Witten Laplacian for a lattice spin system

Ichiro SHIGEKAWA
Kyoto University
November 27, 2007
Zhongshan University

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

1. Witten Laplacian in finite dimension
2. Witten Laplacian acting on differential forms
3. Spectral gap for Witten Laplacian in a lattice spin system
4. The Hodge-Kodaira decomposition

1. Witten Laplacian in finite dimension

- Φ : a C^{2} function on \mathbb{R}^{N}, (Hamiltonian)
- $\boldsymbol{\nu}$: a measure on \mathbb{R}^{N} defined by

$$
\nu(d x)=Z^{-1} e^{-2 \Phi} d x, \quad Z=\int_{\mathbb{R}^{N}} e^{-2 \Phi} d x
$$

- a Dirichlet form \mathcal{E} :

$$
\mathcal{E}(f, g)=\int_{\mathbb{R}^{N}}(\nabla f, \nabla g) d \nu(x)
$$

where $\nabla=\left(\partial_{1}, \ldots, \partial_{N}\right), \partial_{k}=\frac{d}{d x_{k}}$.

- the dual of $\boldsymbol{\partial}_{\boldsymbol{j}}$ is

$$
\partial_{j}^{*}=-\partial_{j}+2 \partial_{j} \Phi
$$

- the generator $\boldsymbol{\mathfrak { A }}$ is
(1.1) $\quad \mathfrak{A} f=\sum_{j}\left(\partial_{j}^{2} f-2 \partial_{j} \Phi \partial_{j} f\right)=\triangle f-2(\nabla \Phi, \nabla f)$.
\mathfrak{A} is essentially self-adjoint in $C_{0}^{\infty}\left(\mathbb{R}^{\boldsymbol{N}}\right)$.

Witten Laplacian

We now define a Witten Laplacian. Let $\boldsymbol{I}: \boldsymbol{L}^{2}(\boldsymbol{d} \boldsymbol{x}) \longrightarrow \boldsymbol{L}^{2}(\boldsymbol{\nu})$ be defined by

$$
\begin{equation*}
I f(x)=e^{\Phi} f \tag{1.2}
\end{equation*}
$$

Lwt $\boldsymbol{X}_{\boldsymbol{j}}$ be an operator defined by

$$
X_{j}=e^{-\Phi} \partial_{j} e^{\Phi}=\partial_{j}+\partial_{j} \Phi
$$

Then the following is commutative:

\[

\]

We use the convention that

- * stands for the dual operator in $L^{2}(\boldsymbol{\nu})$
- ~ stands for the dual operator in $\boldsymbol{L}^{2}(\boldsymbol{d} \boldsymbol{x})$
$\tilde{\boldsymbol{X}}_{j}$ has the following form:

$$
\tilde{X}_{j}=-\partial_{j}+\partial_{j} \Phi=e^{-\Phi} \partial_{j}^{*} e^{\Phi}
$$

The operaotr \boldsymbol{A} associated with the generator $\mathfrak{A}=-\sum_{j} \partial_{j}^{*} \boldsymbol{\partial}_{j}$ is

$$
A=e^{-\Phi} \mathfrak{A} e^{\Phi}=-\sum_{j} \tilde{X}_{j} X_{j}=\triangle+\triangle \Phi-|\nabla \Phi|^{2}
$$

Definition 1. $A=\triangle+\triangle \Phi-|\nabla \Phi|^{2}$ in $L^{2}(d x)$ is called a Witten Laplacian.
Proposition 1.1. In $L^{2}(\nu)$, we have

$$
\begin{align*}
{\left[\partial_{i}, \partial_{j}\right] } & =0, \tag{1.3}\\
{\left[\partial_{i}, \partial_{j}^{*}\right] } & =2 \partial_{i} \partial_{j} \Phi \tag{1.4}\\
{\left[\partial_{i}^{*}, \partial_{j}^{*}\right] } & =0 \tag{1.5}
\end{align*}
$$

Further, in $L^{2}(d x)$, we have

$$
\begin{align*}
{\left[\boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right] } & =0, \tag{1.6}\\
{\left[\boldsymbol{X}_{i}, \tilde{\boldsymbol{X}}_{j}\right] } & =2 \partial_{i} \partial_{j} \Phi, \tag{1.7}\\
{\left[\tilde{\boldsymbol{X}}_{i}, \tilde{\boldsymbol{X}}_{j}\right] } & =0 . \tag{1.8}
\end{align*}
$$

2. Witten Laplacian acting on differential forms

 differential forms- tensor product
\boldsymbol{t} : a \boldsymbol{p}-linear functional, \boldsymbol{s} : a \boldsymbol{q}-linear functional
A tensor product $\boldsymbol{t} \otimes \boldsymbol{s}$ is defined by

$$
\begin{aligned}
& t \otimes s\left(v_{1}, \ldots, v_{p}, v_{p+1}, \ldots, v_{p+q}\right) \\
& \quad=t\left(v_{1}, \ldots, v_{p}\right) s\left(v_{p+1}, \ldots, v_{p+q}\right)
\end{aligned}
$$

- the alternation mapping $\boldsymbol{A}_{\boldsymbol{p}}$:

$$
\left.A t\left(v_{1}, \ldots, v_{p}\right)\right)=\frac{1}{p!} \sum_{\sigma \in \mathfrak{S}_{p}} \operatorname{sgn} \sigma t\left(v_{\sigma(1)}, \ldots, v_{\sigma(p)}\right)
$$

- $\boldsymbol{\theta}$ is called alternating if $\boldsymbol{A}_{\boldsymbol{p}} \boldsymbol{\theta}=\boldsymbol{\theta}$.
- $\bigwedge^{p}\left(\mathbb{R}^{N}\right)^{*}$: the set of all alternating functionals of degree \boldsymbol{p}
- the exterior product $\boldsymbol{\theta} \wedge \boldsymbol{\eta}$ is defined by

$$
\theta \wedge \eta=\frac{(p+q)!}{p!q!} A(\theta \otimes \eta), \quad \theta \in \bigwedge^{p}\left(\mathbb{R}^{N}\right)^{*}, \eta \in \bigwedge^{q}\left(\mathbb{R}^{N}\right)^{*}
$$

- Taking an orthonomal basis $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{\boldsymbol{N}}$ in $\left(\mathbb{R}^{\boldsymbol{N}}\right)^{*}$, the followings form a basin in $\bigwedge^{p}\left(\mathbb{R}^{N}\right)^{*}$

$$
\begin{equation*}
\theta_{i_{1}} \wedge \cdots \wedge \theta_{i_{p}} \tag{2.1}
\end{equation*}
$$

- We define an inner product in $\bigwedge^{p}\left(\mathbb{R}^{N}\right)^{*}$ so that (2.1) become an o.n.b.
- $A^{p}\left(\mathbb{R}^{N}\right)=\mathbb{R}^{N} \times \bigwedge^{p}\left(\mathbb{R}^{N}\right)^{*}$ is an exterior bundle.
- A differential form: a section of $\boldsymbol{A}^{p}\left(\mathbb{R}^{N}\right)$.
- $\Gamma\left(\boldsymbol{A}^{p}\left(\mathbb{R}^{N}\right)\right)$: The set of all sections, identified with $\bigwedge^{p}\left(\mathbb{R}^{N}\right)^{*}$ valued functions.
$\underline{\text { Creation and anihilation operator }}$
- $\operatorname{ext}(\theta): \bigwedge^{p}\left(\mathbb{R}^{N}\right)^{*} \longrightarrow \bigwedge^{p+1}\left(\mathbb{R}^{N}\right)^{*}$ is defined by

$$
\operatorname{ext}(\theta) \omega=\theta \wedge \omega
$$

$-\operatorname{int}(\theta): \bigwedge^{p}\left(\mathbb{R}^{N}\right)^{*} \longrightarrow \bigwedge^{p-1}\left(\mathbb{R}^{N}\right)^{*}$ is defined by

$$
\operatorname{int}(v) \omega\left(v_{1}, \ldots, v_{p-1}\right)=\omega\left(v, v_{1}, \ldots, v_{p-1}\right)
$$

- Taking a standard basis $\left\{e_{1}, \ldots, e_{N}\right\}$ of $\mathbb{R}^{\boldsymbol{N}}$ and its dual basis $\left\{\theta^{1}, \ldots, \theta^{N}\right\}$,
we define

$$
\begin{aligned}
a^{i} & =\operatorname{int}\left(e_{i}\right) \\
\left(a^{i}\right)^{*} & =\operatorname{ext}\left(\theta^{i}\right)
\end{aligned}
$$

They satisfy the following commutation relation:

$$
\begin{gather*}
{\left[a^{i}, a^{j}\right]_{+}=0} \tag{2.2}\\
{\left[a^{i},\left(a^{j}\right)^{*}\right]_{+}=\delta_{i j}} \\
{\left[\left(a^{i}\right)^{*},\left(a^{j}\right)^{*}\right]_{+}=0} \tag{2.4}
\end{gather*}
$$

Here $\left[\boldsymbol{a}^{i}, \boldsymbol{a}^{j}\right]_{+}=\boldsymbol{a}^{i} \boldsymbol{a}^{j}+\boldsymbol{a}^{j} \boldsymbol{a}^{i}$.
For differential forms, the covariant differentiation $\boldsymbol{\nabla}$ can be defined. More generaly, the covariant differentiation $\boldsymbol{\nabla}$ is defined for tensor fields as follows:

- the covariant differentiation ∇ :

$$
\nabla t=\sum_{i} \theta^{i} \otimes \partial_{i} t
$$

- The dual operator of ∇ :

$$
\nabla^{*}\left(\sum_{i} \theta^{i} \otimes t_{i}\right)=\sum_{i} \partial_{i}^{*} t_{i}
$$

- the covariant Laplacian

$$
\nabla^{*} \nabla t=\sum_{i} \partial_{i}^{*} \partial_{i} t=-\sum_{i}\left(\partial_{i}^{2}-2 \partial_{i} \Phi \partial_{i}\right) t
$$

- the exterior differentiation:

$$
d=\sum_{i} \operatorname{ext}\left(\theta^{i}\right) \partial_{i}=\sum_{i}\left(a^{i}\right)^{*} \partial_{i}
$$

- the dual operator of \boldsymbol{d}

$$
d^{*}=\sum_{i} a^{i} \partial_{i}^{*}
$$

- the Hodge-Kodaira Laplacian: $-\left(\boldsymbol{d} d^{*}+d^{*} d\right)$

Theorem 2.1. We have the following identity.

$$
d d^{*}+d^{*} d=\nabla^{*} \nabla+2 \sum_{i, j}\left(a^{i}\right)^{*} a^{j} \partial_{i} \partial_{j} \Phi
$$

Unitary equivalent expression

By the isomorphism $I: \boldsymbol{L}^{2}(\boldsymbol{d} \boldsymbol{x}) \longrightarrow \boldsymbol{L}^{2}(\boldsymbol{\nu})$, we can compute associated operators under the the Lebesgue measure.

$$
\begin{aligned}
& D=e^{-\Phi} d e^{\Phi} \\
& \tilde{D}=e^{-\Phi} d^{*} e^{\Phi}
\end{aligned}
$$

and the Hodge-Kodaira operator $\tilde{\boldsymbol{D}} \boldsymbol{D}+\boldsymbol{D} \tilde{\boldsymbol{D}}$.
Theorem 2.2. We have the following identities:

$$
\tilde{D} D+D \tilde{D}=\sum_{i} \tilde{X}_{i} X_{i}+2 \sum_{i, j}\left(a^{i}\right)^{*} a^{j} \partial_{i} \partial_{j} \Phi
$$

3. Spectral gap for Witten Laplacian in a lattice spin system

A spin system
A spin system is characterized by a Gibbs measure on $\boldsymbol{X}=\mathbb{R}^{\mathbb{Z}^{d}}$.

- Hamiltonian:

$$
\Phi(x)=\sum_{\substack{i, j \in \mathbb{Z}^{d} \\ i j}} \mathcal{J}\left(x^{i}-x^{j}\right)^{2}+\sum_{i \in \mathbb{Z}^{d}} U\left(x^{i}\right) .
$$

Here $\boldsymbol{i} \sim \boldsymbol{j}$ means that

$$
|i-j|^{2}=\left(i_{1}-j_{1}\right)^{2}+\cdots+\left(i_{1}-j_{1}\right)^{2}=1 .
$$

- a Gibbs measure:

$$
\nu=Z^{-1} e^{-2 \Phi(x)} d x, \quad \text { (formal expression) }
$$

- $\boldsymbol{\Lambda}$: a finite region, $\boldsymbol{\eta}$: a boundary condition

$$
\Phi_{\Lambda, \eta}(x)=\sum_{\substack{i, j \in \Lambda \\ i \sim j}} \mathcal{J}\left(x^{i}-x^{j}\right)^{2}+\sum_{i \in \Lambda} U\left(x^{i}\right)+2 \sum_{\substack{i \in \Lambda, j \in \Lambda^{c} \\ i \sim j}} \mathcal{J}\left(x^{i}-\eta^{j}\right)^{2}
$$

- Define a measure $\boldsymbol{\nu}_{\boldsymbol{\Lambda}, \eta}$ on $\mathbb{R}^{\boldsymbol{\Lambda}}$ by

$$
\nu_{\Lambda, \eta}=Z^{-1} e^{-2 \Phi_{\Lambda, \eta}(x)} d x_{\Lambda}
$$

- the Gibbs measure is characterized by the following Dobrushin-Lanford-Ruelle equation:

$$
E^{\nu}\left[\cdot \mid \omega_{\Lambda^{c}}=\eta_{\Lambda^{c}}\right]=\nu_{\Lambda, \eta}\left(d \omega_{\Lambda}\right) \otimes \delta_{\eta_{\Lambda^{c}}}\left(d \omega_{\Lambda^{c}}\right)
$$

Theorem 3.1. Assume

- $\boldsymbol{U}=\boldsymbol{V}+\boldsymbol{W}, \boldsymbol{V}^{\prime \prime} \geq \boldsymbol{c}>0, \boldsymbol{W}$ is bounded.
- $W_{\text {sup }}$: supremum of $W, W_{\text {inf }}$: infimum of W satisfy $2(c+$ $8 d \mathcal{J}) e^{-2\left(W_{\text {sup }}-W_{\text {inf }}\right)}>16 d \mathcal{J}$.

For $\boldsymbol{p} \geq \mathbf{1}$, the bottom of the $\boldsymbol{\sigma}\left(\boldsymbol{d} \boldsymbol{d}^{*}+\boldsymbol{d}^{*} \boldsymbol{d}\right)$ acting on \boldsymbol{p}-forms is greater than $\left\{2(c+8 d \mathcal{J}) e^{-2\left(W_{\text {sup }}-W_{\text {inf }}\right)}-16 d \mathcal{J}\right\} p$ and so there is no harmonic forms.

Theorem 3.2. Assume $\boldsymbol{U}(t)=a t^{4}-b t^{2}$ and $\sqrt{3 a}-b-4 d \mathcal{J}>$ $\mathbf{0}$, then the same conclusinon as Theorem 3.1 holds.

4. The Hodge-Kodaira decomposition

Theorem 4.1. The following Hodge-Kodaira decomposition holds: for $\boldsymbol{p}=\mathbf{0}$,

$$
L^{2}(\nu)=\{\text { constant functions }\} \oplus \operatorname{Ran}\left(d^{*}\right)
$$

and for $\boldsymbol{p} \geq 1$,

$$
L^{2}\left(\nu ; \bigwedge^{p}\left(\mathbb{R}^{N}\right)^{*}\right)=\operatorname{Ran}(d) \oplus \operatorname{Ran}\left(d^{*}\right)
$$

