepsilon}^{\prime}(u)|\nabla u|^{2} d m \leq 0
$$

Letting $\varepsilon \rightarrow \mathbf{0}$, we have (6).

As for $\nabla_{b} u$, set $\varphi(t)=|t|^{p}$. Then $\varphi^{\prime}(t)=p \operatorname{sgn}(t)|t|^{p-1}$.

$$
\nabla_{b}\left(|u|^{p}\right)=\nabla_{b} \varphi(u)=p \operatorname{sgn}(u)|u|^{p-1} \nabla_{b} u
$$

Hence

$$
\int_{M} \nabla_{b} u \operatorname{sgn}(u)|u|^{p-1} d m=\frac{1}{p} \int_{M} \nabla_{b}\left(|u|^{p}\right) d m=-\frac{1}{p} \int_{M}|u|^{p} \operatorname{div} b d m
$$

So

$$
\begin{aligned}
\int_{M} & \left(\mathfrak{A}-\gamma_{p}\right) u \operatorname{sgn}(u)|u|^{p-1} d m \\
& =\int_{M} \triangle u \operatorname{sgn}(u)|u|^{p-1}-\int_{M}\left(\frac{1}{p} \operatorname{div} b+\gamma_{p}\right)|u|^{p} d m \leq 0
\end{aligned}
$$

- the Markovian property:

$$
\int_{M} \mathfrak{A} u(u-1)_{+}^{p-1} d m \leq \frac{2 \gamma}{p}\left\|(u-1)_{+}\right\|_{p}^{p}
$$

- the L^{1}-contraction property:

$$
\int_{M}(\mathfrak{A}-2 \gamma) u\left(u_{+} \wedge 1\right)^{p-1} d m \leq 2 \gamma\left(\frac{1}{p}-1\right)\left\|u_{+} \wedge 1\right\|_{p}^{p}
$$

4. Ultracontractivity

A semigroup $\left\{T_{t}\right\}$ is called ultracontractive if $T_{t}: L^{1} \rightarrow L^{\infty}$ is bounded for all $t>0$.

It is well-known that the following three conditions are equivalent for a Markovian symmetric semigroup.

Let $\boldsymbol{\mu}>\mathbf{0}$ be given.
(i) $\exists c_{1}>0, \forall t>0, \forall f \in L^{1}$:

$$
\left\|T_{t} f\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}
$$

(ii) $\exists c_{2}>0, \forall f \in \operatorname{Dom}(\mathcal{E}) \cap L^{\infty}$:

$$
\|f\|_{2}^{2+4 / \mu} \leq c_{2} \mathcal{E}(f, f)\|f\|_{1}^{4 / \mu} .
$$

(iii) $\mu>2, \exists c_{3}>0, \forall f \in \operatorname{Dom}(\mathcal{E})$:

$$
\|f\|_{2 \mu /(\mu-2)}^{2} \leq c_{3} \mathcal{E}(f, f)
$$

We assume that $\operatorname{div} \boldsymbol{b} \geq \mathbf{0}$ and (A.2) and (A.2)*. Then the following inplication holds:

$$
\begin{gathered}
\left\|T_{t} f\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1} \\
\Uparrow \\
\|f\|_{2}^{2+4 / \mu} \leq c_{2} \tilde{\mathcal{E}}(f, f)\|f\|_{1}^{4 / \mu} \\
\Uparrow \\
\|f\|_{2 \mu /(\mu-2)}^{2} \leq c_{3} \tilde{\mathcal{E}}(f, f)
\end{gathered}
$$

To show this, set $u(t)=\left\|T_{t} f\right\|_{2}^{2}$. Then
$-\frac{d u}{d t}=-2\left(\mathfrak{A} T_{t} f, T_{t} f\right) \geq 2\left\|T_{t} f\right\|_{2}^{2+4 / \mu} /\left(c_{2}\left\|T_{t} f\right\|_{1}^{4 / \mu}\right) \geq 2 u^{1+2 / \mu} /\left(c_{2}\|f\|_{1}^{4 / \mu}\right)$.
Hence

$$
\frac{d}{d t}\left(u^{-2 / \mu}\right) \geq \frac{4}{c_{2} \mu\|f\|_{1}^{4 / \mu}}
$$

The rest is the same as the symmetric case.

Theorem 7. Assume that $\operatorname{div} b \geq 0$ and (A.2), (A.2)*. If there exists $c_{2}>0$ so that

$$
\|f\|_{2}^{2+4 / \mu} \leq c_{2} \tilde{\mathcal{E}}(f, f)\|f\|_{1}^{4 / \mu}
$$

then, there exists $c_{1}>0$ so that

$$
\left\|T_{t} f\right\|_{\infty} \leq c_{1} t^{-\mu / 2}\|f\|_{1}
$$

Remark 1. Under the above condition, we have

$$
\frac{1}{2} \int_{M}|\nabla u|^{2} d m \leq \tilde{\mathcal{E}}(u, u)
$$

Thanks a lot!

