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1. Introduction

• {(Xt), Px} : a diffusion on a state space D.

• ζ : the explosion time.

The diffusion conditioned to be non-explosive is defined as follows:

1. If Px[ζ =∞] > 0,

Px[ · | ζ =∞] =
Px[ · ∩ ζ =∞]

Px[ζ =∞]
.

2. If Px[ζ =∞] = 0,

lim
T→∞

Px[ · | ζ > T ].(1.1)

The limit (1.1) is called a surviving diffusion.
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We discuss the following issues:

1. When does the surviving diffusion exist?

2. Characterizasion of the surviving diffusion.

Strategy:

Since

Ex[ · | ζ > T ] = Ex

[
· 1{ζ>t}PXt

[ζ > T − t]]

Px[ζ > T ]

]
,

our problem is reduce to show the existence of the limit

Mt = lim
T→∞

1{ζ>t}EXt
[ζ > T − t]

Px[ζ > T ]
(1.2)

and to show that (Mt) is a martingale.
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To do this, we show that there exist a ϕ with− d
dm

d
ds

ϕ = λϕ so that

lim
T→∞

Py[ζ > T − t]

Px[ζ > T ]
=

ϕ(y)eλt

ϕ(x)
(1.3)

and

Mt = 1{ζ>t}ϕ(Xt)e
λt/ϕ(x).(1.4)

The surviving diffusion is given by

Êx[ · ] = Ex

[
· 1{ζ>t}

ϕ(Xt)e
λt

ϕ(x)

]
.
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2. One dimensional diffusion processes

D = (l−, l+).

{(Xt), Px} : a (minimal) diffusion on D (Dirichlet boundary condition)

s(x) : the sclae function

dm(x) : the speed measure (standard measure)

ζ : the explosion time
d

dm

d

ds
: the generator

Dirichlet form E(f, g) =

∫
D

df

ds

dg

ds
ds
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From dm, we define a right continuous non-decreasing function m as

m(y)−m(x) =

∫
(x,y]

dm

Take any a ∈ (l−, l+) and define

S(x) =

∫
(a,x]
{m(y)−m(a)}ds(y) =

∫
(a,x]
{s(x)− s(u)}dm(u),

M(x) =

∫
(a,x]
{s(y)− s(a)}dm(y) =

∫
(a,x]
{m(x)−m(u)}ds(u).

• S(l+) <∞⇒ l+ is called exit.

• S(l+) =∞⇒ l+ is called non-exit.

• M(l+) <∞⇒ l+ is called entrance.

• M(l+) =∞⇒ l+ is called non-entrance.
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Feller’s criterion:

(Xt) is conservative⇔ S(l+) =∞ and S(l−) =∞

h-transformation

Let v be a λ-harmonic function, i.e.,

d

dm

d

ds
v = λv.

Define dm̂ = v2dm, dŝ = ds
v2 . Then

1

v

(
d

dm

d

ds
− λ

)
(vf) =

d

dm̂

d

dŝ
f.(2.1)

d
dm̂

d
dŝ

is the h-transform of d
dm

d
ds
− λ.
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3. The case Px[ζ =∞] > 0

Theorem 3.1. Let (Xt) be a diffusion process on (0, l) with a natural

scale s(x) = x and a speed measure dm. Assume that 0 is exit and l is

non-exit. Then Px[ζ =∞] > 0 and the associated surviving diffusion

has the scale−1/x and the speed measure x2dm.
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4. Exit - exit boundaries

D = (0, l), the natural scale s(x) = x, the speed measure dm.
∫ l/2

0
xdm(x) <∞.

∫ l

l/2
(l− x)dm(x) <∞.

We assumet that there exists γ > 0 and M so that∫ y

0
xdm(x) ≤Myγ.

∫ l

l−y

(l− x)dm(x) ≤Myγ.
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In this case, the Green operator is of trace class. We define λ0 > 0 to be a

lowest eigenvalue of− d
dm

d
ds

and ϕ0 be its eigenfunction. ϕ0 has the

following asymptotics:

ϕ0(x) ∼ c1x as x→ 0

ϕ0(x) ∼ c2(l− x) as x→ l.
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Under these conditions,

Theorem 4.1.

lim
T→∞

eλ0T Px[ζ > T ] = ϕ0(x)

∫
D

ϕ0(y)dm(y).

In particular,

lim
T→∞

Py[ζ > T − t]

Px[ζ > T ]
= eλ0tϕ0(y)

ϕ0(x)
.

The surviving diffusion exists and it has a scale dŝ = ds/ϕ2
0 and a

speed measure dm̂ = ϕ2
0dm.
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5. (exit & entrance) - (non-exit & non-entrance)

boundaries

D = (0,∞), the natural scale s(x) = x, the speed measure dm. We

assume

m(x) ∼ x1/μ−1K(x) as x→∞(5.1)

where 0 < μ < 1 and K is a slowly varying function. Define a slowly

varying function L so that the function y 
→ yμL(y) is an inverse of the

function y 
→ y1/μK(y).
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Under these conditions,

Theorem 5.1.

Px[ζ > t] ∼ x{μ(1− μ)}μΓ(1 + μ)−1t−μL(t)−1 as t→∞.

In particular,

lim
T→∞

Py[ζ > T − t]

Px[ζ > T ]
=

y

x
.

The surviving diffusion exists and it has a scale ŝ(x) = −1/x and a

speed measure dm̂ = x2dm.
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6. exit - (non-exit & entrance) boundaries

D = (0,∞), the natural scale s(x) = x, the speed measure dm. From

the boundary condition, ∫ ∞
0

xdm(x) <∞.

We assumet that there exists γ > 0 and M so that∫ y

0
xdm(x) ≤Myγ, y > 0.

In this case, the Green operator is of trace class. We define λ0 > 0 to be a

lowest eigenvalue of− d
dm

d
ds

and ϕ0 be its eigenfunction.

ϕ0(x) ∼ c1x as x→ 0

ϕ0(x) ∼ c2 as x→∞.
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Under these conditions,

Theorem 6.1.

lim
T→∞

eλ0T Px[ζ > T ] = ϕ0(x)

∫
D

ϕ0(y)dm(y).

In particular,

lim
T→∞

Py[ζ > T − t]

Px[ζ > T ]
= eλ0tϕ0(y)

ϕ0(x)
.(6.1)

The surviving diffusion exists and it has a scale dŝ = ds/ϕ2
0 and a

speed measure dm̂ = ϕ2
0dm.
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7. Examples

4

31

0

2

surviving

diffusion

exploding

diffusion

ν > 0ν < 0

Bessel diffusions on (0,∞)

d

dm

d

ds
=

1

2

d2

dx2
− d− 1

2x

d

dx

d = dimension

ν =
d− 2

2
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κ = 0

κl

l =∞

surviving

diffusion

exploding

diffusion

curvatureinterval

length

Brownian motion on an interval

(0, l)

ground state : sin
π

l
x

The radial motion of the Brownian

motion on a 3-dimensional sphere

radial part of
1

2
� :

1

2

d

dx2
+
√

κ cot
√

κx
d

dx

κ =
π2

l2
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8. Proof of Theorem 4.1

Since the Green operator is compact, the transition function has the

following expression

p(t, x, y) =
∞∑

i=0

e−λitϕi(x)ϕi(y)

Here λi are eigenvalues of− d
dm

d
ds

and ϕi are eigenfunctions. The

following estimate is crucial: there exist C > 0 and N so that

∫ l

0
|ϕi(y)|dm(x) ≤ CλN

i

{∫ l

0
ϕi(y)2dm(x)

}1/2
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9. Invariant function

p(t, x, dy) : a transition probability

ϕ is called a invariant function if

ϕ(x) =

∫
D

ϕ(y)p(t, x, dy), ∀t ≥ 0.

It is easy to see

ϕ is invariant ⇔ h-transform by ϕ is conservative.

By the argument before, we can show that any one-dimensional (minimal)

diffusion has a invariant function if the lowest eigenvalue is 0.
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left right D eigenvalue h-transform

case 1
exit

←−
exit

−→ (0, l) λ0 > 0 ϕ0(x)

case 2
exit

←−

non-exit

−→/
←−/

non-entrance

⎧⎨
⎩

(0,∞)

(0, l)
λ0 ≥ 0 s(x) = x

case 3
exit

←−

non-exit

−→/
←−

entrance

(0,∞) λ0 > 0 ϕ0(x)
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Thanks!
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