Witten Laplacian for a lattice spin system

Ichiro SHIGEKAWA

KYOTO UNIVERSITY

November 27, 2007 Zhongshan University

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

- 1. Witten Laplacian in finite dimension
- 2. Witten Laplacian acting on differential forms
- 3. Spectral gap for Witten Laplacian in a lattice spin system
- 4. The Hodge-Kodaira decomposition

1. Witten Laplacian in finite dimension

- Φ : a C^2 function on \mathbb{R}^N , (Hamiltonian)
- $\boldsymbol{\nu}$: a measure on \mathbb{R}^N defined by

$$u(dx)=Z^{-1}e^{-2\Phi}dx, \qquad Z=\int_{\mathbb{R}^N}e^{-2\Phi}dx$$

^

• a Dirichlet form $\boldsymbol{\mathcal{E}}$:

$$\mathcal{E}(f,g) = \int_{\mathbb{R}^N} (
abla f,
abla g) d
u(x),$$

where $\nabla = (\partial_1, \ldots, \partial_N), \ \partial_k = \frac{d}{dx_k}$.

• the dual of ∂_j is

$$\partial_j^* = -\partial_j + 2\partial_j \Phi.$$

• the generator \mathfrak{A} is

(1.1)
$$\mathfrak{A}f = \sum_{j} (\partial_{j}^{2}f - 2\partial_{j}\Phi\partial_{j}f) = \Delta f - 2(\nabla\Phi, \nabla f).$$

 \mathfrak{A} is essentially self-adjoint in $C_0^{\infty}(\mathbb{R}^N)$.

Witten Laplacian

We now define a Witten Laplacian. Let $I: L^2(dx) \longrightarrow L^2(\nu)$ be defined by

(1.2)
$$If(x) = e^{\Phi}f.$$

Lwt X_j be an operator defined by

$$X_j = e^{-\Phi} \partial_j e^{\Phi} = \partial_j + \partial_j \Phi.$$

Then the following is commutative:

$$egin{array}{rcl} L^2(dx) & \stackrel{I}{\longrightarrow} & L^2(
u) \ X_j igg| & & & & & & & & & \ L^2(dx) & \stackrel{I}{\longrightarrow} & L^2(
u) \end{array}$$

We use the convention that

- * stands for the dual operator in $L^2(\nu)$
- $\tilde{}$ stands for the dual operator in $L^2(dx)$
- $ilde{X}_j$ has the following form:

$$ilde{X}_j = -\partial_j + \partial_j \Phi = e^{-\Phi} \partial_j^* e^{\Phi}.$$

The operaotr A associated with the generator $\mathfrak{A} = -\sum_j \partial_j^* \partial_j$ is

$$A=e^{-\Phi}\mathfrak{A}e^{\Phi}=-\sum_{j} ilde{X}_{j}X_{j}= riangle+ riangle\Phi-|
abla\Phi|^{2}.$$

Definition 1. $A = \triangle + \triangle \Phi - |\nabla \Phi|^2$ in $L^2(dx)$ is called a Witten Laplacian.

Proposition 1.1. In $L^2(\nu)$, we have

(1.3) $\begin{bmatrix} \partial_i, \partial_j \end{bmatrix} = 0,$ (1.4) $\begin{bmatrix} \partial_i, \partial_j^* \end{bmatrix} = 2\partial_i \partial_j \Phi,$ (1.5) $\begin{bmatrix} \partial_i^*, \partial_j^* \end{bmatrix} = 0.$

Further, in $L^2(dx)$, we have

(1.6) $[X_i, X_j] = 0,$ (1.7) $[X_i, \tilde{X}_j] = 2\partial_i \partial_j \Phi,$ (1.8) $[\tilde{X}_i, \tilde{X}_j] = 0.$

2. Witten Laplacian acting on differential forms

differential forms

- tensor product
 - t: a p-linear functional,s: a q-linear functionalA tensor product $t \otimes s$ is defined by

$$egin{aligned} t\otimes s(v_1,\ldots,v_p,v_{p+1},\ldots,v_{p+q})\ &=t(v_1,\ldots,v_p)s(v_{p+1},\ldots,v_{p+q}). \end{aligned}$$

• the alternation mapping A_p :

$$At(v_1,\ldots,v_p)) = rac{1}{p!}\sum_{\sigma\in\mathfrak{S}_p} \operatorname{sgn}\sigma\,t(v_{\sigma(1)},\ldots,v_{\sigma(p)}).$$

• θ is called alternating if $A_p \theta = \theta$.

- $\bigwedge^{p}(\mathbb{R}^{N})^{*}$: the set of all alternating functionals of degree p
- the exterior product $\theta \wedge \eta$ is defined by

$$heta\wedge\eta=rac{(p+q)!}{p!q!}A(heta\otimes\eta), \hspace{1em} heta\in\bigwedge^p(\mathbb{R}^N)^*,\hspace{1em}\eta\in\bigwedge^q(\mathbb{R}^N)^*$$

• Taking an orthonomal basis $\theta_1, \ldots, \theta_N$ in $(\mathbb{R}^N)^*$, the followings form a basin in $\bigwedge^p (\mathbb{R}^N)^*$

(2.1)
$$\theta_{i_1} \wedge \cdots \wedge \theta_{i_p}$$

- We define an inner product in ∧^p(ℝ^N)* so that (2.1) become an o.n.b.
- $A^p(\mathbb{R}^N) = \mathbb{R}^N \times \bigwedge^p(\mathbb{R}^N)^*$ is an exterior bundle.
- A differential form: a section of $A^p(\mathbb{R}^N)$.

• $\Gamma(A^p(\mathbb{R}^N))$: The set of all sections, identified with $\bigwedge^p(\mathbb{R}^N)^*$ valued functions.

Creation and anihilation operator

•
$$\operatorname{ext}(\theta) \colon \bigwedge^p(\mathbb{R}^N)^* \longrightarrow \bigwedge^{p+1}(\mathbb{R}^N)^*$$
 is defined by
 $\operatorname{ext}(\theta)\omega = \theta \wedge \omega$

- $\operatorname{int}(\theta) \colon \bigwedge^{p}(\mathbb{R}^{N})^{*} \longrightarrow \bigwedge^{p-1}(\mathbb{R}^{N})^{*}$ is defined by $\operatorname{int}(v)\omega(v_{1},\ldots,v_{p-1}) = \omega(v,v_{1},\ldots,v_{p-1}).$
- Taking a standard basis $\{e_1, \ldots, e_N\}$ of \mathbb{R}^N and its dual basis $\{\theta^1, \ldots, \theta^N\}$,

we define

$$a^i = \mathrm{int}(e_i)
onumber \ (a^i)^* = \mathrm{ext}(heta^i).$$

They satisfy the following commutation relation:

(2.2)
$$[a^i, a^j]_+ = 0$$

(2.3)
$$[a^i, (a^j)^*]_+ = \delta_{ij}$$

(2.4)
$$[(a^i)^*, (a^j)^*]_+ = 0$$

Here $[a^i, a^j]_+ = a^i a^j + a^j a^i$.

For differential forms, the covariant differentiation ∇ can be defined. More generally, the covariant differentiation ∇ is defined for tensor fields as follows: • the covariant differentiation ∇ :

$$abla t = \sum_i heta^i \otimes \partial_i t.$$

• The dual operator of ∇ :

$$abla^*(\sum_i heta^i \otimes t_i) = \sum_i \partial_i^* t_i.$$

• the covariant Laplacian

$$abla^*
abla t = \sum_i \partial_i^* \partial_i t = -\sum_i (\partial_i^2 - 2 \partial_i \Phi \partial_i) t.$$

• the exterior differentiation:

$$d = \sum_i \operatorname{ext}(heta^i) \partial_i = \sum_i (a^i)^* \partial_i.$$

• the dual operator of \boldsymbol{d}

$$d^* = \sum_i a^i \partial^*_i.$$

• the Hodge-Kodaira Laplacian: $-(dd^* + d^*d)$

Theorem 2.1. We have the following identity.

$$dd^*+d^*d=
abla^*
abla+2\sum_{i,j}(a^i)^*a^j\partial_i\partial_j\Phi.$$

Unitary equivalent expression

By the isomorphism $I: L^2(dx) \longrightarrow L^2(\nu)$, we can compute associated operators under the the Lebesgue measure.

$$D=e^{-\Phi}de^{\Phi},$$
 $ilde{D}=e^{-\Phi}d^{*}e^{\Phi}.$

and the Hodge-Kodaira operator $\tilde{D}D + D\tilde{D}$.

Theorem 2.2. We have the following identities:

$$ilde{D}D + D ilde{D} = \sum_i ilde{X}_i X_i + 2 \sum_{i,j} (a^i)^* a^j \partial_i \partial_j \Phi.$$

3. Spectral gap for Witten Laplacian in a lattice spin system

A spin system

A spin system is characterized by a Gibbs measure on $X = \mathbb{R}^{\mathbb{Z}^d}$.

• Hamiltonian:

$$\Phi(x) = \sum_{i,j\in\mathbb{Z}^d top i\sim j} \mathcal{J}(x^i-x^j)^2 + \sum_{i\in\mathbb{Z}^d} U(x^i).$$

Here $i \sim j$ means that $|i - j|^2 = (i_1 - j_1)^2 + \dots + (i_1 - j_1)^2 = 1.$

• a Gibbs measure:

$$u = Z^{-1}e^{-2\Phi(x)}dx, \quad ext{(formal expression)}$$

• Λ : a finite region, η : a boundary condition

$$\Phi_{\Lambda,\eta}(x) = \sum_{i,j\in\Lambda\atop i\sim j} \mathcal{J}(x^i-x^j)^2 + \sum_{i\in\Lambda} U(x^i) + 2\sum_{i\in\Lambda,j\in\Lambda^c\atop i\sim j} \mathcal{J}(x^i-\eta^j)^2$$

• Define a measure $\nu_{\Lambda,\eta}$ on \mathbb{R}^{Λ} by

$$u_{\Lambda,\eta}=Z^{-1}e^{-2\Phi_{\Lambda,\eta}(x)}dx_\Lambda$$

• the Gibbs measure is characterized by the following Dobrushin-Lanford-Ruelle equation:

$$E^{
u}[\ \cdot \ | \omega_{\Lambda^c} = \eta_{\Lambda^c}] =
u_{\Lambda,\eta}(d\omega_{\Lambda}) \otimes \delta_{\eta_{\Lambda^c}}(d\omega_{\Lambda^c})$$

Theorem 3.1. Assume

- U = V + W, $V'' \ge c > 0$, W is bounded.
- W_{\sup} : supremum of W, W_{\inf} : infimum of W satisfy $2(c + 8d\mathcal{J})e^{-2(W_{\sup}-W_{\inf})} > 16d\mathcal{J}$.

For $p \geq 1$, the bottom of the $\sigma(dd^* + d^*d)$ acting on p-forms is greater than $\{2(c + 8d\mathcal{J})e^{-2(W_{\sup}-W_{\inf})} - 16d\mathcal{J}\}p$ and so there is no harmonic forms.

Theorem 3.2. Assume $U(t) = at^4 - bt^2$ and $\sqrt{3a} - b - 4d\mathcal{J} > 0$, then the same conclusion as Theorem 3.1 holds.

4. The Hodge-Kodaira decomposition

Theorem 4.1. The following Hodge-Kodaira decomposition holds: for p = 0,

$$L^2(
u) = \{ \text{ constant functions } \} \oplus \operatorname{Ran}(d^*).$$

and for $p \geq 1$,

 $L^2(
u; \bigwedge^p(\mathbb{R}^N)^*) = \operatorname{Ran}(d) \oplus \operatorname{Ran}(d^*)$