Uniqueness of Gibbs measures on $C(\mathbb{R} \to \mathbb{R})$

Ichiro SHIGEKAWA

KYOTO UNIVERSITY

October 25, 2006 Kyoto University

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

1. *h*-transformation

We consider the following operator on a domain $D \subseteq \mathbb{R}^d$:

$$L=rac{1}{2}a_{ij}\partial_i\partial_j+b^i\partial_i+V.$$

We set $L_0 = L - V$. For positive function h, the *h*-transform of L is defined by

$$L^hf=rac{1}{h}L(hf).$$

More explicitly,

$$L^hf=L_0+arac{
abla h}{h}\cdot
abla+rac{Lh}{h}.$$

If *h* is a harmonic function, i.e., Lh = 0, then L^h has no 0-th order term. In the sequel, we assume that the semigroup generated by *L* has the transition measure: denoting $T_t = e^{tL}$

$$T_tf=\int_D p(t,x,dy)f(y).$$

Then, the transition measure of L^h is given by

$$p^h(t,x,dy)=rac{1}{h(x)}p(t,x,dy)h(y).$$

2. Invariant function

p(t, x, dy): a transition measure φ is called a invariant function if

$$arphi(x) = \int_D arphi(y) p(t,x,dy), \hspace{1em} orall t \geq 0.$$

It is easy to see

 φ is invariant \Leftrightarrow *h*-transform by φ is conservative.

principal eigenvalue

For any transition measure p(t, x, dy) assiciated with L, there exist λ_c so that $L - \lambda$ is subcritical for $\lambda > \lambda_c$ and $L - \lambda$ is supercritical for $\lambda < \lambda_c$. Here

subcritical: Green measure exists
supercritical: no Green measure and no positive harmonic function

 λ_c is called a (generalized) principal eigenvalue. We will show that any 1-dimensional (minimal) diffusion process with $\lambda_c = 0$ has an invariant function.

3. One dimensional diffusion processes

 $D=(l_{\scriptscriptstyle -},l_{\scriptscriptstyle +}).$

 $\{(X_t), P_x\}$: a (minimal) diffusion on D (Dirichlet boundary condition)s(x) : the sclae function

dm(x): the speed measure (standard measure)

 ζ : the explosion time

 $\frac{d}{dm}\frac{d}{ds}$: the generator

Dirichlet form:
$$\mathcal{E}(f,g) = \int_D \frac{df}{ds} \frac{dg}{ds} ds$$

From dm, we define a right continuous non-decreasing function m as

$$m(y)-m(x)=\int_{(x,y]}dm$$

Take any $a \in (l_-, l_+)$ and define

$$S(x) = \int_{(a,x]} \{m(y) - m(a)\} ds(y) = \int_{(a,x]} \{s(x) - s(u)\} dm(u),$$
 $M(x) = \int_{(a,x]} \{s(y) - s(a)\} dm(y) = \int_{(a,x]} \{m(x) - m(u)\} ds(u).$

•
$$S(l_+) < \infty \Rightarrow l_+$$
 is called exit.

- $S(l_+) = \infty \Rightarrow l_+$ is called non-exit.
- $M(l_+) < \infty \Rightarrow l_+$ is called entrance.
- $M(l_+) = \infty \Rightarrow l_+$ is called non-entrance.

Feller's criterion:

$$(X_t)$$
 is conservative $\Leftrightarrow S(l_+) = \infty$ and $S(l_-) = \infty$

h-transformation

Let v be a λ -harmonic function, i.e.,

$$rac{d}{dm}rac{d}{ds}v=\lambda v.$$

Define $d\hat{m} = v^2 dm, d\hat{s} = \frac{ds}{v^2}$. Then

(3.1)
$$\frac{1}{v} \left(\frac{d}{dm} \frac{d}{ds} - \lambda \right) (vf) = \frac{d}{d\hat{m}} \frac{d}{d\hat{s}} f.$$

 $\frac{d}{d\hat{m}}\frac{d}{d\hat{s}}$ is the *h*-transform of $\frac{d}{dm}\frac{d}{ds} - \lambda$.

For 1-dimensional diffusions, we have $\lambda_c = \inf \sigma(-\frac{d}{dm}\frac{d}{ds})$

Theorem 3.1. Let (X_t) be a diffusion process on D with $\lambda_c = 0$. Then there exist a invariant function.

	left	right	D	eigenvalue	<i>h</i> -transform
case 1	exit ←	exit →	(0,l)	$\lambda_0 > 0$	$arphi_0(x)$
case 2	exit ←	non-exit \longrightarrow $\leftarrow/-$ non-entrance	$egin{cases} (0,\infty)\ (0,l) \end{cases}$	$\lambda_0 \geq 0$	s(x) = x
case 3	exit ←	non-exit \longrightarrow \leftarrow entrance	$(0,\infty)$	$\lambda_0 > 0$	$arphi_0(x)$

4. Gibbs measure on $C(\mathbb{R} \to \mathbb{R})$

We are given a potential function

• $V : \mathbb{R} \mapsto \mathbb{R}$: continuous and non-negative.

A Gibbs measure associated with $oldsymbol{V}$ is formally expressed as

 $\mu(dx)$

$$=Z^{-1}\expigg\{-rac{1}{2}\int_{-\infty}^\infty |\dot x(t)|^2\,dt-\int_{-\infty}^\infty V(x(t))\,dtigg\}\prod_{t\in\mathbb{R}}dx(t).$$

Dobrushin-Lanford-Ruelle equation

Precise characterization of Gibbs measure is given as follows. For $I \subseteq \mathbb{R}$, we set $\mathcal{F}_I = \sigma\{x(t); t \in I\}$. Let $P_{s,x}^{t,y}$ be the pinned Brownian motion with x(s) = x and x(t) = y. Then a probability measure μ is called a Gibbs measure if it satisfies

$$\mu(\,\cdot\,|\mathcal{F}_{[s,t]^c})(x(\cdot))=Z^{-1}\expigg\{-\int_s^tV(x(u))duigg\}P^{t,y}_{s,x}\otimes\delta_{x_{[s,t]^c}}.$$

Here Z is a normlizing constant.

We restrict ourselved to the following Gibbs measures:

 $\mathcal{G} = \{\mu \text{ satisfies DLR equation and the family } \{\mu \circ x(t)^{-1}\} \text{ is tight} \}.$

Schrödinger operaotr

- $H = \frac{1}{2} \triangle V$
- $\lambda_0 = \inf \sigma(-H)$: (generalized) principal eigenvalue
- $h = e^{-U}$: (generalized) eigenfunction for λ_0
- If $h \in L^2(\mathbb{R})$, then λ_0 is an eigenvalue.

$$egin{aligned} Hh&=-\lambda_0h,\ (H+\lambda_0)^hf&=rac{1}{h}(H+\lambda_0)(hf),\ (H+\lambda_0)^h&=rac{1}{2} riangle -
abla U\cdot
abla. \end{aligned}$$

• $((H + \lambda_0)^h, L^2(h^2 dx))$: a self-adjoint operaotr

• an associated Dirichlet form:

$$\mathcal{E}(f,g) = rac{1}{2}\int_R (
abla f,
abla g) h^2 dx$$

U and V satisfy the following relation:

$$riangle U - |
abla U|^2 = 2(\lambda_0 - V).$$

The diffusion operaotr $\frac{1}{2} \triangle - \nabla U \cdot \nabla$ may generate a explosive diffusion. But we can assume that the associated diffusion is conservative by changing an eigenfunction if necessary (Theorem 3.1).

Transition measure associated with $\frac{1}{2} \triangle - V$ is given by

$$p(t,x,y) = E_{0,x}^{t,y}[\exp\{-\int_0^t V(x(s))\,ds\}]g(t,x,y)$$

where $E_{0,x}^{t,y}$ stands for the integral with respect to the pinned Wiener measure $E_{0,x}^{t,y}$, and g(t, x, y) is the Gauss kernel

$$g(t,x,y) = rac{1}{\sqrt{2\pi t}} \exp \Big\{ -rac{(y-x)^2}{2} \Big\}.$$

Set

$$q(t,x,y)=h(x)^{-1}p(t,x,y)e^{-t\lambda_0}h(y).$$

- q(t,x,y)dy : transition measure of the semigroup generated by $(H+\lambda_0)^h$
- h is an invariant function of $H + \lambda_0$

•
$$h^2 dx$$
 is an invariant measure

Set

$$\hat{q}(t,x,y)=rac{q(t,x,y)}{h(y)^2}=rac{p(t,x,y)e^{-t\lambda_0}}{h(x)h(y)}$$

and

$$u(dx)=e^{-2U(x)}dx.$$

 $\hat{q}(t, x, y)$ is a density function with respect to ν . When $\nu(\mathbb{R}) < \infty$, we assume that ν is normalized as $\nu(\mathbb{R}) = 1$. Then the following is well-known:

$$\begin{array}{l} \bullet \ \nu(\mathbb{R}) = 1 \implies \lim_{t \to \infty} \sup_{|x|, |y| \leq R} |\hat{q}(t, x, y) - 1| = 0. \\ \bullet \ \nu(\mathbb{R}) = \infty \implies \lim_{t \to \infty} \sup_{|x|, |y| \leq R} |\hat{q}(t, x, y)| = 0. \end{array} \end{array}$$

Theorem 4.1. If λ_0 is an eigenvalue then $\sharp(\mathcal{G}) = 1$, i.e., the uniqueness holds.

Sketch of proof

Under the assumption, we have $\nu(\mathbb{R}) = 1$.

- the law of x(0) is ν .
- \therefore The density function of law of x(0) is

$$egin{split} &\int_{\mathbb{R}^2} rac{\hat{q}(t,x,z)h(z)^2 \hat{q}(t,z,y)h(y)^2}{\hat{q}(2t,x,y)h(y)^2} \mu^{(x(-t),x(t))}(dx,dy) \ &= \int_{\mathbb{R}^2} rac{\hat{q}(t,x,z)h(z)^2 \hat{q}(t,z,y)}{\hat{q}(2t,x,y)} \mu^{(x(-t),x(t))}(dx,dy). \end{split}$$

Non-existence

$$\begin{split} &\text{If } V = 0, \text{ then } \sharp(\mathcal{G}) = 0. \\ &\frac{g(t, x, z)g(t, z, y)}{g(2t, x, y)} \mu^{(x(-t), x(t))}(dx, dy) \\ &= \frac{1}{2\pi t} \exp\{-\frac{1}{2t}|z - x|^2 - \frac{1}{2t}|y - z|^2\} \sqrt{4\pi t} \exp\{\frac{1}{4t}|y - x|^2\} \\ & \mu^{(x(-t), x(t))}(dx, dy) \\ &= \frac{1}{\sqrt{\pi t}} \exp\{-\frac{1}{2t}|z - x|^2 - \frac{1}{2t}|y - z|^2 + \frac{1}{4t}|y - x|^2\} \\ & \mu^{(x(-t), x(t))}(dx, dy) \end{split}$$