One dimensional diffusions conditioned to be non-explosive

Ichiro Shigekawa (Kyoto University)

We consider one dimensional diffusions conditioned to be non-explosive. Suppose we are given a minimal diffusion process $\{X_t, P_x\}$ on an interval (l_1, l_2) . Let ζ be its explosion time. If $P_x[\zeta = \infty] > 0$, then the measure conditioned to be non-explosive is defied by

$$P_x[\cdot | \zeta = \infty] = P_x[\cdot \cap \zeta = \infty] / P_x[\zeta = \infty].$$

If $P_x[\zeta = \infty] = 0$, then the measure conditioned to be non-explosive is defined as the limit

$$\lim_{T \to \infty} P_x[\cdot |\zeta > T].$$

If the limit exists and the limit is a diffufin process, we call it a *surviving diffusion*. We are interested in the following problems:

- 1. When does the surviving diffusion?
- 2. Characterization of the surviving diffusion.

The the surviving diffusion is characterized as a *h*-transform of the original process by the λ -harmonic function φ , λ being the principal eigenvalue