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§ 0  Introduction

In this paper, we study mirror symmetry of complex and symplectic tori as an example

of homological mirror symmetry conjecture of Kontsevich [24], [25] between symplectic and

complex manifolds.  We discussed mirror symmetry of tori in [12] emphasizing its “noncom-

mutative” generalization.  In this paper, we concentrate on the case of a commutative (usual)

torus.  Our result is a generalization of one by Polishchuk and Zaslow [42], [41],  who

studied the case of elliptic curve.

The main results of this paper establish a dictionary of mirror symmetry between symplectic

geometry and complex  geometry in the case of tori of arbitrary dimension.  We wrote this

dictionary in the introduction of [12].  We present the argument in a way so that it suggests a

possibility of its generalization.  However there are various serious difficulties for the general-

ization, some of which we mention in this paper.

In this paper, we will define a new family of theta functions on complex tori, which we

call multi theta function.  It is a generating function of the numbers obtained by counting

holomorphic polygons in tori and describe various product structures (Yoneda, and Massey

Yoneda products) of the sheaf cohomology group on its mirror.

We recall that one famous application [7]  of mirror symmetry is that a generating

function of the number counting rational curves in a Calabi-Yau manifold is equal to the

Yukawa coupling, a product structure of sheaf cohomology, of its mirror.  In the case of

complex tori, there is no rational curve.  Hence the statement above is void.  However, if we

include Lagrangian submanifolds on symplectic side and coherent sheaves in complex side,

we can derive many nontrivial consequences of mirror symmetry.  Exploring them is the

purpose of this paper.  Namely we find relations between counting problem of holomorphic

polygons  (0 loop correlation function of topological open string) and product structures of

sheaf cohomology in its mirror.  We remark that including Lagrangian submanifolds and

coherent sheaves correspond to including branes.  So it is naturally related to the recent

progress of string theory.  (See for example  [40].)

Let us describe the results of this paper.

In § 1, we show a way to construct a complex manifold which is a moduli space of

Lagrangian submanifolds (plus line bundles on it) of a symplectic manifolds  (M ,ω) , together

with  B  field  B , (that is a closed 2 form).  (We put  Ω= ω + −1B .)  This complex

manifold is expected to be components of the moduli space of coherent sheaves (more

precisely objects of the derived category of coherent sheaves) of the mirror  (M ,Ω)∨ .  A

component of this moduli space which is to correspond to the moduli space of the skyscraper

sheaves is the mirror manifold   (M ,Ω)∨   itself.  This is an idea by Strominger-Yau-Zaslow

[47] .  There are various troubles to make this construction rigorous in the general situation.

In the case of a torus, we can make it rigorous and define a mirror torus in this way.

In § 2, we show a way to associate an object of the derived category of coherent sheaves

of the mirror (M ,Ω)∨   to a Lagrangian submanifold of  (M ,Ω)∨ .   There are again troubles

to make this construction rigorous in the general situation.  We make it rigorous in the case

of affine Lagrangian submanifolds of tori.  Namely we construct a holomorphic vector
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bundle  E(L ,L)  of  (T 2 n ,Ω)∨   for each pair  (L ,L)   of an affine Lagrangian submanifold  L

of   (T 2 n ,Ω)∨   and a flat line bundle  L  on  L .

Sections 3 and 5 are devoted to the proof of  :

Theorem 3.1 H k((T 2 n ,Ω)∨ ,E(L,L)) ≅ HF k ((Lst,0),(L ,L)) .

Here  Lst   is the Lagrangian submanifold of  (T 2 n ,Ω)   which corresponds to the

structure sheaf of  (T 2 n ,Ω)∨   and  HF   is the Floer cohomology of Lagrangian intersection.

([11], [38], [17].)

We prove also in § 6 an isomorphism

Theorem 6.1   Ext k(E(L1,L1),E(L2 ,L2 )) ≅ HF k ((L1 ,L1),(L2 ,L2 )) .

In § 3, § 6,  we also give explicit isomorphisms in Theorems 3.1 and 6.1 in case  k = 0,

by using the relation between theta function and product structure of Floer homology.  (We

give explicit isomorphisms for higher cohomology  in § 11.)  We also prove the commutativity

of the following diagram (Theorem 6.5.)

HF 0((L1 ,L1),(L2 ,L2)) ⊗ HF 0((L2 ,L2),(L3 ,L3)) → HF 0((L1 ,L1),(L3 ,L3))

↓ ↓
Hom(E(L1 ,L1), E(L2 ,L2)) ⊗ Hom(E(L2 ,L2); E(L3 ,L3)) → Hom(E(L1 ,L1), E(L3 ,L3))

Diagram A

Here the vertical arrows are the isomorphism is in Theorem 6.1.  The horizontal arrow in the

first line is the product structure  m2   in Floer homology.  (See § 3.)  The horizontal arrow in

the second line is the composition of homomorphisms.

In § 7, we study a moduli space  M( ˜ L )   of the pair  (L ,L)   and show that it is a

component of the moduli space of  vector bundles on the mirror  (T 2 n ,Ω)∨ .  We also

construct a universal bundle  P → M( ˜ L ) ˜ × (T 2n ,Ω)∨ .  Namely the restriction of  P   to

{(L ,L)} × (T 2n ,Ω)∨   is  E(L ,L).   We also discuss holomorphicity of the maps m2  with

respect to  (L ,L) .

In § 8, we study the case when pairs of affine Lagrangian submanifolds  L1, L2   are not

transversal to each other and generalize  Theorem 3.1 to this case.  We also discuss the case

of  disconnected Lagrangian submanifold.  When several components coincide, we find an

example of the phenomenon called enhanced gauge symmetry.

In §§ 9,10,11,12 , we study higher products  mk , k ≥ 3.  This operators  mk   are defined

by using multi theta functions.  Multi theta function is a generating function of the counting

problem of holomorphic polygons in  C n   with affine boundary conditions.  (The author

would like to thank M. Gromov who introduced the problem counting holomorphic polygons
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in  C n  to the author.)  The number counting holomorphic polygons in  C n   is the simplest

nontrivial case of “open string analogue” of Gromov-Witten invariant.  By the same reason

as Gromov-Witten invariant, there is a transversality problem to define this number rigorously.

In the case of open string version, the problem is more serious.  Namely the methods

developed to define Gromov-Witten invariants rigorously are not enough to establish its

“open string analogue” rigorously. In fact, in the most naive sense, this number is ill-defined.

Oh [38] discovered this trouble in a related context of Floer homology theory of Lagrangian

intersections.  The basic reason is similar to the wall crossing problem discovered by Donaldson

[8] to define Donaldson invariant of 4 - manifolds with  b2
+ = 1.  In our case, this problem is

related to the fact that Massey product is well-defined only as an element of some coset

space.  Donaldson introduced a chamber structure to study this ill-definedness of Donaldson

invariant.  For our problem of counting holomorphic polygons, we need also to study a

chamber structure.  In our case, the wall (that is the boundary of the chamber) may also be

ill-defined.  Namely the point where the number of holomorphic polygons jumps may also

depend on the perturbation.  (This problem is pointed out in [12] § 5.)  We will find that the

“homology class of the wall” is well-defined, and will determines it.  Figures 10 - 15 in § 10

are examples of the combinatorial structure of the chamber we found.  The homology class of

wall in turn contains enough information to determines  mk   modulo homotopy equivalence

of A∞   category. (See [15] for its definition.)  Our way to determine the coefficients of  mk

is constructive.  Namely there is an algorithm to calculate it. More precisely, we formulate

Axioms (Axiom I,II,III,IV)  which the number counting holomorphic polygons is expected to

satisfy.  We then prove the following :

Theorem 10.17 There  exists a coefficient function ck   satisfying Axioms I,II,III,IV.

(Here the coefficient function is one which is supposed to be the number counting holomorphic

k + 1 gons and which will be a coefficient of the multi theta series we introduce.)

Theorem 10.18 Let  ck
1 , ck

2   be two coefficient functions satisfying Axioms I,II,III,IV.

Then  ck
1   is homologues to  ck

2 .

Using the coefficient functions  ck ,  obtained in Theorems 10.17, we define multi theta

series by

(0.1)
ck [v1 + γ1 ,L ,vk + 1 + γ k +1]∑ exp −2πQ(v1 + γ1 ,L ,vk + 1 + γ k +1)(

+2π −1 α i( pi i +1 − pi −1 i)∑ )
Here  vi   parametrize the affine Lagrangian submanifold in  C n   parallel to a given one.  The

sum is taken over all  (γ1 ,L ,γ k + 1)   which run in certain lattice in   R n( k −2) .  Q(v1 ,L ,vk + 1)

is the symplectic area of the k + 1-gon bounding the union of affine Lagrangian submanifolds

parametrized by  vi   and is a quadratic form of index  k −2.  α i   is a flat connection on the

affine Lagrangian submanifold and  pi i+ 1  is the point where two affine Lagrangian submanifolds
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( i -th and i + 1-th) intersect.  (See  § 9 for precise definition.)

(0.1) gives a usual theta function in the case  k = 2.  (In case n = 1  this fact was

observed by Kontsevich in  [25].)  In case  k = 3,  (0.1) is an indefinite theta series which

looks similar to those used by Götche-Zagier [21] to study Donaldson’s polynomial invariant

in the case when  b2
+ = 1.  In case  k ≥ 4, it seems that (0.1) is a new family of theta series.

Using these multi theta functions as matrix elements, we obtain maps

(0.2)
mk : HF((L1 ,L1),(L2 ,L2)) ⊗L ⊗ HF((Lk ,Lk ),(Lk + 1 ,Lk +1))

→ HF((L1 ,L1),(Lk + 1 ,Lk +1)).

If we move  Li, Li  then  mk   moves.  Thus we may regard  v1 ,L ,vk + 1 ,α1 ,L ,α k +1   as

variables also.

Let us explain Axioms I,II,III,IV we put to coefficient function  ck   briefly.   The

essential part of Axiom I asserts that  Q(v1 ,L ,vk + 1)   is positive if  ck [v1 ,L ,vk + 1]   is

nonzero.  It implies that  (0.1) converges.  On the other hand, it is a consequence of the

positivity of the volume of holomorphic disk.

Axioms II,III are equivalent to Maurer-Cartan or Batalin-Vilkovisky master equation :

(0.3) dck
(l ) + ±

l 1 + l 2 =l +1
k1 + k2 = k +1

∑ ck1

( l1 )
o ck2

( l2 ) =0 .

Here  ck
(l )

  is a generalization of  ck   and is a degree  l  current valued version of it.

(ck
(0) = ck   is a locally constant function.)  d   is the De-Rham operator with respect to vi

variable.

In the case  l = −1, (0.3)  reduces to the  A∞   formulae

(0.4)
k1 + k2 =k

∑ ± mk1
o m k2

=0 ,

introduced in  [45], [13].  The origin of (0.3) and (0.4) in symplectic geometry is a degeneration

of holomorphic polygons.

We remark that a differential equation (0.3) appears in many literatures recently.  (See

[1], [46] , [3], [28], [44] etc.)   The  L∞   version appears mainly in those literatures.  (0.3) is

an  A∞   version.  (Here  L   stands for Lie and  A  for associative.)  We use (0.3) to prove

Theorem 10.49 ∂ mk
(0 l ) +

l 1 + l 2 =l +1
k1 + k2 = k +1

∑ ± m k1

(0 l1 )
o mk2

(0 l2 ) = 0 .

Here we use  ck
(l )

  in the same way as  ck   to define  mk
(l )

,  that is a degree  l  current whose

value is in the homomorphism bundle (0.2).  mk
(0 l )

  in Theorem 10.49 is the 0l   part of it.

In the case when  k = 2, (0.3)  will be  dc2
(l ) =0 .  Hence  c2

(l )
  define a De-Rham

cohomology class of certain space.  Axiom IV asserts that this cohomology class is a generator.
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Using Morse homotopy [16] of quadratic function and [18], we prove that the counting

function of holomorphic polygons satisfies Axiom IV.  (Theorem 10.15.)

In § 11, using mk  we define isomorphisms in Theorems 3.1 and 6.1 explicitly in the

case of higher cohomology (Theorem 11.28).  (The proof of Theorem 3.1 and 6.1 in §§ 3,5,6,

are based on Riemann-Roch's theorem and is not constructive in case  k > 0.)  We remark

that in our situation, Floer cohomology HF k((L1 ,L1),(L2 ,L2))   is easy to calculate and has a

natural basis.  Hence the isomorphism in Theorems 3.1 and 6.1 gives a canonical basis of

sheaf cohomology.  Using this isomorphism, we generalize Diagram A to

HF k((L1 ,L1),(L2 ,L2)) ⊗ HF l ((L2 ,L2),(L3 ,L3)) → HF k + l((L1 ,L1),(L3 ,L3))

↓ ↓
Ext k(E(L1 ,L1), E(L2 ,L2)) ⊗ Ext l(E(L2 ,L2); E(L3 ,L3)) → Ext k + l(E(L1 ,L1), E(L3 ,L3))

Diagram B

(Theorem 11.18.)  We also prove that  m3   will become the triple Massey-Yoneda product in

sheaf theory.  (Theorem 11.23.)  We can prove a similar results for higher Massey-Yoneda

product.  But it is rather hard to state it, because higher Massey product is defined only on

certain subset and is well-defined only as an element of certain coset space.  Theorem 12.5 is

a better way to state it.

In §§ 1 - 11, we considered semi-homogeneous sheaves in the sense of  [32].  In § 12,

we consider more general sheaves, using its resolution by semi-homogeneous sheaves.  Let

x ij ∈HF((Li ,Li),(L j ,Lj)) .  We consider equations of the form :

(0.5) ±mk x i0i1
,L ,x ik −1 ik( )

k,i0 = i, ik = j
∑ = 0

for each  i, j .  (See § 12 for precise notation and sign.)   We prove :

Theorem 12.5 There exists a family of the objects of derived category of coherent sheaves

on  (T 2 n ,Ω)∨   parametrized by the solution of  (0.5).

Note that (0.5) is a polynomial of  x ij   and its coefficients are special values of multi

theta functions.  Roughly speaking, the object in Theorem 12.5 is the cohomology sheaf of

the modified Dolbeault operator  ˆ ∂ =∂ + ±m k
( l )

(•,xLx)∑ .  Theorem 10.49 and (0.5)  imply
ˆ ∂ o ˆ ∂ = 0 .  Theorem 12.5 seems to be related to the monad or quiver description of the

moduli space of stable sheaves.  (See Example 12.30.)

We next calculate the cohomology of the sheaf obtained in Theorem 12.5.  Namely we

show

Corollary 12.25 The cohomology group of the objects in Theorem 12.5, is isomorphic to

the vector space of  the solutions of the following linear equations (of  si .)
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 ±mk si ,x i1 i2
,L ,x ik −1 ik

( )
k, i1 =i ,ik = j

∑ = 0 .

 ±mk x i1i2
,L ,x ik −1 ik

,sj
*( )

k, i1 =i ,ik = j
∑ = 0 .

We prove a similar results for an extension of two objects in Theorem 12.5.  (Theorem

12.23.)

We explain in § 12 that a mirror of the system satisfying (0.5), is a smooth Lagrangian

submanifold obtained from Lagrangian tori  Li  by Lagrangian surgery.  Thus, in various

cases, a mirror of a sheaves which is not semi-homogeneous, is a Lagrangian submanifold

which is not affine.  Then Corollary 12.25 and Theorem 12.23 provide a way to calculate

Floer homology between Lagrangian submanifolds in tori.

A conjecture of Mukai implies that every sheaf on  (T 2 n ,Ω)∨   is obtained as in Theorem

12.5.  (See Conjecture 12.27.)  Thus, if we assume Mukai’s conjecture, Theorem 12.5 and

Lagrangian surgery will give a correspondence between Lagrangian submanifold and objects

of derived categories, that is the homological mirror conjecture of tori.
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§ 1 Moduli space of Lagrangian submanifolds
and construction of a mirror torus

　
In this section, we construct a mirror torus of a given symplectic torus  (T2 n ,Ω)   such as

T 2n =C n Z + −1Z( )n

,  Ω ∈Λ1 ,1(T 2n) .  (Note that the complex structure of the torus  T2 n

will not be used below.  We use it only to set the condition  Ω ∈Λ1 ,1(T 2n) .)  As in some of

the other sections, we first give an idea which the author expects to work in more general

situations.  We then will make it rigorous in the case of a torus.

Let  (M,Ω) be a symplectic manifold  (M,ω)   together with a closed 2 form  B   on

M .  Here we put  Ω = ω + −1B .  (Note   −B + −1ω   is used in many of the literatures.)

Definition 1.1   Lag ~+ (M ,Ω)   is the set of all pairs    (L,L)   with the following properties :

(1.2.1) L   is a Lagrangian submanifold of  (M,ω) ,

(1.2.2)   L → L   is a line bundle together with a  U(1)   connection  ∇L   such that

  F∇ L = 2π −1B L .

We put the C∞   topology on    Lag ~+ (M ,Ω) .  This space is of infinite dimensional.  We

will divide it by the group of Hamiltonian diffeomorphisms. The quotient space is a finite

dimensional manifold.  Let  f : M × [0,1]→ R   be a smooth function and we put

ft (x) = f(x ,t).  Let  X f ,t   denote the Hamiltonian vector field associated to  ft (x) .  It induces

a one parameter family of symplectic diffeomorphisms  ϕ : M × [0,1] → M   by :

(1.3) ϕ (x,0) = x ,     
∂
∂t

ϕ(x,t) = X f , t (x) .

We put  ϕ1(x) = ϕ(x,1).  The diffeomorphism  ϕ1   is called a Hamiltonian diffeomorphism.

Definition 1.4 Let    (L, L),( ′ L , ′ L ) ∈ Lag~ +(M,Ω) .  We say that    (L, L)   is Hamiltonian

equivalent to    ( ′ L , ′ L )   if the following holds.  There exists  f : M × [0,1] → R   such that the

map  ϕ : M × [0,1] → M   solving (1.3) and satisfying  ϕ1(L) = ′ L .  Also there exists a

connection  ∇   on    π1
*L → L ×[0,1]  with the following properties.

(1.5.1) F∇ = 2π −1ϕ *B ,

(1.5.2)   ∇ L ×{0}
= ∇L .

(1.5.3) There exists an isomorphism    (L,∇
L ×{1}

) ≅ ( ′ L ,∇ ′ L )  covering  ϕ1.

It is easy to see that Hamiltonian equivalence defines an equivalence relation on

  Lag ~+ (M ,Ω) .  Let    Lag +(M,Ω)   denote the quotient space with quotient topology.

Remark 1.6 In [47], Strominger-Yau-Zaslow proposed closely related but a bit different

moduli space.  Namely they proposed the moduli space of the pairs of special Lagrangian



9

submanifolds and flat line bundles on it.  It seems that, by taking a special Lagrangian

submanifold, we take a representative of Hamiltonian equivalence.  However one needs to

study some open questions to clarify the relation between two moduli spaces.  Let us mention

some of them.

Problem 1.7 Let  L, ′ L   be special Lagrangian submanifolds of a Kähler manifold  M .

Suppose that there exists a Hamiltonian diffeomorphism  ϕ1   such that  ϕ1(L) = ′ L .  When

does it imply  L = ′ L ?

Problem 1.8 Let  L   be a Lagrangian submanifold in a Kähler manifold  M .  When

does there exist a Hamiltonian diffeomorphism  ϕ1   such that  ϕ1(L)  is a special Lagrangian

submanifold ?

There are examples where the answer is negative for Proposition 1.8.  The moduli space

of the pairs  (L ,L)   of special Lagrangian submanifold  L   in a Calabi-Yau manifold and a

flat  U(1)   bundle  L  has a complex structure.  In a similar way, our moduli space has a

complex structure as we will soon define.  (In our case, we do not need to assume that  M   is

a Calabi-Yau manifold and can start with a general symplectic manifold.)  However, in fact,

we do not know whether it is a manifold, since we do not know whether   Lag +(M,Ω)   is

Hausdorff or not.

Problem 1.9 When is   Lag +(M,Ω)  Hausdorff ?

In fact, it is more natural to consider a local version of Problem 1.9.  Let

  (L, L) ∈Lag ~+(M ,Ω) .  By Darbout-Weinstein theorem, a neighborhood  U   of  L   in  M   is

symplectically diffeomorphic to a neighborhood of the zero section of  T*L .  We denote it by

ψ :U → T*L .  Let  ′ ω   is the standard symplectic form on  T*L   and  ′ B   be a closed 2 form

on  T*M   which coincides with  ψ *B   in a neighborhood of zero section.

Condition 1.10 ψ  induces a homeomorphism from an open neighborhood   U   of

  [L,L] ∈Lag +(M,Ω)  to an open neighborhoods of    [L,L] ∈Lag +(T *L, ′ ω + −1 ′ B ) .

Furthermore, the following holds.  For each  ε   there exists    Uε   a neighborhood of

  (L, L)   in    Lag ~+ (M ,Ω) ,  such that  if    (L1,L1),(L2,L2 ) ∈U ε   and if they are Hamiltonian

equivalent to each other, then the function  f   in Definition 1.4 can be chosen so that its  C1

norm is smaller than  ε .

The reader who is familiar with symplectic geometry may find that Condition 1.10 is

closely related to the flux conjecture.  (See [26].)

Proposition 1.11 Let    K ⊆ Lag +(M ,Ω).  We assume that Condition 1.10 holds for

each    [L,L] ∈ K .  Then a neighborhood of  K   in    Lag +(M,Ω)   has a structure of  complex

manifold.
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Proof: Let     [L,L] ∈ K .  We are going to construct a chart on its neighborhood.  Let

  l1,L,lb   be loops representing a basis of  H1(L,Z )  and    [ ′ L , ′ L ]  be in a neighborhood of

  [L,L] .  By Condition 1.10, we may assume that  ′ L   is  C1   close to  L .  Hence we may

assume that it is a graph of a closed one form  u   on  L .  We put  ′ L = Lu = graph of  u .  We

define  φi : S1 ×[0,1]→ T*L   by    φi(s,t) = tu(l i(s)) . We put

(1.12)
  
hi( ′ L , ′ L ) = hφ i ( ⋅,1) ′ L ( )exp −2π φi

*Ω∫( ) .

Lemma 1.13 hi   defines a map from a neighborhood of  [L ,L]   in   Lag +(M,Ω)    to  C .

Proof: Suppose    [ ′ L , ′ L ] = [ ′ ′ L , ′ ′ L ] .  We need to prove    hi( ′ L , ′ L ) = hi ′ ′ L , ′ ′ L ( ) .  To

save notation, we assume    ( ′ ′ L , ′ ′ L ) = (L ,L) . We may assume also that  ′ L = Lu = graph of  u .

Using Condition 1.10 we find that  u   is exact and that the function  f   in Definition 1.4 can

be chosen to be independent of  t .  Moreover  u = df .  Therefore  exp − φ i
*ω∫( ) = 1.  We put

∇L = d ds +αds , ∇ ′ L = d ds + βds   where  s∈[0,2π ]  is the coordinate of  S1   and  α ,β

are  u(1) = −1R   valued functions on  S1 .  Then (1.5.2) and (1.5.3) imply

0

2 π⌠ 
⌡ 
 αds −

0

2 π⌠ 
⌡ 
 βds =

0

2 π⌠ 
⌡ 
 ds dt F∇

0

1⌠ 
⌡ 
 .

Therefore we have

hφ i ( ⋅,1) ′ L ( )exp −2π −1 φ i
*B∫( ) = hφi ( ⋅,0) L( ) .

Lemma 1.13 follows.

By Lemma 1.13, h = (h1 ,L ,hb)   is a map from a neighborhood of  [L ,L]   in

  Lag +(M,Ω)   to  C b .    Then again Condition 1.10 implies that  h   is injective there.  We take

h   as a coordinate around [L ,L] .  It is straightforward to verify that the coordinate change is

biholomorphic.  We thus proved Proposition 1.11.

We now consider the case of a simplex torus,  (T2 n ,Ω) ,  where  Ω = ω + −1B   is a

complexified symplectic form.   We assume that  Ω   is homogeneous.  We put  V = ˜ T 2 n   the

universal cover.  V   is a 2n  - dimensional real vector space.  In this paper, we are studying

the commutative case.  It means that we assume the following :

Assumption 1.14   There exists an  n - dimensional linear subspace  ˜ L pt   of  V   such that

Ω ˜ L pt
= 0   and that  Γ ∩ ˜ L pt ≅ Z n .

We write  ˜ L pt   since this will correspond to the points (skyscraper sheaves) in the

mirror.  As we remarked in [12], this assumption is satisfied if  T 2n =C n Z + −1Z( )n
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and Ω is of 1-1 type.  Let    M ( ˜ L pt )  be the set of all    [L,L] ∈Lag +(T 2n ,Ω)    such that the

universal cover of  L   is parallel to  ˜ L pt .  It is easy to see that Condition 1.10 is satisfied for

this    K = M ( ˜ L pt) .  We also observe that    M ( ˜ L pt )  is a connected component of    Lag +(T 2n ,Ω)

.  We are going to describe the complex structure we obtained on    M ( ˜ L pt ).  We put

V* = Hom(V ,R) .  Let  x ∈V .  We define Ix : V ⊕ V* → C  by

(1.15) Ix (v,σ) = Ω(x,v) + −1σ (x) .

It is easy to see that there exists a unique complex structure on  V ⊕ V*   such that

Ix : V ⊕ V* → C   is complex linear for each  x ∈V .

Let  ˜ L   be a Lagrangian linear subspace of  (V ,Ω) .  Then there exists a natural  R -

linear surjection : V ⊕ V* → V ˜ L ⊕ ˜ L * ,  where  ˜ L * = HomR ( ˜ L ,R ).  It is also easy to see that

there exist a unique complex structure on  V ˜ L ⊕ ˜ L *   such that the map :

V ⊕ V* → V ˜ L ⊕ ˜ L *  is complex linear.

Let  (v,σ) ∈V ˜ L 
pt

⊕ ˜ L pt
* .  We obtain an affine subspace  ˆ L pt (v) = ˜ L pt + v   and its

quotient  Lpt (v) ⊆ T 2n .  On the other hand,  σ    is regarded as a flat connection ∇σ   on the

trivial bundle on Lpt (v), by the isomorphism R ≅ u(1),   σ a 2π −1σ .  Let  L(σ)   denote

the pair of trivial line bundle and the connection  ∇σ .  Hence  (L pt(v),σ) = (L pt(v), L(σ))   is

an element of    Lag ~+ (T2n ,Ω).

We put   Γ = π1(T2 n)  and

(1.16) Γ ∩ ˜ L pt( )∨
= µ ∈ ˜ L pt

* ∀γ ∈Γ ∩ ˜ L pt µ(γ) ∈Z{ } .

It is easy to see that  (L pt(v),σ)  is Hamiltonian equivalent to  (L pt( ′ v ), ′ σ )   if and only if

v − ′ v ∈Γ Γ ∩ ˜ L pt ,   σ − ′ σ ∈ Γ ∩ ˜ L pt( )∨
.  We define

Definition  1.17 M( ˜ L pt) =
V ˜ L 

pt
⊕ ˜ L pt

*

Γ Γ ∩ ˜ L pt( ) ⊕ Γ ∩ ˜ L pt( )∨ .

It is easy to see that the complex structure we defined by using (1.15) coincides with

one by Proposition 1.11 in this case.  Now we use Strominger-Yau-Zaslow’s  idea to define :

Definition  1.18 A mirror  (T2 n ,Ω)∨   of  (T2 n ,Ω)   is  M( ˜ L pt) .

We remark that  M( ˜ L pt)   may depend on the choice of  ˜ L pt.  Hence there are many

different mirrors of  (T2 n ,Ω) .

Remark  1.19 In Definition 1.1, we assumed   F∇ =2π −1B
L

.  On the other hand, in

the case of a torus we assumed  F∇ =0 , Ω
L

= 0 .  Note that there exists a line bundle on  L



12

satisfying the condition F∇ =2π −1B
L

 if and only if  B
L[ ] ∈H 2(L ,Z ) .  Therefore, if we

change  B   by adding a harmonic form  B0   representing an element of  H2 (T2 n ,Z ) ,  and if

we replace    L   by    L ⊗ L0 L
,  where    L0   is a complex line bundle on  T2 n   with connection

such that  FL0
= −2π −1B0 ,  then we have F∇ =0 , Ω

L
= 0 .  Thus, in our situation, we may

assume  F∇ =0 , Ω
L

= 0   instead of  F∇ =2π −1B
L

  without loosing generality.

Before studying the case of a torus more, we return to the general case and add a few

remarks.  In fact, the moduli space    Lag +(M,Ω)   we defined above, is too big for our purpose

in the general case.  For example if  L   is any compact Lagrangian submanifold of  C n   then

it is automatically contained in any  M   as a Lagrangian submanifold.  We want to avoid

such a “local” Lagrangian submanifold.  In the case of  M = T 2 ,  [42]  avoid a Lagrangian

circle which is homologous to zero. One way to do so is to restrict ourselves to special

Lagrangian submanifolds.  Certainly Lagrangian submanifolds of  C n   are not minimal and

hence not special.  However there are cases we do not want to restrict ourselves to special

Lagrangian submanifolds.  For example, in the case when  M = Σg ,  a surface of higher

genus, there is only one spacial Lagrangian submanifold (closed geodesic in this case) in

each homology class.    As a consequence, the moduli space of pairs of special Lagrangian

submanifolds and flat line bundles on it, is odd (one) dimensional.  In the case of Calabi-Yau

manifold however such a phenomenon never happens by [30].

 The way we are proposing here is to restrict ourselves to the Lagrangian submanifold

for which Floer homology is well-defined.  We discuss well-definedness of Lagrangian

intersection Floer homology in [17].  We define there a series of obstructions in  H even(L ,Q )

.  Using it and constructing generating functions in a similar way as the definition of the

boundary operator  ∂  ,  we “obtain” elements  of  H even(L ,C ) .  (However there are troubles

to establish the obstruction theory in this way.  What we prove in [17] is somewhat weaker

than that. )  Formally (namely modulo convergence problem) this class gives a holomorphic

map from    Lag +(M,Ω)   (if we include appropriate quantum correction of the complex

structure on    Lag +(M,Ω)).   It seems reasonable to expect that Condition 1.10 is satisfied for

the Lagrangian submanifold for which Floer homology is well-defined.

Conjecture 1.20 Condition 1.10 is satisfied if the obstruction classes defined in [17] vanish

for  (L ,L) .

It might be possible to use Floer homology to solve Conjecture 1.24 in a similar way as

[39],  [26].

We remark that in the case when  Hn −even(L ,Q) → Hn−even (M ,Q)   is injective, the

obstruction classes  in  [17]  are automatically  0.  Here, in our case of affine Lagrangian

submanifolds in a torus, the obstruction class vanishes automatically.

Remark 1.21 The relation between Problem 1.8 (the existence of a special Lagrangian

submanifold in a Hamiltonian diffeomorphism class) and vanishing of the obstruction classes

of  [17]  is mysterious also.
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We recall that Becker-Becker-Strominger [4] found a relation between D-brain and

calibrated geometry by studying the condition for D-brain to preserve supper symmetry.  Our

condition in [17]  is one so that  ∂∂ = 0  holds after modification. These two conditions may

be related to each other.  We remark that speciality is a local condition while the vanishing of

obstruction class is a global one.  This might mean that, after adding appropriate correction

terms, the BRST symmetry (∂∂ = 0) is not broken in perturbation theory and soliton effect

only can break it.

We denote by    Lag(M,Ω)  the subspace of    Lag +(M,Ω)   consisting of the elements

represented by the pairs    (L, L)   such that the obstruction classes vanish.  We used this

notation    Lag(M,Ω)  in the introduction of [12].

We remark that there is one very important point which is not mentioned above.  Namely

the author does not know how to compactify the moduli space    Lag(M,Ω).  In the case of a

torus, we do not need compactification, since our component of    Lag(T 2 n ,Ω)   is already

compact.  (See however § 8.)  In general, we need to include singular Lagrangian submanifolds

for the compactification.  A related serious trouble is how to define Floer homology between

such singular Lagrangian submanifolds.

We remark that the complex structure discussed in this section seems to be the same one

as  [47], [31], [20].  One needs some “quantum correction” to obtain a complex structure of

the mirror in the case when one needs a compactification, we do not discuss it here since in

the case of tori we do not need it.
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§ 2 Construction of a sheaf from an affine
 Lagrangian submanifold
　
We next construct a sheaf from an affine Lagrangian submanifold.  Again we first

present an argument which might work in more general situations than the case of tori.

Let  (M,Ω)  be a symplectic manifold with complexified symplectic form as in § 1.  We

assume that there exists a component of    Lag(M,Ω)  which is isomorphic to the mirror

(M,Ω)∨ .  We remark that this assumption is rather restrictive.  A more realistic assumption is

that an appropriate compactification of    Lag(M,Ω)  is a mirror  (M,Ω)∨ .  Since the author

does not know the way to work in this generality, he discuss only this restrictive case in this

paper.

Let    (L,L)   be another element of    Lag(M,Ω).  We are going to find an object of a

variant of the derived category of coherent sheaves on  (M,Ω)∨ .  Let us first explain what we

mean by it.  Let  X   be a complex manifold.  We consider a system,   Ui ,Fi
•,ϕ ij( )  such that :

(2.1.1)   X = UiU   is an open covering.

(2.1.2) For each  i ,    Fi
•   is a cochain complex of coherent sheaves on  Ui .

(2.1.3) For each  i, j   with  Ui ∩ U j ≠ ∅ ,  ϕ i , j
•  is a morphisms of sheaves

  ϕ i , j
k :Fi

k → F j
k .  Such that  δ kϕ i , j

k =ϕ i, j
k +1δ k   and that ϕ i , j

k   induces an isomorphism

ϕ i , j ,*
k : H k( Fi

•) → H k (Fj
•)  of cohomology sheaves.  (Here we put

H k( Fi
•) = Kerδ k Imδ k −1 .)

(2.1.4) ϕ j ,i ,*
k oϕ i , j,*

k   is identity.

(2.1.5) ϕ j ,l ,*
k oϕ i , j,*

k =ϕ i, l ,*
k   on    Ui ∩ U j ∩ Ul .

Two such systems are said to be equivalent to each other, if there exist chain maps of

sheaves which are compatible with  ϕ ij ’s and induce isomorphisms on cohomologies.  We

say an equivalence class of such a system    Ui ,Fi
•,ϕ ij( )  an element of  Ob(D( X)) ,  the

derived category of the sheaves on  X .  This definition may be a bit different from the usual

one, since usually one considers global chain complexes of sheaves.   The problem to

determine when our definition coincides with the usual one is delicate and is not discussed in

this paper.  Morphism between two objects is defined in the same way as the usual derived

category.  (See [22].)

Remark 2.2 In (2.1.4),(2.1.5), we assumed that the maps  ϕ i , j
•   are compatible in cohomology

level.  In order to introduce  A∞  structure ([15]), it seems necessary to assume higher

compatibility.  Namely we need to assume :   ϕ i , j
• oϕ j,l

•   is chain homotopic to    ϕ i ,l
•   by a chain

homotopy    Hi , j ,l  : the composition    Hi , j ,l o ϕl ,m
•   is chain homotopic to    ϕ i , j

• o H j ,l,m  : and so

on.  Then the equivalence relation we need is also more strict.  We will obtain  A∞  category

rather than derived category in this way.

Now we sketch the way how an element   (L,L)  of    Lag(M,Ω) defines an element of
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Ob(D((M ,Ω)∨ )) .  The argument here is sketchy since the author does not know how to make

it rigorous in the general situation.  We will make it rigorous in the case of an affine

Lagrangian submanifold in a torus later.

The basic idea is to use a family of Floer homologies.  Let  x ∈(M,Ω)∨ .  We identify it

with a pair    (Lx ,L x) .  (More precisely  the equivalence class of    (Lx ,L x)   is  x .)  By changing

the representative  Lx   if necessary, we may assume that   Lx   is transversal to  L .  We

choose a small neighborhood Ux   of  x  in    Lag +(M,Ω)   and also smooth family of

representatives     (Ly ,L y)   for  y ∈U x .  We may assume that  Ly   is transversal to  L .  Now

we define vector bundles  CFk((L ,L),(Ly ,Ly ))
y∈U x

U → Ux   as follows.

(2.3)

  

CF k ((L,L ),(Ly ,L y )) = ⊕
p ∈L ∩ Ly

ε ( p )= k

Hom(L p ,L yp).

Here  k ∈Z 2Z   and  ε( p)  is  1  if  Tp L ⊕ Tp Ly ≅ TpM   is orientation preserving and is  −1

otherwise.    Lp   is the fiber of the bundle  L  at  p   and   L yp   is the fiber of the bundle    L y   at

p .

Since Ly   is transversal to  L   for each  y ,  it is obvious that (2.3) defines a complex

vector bundle on  Ux .  We need to define a holomorphic structure on this bundle to obtain an

element of  Ob(D((M ,Ω)∨ )) .  A problem to do so is “gauge fixing”.  Namely there is a

trouble to choose a representative    L y  in an equivalence classes, since  Ly    has a nontrivial

automorphism  U(1).  This problem, in fact, already appears to define (2.3)  as a vector

bundle.  (See Remark 2.10.)  This is  a delicate point and will be discussed later in the case of

a torus.

Next we use Floer’s boundary operator with local coefficient (together with Kontsevich’s

modification) to define

(2.4) δ k : CFk((L ,L),(Ly ,Ly )) → CFk + 1((L ,L),(Ly ,Ly )) .

Roughly speaking (2.4) is defined as follows.  Let  p,q ∈L ∩ Ly ,  such that  ε( p) = k +1,

ε(q) = k .  We consider the moduli space of pseudoholomorphic disks   ϕ : D2 → M   such

that  ϕ (∂1D2) ⊆ L , ϕ (∂2D2) ⊆ Ly,  ϕ (−1) = p, ϕ (1) = q .  Here  ∂1D2  (resp.  ∂2 D2 )  is the part

of  ∂D2   satisfying  Im z ≥ 0  (resp. Im z ≤ 0).  Then the    Hom(Hom(Lq ,L yq), Hom(Lp ,L yp))

component  δq , p   of (2.4) is

(2.5) δq , pa = ±exp −2π ϕ*Ω∫( ) PL(∂2D 2) o a o
ϕ
∑ PL y

(∂1D 2) .

Here     a ∈Hom(Lq ,Lqy) ,   PL (∂1D
2) : Lp → Lq   is the parallel transport along the path

ϕ(∂1D
2 ) ⊆ L   and    PL y

(∂2D2 ) : L yq → L yp   is the parallel transport along the path

ϕ(∂2D2) ⊆ Lq .  The sign  ±   is defined by the orientation of the moduli space of pseudohol-

omorphic disks.  The same argument as Floer’s  [11], [38] “proves”  δδ = 0 .
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                                Figure 1

The argument here is not rigorous since we do not know the convergence of  (2.5).

Moreover, in fact, we need to modify the coboundary operator  δ   so that  δδ = 0  is satisfied

and this modification can be done only in case when    (Ly ,L y) ∈ Lag(M,Ω) .  (See [17].)

Our definition of complex structure on    Lag +(M,Ω)   is designed so that  δ   will become

holomorphic if we put an appropriate holomorphic structure on    CF k ((L,L ),(Ly ,L y )) .  Thus

we have a cochain complex of sheaves (holomorphic vector bundles)   on  Ux .

We remark here that the chain complex we obtained is  Z 2   graded rather than  Z

graded.  We will define  Z   grading later in the case of a torus.

We thus constructed (2.1.1) and (2.1.2).  The construction of the chain homomorphism

(2.1.3) is roughly as follows.  Let  Ux ∩ U ′ x ≠ ∅ .  We put  V = Ux ∩ U ′ x .  For each  y ∈V ,

we have two representatives    (Ly ,1, Ly ,1),    (Ly ,2 ,L y,2 ) .  Here    (Ly ,1, Ly ,1)  is close to    (Lx ,L x)

and    (Ly ,2 ,L y,2 )   is close to    (L ′ x ,L ′ x ) .  We remark that  (Ly ,1 ,Ly ,1)   is Hamiltonian equivalent

to  (Ly ,2 ,Ly ,2) .  We recall that the Floer cohomology of Lagrangian intersection is invariant

of Hamiltonian diffeomorphism.  (See  [17] for the proof.)   Namely there exists a chain

homomorphism

 (2.6)   ϕ y, k : CF k ((L,L),(L y,1,L y, 1)) → CF k ((L,L),(L y, 2 ,L y,2 ))

which induces an isomorphism to the cohomology.  (The construction of (2.6) is not rigorous

because of a convergence problem.  In  [17], we go around the convergence problem by

introducing a formal power series  ring, that is the Novikov ring [37].)  The proof there

“implies” that we can take ϕ y, k   so that it depends smoothly on  y .  Moreover it is holomorphic

if we define holomorphic structure in an appropriate way.  (2.1.4) and (2.1.5)  are consequences

of the standard argument in Floer theory, which shows that (2.6) is canonical modulo chain

homotopy.  (See [11].)  Thus we sketched an idea of a construction of an element of

Ob(D((M ,Ω)∨ )) .  (In fact this object is the dual of one we associate to  (L ,L) .  This will

become clear from the remarks we will give later in this section.)

Now we make the above idea rigorous in the case of a torus.  Let  ˜ L pt   be as in

Assumption 1.14.  In fact we need another Lagrangian linear subspace also.  Namely we

assume :
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Assumption 2.7   ˜ L st   is an  n-dimensional linear subspace of  V   such that  Ω ˜ L st
= 0 ,

Γ ∩ ˜ L st ≅ Z n  and that  Lst ∩ L pt(0)   is one point.  Here  Lst = ˜ L st
˜ L st ∩ Γ .

We write  Lst   since it will correspond to the structure sheaf of the mirror.  The reason

we need to fix  ˜ L st   will be explained later.  It is easy to see that such  ˜ L st   exists (if  ˜ L pt

exists), but is not unique.

Now let  ˜ L ⊆ V   be another  n -dimensional linear subspace such that  Ω ˜ L = 0 .  We

assume also that  ˜ L ∩ Γ ≅ Z n .  We take an affine space  ˆ L   parallel to  ˜ L   and put

L = ˆ L ˜ L ∩ Γ .  L   is a  closed Lagrangian submanifold of  T2 n .  Let  α ∈Hom( ˜ L ,R )  and we

regard it as a connection of a trivial bundle on  L .  Hence  (L ,α )   is regarded as an element

of    Lag(T 2 n,Ω) .  We assume, for simplicity, that  ˜ L   is transversal to  ˜ L pt .  (We remove this

assumption in § 8.)   We first construct a smooth complex vector bundle on   (T2 n ,Ω)∨ .

We will define a  Γ Γ ∩ ˜ L pt( ) ⊕ Γ ∩ ˜ L pt( )∨
 action on the trivial bundle ˜ E (L ,α )  on

V ˜ L pt ⊕ ˜ L pt
* .   Let  (v,σ) ∈V ˜ L pt ⊕ ˜ L pt

* .  We put  ˆ L pt (v) = ˜ L pt + v   and let Lpt (v) ⊆ T 2n   be

its quotient .  We put

˜ E (L ,α ) (v ,σ ) = ⊕
p∈L ∩ L pt (v )

C [ p] .

Let   γ ∈ Γ Γ ∩ ˜ L pt( ) .  It is easy to see that  L pt(v) = L pt(v + γ) .  Therefore, by definition,

˜ E (L ,α ) (v ,σ )   coincides with  ˜ E (L ,α ) (γ + v ,σ ) .  Thus we defined an action of  Γ Γ ∩ ˜ L pt   on
˜ E (L ,σ).

We next define an action of  Γ ∩ ˜ L pt( )∨
.   Let  µ ∈ Γ ∩ ˜ L pt( )∨

.  µ   is a homomorphism

from  ˜ L pt   to  R .  We regard it as a gauge transformation on  Lpt (v)  as follows.  We take the

(unique) point  x0(v) ∈ ˆ L pt (v)∩ ˜ L st .   For  x ∈ ˆ L pt (v)   we put :

gµ ,v (x) = exp 2π −1µ(x − x0(v))( ) .

gµ ,v   is a U(1)   valued map and hence is a gauge transformation.  Since  µ(γ) ∈Z   for

γ ∈Γ ∩ ˜ L st ,  it follows that  gµ ,v   induces a map  L pt(v) → U(1).  We denote it by the same

symbol.  Then we define

(2.8) µ(c [p]) = gµ,v (p) c [ p],

where  p ∈L ∩ L0(v).  Here we remark that we regard the right hand side as an element of
˜ E (L ,β ) (v , µ +σ ) .

Lemma 2.9   The actions of  γ ∈ Γ Γ ∩ ˜ L pt( )   and  µ ∈ Γ ∩ ˜ L pt( )∨
  on  ˜ E (L ,α ) (v ,σ )   we

defined above commute to each other.
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Proof: We remark that # Lst ∩ L pt(0) = 1  implies that  Γ ∩ ˜ L pt( ) ⊕ Γ ∩ ˜ L st( ) =Γ .  Hence

we may regards  γ ∈Γ ∩ ˜ L st .  Then, by definition, we have  gµ ,v + γ(x + γ) = gµ ,v (x) .  Lemma

2.9 follows from the definition.

Thus we defined an action of  Γ Γ ∩ ˜ L pt( ) ⊕ Γ ∩ ˜ L pt( )∨
  on    ˜ E (L,β ).  Let

  E(L,β) → (T 2 n ,Ω)∨   be the quotient bundle.

Remark  2.10   In the above construction, we used  Lst   to regard elements of

Γ ∩ ˜ L pt( )∨
  as gauge transformations on  L pt(v) .  Namely we require that the gauge transfor-

mation is identity at  Lst ∩ L pt(v) .  This is the way we kill the authomorphism group  U(1)

of the flat bundle on  Lpt (v).

We next are going to construct a holomorphic structure on    E(L,β) .  It suffices to

construct its local (holomorphic) frame for this purpose.  We use a term of a theta series for

this purpose as follows.  Let  (v,σ) ∈V ˜ L 
pt

⊕ ˜ L pt
* .  We take  p ∈L ∩ L0(v).  We will define

a frame  e ˜ p   whose value at  (v,σ)    is  [ p] .  Here  ˜ p   is a lift of  p  to  ˆ L pt(v) .  Let

( ′ v , ′ σ ) ∈V ˜ L pt ⊕ ˜ L pt
*   be in a small neighborhood of  (v,σ) .  We find  ′ p ∈L ∩ L0( ′ v )   and

its lift   ′ ˜ p   which lies in a small neighborhood of  p   and  ˜ p   respectively.  We define

(2.11)
e ˜ p ,σ ( ′ v , ′ σ ) = exp 2π

D( ˜ p ,x 0 ( v), x 0 ( ′ v ), ˜ ′ p )∫ Ω 
 
 −

2π −1 σ(x0(v) − ˜ p ) + ′ σ ( ˜ ′ p − x0( ′ v )) +α( ˜ p − ˜ ′ p )( )).
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Figure 2

Here  D( ˜ p , x0(v), x0( ′ v ), ˜ ′ p )   in (2.11) is the union of two triangles  ∆ ˜ p x0 (v ) x 0 ( ′ v )   and

∆ x 0 ( ′ v ) ˜ ′ p ˜ p .   Hereafter we write

(2.12) Q(a,b,c,d) =
D( a ,b, c, d)∫ Ω.

Using Stokes’ theorem we can prove  Q(a ,b,c,d) = Q(b,c,d ,a).  We put

(2.13) e ˜ p ,σ ( ′ v , ′ σ ) = e ˜ p ,σ ( ′ v , ′ σ )[ ′ p ] .

Lemma 2.14 below implies that  e ˜ p ,σ   is a section of  E(L ,α )  in a neighborhood of

v,σ( ) ∈(T2 n ,Ω)∨ .  If we take  ˜ p   for each  p ∈L ∩ L0(v), then  e ˜ p ,σ , p ∈L ∩ L0(v) is a

local frame of the bundle    E(L,β) .

Lemma 2.14   If γ ∈ Γ ∩ ˜ L pt( )   and  µ ∈ Γ ∩ ˜ L pt( )∨
,  then there exists a holomorphic

function  g( ′ v , ′ σ )   such that    e ˜ p ,σ ( ′ v , ′ σ ) = g( ′ v , ′ σ )e ˜ p +γ ,σ + µ ( ′ v , ′ σ + µ) .

Proof: We put  g( ′ v , ′ σ ) = e ˜ p , σ( ′ v , ′ σ ) e ˜ p + γ , σ ( ′ v , ′ σ ).  By (2.11), we have

(2.15) log e˜ p +γ ( ′ v , ′ σ ) − log e ˜ p ( ′ v , ′ σ ) =−2πIγ ( ′ v − v, ′ σ −σ) .
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Here  Iγ   is as in (11.5).

Figure 3

By Lemma 1.17 and the construction of complex structure, (2.15) implies that  g( ′ v , ′ σ )  is a

holomorphic function of  ( ′ v , ′ σ ).  On the other hand, we have

 

e˜ p ,σ + µ ( ′ v , ′ σ + µ) e ˜ p ,σ ( ′ v , ′ σ ) =exp 2π −1µ( ˜ ′ p − x0( ′ v ) − ˜ p + x 0(v))( ) = gµ ,v( ˜ ′ p ) gµ ,v( ˜ p )−1 .

Hence  µ e q ,σ ( ′ v , ′ σ )( ) = gµ ,v( p)e q ,σ + µ ( ′ v , ′ σ + µ) .  The proof of Lemma 2.14 is now complete.

Lemma 2.14 implies that there exists a unique holomorphic structure on

  E(L,β) → (T 2 n ,Ω)∨   such that  e ˜ p   is a local holomorphic section.  We thus constructed a

holomorphic vector bundle  E(L ,β ) → (T 2 n ,Ω)∨ .

Proposition 2.16 If  (L ,α )   is  Hamiltonian equivalent to ( ′ L , ′ α )   then   E(L ,α )   is

isomorphic to E( ′ L , ′ α ) .

Proof: We suppose  (L ,α ) = (L(w),α ),  ( ′ L , ′ α ) = (L(w + ξ),α +ζ).  Here

ξ ∈ Γ Γ ∩ ˜ L ( )   and  ζ ∈ Γ ∩ ˜ L ( )∨
.  Since  L(w + ξ) = L(w)   it follows that

  E(L(w),α) ≅ E(L(w +ξ),α) . Choose and fix  y ∈L(w) .  Let  p∈L(w) ∩ L pt(v) ,

˜ p ∈ ˆ L (w) ∩ ˆ L pt(v) .  We let  ˜ y   be a lift of  y   in  ˆ L (w) .  We define

(2.17) ˜ Ψ ([p],(L(v),σ)) = exp 2π −1ζ( ˜ p − ˜ y )( )[ p],(L(v),σ )( ) .
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Here  ([ p],(L(v),σ)) ∈ ˜ E (L(w),α) ( v ,σ ).  It is straightforward to see that (2.17) is compatible

with the actions of  Γ Γ ∩ ˜ L pt( ) ⊕ Γ ∩ ˜ L pt( )∨
  and is independent of the lift  ˜ y .  We can also

verify easily that ˜ Ψ  define an isomorphism  Ψ : E(L(w),α ) → E(L(w),α +ζ).  Hence Prop-

osition 2.16.

We will prove a converse of Proposition 2.16 in § 7.

Before going further we add several remarks on our construction.  First the way we

constructed the bundle  E(L ,α )  is a consequence of the dictionary between symplectic and

complex geometry itself.  To see this, we first recall that, by the construction of Strominger-

Yau-Zaslow, the pair  (L pt(v),σ)   is to correspond to the skyscraper sheaf at the point

(L pt(v),σ) ∈(T 2 n ,Ω)∨ .  (We write it  E(L pt(v),σ) .)  Namely an  n -brane  (L pt(v),σ)   in

(T2n ,Ω)   corresponds to a 0- brane in  (T2n ,Ω)∨ .  Let (L ,α ) ∈ Lag(T 2 n ,Ω)   be another

element.  Suppose that it corresponds to a sheaf  E(L ,α )  on  (T2n ,Ω)∨ .  Then our dictionary

implies

(2.18) HF((L ,α ),(L pt(v),σ)) ≅ Ext (E(L ,α ), E(L pt(v),σ)) .

In our case,  E(L ,α )  is a vector bundle.  Hence we can identify  Ext(E(L,α ), E(L pt(v),σ))

to the dual vector space of the fiber of  E(L ,α )  at  (L pt(v),σ) ∈(T 2 n ,Ω)∨ .  This was the way

we defined    E(L,α) .

We next explain the reason why we need to fix  ˜ L st  to define  E(L ,α ) → (T 2 n ,Ω)∨ .  Our

purpose is to construct a functor

(2.19)   Lag(T 2 n,Ω) → D (T2n ,Ω)∨( )

so that the Lagrangian submanifolds parallel to  ˜ L pt   are mapped to the skyscraper sheaves.

Note that the automorphism group of the category  D (T 2 n ,Ω)∨( )   is rather big.  Mukai

constructed (see [33], [34])  a symmetry, called Fourier-Mukai transformation.  In fact, we

can see such a symmetry from mirror symmetry itself.  Namely the “mirror” of a Fourier-Mukai

transformation (or S-duality) is realized by a symplectic diffeomorphism of  (T 2 n ,Ω) .  This

phenomenon, that is  S-duality will become easier duality in the mirror, is observed by

physicists in more general situations and is called the duality of duality.

So there can be many possible ways to construct the functor (2.19).  The ambiguity is

described by Fourier-Mukai transformation which sends skyscraper sheaves to skyscraper

sheaves.  If we see such transformation in the mirror (T2n ,Ω) ,  they are (linear) symplectic

diffeomorphisms which preserve  ˜ L pt .  For example, if we consider the case when  n = 1 ,

then the group of linear symplectic diffeomorphisms of  T2   is an extension of  T2   by

SL(2,Z ).  This group  SL(2,Z )  will become the S-duality group of the mirror  T2 ∨ .  The

element of  SL(2,Z )  which preserves  R ⊆ C   is a matrix of the form  
1 n

0 1

 
 
 

 
 
 .  To kill this

symmetry we need to fix a direction transversal to  R .  This is equivalent to fix the
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Lagrangian submanifold which becomes the structure sheaf of the mirror tori.

We remark that here we put the trivial bundle on  Lst .  But we can in fact put any flat

line bundle on  Lst   instead.  The change of the choice of the flat bundle on  Lst   (and

changing  Lst   to another affine Lagrangian submanifold  Lst(v)   parallel to  Lst )  corresponds

to the connected component of the automorphism group of  D (T 2 n ,Ω)∨( )   (that it the group

(T 2 n ,Ω)∨   itself) . We defined an action of  Γ ∩ ˜ L pt( )∨
  to  E(L ,α )  in such a way that the

bundle    E(Lst ,α)   is trivial as a complex vector bundle.  Also the construction of the

holomorphic structure on  E(L ,α )  is designed so that    E(Lst ,0) is a trivial as a holomorphic

bundle.  (Namely  s ˜ p ( ′ v , ′ α ) ≡ 1  in that case.)

We next define a lift of Z 2 - degree of the Floer cohomology to  Z .  We first recall the

following fact which we mentioned in [12] § 4.  The Floer degree η( p) ∈Z   of  p∈L1 ∩ L2

is not well-defined in the general situation.  In general, only the difference  η( p) −η(q)   is

well defined, (modulo twice of the minimal Chern number.  See [38].)  In the case of a pair

of mutually transversal affine Lagrangian submanifolds  ˆ L 1 , ˆ L 2    in a torus,  η( p) −η(q)  is

always zero.  But we do not have a canonical way to define  η( ˆ L 1 , ˆ L 2) = η( p)   as an integer.

(η( p) ∈Z 2   is well defined.)  However, for three affine Lagrangian submanifolds  ˆ L i,  the

Maslov index (Kashiwara class, see [23])  is well-defined as follows.    We choose a complex

structure   J   on  V   and a Lagrangian linear subspace  ˜ L 0   such that  ˜ L 0 ,J ˜ L 0   are transversal

to  ˜ L 1, ˜ L 2 , ˜ L 3 .  Using  J ,  we regards  V = T* ˜ L 0 .  (Here we regards  J ˜ L 0   as the fiber.)  Then
˜ L i , i =1,2,3  are graphs of exact 1 forms  dV ( ˜ L 0 , ˜ L i ).  Here  V( ˜ L 0 , ˜ L i)   is a quadratic

functions on  ˜ L i .  Let  η *( ˜ L i , ˜ L j)   be the index of the quadratic form  V( ˜ L 0 , ˜ L j) − V( ˜ L 0 , ˜ L i) .

Then we define

(2.20) η ˆ L 1 , ˆ L 2 , ˆ L 3( ) =2n − η * ˆ L 1 , ˆ L 2( ) + η * ˆ L 2 , ˆ L 3( ) + η * ˆ L 3 , ˆ L 1( )( )
and can verify that (2.20) is independent of  ˜ L 0 . J .

Remark 2.21 In the general case,  η ˆ L 1 , ˆ L 2 , ˆ L 3( )   (more precisely  η p12 , p23 , p31( )  where

pij ∈ Li ∩ L j)  is well-defined modulo twice of the minimal Maslov number.  In fact, it is the

minus of the virtual dimension of the moduli space of pseudoholomorphic triangles.  In our

case, minimal Maslov number is 0 since  π2 (T2 n , L) = 0 .  Hence  η ˆ L 1 , ˆ L 2 , ˆ L 3( )   is well-defined

as an integer.

In our situation, we already fixed two Lagrangian linear subspaces  ˜ L pt   and  ˜ L st .  Using

them, we can define  Z   grading of the Floer homology  HF((Lst ,0),(L ,β )) . Namely we

define so that   HF k((Lst ,0),(L ,α ))   is nonzero only if :

(2.22) k = η*( ˜ L st ,
˜ L )

(when  ˜ L   is transversal to  ˜ L st  and ˜ L pt)  and
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Definition 2.23 η*( ˜ L st ,
˜ L ) = η( ˜ L st ,

˜ L , ˜ L pt) .

We are here using the cohomology degree  η*   which is related to the homology degree  η
by  η = n − η* .  Let  ˜ L 1 , ˜ L 2   be a pair of mutually transversal affine Lagrangian submanifolds.

We assume also that they are transversal to  ˜ L pt  and ˜ L st .

Definition 2.24 η*( ˜ L 1 , ˜ L 2) = η*( ˜ L st ,
˜ L 2) −η*( ˜ L st , ˜ L 1) + η( ˜ L st ,

˜ L 1 , ˜ L 2) .

Lemma 2.25

(2.26.1) η*( ˜ L 1,
˜ L 2 ) + η* ( ˜ L 2,

˜ L 3) = η* ( ˜ L 1 , ˜ L 3 ) +η( ˜ L 1 , ˜ L 2 , ˜ L 3) .

(2.26.2) η*( ˜ L 1,
˜ L 2 ) + η* ( ˜ L 2,

˜ L 1) = n.

Proof: By definition we have

(2.27)
η*( ˜ L 1, ˜ L 2 ) + η* ( ˜ L 2, ˜ L 3) − η* ( ˜ L 1 , ˜ L 3)

= η( ˜ L st ,
˜ L 1,

˜ L 2) + η( ˜ L st,
˜ L 2 , ˜ L 3) −η( ˜ L st ,

˜ L 1,
˜ L 3).

(2.20) and  η *( ˜ L i , ˜ L j) = n − η *( ˜ L j , ˜ L i)   implies :

(2.28) η( ˜ L st ,
˜ L 1 , ˜ L 2) + η( ˜ L st , ˜ L 2 , ˜ L 3) =η( ˜ L 1 , ˜ L 2 , ˜ L 3) + η( ˜ L st ,

˜ L 1 , ˜ L 3).

(2.27) and (2.28) imply (2.26.1).

To prove (2.26.2) we recall

(2.29.1) η( ˜ L st ,
˜ L 1 , ˜ L 2) =2n − η *( ˜ L st ,

˜ L 1) + η *( ˜ L 1 , ˜ L 2) + η *( ˜ L 2 , ˜ L st)( ) ,

(2.29.2) η( ˜ L st ,
˜ L 2 , ˜ L 1) =2n − η *( ˜ L st ,

˜ L 2) + η *( ˜ L 2 , ˜ L 1) + η *( ˜ L 1 , ˜ L st)( ) .

(2.29), η *( ˜ L i , ˜ L j) = n − η *( ˜ L j , ˜ L i) , and definition imply

η*( ˜ L 1 , ˜ L 2) + η*( ˜ L 2 , ˜ L 1) = η( ˜ L st ,
˜ L 1 , ˜ L 2) + η( ˜ L st , ˜ L 2 , ˜ L 1) = n .

The proof of Lemma 2.25 is complete.

Let us explain the reason why we defined  η*( ˜ L 1,
˜ L 2 )  as in Definitions 2.23 and 2.24.  It

again comes from our dictionary.  The dictionary requires :

(2.30) HF k((Lst ,0),(L pt(v),σ)) ≅ Ext k (O ,E(L pt(v),σ)) .

Here  O   is the structure sheaf and E(L pt(v),σ)   is a skyscraper sheaf.  It is easy to see that

the right hand side of (2.30) is nonzero only for  k = 0.  Therefore, we need to choose

(2.31) η*( ˜ L st ,
˜ L pt ) = 0 .
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On the other hand, since   E(L ,α )  is locally free (in the case when  ˜ L   is transversal to
˜ L pt),  it follows that  HF k((L ,α ),(L pt(v),σ)) ≅ Ext k (E(L ,α ), E(L pt(v),σ))   is nonzero only

for  k = 0.  Therefore we choose

(2.32) η*( ˜ L , ˜ L pt ) = 0 .

We also require (2.26.2).  ((2.26.2) is the mirror of Serre duality.  (See Remark 3.3.) )

Definitions 2.23 and 2.24 follow from (2.26),(2.31) and (2.32).

We remark that the mod 2 degree of Floer homology is canonically defined provided the

Lagrangian submanifolds are oriented.  We have chosen orientations of  ˜ L st   and  ˜ L pt  so

that the intersection number  Lst • L pt(v)   is plus 1.  For third Lagrangian subspace  ˜ L   we

choose its orientation so that the intersection number  L • L pt(v)   is positive.  Hence

η*( ˜ L , ˜ L pt ) = 0  is consistent with mod 2 degree of Floer homology.

The vector bundle we constructed in this section is a semi-homogeneous vector bundle

in the sense of  [32].  In fact, it is obtained from a line bundle by push forward.  (See § 4.)

More general bundles and sheaves will be discussed in §§ 8,12.
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§ 3  Sheaf cohomology and Floer cohomology 1　
(Construction of a homomorphism)

　
Theorem 3.1 HF k((Lst ,0),(L ,α )) ≅ H k ((T 2 n ,Ω)∨,E(L ,α))  if  ˜ L   is transversal to
˜ L st,

˜ L pt .

In §§ 3,5, we are mainly concern with the case when  k = η( ˜ L st ,
˜ L , ˜ L pt) =0 .  In that case,

we will construct an explicit map  HF 0((Lst ,0),(L ,α )) → H 0((T 2 n ,Ω)∨,E(L ,α))   in this

section and will prove that it is an isomorphism in §5.  The main idea of the proof is again to

use our dictionary itself to associate a section of the bundle  E(L ,α )  to each element of

HF 0((Lst ,0),(L ,α )) . We first remark that (2.26.2) implies

CFk((L ,α ),( ′ L , ′ α )) ≅ CFn− k (( ′ L , ′ α ),(L,α )) .

The boundary operators are zero in our case.  But in fact it will be dual in the general

situation.  Hence we have a perfect bilinear pairing (3.2) which will be denoted by  , .

(3.2) HF k((L ,α ),( ′ L , ′ α )) ⊗ HF n− k (( ′ L , ′ α ),(L,α )) →C .

Remark 3.3 In B-model, the pairing (3.2) corresponds to Serre duality as follows.  Let  F,G
be two locally free sheaves on a Kähler manifold  M .  Then we have a perfect pairing :

Ext k( F ,G) ⊗ Ext n− k(G, F ⊗ O(ΛnTM )) → C

Here  O(ΛnTM )   is the sheaf of holomorphic  n- forms.  If we assume that  M   is a

Calabi-Yau manifold then  O(ΛnTM )   is trivial.  Hence we have a pairing similar to (3.2).

They correspond to each other by mirror symmetry.  We will prove it in the case of tori in §

11.  (Theorem 11.40).

We recall that  [ p] ,  p∈Lst ∩ L  is a basis of  HF 0((Lst ,0),(L ,α )) .  So we are to going

to define a section  sp ∈Γ ((T 2 n ,Ω)∨ ,E(L ,α))  for each  p∈Lst ∩ L .  Let  [v,σ] ∈(T 2n ,Ω)∨ .

We will define the value    sp v ,σ( ) ∈E(L ,α)[ v,σ ].  Here    E(L,α)[v ,σ ]   is the fiber of  E(L ,α )  at

(v,σ) .  By definition we have :

(3.4)   E(L,α)[v ,σ ]
* = HF0((L,α ),(Lpt(v),σ )) .

Here  *  denotes the dual vector space.  Hence  sp v ,σ( ) ∈ HF0((L ,α),(Lpt (v),σ))( )*
.

We recall that two Lagrangian submanifolds  Lst   and  L pt(v)   intersect  to each other at

a unique point  x(v) ∈T2 n .  Hence we have a canonical element
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(3.5) [x(v)] ∈ HFn((Lpt(v),σ ),(Lst ,0)) ≅ HF0((Lst ,0),(Lpt (v),σ))* .

Definition 3.6

  

sp v ,σ( ) = m2([x(v)],[ p]) ∈HFn((Lpt (v),σ ),(L ,α))

≅ HF0 ((L,α ),(Lpt(v),σ ))* ≅ E(L,α)[ v,σ ] .

The map  m2 : HFn((Lpt (v),σ);(Lst ,0))⊗ HF0((Lst ,0),(L,α)) → HFn((Lpt (v),σ),( L,α))   in

Definition 3.6 is the product structure of Floer homology which will be defined later in this

section.  The more precise statement of Theorem 3.1 in the case  k = 0  is the following

Theorems 3.7 and 3.8.

Theorem 3.7 sp   defined in Definition 3.6  is holomorphic.

Hence we obtain a map  HF 0((Lst ,0),(L ,α )) → H 0((T 2 n ,Ω)∨;E(L ,α))   [ p] a sp ,  which

we denote by  Φ (L ,α ) .

Theorem 3.8 The map  Φ (L ,α )  is an isomorphism

HF 0((Lst ,0),(L ,α )) ≅ H 0((T 2 n ,Ω)∨,E(L ,α))   in case  η( ˜ L st ,
˜ L , ˜ L pt ) = 0 .

To prove Theorem 3.7, we begin with the definition of  m2 .  The definition is similar to

the proof of [12] Theorem 4.37.  We need a  modification since we include a line bundle.  Let

L1 , L2 , L3   be three mutually transversal affine Lagrangian submanifolds and  ˆ L i ⊆ V   be

connected components of there inverse images.  Let  {a i} = L1 ∩ L2 , {b j} = L2 ∩ L3 ,

{c k} = L3 ∩ L1 .   Let  Li  be a flat line bundle on  Li.  We find

HF((L1 ,L1),(L2 ,L2)) = ⊕
i

Hom(L1,a i
,L2, a i

)

(3.9) HF((L2 ,L2),(L3 ,L3)) = ⊕
j

Hom(L2,b j
,L3, b j

)

HF((L1 ,L1),(L3 ,L3)) = ⊕
k

Hom(L1, c k
,L3, c k

)

where  L1,a i
  is the fiber of  L1   at  a i .  For  γ ∈Z n = π1(L3) , let  {a(γ)} = ˆ L 1 ∩ ˆ L 2(γ) ,

{b(γ)} = ˆ L 2(γ) ∩ ˆ L 3 .  We choose  ˆ L 1 , ˆ L 3   such that  {c} = ˆ L 1 ∩ ˆ L 3   π(c) = c k .   (Figure 4.)

We put

(3.10) Q(a ,b,c) = ω + −1B( )
∆abc

∫

where  ∆abc  is the geodesic triangle in  C n   whose vertices are  a,b,c.
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Figure 4.

Definition 3.11

Z ijk(L1 ,L2 ,L3)(v12 ⊗ v23) =
π (a(γ )) =a i
π (b(γ ))= b j

∑ ± exp −2πQ(a(γ), b(γ), c)( ) P( L1 ,L 2 ,L3 ), ijk ,γ (v12 ⊗ v23).

Here  v12 ∈Hom(L1, a i
,L2, a i

) , v23 ∈Hom(L2, b j
,L3, b j

) .  We explain the sign later during

the proof of Theorem 3.16.  We define

  
P(L1 ,L 2, L3 ), ijk,γ : Hom(L1,a i

,L2 ,a i
) ⊗ Hom(L

2,b j
,L

3 ,b j
) → Hom(L1 ,c k

,L3,c k
)

below.  Let  v12 ∈Hom(L1, a i
,L2, a i

) , v23 ∈Hom(L2, b j
,L3, b j

) .  We choose path  ˜ l i   such that

  
˜ l 2 ⊆ ˆ L 2(γ ),    

˜ l i ⊆ ˆ L i    (i =1,3)  and that  ˜ l 1 ,˜ l 2 ,˜ l 3   joins c  to  a(γ) ,  a(γ)   to  b(γ) , and

b(γ)  to c respectively.  (See Figure 4.)  We put  l i =π o ˜ l i .  Then l1 ,l 2 ,l 3  joins c k  to  a i ,

a i   to  b j, and b j to c k  respectively.   We now define :

(3.12) P( L1 ,L 2 ,L3 ), ijk ,γ (v12 ⊗ v23) = Pl3 , L3
o v23 o Pl 2 ,L 2

o v12 o Pl1 , L1
.
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Here  Pl 1 ,L1
: L1, c k

→ L1, a i
  is the parallel transportation of the flat bundle  L1   along the path

l1 .  The definitions of  Pl 2 ,L2
, Pl 3 ,L3

  are similar.  (A similar but a bit more complicated

construction is used in  [14] § 1.  In fact, the one we are discussing here is the genus 0

version of the construction there.)  We thus explained the notation of Definition 3.9.  We also

remark the following lemma.

 Lemma 3.13 If  η(L1 ,L2 ,L3) =0   then the right hand side of Definition 3.11 converges.

The proof is similar to the proof of [12] Theorem 4.12.  (Note that the difference

between the construction in this section and one in [12] § 4, is only the phase factor, that is

multiplication of complex numbers of absolute value one.)

By Definition 3.9 and (3.7)  we obtain

(3.14) m2 : HF((L1 ,L1),(L2 ,L2)) ⊗ HF((L2 ,L2),(L3 ,L3)) → HF((L1 ,L1),(L3 ,L3)) ,

in the case  Li  are transversal to each other.  We state the following basic properties of  m2 .

Theorem 3.15 Let  x ij ∈HF((Li ,Li),(L j ,Lj))   then

m2(x12 ,m 2(x 23 ,x 34)) = m 2(m 2(x12 ,x 23), x 34) .

The proof is the same as the proof of [12] “Theorem 5.1”, which is rigorous in the case

of a torus.

Theorem 3.16 Let  x ij ∈HF((Li ,Li),(L j ,Lj)) .  If  deg x12 + deg x23 + deg x 31 = n   then

we have

m2(x12 ,x23), x31 = (−1) deg x12 + degx 23( )deg x31 m2(x 31 ,x12), x23

= (−1) deg x31 + degx 12( )deg x23 m2(x 23 ,x31), x12

.

The proof is the same as the proof of [12] Theorem 4.8.  Let us explain the sign here.

We choose  ˜ L 0   and  J ,  such that  ˜ L 0   and  J ˜ L 0   are transversal to  ˜ L i .  We then regards  ˜ L j
as a graph of  dV ( ˜ L 0 , ˜ L j )  where  V( ˜ L 0 , ˜ L j)   is a quadratic function and put

V( ˜ L i , ˜ L j) = V( ˜ L 0 , ˜ L j) − V( ˜ L 0 , ˜ L i) .  We fix an orientation of unstable manifold   U( ˜ L i ,
˜ L j)

(negative eigenspace) of  V( ˜ L i ,
˜ L j ) .  We find that  U( ˜ L 1,

˜ L 2) ∩ U( ˜ L 2 , ˜ L 3 )∩ U( ˜ L 3 , ˜ L 1 )  is  {0}.

Orientations of  U( ˜ L i ,
˜ L j)   and one of   V   determines a sign of the intersection

U( ˜ L 1,
˜ L 2) ∩ U( ˜ L 2 , ˜ L 3 )∩ U( ˜ L 3 , ˜ L 1 ).  This sign by definition is the sign in Definition 3.11.  (We

discuss the sign more in § 10.)  The sign in Theorem 3.16 is then immediate.

We now start the proof of Theorem 3.7.  For this purpose, we write more explicitly the

map in Definition 3.11 in the case when  (L1 ,L1) = (Lst,0) , (L2 ,L2) = (L,α ) ,

(L3 ,L3) = (L pt(v),σ).  We remark that  Lst ∩ L pt(v) = {x(v)}  consists of one point.  Hence
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there is only one choice of  k   that is  k = 1.  (Namely we put  c = x(v) .)  We are considering

p∈Lst ∩ L . We put  p = a j .  To prove Theorem 3.7 we only need to study  sp   locally.  We

fix  q ∈L pt(v) ∩ L .  Then for each  w   close to  v,  we have  ′ q ∈L pt(w) ∩ L  close to  q .

We recall  E(L ,α )[v ,τ ] = ⊕x∈L pt (v )∩ LC [x].  Using this basis we put :

sp([ ′ v , ′ σ ]) = sp , q ([ ′ v , ′ σ ])[ ′ q ]* +L

and study sp , q([ ′ v , ′ σ ]) .  Here we regards  sp ∈HFn ((L(v),τ ),(L,α))   and regard  [ ′ q ]*   as

the dual basis of the basis  [ ′ q ]   of  HF0((L,α),(L(v),τ )) .)

We fix a component  ˆ L   of the inverse image of  L   in  V .  Let  Γ( ˆ L ) =Γ Γ ∩ ˜ L .  ( ˜ L 

is the linear subspace of  V   parallel to  ˆ L .)   For  γ ∈Γ( ˆ L ) ,  we put  ˆ L (γ) = ˆ L + γ  and

{˜ p (γ)} = ˜ L st ∩ ˆ L (γ) .  Set

Γ0( ˆ L ) = γ ∈Γ( ˆ L ) π( ˜ p (γ)) = p, π( ˜ q (γ)) = q{ } .

Here  π : V → T 2n   is the projection.  We remark that  π( ˜ ′ q (γ)) = ′ q   for  γ ∈Γ0( ˆ L ) .

Definitions 3.6 and 3.11 imply (See Figure 5)

(3.17)

spq ( ′ v , ′ σ ) = exp −2πQ( ˜ p (γ) ˜ ′ q (γ) x 0( ′ v )) +(
γ∈Γ0 ( ˆ L )

∑

2π −1 ′ σ (x0( ′ v ) − ˜ ′ q (γ)) +α ( ˜ ′ q (γ) − ˜ p (γ))( )).
Let  sp , q ( ′ v , ′ σ ,γ)γ∑   be the right hand sides of (3.17).  We put

(3.18) gγ ( ′ v , ′ σ ) = log spq ( ′ v , ′ σ ,γ) − log spq (v,σ,γ) −2π log e˜ p ( ′ v , ′ σ ) .

Here  e˜ p ( ′ v , ′ σ )   is defined by (2.11).
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Figure 5

Lemma 3.19 gγ ( ′ v , ′ σ )  is a holomorphic function of  ( ′ v , ′ σ ).

Proof: By definition and (2.11), we have :

gγ ( ′ v , ′ σ ) = 2πQ(x 0(v), x0( ′ v ), ˜ ′ q (γ),˜ q (γ))

−2π −1 σ(x 0(v) − ˜ q (γ)) + ′ σ ( ˜ ′ q (γ) − x 0( ′ v ))(
+α ( ˜ q (γ) − ˜ ′ q (γ)))

− log e ˜ q ,σ ( ′ v , ′ σ )
= −2πIγ ( ′ v − v, ′ σ −σ)

Here  Q(x0 (v),x0( ′ v ), ˜ ′ q (γ ), ˜ q (γ )) )  is as in (2.12)  (see Figure 5), and

γ = ˜ q (γ ) − ˜ q = ˜ ′ q (γ ) − ˜ ′ q .  Lemma 3.19 follows.

Lemma 3.19, (3.17),(3.18) and the definitions imply that  sp   is holomorphic.  The proof

of Theorem 3.7 is complete.
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§ 4  Isogeny

In this section we use the idea of Polishchuk and Zaslow in [42] §5.3 to reduce the proof

of Theorems 3.1 to the case of line bundles.  Let  (L ,α )  be as in § 3.  We remark that the

rank of the vector bundle  E(L ,α )  is  L • Lpt (v) .  Hence there exists a finite group

G(L) ⊆ Lpt (0) ⊆ T 2n   with the following property :

(4.1.1) The order of  G(L)  is  L • L pt(v) .

(4.1.2) L   is  G(L)  invariant.

(4.1.3) G(L)  acts transitively on  L ∩ L pt(v) .

Let  G   be a subgroup of  G(L).  We put  (T2 n ,Ω) G = (T 2 n ,Ω ).  We use  ˜ L st ⊆ V =
the universal cover of  T 2 n   to define a mirror  (T 2 n,Ω )∨ .  Let  G∨ = Hom(G,U(1))  be the

dual group.

Lemma 4.2 G∨   acts on  (T 2 n,Ω )∨   such that  (T 2 n,Ω )∨ G∨ = (T 2 n ,Ω)∨ .

Proof: The universal cover of  (T 2 n,Ω )∨   is identified to the universal cover

V ˜ L 
pt

⊕ ˜ L pt
*   of  (T 2 n,Ω )∨ .  We remark that  ′ Γ = π1(T 2 n ,Ω )   contains  Γ = π1(T 2n ,Ω)   as

an index  # G  subgroup.  It is easy to see  ′ Γ ′ Γ ∩ ˜ L pt ≅Γ Γ ∩ ˜ L pt , ′ Γ ∩ ˜ L pt Γ ∩ ˜ L pt ≅ G .

Hence  Γ ∩ ˜ L pt( )∨
′ Γ ∩ ˜ L pt( )∨

= G ∨ .  Lemma 4.2 follows.

By (4.1.2), there exists a Lagrangian submanifold  L = L G   of  (T 2 n,Ω ) .  There is a

flat connection  α   on  L   such that  π *α =α .  Here  π : L → L   is the covering map.

(4.1.3) implies that  L • L pt =# G(L) G .  Hence    rank E(L ,α ) =# G(L) G .  Let

π : (T 2 n,Ω )∨ → (T 2 n,Ω)∨   be the  G∨  covering constructed by Lemma 4.2.

Proposition 4.3 There exists an isomorphism  π* E(L ,α )( ) ≅ E(L ,α) .  Here  π*   is the

push forward of the bundle.

Proof: We put

(4.4) A(α) = α +γ γ ∈ Γ ∩ ˜ L pt( )∨{ }
(4.5) B(v) = p∈ ˆ L pt(v) π ( p) = L pt(v) ∩ L{ } .

Let  ˆ E (α ,v)  be the vector space consisting of all maps u(λ , p): A(α ) × B(v) →C .   For

(γ ,µ) ∈ ′ Γ ′ Γ ∩ ˜ L ( ) × Γ ∩ ˜ L pt( )∨
,  we put
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(4.6) (γ ,µ)u( )(λ + µ,γ + p) =exp 2π −1 µ( p − x0(v)) + λ(γ)( )( )u(λ, p) .

(4.6) defines actions of ′ Γ ′ Γ ∩ ˜ L ( ) × ′ Γ ∩ ˜ L pt( )∨
  and of  Γ Γ ∩ ˜ L ( ) × Γ ∩ ˜ L pt( )∨

.  The

definition of  E(L ,α )  (see (2.8))  implies the following :

(4.7) π* E(L ,α )( )
( L pt ( v ), L )

≅ u ∈ ˆ E (α ,v) ∀(γ ,µ) ∈ ′ Γ ′ Γ ∩ ˜ L ( ) × ′ Γ ∩ ˜ L pt( )∨
(γ ,µ)u = u 

 
 
 

 
 
 

,

(4.8) E(L ,α ) (L pt (v ), L ) ≅ u ∈ ˆ E (α ,v)  ∀(γ ,µ) ∈ Γ Γ ∩ ˜ L ( ) × Γ ∩ ˜ L pt( )∨
(γ ,µ)u = u

 
 
 

 
 
 

.

We are going to construct an isomorphism between (4.7) and (4.8) by a Fourier transfor-

mation.  Let  γ i   be the representative of  ′ Γ ′ Γ ∩ ˜ L ( ) Γ Γ ∩ ˜ L ( )  and  µ j   be the representatives

of  Γ ∩ ˜ L pt( )∨
′ Γ ∩ ˜ L pt( )∨

.  For u ∈ E(L ,α ) (L pt (v ), L ) , ′ u ∈π* E(L ,α )( )
( L pt ( v ), L )

  we put :

(4.9) F(u)(λ, p) = u(λ,γ i + p
i

∑ ) .

(4.10) ′ F ( ′ u )(λ, p) = exp −2π −1µ j( p − x0(v))( ) ′ u (λ + µ j , p
j

∑ ) .

Lemma 4.11 F(u) ∈π* E(L ,α )( )
(L pt (v ), L )

, ′ F ( ′ u ) ∈ E(L ,α ) ( L pt ( v ), L ) , ′ F F(u) = u ,

F ′ F ( ′ u ) = ′ u .

Proof: It is easy to see  F(u)(λ, ′ γ + p) = F(u)(λ , p)  for  ′ γ ∈ ′ Γ .  Let

′ µ ∈ ′ Γ ∩ ˜ L pt( )∨
.  We have

F(u)( ′ µ + λ, p) = u( ′ µ + λ,γ i + p
i

∑ )

= exp 2π −1 ′ µ (γ i + p − x0(v))( )u(λ,γ i + p)
i

∑
=exp 2π −1 ′ µ ( p − x 0(v))( )F(u)(λ, p).

Therefore  F(u) ∈π* E(L ,α )( )
(L pt (v ), L )

.  The proof of  ′ F ( ′ u ) ∈ E(L ,α ) ( L pt ( v ), L )   is similar.

On the other hand, we have

(4.12)

  

′ F F (u)(λ, p) = exp −2π −1µ j(p − x0 (v))( )u(λ + µ j , p +
i, j
∑ γ i)

= exp 2π −1µ j(γ i)( )u(λ , p +
i, j
∑ γ i )

.

We remark that we may choose  γ i   and  µ j   so that  γ1 = 0 , µ1 = 0  and

(4.13)   exp2π −1µ j(γ i)( )
j

∑ = 0   unless  i = 1.  exp2π −1µ j(γ i)( )
i

∑ = 0   unless  j = 1.
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(4.12) and (4.13) imply  ′ F F(u) = u .  The proof of F ′ F ( ′ u ) = ′ u   is similar.  The proof

of Lemma 4.11 is complete.

It is easy to see that  F , ′ F  give isomorphisms asserted by Proposition 4.3.

Proposition 4.14   H
* ((T 2 n, Ω )∨ ,E(L ,α )) ≅ H*((T 2 n,Ω)∨ ,E(L,α)) .

Proof: It suffices to prove the proposition in the case when  G = G(L) .  Then    E(L , L )

is a line bundle.  Therefore  H k((T 2n ,Ω )∨ ,E(L ,α ))   is nontrivial for only one  k .  (See [35]

§ 16.)  Proposition 4.14 follows from this fact, Proposition 4.3 and Leray spectral sequence.

We next discuss the relation between the isomorphism in Proposition 4.14 and the

homomorphism we constructed in § 3.  Since  G ⊆ L pt  it follows that  Lst • L = L st • L .

Here  L st = ˜ L st ′ Γ ⊆ T 2 n .  Moreover we can identify  Lst ∩ L   and  L st ∩ L .  Hence there

exists a canonical isomorphism

(4.15) HF(Lst ,L) ≅ HF(L st ,L ) .

Lemma 4.16 The following diagram commutes :

  

HF0(Lst , L) → H0 ((T 2 n, Ω )∨ ,E(L ,α ))

↓ ↓
HF0(L st , L ) → H 0((T 2n ,Ω),E (L,α ))

Here the vertical arrows are the isomorphisms (4.15)  and Proposition 4.14 .  The horizontal

arrow is the map Φ ( L,α ) , Φ
(L ,α )  in Definition 3.4.

Proof: We remark that the isomorphism in Proposition 4.14 is given by  F   in (4.9).

The lemma then follows immediately from the definitions.

We discuss isogeny more in § 6.
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§ 5  Sheaf cohomology and Floer cohomology 2
(Proof of isomorphism)

In this section, we prove Theorems 3.1 and 3.8.  We first prove that the map

  ΦL ,α : HF0((Lst , 0),(L,α)) → H0((T 2n ,Ω)∨,E(L,α ))  in Definition 3.6 is injective.  We use an

inner product on    H
0((T2 n ,Ω)∨ ,E(L,α)) = Γ(E (L,α))   for this purpose.  To define a  hermitian

inner product on our vector bundle    E(L,α) ,  we first remark that the bundle    ˜ E (L,α )  on the

universal cover  V ˜ L pt ⊕ ˜ L pt
*   (which we defined by (2.7)) has a hermitian inner product in an

obvious way.  Since the action  gµ ,v   defined by (2.8) is unitary on each fiber, it induces a

hermitian inner product on    E(L,α) .  We denote it by  ,( ) .  We next take a flat Riemannian

metric on  (T2 n ,Ω)∨   and fix it.  The hermitian inner product  ,( )   on    Γ(E(L,α))   is induced

by the metric and the hermitian inner product on    E(L,α) .

Proposition 5.1 ΦL,α ([p]),ΦL,α ([ p])( ) > 0 . ΦL,α ([p]),ΦL,α ([ ′ p ])( ) = 0   for

p, ′ p ∈L st ∩ L,  p ≠ ′ p .

Proof: Let  v ∈V ˜ L pt
*  and ˜ p , ˜ ′ p ∈ ˜ L st   be an inverse image of  p, ′ p   in  V .  Let  ˆ L (p) ,

ˆ L ( ′ p )   are the connected components of inverse images of  L   in  V   such that

{˜ p } = ˜ L st ∩ ˆ L (p),   {˜ ′ p } = ˜ L st ∩ ˆ L ( ′ p ).  We put

(5.2) gp, q,v, γ (σ ) = exp −2πQ( ˜ p (γ ), ˜ q (γ ),x0(v)) + 2π −1 σ (x0 (v) − ˜ q (γ )) + α(˜ q − ˜ p (γ ))( )( ).

Here the notation is similar to (3.17) and is as follows.  σ ∈ ˜ L pt
* ,  {x0(v)}= ˜ L st ∩ ˆ L pt(v) ,

{˜ q } ∈ ˆ L pt(v) ∩ ˆ L ( p) ,  γ ∈Γ ,  {˜ q (γ)} ∈ ˆ L pt(v) ∩ ˆ L ( p + γ) ,  {˜ p (γ)} ∈ ˜ L st ∩ ˆ L ( p + γ) .  (See

Figure 5.)   We define  g ′ p , q ,v ,γ(σ)   in a similar way.

By (3.17) we have

(5.3) ΦL ,α ([p])(v,σ ) =
γ ∈Γ 0 ( ˆ L )

∑ gp, q,v, γ (σ) ,  ΦL ,α ([ ′ p ])(v,σ) =
γ ∈Γ0 ( ˆ L )

∑ g ′ p ,q , v,γ (σ ) .

Lemma 5.4

(5.4.1) gp , q ,v,γ (σ)gp , q ,v , ′ γ (σ) dσ
σ ∈˜ L pt

* Γ∩ ˜ L pt( )∨∫ =0 ,  if  γ , ′ γ ∈Γ0( ˆ L ) ,  γ ≠ ′ γ .

(5.4.2) gp , q ,v,γ (σ)g ′ p , q , v , ′ γ (σ) dσ
σ ∈˜ L pt

* Γ∩ ˜ L pt( )∨∫ = 0 ,  if  γ , ′ γ ∈Γ0( ˆ L ) ,  p ≠ ′ p .

Proof: We remark that

gp, q,v, γ (σ )gp,q ,v , ′ γ (σ ) = Cexp 2π −1σ ( ˜ q ( ′ γ ) − ˜ q (γ )( )

where  C   is independent of  σ .  (5.4.1) follows.  The proof of (5.4.2) is similar.
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By (5.4.1), we have

ΦL ,α([ p])(v,σ)ΦL ,α ([ p])(v,σ) dσ
σ ∈˜ L pt

* Γ∩ ˜ L pt( )∨∫
=

γ∈Γ0 ( ˆ L )
∑ gp, q ,v ,γ (σ) gp , q ,v ,γ(σ) dσ

σ ∈˜ L pt
* Γ∩ ˜ L pt( )∨∫ >0.

ΦL,α ([p]),ΦL,α ([ p])( ) > 0  follows.  (5.4.2) implies  ΦL,α ([p]),ΦL,α ([ ′ p ])( ) = 0  in a similar

way.  The proof of Proposition 5.1 is complete.

We remark that Proposition 5.1 implies the injectivity of  ΦL ,α .

To prove Theorems 3.1 and 3.8, we use Proposition 4.14 and Lemma 4.16, and we may

assume that L • Lpt (0) = 1  namely    E(L,α)   is a line bundle.  By Proposition 5.1, the map

ΦL ,α   is injective.  Hence Theorem 3.1 implies Theorem 3.8.  We now are going to prove

Theorem 3.1 in the case when    E(L,α)   is a line bundle.  We use Riemann-Roch’s theorem

for this purpose.  Namely we are going to calculate the first Chern class of     E(L,α) .  To

state it, we need some notations.  Let  ˜ L , ˜ L st , ˜ L pt   be as before.  We assume that they are

transversal to each other.  Hence  ˜ L   may be regarded as a graph of a linear isomorphism :
˜ L st → ˜ L pt .  We write it as  φL : ˜ L st → ˜ L pt .  We next remark that there exists an isomorphism

V ˜ L pt ≅ ˜ L st .  We have  ˜ L st ⊕ ˜ L pt
* ≅ V ˜ L pt ⊕ ˜ L pt

* , Γ Γ ∩ ˜ L pt ≅Γ ∩ ˜ L st ⊆ ˜ L st .

Definition 5.5 Let  γ , ′ γ ∈Γ Γ ∩ ˜ L pt ≅Γ ∩ ˜ L st , µ, ′ µ ∈ Γ ∩ ˜ L pt( )∨
.  We define :

EL((γ ,µ),( ′ γ , ′ µ )) = µ(φ L ( ′ γ )) − ′ µ (φL (γ)) .

Since  L • Lpt (0) = 1,  it follows that φL Γ Γ ∩ ˜ L pt( ) ⊆ Γ ∩ ˜ L pt .  Therefore  EL   is integer

valued.  By definition,  EL   is anti-symmetric.  We can extend  EL   to an R - bilinear

anti-symmetric form on  ˜ L st ⊕ ˜ L pt
* ≅ V ˜ L pt ⊕ ˜ L pt

* ,  we denote it by the same symbol.

Lemma 5.6 EL(JΩx ,JΩ y) = EL(x , y) ,  where  JΩ  is the complex structure on  V ˜ L pt ⊕ ˜ L pt
*

introduced in §1.

We prove Lemma 5.6 later.

Theorem  5.7   c1(E(L,α )) = EL .  Here we regard an anti-symmetric map  EL   on

Γ Γ ∩ ˜ L pt( ) ⊕ Γ ∩ ˜ L pt( ) = π1((T 2n,Ω)∨)   as an element of  H2 ((T 2 n,Ω)∨ ,Z ) .

Note that Lemma 5.6 implies that  EL ∈H1,1((T 2 n,Ω)∨) .  We prove Theorem 5.7 later in

this section.

We next show that Theorem 5.7 implies Theorem 3.1.  For this purpose, we need to

recall some standard results on the cohomology of line bundles on complex tori.  We define a

hermitian form  H L, Ω   on  V ˜ L pt ⊕ ˜ L pt
*   by
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(5.8) H L, Ω(x , y) = EL (JΩx , y) + −1E(x, y) .

Lemma 5.6 implies that  H L, Ω   is hermitian.  We recall the following classical result.

(See [35]  § 16, [27] Theorem 5.5.)

Theorem  5.9

  
H k((T 2n,Ω)∨ ,E(L,α)) =

0 k ≠ index HL,Ω

Z Pf E L k = index HL,Ω

 
 
 

  
.

Here  Pf EL   is the Pfaffian of the anti-symmetric form  EL   and  index H L , Ω   is the

number of negative eigenvalues of the hermitian form  H L, Ω .  It is easy to see that, in our

case

(5.10) Pf EL = #
Γ ∩ ˜ L pt

φL Γ Γ ∩ ˜ L pt( ) = L • Lst .

We next need the following :

Lemma  5.11 index HL ,Ω(x, y) = η*( ˜ L st ,
˜ L ), where  η*( ˜ L st ,

˜ L )   is defined by Definition

2.23.

Theorem 3.1 follows from Theorems 5.7, 5.9, Lemma 5.11 and  (5.10).

We now prove Lemmata 5.6, 5.11.  We put

(5.12) U = Γ ∩ ˜ L pt( ) ⊕ Γ Γ ∩ ˜ L pt( )∨
,  U1 = Γ ∩ ˜ L pt ,  U2 = Γ Γ ∩ ˜ L pt( )∨

.

We first calculate the complex structure  JΩ.   We first note that the symplectic form  ω
defines an isomorphism  Iω : ˜ L st → ˜ L pt

*   by  Iω (v)(x) = ω(x, v) .  Similarly the closed 2 form

B   defines  IB : ˜ L st → ˜ L pt
*   by  IB (v)(x) = B(x ,v).  We then find, from the definition, that

v + σ a Iω v + −1 IBv + σ( )   is a complex linear isomorphism :  ˜ L st ⊕ ˜ L pt
* → ˜ L pt

* ⊗R C ,

where  v, ′ v ∈ ˜ L st , σ, ′ σ ∈ ˜ L pt
* .  Hence

(5.13)

JΩ
v

σ

 

 
 

 

 
 =

Iω 0

IB 1

 

 
 

 

 
 

−1
0 −1

1 0

 

 
 

 

 
 

Iω 0

IB 1

 

 
 

 

 
 

v

σ

 

 
 

 

 
 

=
−Iω

−1IB −Iω
−1

Iω + IBIω
−1IB IBIω

−1

 

 
  

 

 
  

v

σ

 

 
 

 

 
 
.

Therefore,  we have :
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(5.14)

EL(JΩv,JΩ ′ v ) = EL(Iω (v) + IBIω
−1IB (v), −Iω

−1IB( ′ v ))

+EL (−Iω
−1IB(v), Iω ( ′ v ) + IBIω

−1IB ( ′ v ))

= −ω φL Iω
−1IB( ′ v )( ),v( ) − B φL Iω

−1IB( ′ v )( ),Iω
−1IB(v)( )

+ω φL Iω
−1IB (v)( ), ′ v ( ) + B φL Iω

−1IB(v)( ),Iω
−1IB( ′ v )( ).

On the other hand, since  ω ˜ L 
= B ˜ L 

=0   if follows that

(5.15) ω v,φL ′ v ( )( ) =−ω φL v( ), ′ v ( ) ,  B v,φL ′ v ( )( ) =−B φL v( ), ′ v ( ) .

Therefore

B φ L Iω
−1IB ( ′ v )( ),Iω

−1IB(v)( ) − B φ L Iω
−1IB(v)( ),Iω

−1IB ( ′ v )( ) =0 .

Moreover we have

ω φ L Iω
−1IB (v)( ), ′ v ( ) −ω φ L Iω

−1IB ( ′ v )( ),v( )
= ω φ L ′ v ( ),Iω

−1IB(v)( ) −ω φ L v( ),Iω
−1IB( ′ v )( )

= B φ L ′ v ( ),v( ) − B φL v( ), ′ v ( ) =0.

Hence

(5.16) EL(JΩv,JΩ ′ v ) = 0 = EL(v, ′ v ).

We can prove

(5.17) EL(JΩσ ,JΩ ′ σ ) = 0 = EL(σ , ′ σ )

in a similar way.  We next calculate using (5.13), (5.15)  :

(5.18)

EL(JΩv,JΩσ) = EL(Iω (v) + IBIω
−1IB (v), −Iω

−1(σ)) + EL(−Iω
−1IB (v), IBIω

−1(σ))

= −ω φL Iω
−1(σ), v( ) − B φL Iω

−1(σ), Iω
−1IB(v)( ) + B φ L Iω

−1IB(v), Iω
−1(σ)( )

= −ω φL (v), Iω
−1(σ)( ) = −σ φL (v)( ) = EL (v,σ).

Lemma 5.6 follows from (5.16) , (5.17) and (5.18).

We turn to the proof of Lemma 5.11.  We put  Ωs =ω + s −1B .  We remark that the

JΩ s
 hermitian form  H L, Ω s

  is well-defined and nondegenerate for each  s.  Hence its index

is independent of  s.  So to prove Lemma 5.11, we may assume  B = 0.  Then we have

(5.19) H L, Ω 0
(v,v) = EL JΩ0

v( ),v( ) = EL Iω(v), v( ) =ω(φL (v), v) .
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for  v ∈ ˜ L st .  Lemma 5.11 follows from (5.19) and the definition of η*( ˜ L st ,
˜ L ) .

The rest of this section is devoted to the proof of Theorem 5.7.  We remark that the first

Chern class of    E(L,α)   is independent of  α .  Hence we put  α = 0   for simplicity.  We are

going find a 1-cocycle   eu(z) :U × ˜ L st ⊕ ˜ L pt
*( ) →C − {0}  representing our line bundle

E(L ,0).  For this purpose we will find a holomorphic trivialization of the pull back bundle

  ˜ E (L,0)   on  V ˜ L pt ⊕ ˜ L pt
* .  Note that there is an obvious trivialization

˜ E (L ,0) ≅ V ˜ L pt ⊕ ˜ L pt
*( ) ×C .  Namely, by choosing a lift  ˆ L ≅ Rn   of  L ,  we define a global

frame    ′ s   of  ˜ E (L ,0)  by ′ s (v,σ) = [ p(v)]  for  v,σ( )∈V ˜ L pt ⊕ ˜ L pt
* .  Here

{p(v)} = ˆ L ∩ ˆ L pt(v) .  We recall  ˜ E (L ,0)(v ,σ ) =C [x 0(v)] , since we assumed that   ˜ E (L,0)   is a

line bundle.  However this frame does not respect the holomorphic structure introduced in §

2.  A holomorphic global frame of   ˜ E (L ,0)  is obtained by

(5.20) s (v,σ) =exp 2πQ p(0) ,0, v, p(v)( ) −2π −1σ( p(v) − v)( ) ′ s (v,σ) .

Note  {v} = ˆ L st ∩ ˆ L (v) .  Other notations are as in (2.11).  We use the action of  U   on    ˜ E (v ,0)

defined in § 2 and obtain the following formulae for  u1 ∈U1,  u2 ∈U2 .

(5.21.1)

u1 • s(v,σ) = exp2πQ p(0),0, u1 + v, p(u1 + v)( )(
−2π −1σ (u1 + v) − p(u1 + v)( )
−2πQ p(0),0, z1 , p(v)( ) + 2π −1σ v − p(v)( ))s(u1 + v,σ).

(5.21.2) u2 • s(v,σ) = exp −2π −1u2 v − p(v)( )( ) s(v,u2 + σ) .

(5.21) follows from (5.20) and

(5.22.1) u1 • ′ s ( )(v + u1 ,σ) = ′ s (v,σ) ,

(5.22.2) u2 • ′ s ( )(v,σ + u2) = exp2π −1u2(x 0(v))( ) ′ s (v,σ) .

(5.22) is a consequence of the definition in § 2.  By the definition of  φL  we have

(5.23) x0(v) − v = x0(0) + φL (v) .
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Figure 6

Here we regards  v ∈V ˜ L pt ≅ ˜ L st .  Therefore a 1 cocycle  eu(z)   defining  E(L ,0)  is :

(5.24.1) eu1
(v,σ) = exp2πQ p(v), v,v + u1 , p(v + u1)( ) + 2π −1σ(φL (u1))( ).

(5.24.2) eu2
(v,σ) = exp(2π −1u2(x0(0) + φ L(v) ) ) .

We put

(5.25.1) fu1
(v,σ) = − −1Q x0(v), v,v + u1 ,x 0(v + u1)( ) + σ(φL (u1)) .

(5.25.2) fu2
(v,σ) = u2(x0(0) + φ L(v)) .

Then, by a standard result (see Proposition in page 18 of [35]),  we find that the first

Chern class of  E(L ,0)  is represented by :

(5.26) E(u , ′ u ) = fu(z + ′ u ) + fu(z) − f ′ u (z + u) − f ′ u (z) .

We remark that  Q p(z1), z1 ,z1 + u1 , p(z1 + u1)( )   is affine with respect to  z1 .  Using this fact

and (5.25), (5.26), we find  E(u , ′ u ) = EL(u , ′ u ) .  The proof of Theorem 5.7 is now complete.
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We remark that Theorem 5.7 and Appel-Humbert theorem (see [35]) imply the following.

Corollary  5.27 Any line bundle on  (T2 n ,Ω)∨   is isomorphic to    E(L,α)   for some affine

Lagrangian subspace   L   and  α .
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§ 6  Extension and Floer cohomology 1
(0 th cohomology)

 Let  ˜ L 1  and  ˜ L 2   be Lagrangian linear subspaces of  (V ,Ω) .  We assume that they are

transversal to each other and to  ˜ L pt , 
˜ L st .  Let  vi ∈V ˜ L i   and  αi ∈ Li

* .  We obtain a

holomorphic vector bundle    E(Li(v i),α i)   on  (T2 nΩ)∨ .  We put    (Li(v i),α i) = (Li ,L i ) .

Theorem 6.1 HF k((L1 ,L1),(L2 ,L2)) ≅ Ext k (E(L1 ,L1), E(L2 ,L2)) .

In the case when  k = η( ˜ L 1 , ˜ L 2 ) = 0   our result is more explicit.  Namely we construct an

explicit isomorphism also in this section.  (In the case  k > 0,  we will construct an explicit

isomorphism in § 11.)  We assume  η( ˜ L 1 , ˜ L 2) = 0.  Let  [ p] ∈HF 0((L1 ,L1),(L2 ,L2)) ,  where

p∈L1 ∩ L2 .  Let  (L pt(v),σ) ∈(T 2 n ,Ω)∨ .  We define a homomorphism

S p(L pt(v),σ) : E(L1 ,L1) (L pt (v ), σ ) → E(L2 ,L2) (L pt ( v ),σ )   by

(6.2)   Sp( Lpt(v),σ )(x) = m2 (x,[p]) ∈E(L2,L2 )( L pt (v ),σ ) ≅ HFn (Lpt (v),σ ),(L2 ,L2)( ) .

Here    x ∈E(L1 ,L1)( L pt (v ),σ ) ≅ HFn (Lpt(v),σ ),(L1 ,L1)( ) .

Lemma 6.3 S p(L pt(v),σ)   is holomorphic with respect to  (L pt(v),σ) .  Hence

  Sp ∈ Hom((E(L1,L1),E(L2 ,L2 )).

Lemma 6.3 follows from Theorem 7.22 which is proved in the next section.  By Lemma

6.3, we obtain a homomorphism

  Φ ( L1,L 1 ), (L 2 ,L 2 ) : HF0((L1,L1),(L2 ,L2)) → Hom((E(L1 ,L1),E (L2 ,L2)) .

Theorem 6.4 Φ (L1 ,L 1 ),( L 2 ,L2 )   is an isomorphism.

We prove Theorems 6.4 and 6.1 later in this section.  We next prove the following :

Theorem 6.5 If  η( ˜ L 1 , ˜ L 2) = η( ˜ L 2 , ˜ L 3) = 0 ,  then the following diagram commutes.

HF 0((L1 ,L1),(L2 ,L2)) ⊗ HF 0((L2 ,L2),(L3 ,L3)) → HF 0((L1 ,L1),(L3 ,L3))

↓ ↓
Hom(E(L1 ,L1), E(L2 ,L2)) ⊗ Hom(E(L2 ,L2); E(L3 ,L3)) → Hom(E(L1 ,L1), E(L3 ,L3))

Diagram 1

where the vertical arrows are Φ (L1 ,L 1 ),( L 2 ,L2 ) ⊗Φ ( L2 ,L 2 ),(L 3 ,L3 )   and  Φ (L1 ,L 1 ),( L 3 ,L3 ) ,  and

the horizontal arrows are  m2   and the composition product.
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Proof: Let   [ pi i + 1] ∈HF 0((Li(vi),σ i),(Li+ 1(vi+ 1),σ i+ 1)) ,  (L pt(v),σ) ∈(T 2 n ,Ω)∨   and

x ∈ E(L1(v1),σ1) ( L pt ( v ), σ ) .  We have

(6.6) Φ ( L1( v1 ),σ 1 ),( L3 (v3 ),σ 3 ) m2([ p12],[ p23 ])( )( )(x) = m2 x,m2 ([p12],[p23])( ) ,

(6.7)   Φ ( L1,L 1 ), (L 2 ,L 2 )([ p12]) Φ ( L2 ,L 2 ),( L3, L 3 )([ p23])(x)( ) = m2 m2 x,[ p12]( ),[p23]( ) .

The associativity relation (Theorem 3.15) then implies Theorem 6.5.

By putting  L1 = Lst   in Theorem 6.5, we obtain the following :

Corollary 6.8 If  η( ˜ L 1 , ˜ L 2) = 0   the following diagram commutes for    k = l = 0 .

HF 0((Lst ,0),(L1 ,L1)) ⊗ HF 0((L1 ,L1),(L2 ,L2)) → HF 0((Lst ,0),(L2 ,L2))

↓ ↓
H 0((T 2 n ,Ω)∨ ,E(L1 ,L1)) ⊗ Hom(E(L1 ,L1), E(L2 ,L2)) → H 0((T 2 n ,Ω)∨ ,E(L2 ,L2))

Diagram 2

Here the vertical arrows are  Φ (L1 ,L 1 ) ⊗Φ ( L1 , L1 ),( L2 ,L 2 )  and  Φ (L2 ,L 2 )   and the horizontal

arrows are  m2   and evaluation map.

In § 11, we generalize Theorem 6.5 and Corollary 6.8  to higher cohomology.

We now start the proof of Theorems 6.1 and 6.4.  We first show the following :

Lemma 6.9 The map  Φ (L1 ,L 1 ),( L 2 ,L2 )   is injective.

Proof: The proof is similar to one of injectivity of  Φ (L ,L )   we gave in § 5.  We first

define an inner product of the bundle  Hom E(L1 ,L1), E(L2 ,L2)( )   using ones on E(L1 ,L1)  and

E(L2 ,L2).  Then we prove

(6.10)   Φ ( L1,L 1 ), (L 2 ,L 2 )[p],Φ ( L1 , L1 ),( L2 , L 2 )[ p]( ) > 0 ,

(6.11)   Φ ( L1,L 1 ), (L 2 ,L 2 )[p],Φ ( L1 , L1 ),( L2 , L 2 )[q]( ) = 0,

for  p,q ∈L1 ∩ L2 ,  p ≠ q .  The proof of (6.10) and (6.11) is the same as the proof of

Proposition 5.1 and is omitted.  (6.10) and (6.11) imply Lemma 6.9.

By Lemma 6.9, Theorem 6.1 implies Theorem 6.4.

Lemma 6.12 Theorem 6.1 holds if  E(L1 ,L1)   and  E(L2 ,L2)   are line bundles.
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Proof: We have

(6.13) Ext k(E(L1 ,L1), E(L2 ,L2)) ≅ H k ((T 2n ,Ω)∨ ,E(L1 ,L1)* ⊗ E(L2 ,L2))

in this case.  By Theorem 5.7, we have

(6.14) c1 E(L1 ,L1)* ⊗ E(L2 ,L2)( ) = −EL1
+ EL2

.

Let   φLi
  be as in § 5.  Then we find a Lagrangian linear subspace  L3   such that

−φ L1
+ φ L2

=φ L 3
.  Therefore

(6.15) Pf EL3
=# Lst ∩ L3(0)( ) =# L1 ∩ L2( ) .

Hence Theorem 5.9 , (6.14) and (6.15) imply Theorem 6.1 in this case.  (In fact, we can

prove  E(L1 ,L1)* ⊗ E(L2 ,L2) ≅ E(L3 ,L3).  Here to define  L3   we identify  ˜ L 1 ≅ ˜ L 2 ≅ V ˜ L pt

and put  ˜ L 3 ≅ ˜ L 1
* ⊗ ˜ L 2 .  We omit the proof since we do not use it.)

In the rest of this section, we reduce Theorem 6.1 to the case when  E(Li ,Li)   are line

bundles.  We further study isogeny for this purpose.  Let  G(L1) ,  G(L2)   be as in § 4.  Let

G ⊆ L pt  be a finite subgroup. We define  (T 2 n,Ω )   as in § 4.  We remark that Lemma 4.2

holds for our  G  also.  We use the notations in § 4.  We study the following three cases :

Case 1 : G ⊆ G(L1) ∩ G(L2) ).  Let  L i  be a flat connection on  L i  such that  π *L i ≅ Li.  We

remark that  π * L i + µ( ) ≅ Li   for  µ ∈G∨ .

Lemma 6.16 π *E(Li ,Li) ≅ ⊕
µ ∈G∨

E(L i ,L i + µ).

Proof: By Proposition 4.4, E(Li ,Li) = π* E(L i ,L i)( ).  Note that  G∨   is the deck trans-

formation group of the covering  π : (T 2 n,Ω )∨ → (T 2 n,Ω)∨ .  Hence

π *E(Li ,Li) ≅ ⊕
µ ∈G∨

µ*E(L i ,L i).

Here we regard  µ : (T 2 n,Ω )∨ → (T 2 n ,Ω )∨ .  It is easy to see  µ*E(L i ,L i) ≅ E(L i ,L i + µ).

Lemma 6.16 follows.

Lemma 6.17 Suppose that there exists  k0   such that   Ext k(E(L 1 ,L 1), E(L 2 ,L 2 + µ))

vanishes for  k ≠ k0   then

Ext k(E(L1 ,L1), E(L2 ,L2)) ≅ ⊕
µ ∈G ∨

Ext k E(L 1 ,L 1), E(L 2 ,L 2 + µ)( )
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Proof: Proposition 4.3 and Lemma 6.16 implies

Ext k(E(L1 ,L1), E(L2 ,L2)) ≅ Ext k π * E(L 1 ,L 1)( ),E(L2 ,L2)( )
≅ ⊕

µ ∈G∨
Ext k E(L 1 ,L 1), E(L 2 ,L 2 + µ)( )

We next consider the Floer cohomology.  The assumption G ⊆ G(L1) ∩ G(L2)   implies

that  L1   and  L2   are both  G  invariant.  Hence  G  acts on  L1 ∩ L2   freely.  Therefore we

have

(6.18) HF k (L1 ,L1),(L2 ,L2)( ) ≅ HF k (L 1 ,L 1),(L 2 ,L 2)( ) ⊗ R(G) .

Lemma 6.17 and (6.18) implies that Theorem 6.1 holds for (L1 ,L1),(L2 ,L2)  if it holds

for (L 1 ,L 1),(L 2 ,L 2) .

Case 2 : G ⊆ G(L1) ,  G ∩ G(L2) = {1}.  We put  G = {γ1 ,L ,γg}  and  L2(γ i) =γ iL2 .  By

assumption  G ∩ G(L2) = {1},  we have  γ iL ∩ γ jL2 = ∅   for  i ≠ j.  Let  L 2 = π(L2) . π
induces an isomorphism  L2 ≅ L 2 .  Using this isomorphism we define    L 2   on  L 2 .

Lemma 6.19   E(L 2 ,L 2 ) ≅ π *E (L2 ,L2) .

Proof: Let  (L pt(v),σ) ∈(T 2 n ,Ω)∨ .  Lemma 6.19 follows from :

(6.20) E(L2 ,L2) (L pt (v ),σ ) = ⊕
p∈L2 ∩ L pt (v )

C [ p] ≅ ⊕
p∈L 2 ∩L pt ( v )

C [ p ] = E(L 2 ,L2) ( L pt ( v ),σ ) .

Lemma 6.21 Suppose that there exists  k0   such that Ext k(E(L 1 ,L 1), E(L 2 ,L 2))  vanishes

for  k ≠ k0   then   Ext k(E(L1,L1),E(L2 ,L2 )) ≅ Ext k E (L 1 ,L 1),E(L 2 ,L 2 )( ) .

Proof: Lemma 6.19 and Proposition 4.3 imply :

  

Ext k(E(L1,L1),E(L2 ,L2 )) ≅ Ext k π* E (L 1 ,L 1 )( ),E(L2 ,L2 )( )
≅ Ext k E(L 1 ,L 1),π*E(L2 ,L2 )( )
≅ Ext k E(L 1 ,L 1),E(L 2 ,L 2 )( )

π   induces an isomorphism  L1 ∩ L2 ≅ L 1 ∩ L 2 .  Hence

(6.22)   HF k (L1 ,L1),(L2,L2 )( ) ≅ HF k (L 1 ,L 1),(L 2 ,L 2 )( ) .

Lemma 6.21 and (6.22) implies that Theorem 6.1 holds for (L1 ,L1),(L2 ,L2)  if it holds

for (L 1 ,L 1),(L 2 ,L 2) .

Case 3: G ⊆ G(L2) ,  G ∩ G(L1) = {1}.  We have    E(L 1, L 1) ≅ π *E(L1 ,L1)   and
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E(L2 ,L2) ≅ π*E(L 2 ,L 2)  .  Hence

  

Ext k(E(L1,L1),E(L2 ,L2 )) ≅ Ext k E(L1 ,L1),π* E(L 2 ,L 2 )( )( )
≅ Ext k π *E (L1 ,L1),E(L 2 ,L 2 )( )
≅ Ext k E(L 1 ,L 1),E(L 2 ,L 2 )( )

if  Ext k(E(L 1 ,L 1), E(L 2 ,L 2))  vanishes for  k ≠ k0 .  On the other hand, (6.22) holds also in

this case.  Therefore  Theorem 6.1 holds for (L1 ,L1),(L2 ,L2)  if it holds for   (L 1,L 1 ),(L 2 ,L 2 ) .

Combining these three cases and Lemma 6.12 the proof of Theorem 6.1 is complete.
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§ 7  Moduli space of holomorphic vector bundles
on a mirror torus

Let  ˜ L   be a Lagrangian linear subspace of  (V ,Ω)   transversal to  Lpt  and satisfying

˜ L ∩Γ ≅ Z n .  We constructed a complex manifold (torus)  M( ˜ L )   in § 2.  On the other hand,

for each element  [L(w),α] ∈M ( ˜ L ),  we constructed a holomorphic vector bundle

E(L(w),α )   on  (T 2 n ,Ω)∨ .  In this section, we construct a universal family of vector bundles

on  M( ˜ L ) . One delicate point in doing so is gauge fixing which we mentioned in § 2.  In fact,

during the proof of Proposition 2.16, we need to choose a base point on  L(w) .  In other

words, the isomorphism  E(L(w),α ) ≅ E(L(w),α + µ)  for  µ ∈ G ∩ ˜ L ( )∨
  depends on the

choice of the base point on  L(w)   and is not canonical.  To choose a base point on  L(w)

systematically,  we need additional data.  Namely we fix other  affine Lagrangian submanifold.

More precisely we start with the following situation.

Assumption 7.1 Let  ˜ L 1 , ˜ L 2   and  ˜ M 1 , ˜ M 2   be Lagrangian linear subspaces of  (V ,Ω)

such that

(7.1.1) ˜ L i ∩Γ ≅ Z n, ˜ M i ∩Γ ≅ Z n.

(7.1.2) ˜ L i  is transversal to  ˜ M i.

(7.1.3) ˜ L 1   is transversal to  ˜ L 2 .

We put  Mi = ˜ M i
˜ M i ∩Γ( ) ≅ T n ⊆ T2 n .

Definition 7.2 M( ˜ L i , ˜ M i)   is the set of pairs    ([Li(wi ),α i ], pi) ∈M ( ˜ L i) × T 2 n   such

that  pi ∈ Mi ∩ Li(wi ).

M( ˜ L i , ˜ M i) → M( ˜ L i) ,    ([Li(wi ),α i ], pi) a [Li(wi),αi ]  is a  M i • L(w)   hold covering.

Hence the complex structure on  M( ˜ L i)   induces one on  M( ˜ L i , ˜ M i) .  We are going to define

a holomorphic vector bundle  P( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) → M ( ˜ L 1 , ˜ M 1) × M ( ˜ L 2 , ˜ M 2)   such that the

fiber at (([L1 (w1),α1], p1),([L2(w2),α 2], p2 ))   is identified with  HF((L1(w1),α1),(L2(w2 ),α2 )).

Let

(7.3) (w1 ,α 1),(w2 ,α 2)( ) ∈ V ˜ L 1 × ˜ L 1
*( ) × V ˜ L 2 × ˜ L 2

*( ),  pi ∈M i ∩ Li(w i) .

Let  V( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)   be the totality of all  (w1 ,α 1),(w2 ,α 2), p1 , p2( )   satisfying (7.3).

We put

(7.4) ˜ P ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) ( w1 ,α1 ),( w2 ,α 2 ), p 1 , p2( ) = ⊕
x∈L1 (w1 )∩L 2 (w2 )

C [x] .

˜ P ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)   is a complex vector bundle on  V( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) .  We put
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(7.5) Γ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) = Γ Γ ∩ ˜ L 1( ) × Γ ∩ ˜ L 1( )∨
× Γ Γ ∩ ˜ L 2( ) × Γ ∩ ˜ L 2( )∨

.

Γ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)   acts on  V( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)   in an obvious way and the quotient

space is  M( ˜ L 1 , ˜ M 1) × M( ˜ L 2 , ˜ M 2).  We define an action of  Γ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)   on
˜ P ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)   as follows.  Let  (w1 ,α 1),(w2 ,α 2), p1 , p2( )∈V( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) ,

x ∈L1(w1) ∩ L2(w2) .  [x] ∈ ˜ P ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) ( w1 ,α 1 ),( w2 ,α 2 ), p1 , p 2( ) .  Let

γ1 ,µ1 ,γ 2 ,µ2( )∈Γ ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) .  We choose a lift  ˜ p i ∈ ˆ L i(w i) ∩ ˆ M i(ui)  of pi .  (Here

ui ∈Γ .)  Let  ˜ x ∈ ˆ L 1(w1) ∩ ˆ L 2(w2)   be the lift of  x .  We then put

(7.6)
γ1 ,µ1 ,γ 2 ,µ2( )[x] = exp −2π −1µ1 ˜ x − ˜ p 1( ) + 2π −1µ2 ˜ x − ˜ p 2( )( )

∈ ˜ P ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) ( w1 + γ1 ,α1 + µ 1 ),( w2 + γ 2 ,α 2 + µ 2 ), p1 , p2( ).

Lemma 7.7 (7.6)  defines an action of  Γ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)   on  V( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) .

The proof is straightforward and is omitted.

Remark 7.8 The reader may wonder why we can not simply take  ˜ p i ∈ ˆ L i(wi ) ∩ ˜ M i .  (If we

could do it we would be unnecessary to take a covering  M( ˜ L i , ˜ M i) → M( ˜ L i) .)  However if

we do it, the analogue of Lemma 2.9 does not hold.  Using our choice ˜ p i ∈ ˆ L i(w i) ∩ ˆ M i(ui) ,

we can prove an analogue of Lemma 2.9 in our situation.

Let  P( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) → M ( ˜ L 1 , ˜ M 1) × M ( ˜ L 2 , ˜ M 2)   be the bundle obtained by taking

the quotient ˜ P ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) Γ( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2).

 We next construct a holomorphic structure on  P( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) .  We again construct

a holomorphic local frame. We use the same notation as above.  Let

( ′ w 1 , ′ α 1),( ′ w 2 , ′ α 2), ′ p 1 , ′ p 2( )∈V( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)   be in a neighborhood of

(w1 ,α 1),(w2 ,α 2), p1 , p2( ) .  There exists a point  ˜ ′ x ∈ ˆ L 1( ′ w 1) ∩ ˆ L 2( ′ w 2)    in a neighborhood of
˜ x .  (See Figure 7.)
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Figure 7

We define :

(7.9)  

e
(w1 ,α 1 ),( w2 ,α 2 ), ˜ p 1 , ˜ p 2 , ˜ x ( ) ( ′ w 1 , ′ α 1),( ′ w 2, ′ α 2)( )
= exp −2πQ ˜ x , ˜ p 1 , ˜ ′ p 1, ˜ ′ x , ˜ ′ p 2 , ˜ p 2( )(

+2π −1 α1(( ˜ p 1 − ˜ x ) + ′ α 1( ˜ ′ x − ˜ ′ p ) + ′ α 2 ( ˜ ′ p 2 − ˜ ′ x ) + α2 ( ˜ x − ˜ p 2)))

where  Q ˜ x , ˜ p 1 , ˜ ′ p 1 , ˜ ′ x , ˜ ′ p 2 , ˜ p 2( )   is a integration of  Ω  over union of 4 triangles  ∆ ˜ x ˜ p 1 ˜ ′ p 1
, ∆˜ x ̃ ′ p 1 ˜ ′ x ,

∆ ˜ x ˜ ′ x ˜ ′ p 2
, ∆ ˜ x ˜ ′ p 2 ˜ p 2

.  Then the frame is

(7.10)
e ( w1 ,α 1 ),( w2 ,α 2 ), ˜ p 1 , ˜ p 2 , ˜ x ( ) ( ′ w 1 , ′ α 1),( ′ w 2 , ′ α 2)( )

= e ( w1 ,α1 ), (w 2 ,α 2 ), ˜ p 1 , ˜ p 2 , ˜ x ( ) ( ′ w 1 , ′ α 1),( ′ w 2 , ′ α 2)( )[ ′ x ].

Lemma 7.11 There exists a unique holomorphic structure on  P( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)   such

that  e ( w1 ,α 1 ),( w2 ,α 2 ), ˜ p 1 , ˜ p 2 , ˜ x ( )  is a local holomorphic section.

The proof is a straightforward analogue of the proof of Lemma 2.14 and is omitted.  We
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thus obtained a holomorphic vector bundle

(7.12) P( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2) → M ( ˜ L 1 , ˜ M 1) × M ( ˜ L 2 , ˜ M 2)

under Assumption 7.1.

We put  ˜ L 1 = ˜ L pt , 
˜ L 2 = ˜ L , ˜ M 1 = ˜ L st , 

˜ M 2 = ˜ L st .  We obtain

(7.13)   P ( ˜ L pt ,
˜ L ; ˜ L st ,

˜ L st ) → (T2 n ,Ω)∨ × M ( ˜ L , ˜ L st) .

(Note  Lpt • Lst = 1   implies  M( ˜ L pt , ˜ L st) = M( ˜ L pt) = (T 2n ,Ω)∨ .)  Let us consider the group

G = Lst ∩ L(0) .   It is easy to see  M( ˜ L , ˜ L st) G = M( ˜ L ) .  Since

(T2 n ,Ω)∨ ≅ Lst Γ ∩ Lst( ) × Lpt
* Γ ∩ Lpt( )∨

  as a group,  G  acts on  (T 2 n ,Ω)∨ .  (We let  G

act on the first factor  Lst Γ ∩ Lst( ).)    It is easy to find a  G  action on  P( ˜ L , ˜ L pt ; ˜ L st,
˜ L st)

such that (7.13) is equivariant.  Thus we divide (7.13) by G  and obtain

(7.14)
  
P ( ˜ L pt ,

˜ L ) →
(T2 n,Ω)∨ × M ( ˜ L , ˜ L st )

G
.

Note that we have a fiber bundle

(7.15)
  
(T2 n ,Ω)∨ →

(T2 n ,Ω)∨ × M ( ˜ L , ˜ L st)

G
pr →  M ( ˜ L ) .

It is easy to verify the following :

Proposition 7.16 Let  (L ,α ) ∈ M ( ˜ L ) .  The restriction of     P ( ˜ L pt ,
˜ L )   to pr−1(L ,α )  is

isomorphic to  E(L ,α ) .  (Here  pr  is as in  (7.15).)

Propositions 7.16 and the following Proposition 7.17 imply that we may regard (7.14) as

the universal bundle.

Proposition 7.17 Let  (L ,α ),( ′ L , ′ α ) ∈M ( ˜ L ) .  Assume that  E(L ,α )  is isomorphic to

E( ′ L , ′ α ) .  Then  (L ,α ) = ( ′ L , ′ α ) .

We prove Proposition 7.17 later in this section.

We next put  ˜ L 1 = ˜ L pt , 
˜ L 2 = ˜ L st , 

˜ L 2 = ˜ L st , 
˜ M 2 = ˜ L pt   and obtain

(7.18)   P → (T2 n ,Ω)∨ × M ( ˜ L st ).

We remark that since  Lpt • Lst = 1   it follows that  M( ˜ L st ,
˜ L pt) = M( ˜ L st) .

Proposition 7.19 M( ˜ L st)   is the dual torus (T2 n ,Ω)∨ ∧    of  (T 2 n ,Ω)∨ .  The bundle

(7.18)  is the Poincaré bundle.
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The proof is easy and is omitted.

We next study the holomorphicity of  m2 .  We suppose that  ˜ L 1 , ˜ L 2  , ˜ M 1 , ˜ M 2   and ˜ L 2  ,
˜ L 3 , ˜ M 2 , ˜ M 3   and    ˜ L 1 , ˜ L 3  , ˜ M 1 , ˜ M 3   all satisfy Assumption 7.1.  We obtain bundles (7.12)

and    P ( ˜ L 2 , ˜ L 3;
˜ M 2,

˜ M 3) → M ( ˜ L 2 , ˜ M 2) × M ( ˜ L 3 , ˜ M 3),

P( ˜ L 1 , ˜ L 3 ; ˜ M 1 , ˜ M 3) → M ( ˜ L 1 , ˜ M 1) × M ( ˜ L 3 , ˜ M 3) .  We consider product

M( ˜ L 1 , ˜ M 1) × M( ˜ L 2 , ˜ M 2) × M( ˜ L 3 , ˜ M 3)  and pull back bundles  π12
* P( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)( ) ,

π 23
* P( ˜ L 2 , ˜ L 3 ; ˜ M 2 , ˜ M 3)( ) ,   π13

* P( ˜ L 1 , ˜ L 3 ; ˜ M 1 , ˜ M 3)( )   on it.

Theorem 7.22 If  η( ˜ L 1,
˜ L 2 , ˜ L 3) = 0,  then  m2   defines a holomorphic map

π12
* P( ˜ L 1 , ˜ L 2 ; ˜ M 1 , ˜ M 2)( ) ⊗ π 23

* P( ˜ L 2 , ˜ L 3 ; ˜ M 2 , ˜ M 3)( ) → π 13
* P( ˜ L 1 , ˜ L 1 ; ˜ M 2 , ˜ M 3)( ) .

Proof: We define notations by the following Figure 8.
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Figure 8

We prove holomorphicity on the second factor  M( ˜ L 2 , ˜ M 2).  We put

m2 [x],[ y]( ) = f[x ],[y ],[z ](w1 ,α 1 ,w2 ,α 2 ,w3 ,α 3)[z]∑
m2 [ ′ x ],[ ′ y ]( ) = f[x ],[y ],[z ](w1 ,α 1 , ′ w 2 , ′ α 2 ,w3 ,α 3)[z]∑ ,

h[x ],[y ],[z ](w1 ,α 1 , ′ w 2 , ′ α 2 ,w3 ,α 3)

= f[x ],[ y ],[ z ](w1 ,α 1 , ′ w 2 , ′ α 2 ,w3 ,α 3)

×e ( w1 ,α1 ), (w 2 ,α 2 ), ˜ p 1 , ˜ p 2 , ˜ x ( ) (w1 ,α 1),( ′ w 2 , ′ α 2)( )−1

×e (w2 ,α 2 ),( w3 ,α3 ), ˜ p 2 , ˜ p 3 , ˜ z ( ) ( ′ w 2 , ′ α 2),(w3 ,α 3)( )
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It suffices to show that  h[ x ],[ y],[ z ](w1,α1, ′ w 2 , ′ α 2 ,w3,α3 )  is holomorphic with respect to

′ w 2 , ′ α 2( ) .  By definition  f[x ],[ y ],[z ](w1 ,α1 , ′ w 2, ′ α 2 ,w3 ,α3)   is a sum of the terms such as

(7.23) exp −2πQ(˜ ′ x , ˜ ′ y ,z) + 2π −1 ′ α 2( ˜ ′ y − ˜ ′ x ) +α 3( ˜ z − ˜ ′ y ) + ˜ α 1( ˜ ′ x − ˜ z )( )( ) .

on the other hand

(7.24)
log e (w1 ,α1 ),( w2 ,α 2 ), ˜ p 1 , ˜ p 2 , ˜ x ( ) (w1 ,α 1),( ′ w 2 , ′ α 2)( )

= −2πQ( ˜  p 2 ,˜  x ,˜  ′ x , ˜ ′ p 2) + 2π −1 α 2(˜ x − ˜ p 2) +α 1(˜ ′ x − ˜ x ) + ′ α 2(˜ ′ p 2 − ˜ ′ x )( )
(7.25)

log e (w2 ,α2 ),( w3 ,α 3 ), ˜ p 2 , ˜ p 3 , ˜ z ( ) ( ′ w 2 , ′ α 2),(w3 ,α 3)( )
= −2πQ(˜ y , ˜ p 2 , ˜ ′ p 2 ,˜  ′ y ) + 2π −1 α 2( ˜  p 2 − ˜ y ) + ′ α 2(˜ ′ y − ˜ ′ p 2) +α 3(˜ y − ˜ ′ y )( )

We find that the logarithm of (7.23) minus (7.24) plus (7.25) is a complex linear map

plus constant.  The proof of Theorem 7.22 is complete.

We remark that Lemma 6.3 is a special case of Theorem 7.22.

We finally prove Proposition 7.17.  It suffices to show the following :

Proposition 7.26 If  (L ,L(α)),( ′ L ,L( ′ α )) ∈M ( ˜ L )   and if  (L ,L(α)) ≠ ( ′ L ,L( ′ α ))   then

Ext(E(L,L(α ))), E( ′ L ,L( ′ α ))) =0 .

Proof: We use isogeny in a way similar to § 6 and find that it suffices to show the

proposition in the case when  E(L ,L(α ))   is a line bundle.  Let  (Lst(u), L(β )) ∈ M ( ˜ L st ) .  We

study  E(L ,L(α )) ⊗ E(Lst(u), L(β )) .  Using a splitting  V = ˜ L st ⊕ ˜ L pt   we obtain a map

ψL : ˆ L → ˜ L st .  Since  L • L pt =1  it follows that  φL   induces  ψL : L → Lst (0).  We remark

that  ψL : L → Lst (0)  is  L • Lst :1 map.  We regards  u ∈ ˜ L pt  since  V = ˜ L st ⊕ ˜ L pt .  We then

obtain  u ∈V ˜ L .

Lemma 7.27 E(L ,L(α )) ⊗ E(Lst(u), L(β )) ≅ E(L + u ,L(α +ψL
* (β))) .

Proof: Let  (L pt(v),σ) ∈(T 2 n ,Ω)∨ ,  x ∈L pt(v) ∩ L ,  y ∈Lst(u) ∩ L .  We remark

x + u ∈L pt(v) ∩ (L + u ) .  We put  Ψ [x] ⊗ [y]( ) = [x + u] .  It is easy to check that  Ψ
defines the required isomorphism.

Now we consider the map  M( ˜ L st) → Moduli( ˜ L ) ,
E(L ,L(α )) a E(L,L(α )) ⊗ E(Lst(u), L(β )) , where Moduli( ˜ L )   is the component of the moduli

space of line bundles containing E(L ,L(α )) .  It is classical that this map is

rankH((T 2 n ,Ω)∨ ,E(L,L(α )))  hold covering.  (See Proposition (iii) in [35] 84 page.)  On the

other hand, we know that  (L ,L(α)) a (L + u ,L(α +ψ L
* (β )))  : M( ˜ L ) → M ( ˜ L )   is L • Lst

hold covering also.  Hence by Proposition 2.16 Moduli( ˜ L ) ≅ M ( ˜ L ) .  Namely
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E(L ,L(α )) ≠ E( ′ L ,L( ′ α )).  Since  c1 E(L,L(α ))( ) = c1 E( ′ L ,L( ′ α ))( )  by Theorem 5.6, we have

Ext(E(L,L(α ))), E( ′ L ,L( ′ α ))) =0 .  The proof of Proposition 7.26 is complete.
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§ 8  Nontransversal or disconnected Lagrangian submanifolds.

In this section, we discuss two generalizations of the construction in §§ 3 - 7.  One is to

the case when Lagrangian submanifolds are not transversal to each other.  The other is the

case when Lagrangian submanifolds are disconnected or the case of a limit of a sequence of

disconnected Lagrangian submanifolds.  Our argument here is a bit sketchy.  They are not

used in §§ 9,10,11,12.

First we generalize the construction to include the case when the linear Lagrangian

subspace  ˜ L   may not be transversal to  ˜ L pt.  In this case, we obtain a coherent sheaf which is

not a vector bundle.  We consider 
˜ L + ˜ L pt( ) ˜ L pt  and  ˜ L ∩ ˜ L pt( )⊥

= σ ∈ ˜ L pt
* σ ˜ L ∩ ˜ L pt

= 0
 
 
 

 
 
 

.

The sum  ˜ L + ˜ L pt( ) ˜ L pt ⊕ ˜ L ∩ ˜ L pt( )⊥
  is a subspace of the universal cover  V ˜ L pt ⊕ ˜ L pt

*   of

(T 2 n ,Ω)∨ .  It is easy to see that this subspace is complex linear.  The sheaf  E(L(w),α )   we

will obtain has a support on a subtorus parallel to ˜ L + ˜ L pt( ) ˜ L pt ⊕ ˜ L ∩ ˜ L pt( )⊥
.  Here

w ∈V ˜ L , α ∈ ˜ L * . To explain the reason, we first recall the following calculation of Floer

homology.  Let  Li(w)   be affine Lagrangian submanifolds.

Proposition 8.1

  
HF k E(L1(w),α ),E(L2(v),β)( ) = H k − µ L1(w) ∩ L2(v),β

L1 (w )∩ L2 (v )
−α L1 (w )∩ L2 (v )( )

Here  µ   is a constant depending only on  ˜ L 1, ˜ L 2   and the right hand sides is the cohomology

with local coefficient.

Proof: One can prove Proposition 8.1 in the same way as [43], or by using the perturbation

mentioned in [12].  We omit the detail.

We remark that the cohomology in the right hand side is trivial unless the flat connection

β
L1 (w )∩ L2 (v )

−α L1 (w )∩ L2 (v)   is trivial.  Hence we have the following :

Lemma 8.2 HF (L(w),α ),(Lpt (v),σ )( ) = 0  unless w − v ∈ ˜ L + ˜ L pt( ) mod Γ 　and

α ˜ L ∩ ˜ L pt
−σ ˜ L ∩ ˜ L pt

= µ ˜ L ∩ ˜ L pt
  for some  µ ∈ ˜ L pt ∩Γ( )∨

.

We put

(8.3) T(L(w),α ) = [v,σ] w − v ∈ ˜ L + ˜ L pt ,α ˜ L ∩ ˜ L pt
−σ ˜ L ∩ ˜ L pt

=0
 
 
 

 
 
 

⊆ (T 2n ,Ω)∨ .

We remark that  T(L(w),α )   depends only on  [w] ∈ V ˜ L ( ) Γ ˜ L ∩Γ( ) ,
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[α ] ∈ ˜ L * ˜ L ∩Γ( )∨
.  We can prove that  T(L(w),α)   is a complex subtorus of  T2 n ,Ω( )∨

.  We

put

(8.4.1) ′ V = ˜ L + ˜ L pt( ) ˜ L ∩ ˜ L pt( ) , ′ Γ = Γ + ˜ L ∩ ˜ L pt( ) ˜ L ∩ ˜ L pt( ) .

(8.4.2) ′ ˜ L = ˜ L ˜ L ∩ ˜ L pt( ) , ′ ˜ L pt = ˜ L pt
˜ L ∩ ˜ L pt( ) .

(8.4.3) ′ ˜ L st = ˜ L st ∩ ˜ L + ˜ L pt( )( ) ˜ L st ∩ ˜ L ∩ ˜ L pt( ) = ˜ L st ∩ ˜ L + ˜ L pt( ).

Since  ˜ L , ˜ L pt   are both Lagrangian linear subspaces it follows that  ′ V   has a symplectic

structure and ′ L , ′ ˜ L pt  are Lagrangian subspaces of  ′ V .  In other words,  ′ V   is a symplectic

reduction of  V   with respect to  ˜ L ∩ ˜ L pt .  (See [29] Chapter 2.)  ′ Γ   is a lattice of  ′ V .

Hence we obtain a mirror torus  ( ′ V ′ Γ , ′ Ω )∨   using  ′ ˜ L pt. We can easily find that  ′ ˜ L st   is also

a Lagrangian linear subspace of  ′ V .  It is easy to see

(8.5.1) ′ V ′ ˜ L pt ≅ ˜ L ˜ L ∩ ˜ L pt( ) ⊆ V ˜ L pt ,

(8.5.2) ′ ˜ L pt( )*

≅ ˜ L ∩ ˜ L pt( )⊥
⊆ ˜ L pt

* .

Hence we may regard  ( ′ V ′ Γ , ′ Ω )∨   as a subgroup of  T2 n ,Ω( )∨
.  It is easy to see that

T(L(w),α)   is an orbit of   ( ′ V ′ Γ , ′ Ω )∨ .  We fix   (v0 ,σ 0) ∈T(L(w),α)  and define an

isomorphism  I( v0 ,σ 0 ) : ( ′ V ′ Γ , ′ Ω )∨ → T(L(w),α)   by  I( v0 ,σ 0 )(g) = g(v0 ,σ 0) .

We next construct affine Lagrangian subspaces  ′ L (w ;v0 , j)   on  ( ′ V ′ Γ , ′ Ω )   for

(v0 ,σ 0) ∈T(L(w),σ) .  Let us consider  L(w) ∩ L pt(v0) ⊆ T 2 n .  It is a disjoint union of affine

subtori.  Let  L(w) ∩ L pt(v0)( )
j
,  j = 1,L ,J   be its connected components.  Let

v j ∈ L(w) ∩ L pt(v0)( )
j
  and  ˜ v j ∈V  be its  lift.  We may assume  ˜ v j − v0 ∈ ˜ L + ˜ L pt .  Let

v j ∈ ′ V   be the ˜ L ∩ ˜ L pt  equivalence class of  ˜ v j .  v j   depends only on the component

L(w) ∩ L pt(v0)( )
j
  (and  v0 )  and is independent of the choice of the point

v j ∈ L(w) ∩ L pt(v0)( )
j
.  We put

(8.6) ′ L (w ;v0 , j) = ˆ ′ L (v j) ′ Γ ∩ ˜ ′ L ( ).

Using  the splitting  V = ˜ L st ⊕ ˜ L pt   we have a projection  π ˜ L pt
: V → ˜ L pt .  We put

(8.7) α σ 0
=α −π ˜ L pt

* σ 0( )∈ ˜ ′ L * ⊆ ˜ L * .

We remark that   ′ ˜ L   is transversal to  ˜ L pt.  Hence by the construction of § 2, we obtain a

holomorphic vector bundle  E( ′ L (w ;v0 , j),α σ 0
)   on  ( ′ V ′ Γ , ′ Ω )∨ .

Lemma 8.8 The holomorphic vector bundle  I[v j ,σ j ]*E( ′ L (w ;v0 , j),α σ 0
)   on
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T(L(w),α)   is independent of the choice of   (v0 ,σ 0) ∈T(L(w),α) .

The proof is straightforward and is omitted.

Definition 8.9
  
E(L(w),α) = ⊕

j =1

J

i*I[ v j , σ j ]*
E ( ′ L (w ;v0 , j),α σ 0

) .  Where  i   is inclusion

T(L(w),α) ⊆ T2n ,Ω( )∨
.

We can verify easily the following :

Lemma 8.10

Ext k E(L(w),α ), E(L pt(v),σ)( ) =
0 if  (v,σ) ∉ T 2 n ,Ω( )∨

⊕
j

H
k −η* ( ′ ˜ L , ′ ˜ L pt )

(T (L(w),α ) j) if   (v,σ) ∈ T 2 n ,Ω( )∨
.

 

 
 

 
 

This is consistent with Proposition 8.1 and hence justify our definition.

We next consider the case when  ˜ L   is not necessary transversal to  ˜ L st .  We recall that,

in the construction of    E(L(w),α)   in § 2 and above, we did not assume that  ˜ L   is transversal

to  ˜ L st .  But in the calculation of cohomology in sections 3 and 5, we assumed that  ˜ L   is

transversal to  ˜ L st .  We remove this assumption and prove the following.

Theorem 8.11 HF k((Lst ,0),(L ,α )) ≅ H k ((T 2 n ,Ω)∨,E(L ,α)) .

Proof: We first show that it suffices to prove in the case when  ˜ L   is transversal to
˜ L pt.  In fact, using the notation above, we find that

(8.12) H * (T 2 n,Ω)∨ ,E(L(w),α)( ) = ⊕
j=1

J

H * ( ′ V ′ Γ , ′ Ω )∨ ,E( ′ L (w ;v0 , j),α σ 0
)( ).

On the other hand we can easily find an isomorphism

(8.13) Lst ∩ E(L(w),α ) ≅ ′ L st ∩ ′ L (w ;v0 , j)
j

U .

Furthermore if we consider connection α   on the left hand side and  α σ 0
  on the right hand

side of (8.13), then they are isomorphic to each other also.  Hence by Proposition 8.1, we

have

(8.14) HF (Lst ,0),(L(w),α )( ) = ⊕
j =1

J

HF ( ′ L st ,0),( ′ L (w ;v0 , j),α σ 0
)( ).

Thus Theorem 8.11 for  E( ′ L (w ;v0 , j),α σ 0
)   implies Theorem 8.11 for  E(L(w),α ) .
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Hence we may and will assume that  ˜ L   is transversal to  ˜ L pt.  We put

(8.15.1) ′ ′ V = ˜ L + ˜ L st( ) ˜ L ∩ ˜ L st( ), ′ ′ Γ = Γ + ˜ L ∩ ˜ L st( ) ˜ L ∩ ˜ L st( ).

(8.15.2) ′ ′ L = ˜ L ˜ L ∩ ˜ L st( ) , ′ ′ L st = ˜ L st
˜ L st ∩ ˜ L ( ) ,

(8.15.3) ′ ′ L pt = ˜ L pt ∩ ˜ L + ˜ L st( )( ) ˜ L pt ∩ ˜ L ∩ ˜ L st( ) = ˜ L pt ∩ ˜ L + ˜ L st( ) .

′ ′ V   is a symplectic reduction of  V .  We can prove also that  ′ ′ L , ′ ′ L pt, ′ ′ L st   are

Lagrangian linear subspaces of it.  We obtain  ( ′ ′ V ′ ′ Γ , ′ ′ Ω )∨ .  We remark that

(8.16.1)
′ ′ V 

′ ′ ˜ L pt

≅
˜ L pt + ˜ L + ˜ L st( )
˜ L pt + ˜ L ∩ ˜ L st( ) ≅

V
˜ L pt + ˜ L ∩ ˜ L st( ) .

(8.16.2) ′ ′ ˜ L pt
* = ˜ L pt ∩ ˜ L + ˜ L st( )( )* .

Therefore there exists a surjective linear map

(8.17) π :
V
˜ L pt

⊕ ˜ L pt
* →

′ ′ V 

′ ′ ˜ L pt

⊕ ′ ′ ˜ L pt
* .

It is easy to see that (8.17) is complex linear and induces a map

π : (T 2 n ,Ω)∨ → ( ′ ′ V ′ ′ Γ , ′ ′ Ω )∨ .  We then have :

Lemma 8.18   E(L(0),0) ≅π *E( ′ ′ L (0),0).

The proof is straightforward and is omitted.  We next compare  E(L(0),0)   with

E(L(w),α ) .   Let  u ∈L(w) ∩ L pt(0)  we lift it to  u ∈ ˜ L pt ≅ V ˜ L st .  Since  V = ˜ L st ⊕ ˜ L pt ,

we have an isomorphism  I : ˜ L st → ˜ L .   Let  ′ α =α o I .  We consider the line bundle

E(Lst(u), ′ α )   (we remark  c1E(Lst(u), ′ α ) =0 ).

Lemma 8.19 E(L(w),α ) ≅ E(Lst(u), ′ α ) ⊗ E(L(0),0) .

The proof is straightforward and is omitted.  Using Lemmata 8.18 and 8.19, we can

prove Theorem 8.11 by using Theorem 3.1.  (The argument for it is standard one which is

used to study degenerate line bundle in the theory of Abelian variety.  See [35], [27].)  The

proof of Theorem 8.11 is now complete.

We can also generalize Theorem 6.1 in a similar way to the case when  L   is not

transversal to  ′ L .  We omit it.

Next we study disjoint union of finitely many parallel affine Lagrangian submanifolds,

(L ,L) = (L(w j),α j)j =1

JU .  In case when  L(w j ) ≠ L(w ′ j )  we define
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(8.20)  E(L ,L) = ⊕E(L(w j),α j) .

(8.20) is a trivial generalization of the construction in § 2. Theorems 3.1 and 6.1 will be

generalized also in a trivial way.  However something interesting happens in case when

L(w j1
) = L(w j2

) , α j1
=α j2

.  Our conclusion here is that those case correspond to the case

when there is an indecomposable flat vector bundle on a Lagrangian submanifold.

We briefly recall the definition of Lagrangian intersection Floer homology in the case

where there are flat vector bundles on it.  Let  L1, L2   be  Lagrangian submanifolds and

  L i → Li   be flat vector bundles.  We define Floer homology    HF((L1 ,L1),(L2,L2 ))  as

follows.  We assume that  L1  is transversal to  L2   for simplicity.  (The general case can be

handled in the same way as the first half of this section.)  Let    L1 ∩ L2 = {p1 ,L, pN}.  We put

    
CF((L1 ,L1),(L2 ,L2)) = ⊕

{p 1, L,pN }
Hom(L1 pi

,L2 p i
).

In the general case, the boundary operator is defined in a way similar to § 2.  However it is

zero in our case.  Hence we obtain the Floer homology    HF((L1 ,L1),(L2,L2 )).  Let us use its

family version.  Let L   be an affine Lagrangian submanifold in a torus and    L → L   be a flat

line bundle on it.  We define

(8.21)   E(L,L)( v,σ ) = HFn((L(v),σ ),(L,L)) .

It is a straightforward analogue of the argument of § 2, to construct a complex vector bundle

  E(L,L)  such that (8.21) is the fiber.  Let us define a holomorphic structure on it.

We may assume without loosing  generality that the flat bundle    L → L   is indecomposable.

Since the fundamental group of  L   is abelian it follows that there exist subbundles    L j   of

  L   such that  L  has a filtration by flat bundles

(8.22) 0 = L0 ⊆L ⊆ Lj = L

such that   L i Li −1 ≅ L(α ) .  Here  L(α )   is the flat line bundle with holonomy  α .  (Note  α
is independent of  i .)   In order to define a holomorphic structure on  E(L ,L)  we need to

modify (2.11).  Let us use the notation in Figure 2.  We remark that Hom(L(σ) p ,Lp) =C J .  It

has a filtration  Hom(L(σ) p ,Ljp) =C j ⊆C J .  Let us choose  
r 
e j[ p]   so that

(8.23.1)
r 
e j ∈Hom(L(σ) p ,Lj p ) =C j ⊆C J

(8.23.2)
r 
e j ∉Hom(L(σ) p ,Lj−1 p) =C j−1 ⊆C J .

We use it to define
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(8.24)
e j( ′ v , ′ σ ) = exp 2π

D ( ˜ p , x 0 ( v ), x0 ( ′ v ), ˜ q )∫ Ω
 
 
 −

2π −1 σ(x0(v) − ˜ p ) + ′ σ ( ˜ q − x0( ′ v ))( )) PL(
r 
e j)[ ˜ q ].

Here  PL   is the parallel transport of  L  along the line  ˜ p ̃  q .  We use (8.24) instead of (2.11)

to define a local holomorphic frame of  E(L ,L).

A holomorphic vector bundle  E(L ,L)  constructed in this way is classical.  Atiyah [2]

found one on elliptic curves.  Mukai observed that such bundles E(L ,L)  is transformed to an

Artinian sheaf by appropriate Fourier-Mukai transformation.  Artinian sheaf is an element of

Hilbert scheme of points.  It is related to our story in the following way.

We recall that we first considered the case when there are finitely many parallel affine

Lagrangian submanifolds.  The sheaf we obtained in this way is parametrized by the set

  Sym JM ( ˜ L )reg   of smooth points of J -th symmetric power of a mirror.  There are various

ways to compactify    Sym JM ( ˜ L )reg .  Off course  SymJ M ( ˜ L )   itself is a compactification.  But

more natural compactification in our context is the Hilbert scheme  HilbJ M( ˜ L ) ,  of points

  M ( ˜ L ) .  The relation between Hilbert scheme of points and a bundle like our    M ( ˜ L )   is

known. We can find it from the description of Hilber scheme near the singularity.  (See  [36]

Theorem 1.14.)  We remark that the relation between Hilbert scheme and nilpotent bundle is

observed by  [5].

What we are discussing here may also be regarded as a mathematically rigorous way to

describe the relation between T-duality, D-brane and Chan-Paton Factor.  In other words

when several branes coincide to each other then enhancement of gauge symmetry occurs.

(See [40]  § 2.3.)  In our case, we have a flat  U(J)   bundle  L  on  L(w)   when  J

Lagrangian submanifolds   L(w j)   coincides with  L(w) .  It seems interesting to try to

generalize the story here to flat orbifold and relate it to more general gauge group than

U(J) .  It seems interesting to describe the complex structure of  HilbJ M( ˜ L )   directly from

symplectic geometry side, since this case (the phenomenon where a finitely many parallel

Lagrangian submanifolds coincide in the limit) is the easiest example of the phenomenon that

Lagrangian submanifolds becomes singular in the limit.
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§ 9  Multi Theta series 1 (Definition and A∞ Formulae.)

 In this section we add “imaginary part” to the map  mk   introduced in [12] § 5.  As we

mentioned there, the coefficients     ck L1(v1 ),L, Lk +1(v k +1)( )  of multi theta series are obtained

by counting holomorphic polygons whose boundaries are in    L1(v1) ∪L∪ Lk +1(v k +1) .  Hence

to define multi theta function rigorously in this way, we need to prove [12]　Conjecture

5.33.  In this and the next sections, we describe a way to go around this trouble and to define

multi theta functions rigorously without assuming [12] Conjecture 5.33.  In the next section,

we also present a way to calculate   ck L1(v1 ),L, Lk +1(v k +1)( ) .

The way we proceed to do so is as follows.  We will first find the properties we expect

  ck L1(v1 ),L, Lk +1(v k +1)( )  (obtained by counting holomorphic disks) satisfies.  Some of them

we prove rigorously (using Morse homotopy and [18])  but some others we can prove only in

a heuristic way.  We find an algorithm to find numbers    ck L1(v1 ),L, Lk +1(v k +1)( )  satisfying

these properties.  We next prove that these properties are enough powerful to determine

  ck L1(v1 ),L, Lk +1(v k +1)( )  up to boundary.  (We define what we mean by “up to boundary”

later in this section.)   We then use the algorithm to define   ck L1(v1 ),L, Lk +1(v k +1)( ).  We

remark that the fact that the number    ck L1(v1 ),L, Lk +1(v k +1)( )  is well-defined only up to

“boundary”  is related to the fact that (higher) Massey product is well-defined only as an

element of some coset space.

Let us first define some notations.  We take finitely many Lagrangian linear subspaces
˜ L j ⊆ V ,  j ∈J   such that  ˜ L j ∩Γ ≅ Z n  and fix it.  For simplicity we assume that they are

pairwise transversal.  We assume also that  st , pt ∈J .  Namely  ˜ L st , 
˜ L pt  are one of the

Lagrangian linear subspaces  ˜ L j  we consider.  Let    ηk(Lj1
,L, Lj k+1

)   be Maslov index

(Kashiwara class). It satisfies

(9.1.1)   η( ˜ L j1 ,L, ˜ L jk +1
) = η( ˜ L j 2

,L, ˜ L j k+1
, ˜ L j1) ,

(9.1.2)   η( ˜ L j1 ,L, ˜ L jk +1
) = η( ˜ L j1 ,L, ˜ L j l

, ˜ L jm ,L, ˜ L jk +1
) + η( ˜ L j l

,L, ˜ L jm ),

and η(Lj1
, Lj2

, Lj3
) , η*(L j1

,L j2
) = n −η(L j1

,L j2
)   satisfy Lemma 2.25.  More explicitly we

define

(9.2) η( ˜ L j1
,L , ˜ L jk +1

) = η* ˜ L j1
, ˜ L j2( ) +L + η* ˜ L jk

, ˜ L jk +1
( ) −η* ˜ L j1

, ˜ L jk +1
( ).

(Compare [23] appendix.)  We put

(9.3.1)
    
J(n,k ,d) = ( j1,L, jk +1) k − 2 −η( ˜ L j1 ,L, ˜ L j k +1

) + d = 0{ } ,

(9.3.2)     ( j1,L, jk +1) ∈ J(n,k ,deg(j1 ,L, jk +1)) ,

(9.3.3) deg( j1 , j2) = η* (L j1
,L j2

) .

Hereafter we write    deg(1,L,k + 1) etc.  in place of    deg( j1 ,L, jk+ 1)  etc. in case no confusion

can occur.  We remark that   k − 2 − η j1,L, jk +1( )  is the virtual dimension of the moduli space
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of holomorphic polygons.  More precisely we consider the following moduli space :

      ˜ M ˆ L j1
(v1),L , ˆ L jk +1

(vk + 1)( ) = (ϕ ;z1 ,L ,z k +1)

ϕ : D 2 → C n is holomorhpic

zi ∈∂D 2 , z1 ,L ,zk + 1( ) respects the 

cyclic order of ∂D 2

ϕ(zi) = pi,i + 1 ,ϕ(∂ iD
2) ⊆ ˆ L ji

(v i)

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Here  ∂i D
2   is a part of  ∂D2   between  zi   and  zi + 1. PSL(2,R)   acts on

˜ M ˆ L j1
(v1),L , ˆ L jk +1

(vk + 1)( ).  Let  
    
M ˆ L j1 (v1 ),L, ˆ L jk +1

(vk +1)( )   be the quotient space.  Then

  k − 2 − η j1,L, jk +1( )  is the virtual dimension of  
    
M ˆ L j1 (v1 ),L, ˆ L jk +1

(vk +1)( ) .  We put

(9.4)
    
ck

hol[v1 ,L,vk + 1] =# M ˆ L j1(v1),L, ˆ L jk +1
(vk +1 )( ).

The right hand side of (9.4) is the number counted with sign of      M ( ˆ L j1 (v j1
),L, ˆ L j k+1

(v jk +1
)) .

There is a trouble to make (9.4) to a rigorous definition.  We explained this trouble in [12] §

5.  We are going to study the property of  ck
hol[v1 ,L ,vk +1]   and use it as the axioms to define

the number we actually use.

For  j1 ,L , jk + 1 ,  we put  
  

˜ L ( j1 ,L, jk +1 )(= ˜ L (1,L,k + 1)) = V ˜ L ji
i =1

k +1

∏ .  For

  (v1,Lv k +1) ∈ ˜ L (1,L,k +1) , we obtain k  affine Lagrangian subspaces  ˆ L ji
(vi) .  We may

regard    V ⊆ ˜ L (1,L,k + 1)  by  v a (v,L ,v) .  We put     L(1,L,k + 1) = ˜ L (1,L,k + 1) V .  Let

  [v1,Lvk +1] ∈ L(1,L,k +1)   denote the equivalence class of    (v1,Lv k +1) ∈ ˜ L (1,L,k +1) . For

  (v1,Lv k +1) ∈ ˜ L (1,L,k +1)   let  ˜ p i i+ 1  be the unique intersection point of  ˆ L ji
(vi)   and

ˆ L ji+ 1
(vi+ 1) .  We write  ˜ p i i+ 1(v1 ,L ,vk +1) = ˜ p i i + 1(

r 
v )   in case we need to specify  vi .  We

define

(9.5) Q(v1 ,L ,vk + 1) = Q( ˜ p k +11 ˜ p i i + 1 ˜ p i+ 1 i + 2)
i =1

k −1

∑ ∈C .

In other words,    Q(v1 ,Lvk +1 )  is the integration of  Ω  over the  k +1-gon  p12L pk k + 1 pk +11 .

Q  is a quadratic function on    
˜ L (1,L,k + 1) .  Using Stokes theorem and the fact that  ˜ L j  are

Lagrangian subspaces, we find

 Q(v1 ,L ,vk + 1) = Q(vk +1 ,v1 ,L ,vk ) .

We remark that   Q  is invariant of  V   and hence defines a map :   L(1,L,k + 1) → C . We

denote it by the same symbol  Q.

We will consider a pair  ck   and  W   for each    deg(1,L,k + 1) ∈0   such that

(9.6.1)     W (1,L,k + 1) ⊆ L(1,L,k + 1) ,

(9.6.2) ck : L(1,L ,k + 1) − W(1,L ,k + 1)→ Z .
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We fix a norm    on    L(1,L,k + 1) .

Axiom I
(9.7.1) There exists a positive number  δ   such that    ck [v1 ,L,vk +1] = 0 ,  if

  Re Q(v1,L,v k +1) < δ [v1,L,v k +1]
2
.

(9.7.2)   ck [cv1,L, cvk +1] = ck[v1,L,vk +1]  if  c∈R −{0}.  In particular      W (1,L,k + 1)   is

independent of   [v1,L,v k +1] a [cv1,L,cv k +1] .

(9.7.3)   ck [v1 ,L,vk +1]  is constant on each connected component of

    L(1,L,k + 1) − W (1,L,k +1) .

(9.7.4)     W (1,L,k + 1)   is a codimension one real analytic subset of    L(1,L,k + 1) .

(9.7.5)   ck [v1 ,L,vk +1] = (−1)µck [vk +1 ,v1 ,L,vk ] , where  µ = (deg v1 +L

+deg vk )deg vk + 1  +k .

We  call  W   the wall,    ck   the coefficient function.  We remark that all of these

properties are likely to be satisfied by the number ck
hol .  In fact, [12]  Conjecture 5.33  is

(9.7.4) and the most essential property (9.7.1) is a consequence of the fact that the symplectic

area of holomorphic map is positive.  Also the system obtained by Morse homotopy (see

[16], [18]) satisfies these axioms.

Using (W ,c)  satisfying Axiom I, we define a multi theta series.  We put

  
˜ L * (1,L,k +1) = ˜ L j i

*

i =1

k+ 1∏   and    L
* (1,L,k +1) = ˜ L *(1,L,k +1) V * .  For

  (α1 ,L,αk +1) ∈ ˜ L *(1,L,k +1) ,    (v1,Lv k +1) ∈ ˜ L (1,L,k +1) ,  we put

(9.8)
  
H(α1,L,α k +1;v1,Lvk +1) = α i( ˜ p i i + 1 −

i = 1

k +1

∑ ˜ p i −1 i) .

  (See Figure 9.)
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Figure 9

Here we recall that  ˜ p i i+ 1  is the unique intersection point of  ˆ L ji
(vi)   and  ˆ L ji+ 1

(vi+ 1)   and

v k +2 = v1    etc. by convention.  We remark that  H   is well defined as the map :

  L
* (1,L,k +1) → R .  We put

(9.9)
  
Γ(1,L,k + 1) = Γ Γ ∩ ˜ L ji( )i=1

k +1∏ .

  Γ(1,L,k + 1)  acts on    L(1,L,k + 1)   by    (γ1 ,L,γ k +1)[v1,L, vk +1] =[v1 + γ1,L,v k +1 + γ k +1] .

Let    L (1,L,k + 1)   be the quotient space.  We use the symbol    [[v1,L,v k +1]]   for elements of

  L (1,L,k + 1) .  For    [[v1,L,v k +1]] ∈ L (1,L,k +1) ,  we put

(9.10)
  
ϑ[[v1 ,L,vk +1]] = L ji

(vi )∩ Lji +1
(vi +1)( )

i=1

k +1

∏ ⊆ T2 n( )k +1
.

  ϑ[[v1 ,L,vk +1]]  is a finite set.  We put π : V → T 2n .

Definition 9.11 Let   (q12 ,L,qk +11) ∈ϑ[[v1,L,vk +1]] .  We put

(9.12)
  
V(q12 ,L,qk +11) = [ ′ v 1,L, ′ v k +1] ∈L(1,L,k + 1) π(v i) = π( ′ v i ), π ˜ p i i+1

r 
′ v ( )( ) = qi i+1{ } .

Note that there exists a subgroup    Γ0 ⊆ Γ(1,L, k + 1)  acting transitively on

  V(q12 ,L,qk +11)   and

  
Γ(1,L, k + 1): Γ0[ ] = L ji

(vi) • L ji+1
(vi +1)

i =1

i

∏ .

Definition 9.13

(9.13)

  

Θ k [[v1,L,v k +1]];[α1,L,α k + 1];Ω( )
( q12 ,L,q k+11 )

= ck[ ′ v 1 ,L, ′ v k +1]
[ ′ v 1 ,L, ′ v k+1 ]∈V (q12 ,L,q k +1 1 )

∑ exp −2πQ( ′ v 1 ,L, ′ v k +1) + 2π −1H(α1,L,α k +1; ′ v 1,L, ′ v k +1)( ).

We remark that, in the case when  d = 1, α i =0 , B = 0,  (9.13) coincides with  [12] (5.49),

and in the case when k = 2  (9.13) is m2   in Theorem 7.22, that is a usual theta function. We

also remark that the right hand side of (9.13) is discontinuous at the point    [[v1,L,v k +1]]

where   V(q12 ,L,qk +1 1)  intersects with      W (1,L,k + 1) .  In the general situation, this can

happen at a dense subset of    L (1,L,k + 1)   (= T 2n (k +1 ) ).  It seems likely that we can choose an

appropriate perturbation so that the image      W (1,L,k + 1)  of      W (1,L,k + 1)   in

  L (1,L,k + 1)   is a union of finitely many compact submanifolds.  (The author can prove it in

case  k +1 ≤ 4 .)  In that case, the set where  Θk   is disconnected is a union of finitely many

codimension 1 compact submanifolds of  L (1,L ,k + 1).  However in general the proof of it

looks cumbersome and we do not need it in the application of later sections.  So we do not try
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to proof it .

Definition 9.14 The set of all points    [[v1,L,v k +1]]   where   V(q12 ,L,qk +11)   intersects with

    W (1,L,k + 1)   for some   (q12 ,L,qk +11) ∈ϑ[[v1,L,vk +1]]   is called the wall also and is written

as      W (1,L,k + 1).

Proposition 9.15 If Axiom I is satisfied, then (9.13) converges on

    L (1,L,k + 1) − W (1,L,k + 1)  pointwise and on    L (1,L,k + 1)   as a distribution.

Using (9.7.1) the proof is easy and is omitted.  We choose  ˜ M j  which is transversal to

˜ L j  and satisfies ˜ M j ∩Γ ≅ Z n.  We consider M( ˜ L ji
, ˜ M ji

)∏   introduced in §7, and the pull

backs :  π12
* P( ˜ L j1

, ˜ L j2 ; ˜ M j1
, ˜ M j2 )   etc. of the bundles defined in § 7.  Using  Θk   we define

(9.16)

    

mk : π12
* P( ˜ L j1 , ˜ L j 2

; ˜ M j1 ,
˜ M j 2

) ⊗L⊗ π k k +1
* P( ˜ L j k

, ˜ L jk +1
; ˜ M jk , ˜ M jk +1

)

→ π1 k +1
* P( ˜ L j1 ,

˜ L j k+ 1
; ˜ M j1 , ˜ M j k+1

).

Definition 9.17
mk [q12] ⊗L ⊗ [qk k + 1]( )

= Θk
q k+ 11

∑ [v1 ,L ,vk +1];[α1 ,L ,α k + 1];Ω( )
(q 12 ,L,q k +11 )

[q1 k +1]
.

We remark that  deg mk = 2 − k .

In a similar way as the proof of Theorem 7.22, we find that “mk   is holomorphic outside

    W (1,L,k + 1)”.  However since      W (1,L,k + 1)  may be dense, we need to be a bit careful to

state it.  We take a sequence of compact subsets      W( e) ⊆ W (1,L,k + 1)  such that

  W( e) ⊆ IntW( e+1)   and  
    W( e )eU = W (1,L, k + 1)   Let      W (e) ⊆ L (1,L, k +1)   be the image of

  W( e) .  Then   W (e)   is compact and can be chosen to be a union of finitely many codimension 1

submanifolds with smooth boundary.  For      [[v1,L,v k +1]] ∈W (e) ,  we choose a normal vector

  
r 
n = (n1,L,nk +1)  to    W (e)   and put

(9.18)
  
∆ (e )c k( )[ ′ v 1,L, ′ v k +1] = lim

ε →0
ck[ ′ v 1 + εn1,L, ′ v k +1 + εnk +1] − ck [ ′ v 1 − εn1,L, ′ v k +1 − εnk+ 1]( ) .

We use it to define :

(9.19)

    

∆ (e )Θ k( ) [[v1,L, vk +1]];[α1 ,L,α k +1];Ω( )
( q12 ,L,q k+11 )

= ∆( e )ck( )[ ′ v 1,L, ′ v k +1]
[ ′ v 1 ,L, ′ v k+ 1 ]∈W (e ) ∩ V (q12 ,L,q k +11 )

∑

exp −2πQ( ′ v 1 ,L, ′ v k +1 ) + 2π −1H(α1,L,α k +1; ′ v 1,L, ′ v k +1)( ).

Using  ∆ (e )Θ k   we define  ∆ (e )mk   in the same way as Definition 9.17.

For each      [[v1,L,v k +1]] ∈W (e) ,  let  Hev(e)   be a Heaviside function defined in a neighborhood

of    [[v1,L,v k +1]]   such that    [[v1,L,v k +1]]   takes value in  {0,1}  and jumps at    W (e) .  Its
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Dolbeault derivative  ∂ Hev(e)   is a (0 1) current on    L (1,L,k + 1) .

Proposition 9.20 ∂ mk = lim
e→∞

∆(e )mk ∧ ∂ Hev( e ) .  Here the right hand side converges

as a current.

Proof: By the proof of Theorem 7.22, we find that  ∂ mk   is nonzero only because of

the discontinuity of  mk .  The proposition then follows from the definitions.

Remark 9.21 At first sight it may look strange to consider  mk   which is discontinuous

at a dense subset.  I hope that after the arguments of § 11,12, where we regards it as current

and use it in Dolbeault complex, it looks more natural to do so.

The operator  mk  in Definition 9.17 is a family version of the higher multiplication of

Floer cohomology which is introduced in  [13] in the case when the coefficient function is

ck
hol ,  (by extending an idea of the definition of  m2   due to Donaldson [9].)  As we remarked

already, for the coefficient function ck
hol ,  our  mk   may be ill-defined on a (countably)

infinitely many union of codimension one submanifolds.  Namely higher multiplication of

Floer cohomology is well-defined only at a Bair subset.  This is what we asserted in  [13].

For the “family version” we are discussing here, we need more and we regard  mk   as a

distribution.

 Our next purpose is to define the notion that two coefficient functions are homologous

to each other and show that  mk   in Definition 9.17, up to appropriate chain homotopy,

depends only on the homology class of coefficient functions.  This is  important for us since

the author can calculate the coefficient function  chol   only up to boundary.  We need to

discuss A∞  formulae for this purpose.  One messy matter in introducing  A∞  structure is

sign.  The sign is related to suppersymmetry and is in fact an important matter.  To simplify

the sign we use a trick due to Getzler-Jones [19].  We order  J   and let  Ts(J)   be the graded

vector space spanned by the symbols  
  
e j1 j2

Le j k jk+ 1[ ] ,    j1 < L < jk +1 .  (We write sometimes

  
e12 Lek k+ 1[ ]   for simplicity.)  We put

deg e j1 , j2
= deg( ˜ L j1 , ˜ L j2

) ,  
  
deg ej1 j2

Le jk j k+1[ ] = dege j i ji +1∑ + k .

(Here we shift the degree of  e j1 j2
Le jk jk +1[ ]   by  k .  This construction, the suspension in the

terminology of  [19], is the main idea to simplify the sign.)

Suppose we have integers    b j1 ,L, jk +1
(= b12Lk +1)   for each  deg(1,L ,k + 1) = 0 .  We use it

to obtain a map

(9.22) e12 Lekk + 1[ ] a b1,L,k + 1[e1 k +1] ,

of degree  −1 .  (Note    deg(1,2) +L + deg(k ,k +1)  − deg(1,k +1) = η(1,L, k +1) = 2 − k .)  We

extend it to a map  b : Ts(J ) → Ts(J)   of degree  −1   by
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(9.23) b e12 Lekk + 1[ ] = (−1)
deg eii +1i =1

l −1∑
l < m
∑ bl ,L,m e12Lel −1l elm em m + 1Lek k + 1[ ] .

Here the sum is taken for all    l,m   such that  deg(l,L ,m) = 0 .  (Note that the sign in (9.23)

is usual one since degree of  b  is  −1 .)   We say that  b   is a derivative if    b o b = 0 .  Next let

T(J)  be the graded vector space spanned by    e12 ⊗L ⊗ ek k +1 .  Here

  
deg e12 ⊗ L⊗ e kk + 1( ) = deg ei i +1∑ .  (No degree shift this time.)  We define  s  by :

  
se12 ⊗L⊗ sekk + 1 = e12 Lek k + 1[ ] .

We then find

(9.24)   s−1 ⊗L ⊗ s−1( ) e12 L ek k + 1[ ] = (−1)µ e12 ⊗L ⊗ ek k +1( ) ,

where    µ(1,L,k +1) = (k − 1) dege12 + (k − 2)dege23 + L+ degek −1 k + k(k − 1) 2 .  (Note that

sign is determined from the fact that  deg s =1 .)  We define

(9.25)   bk = s o ck o s−1 ⊗L⊗ s−1( )

and

(9.26)
  
ck e12 ⊗L⊗ ek k +1( ) = c1,L,k +1e1 k +1 .

In  [19],  Getzler-Jones write  ck = s−1 o bk o s ⊗L ⊗ s( ).  However to have the sign

  (−1)µ( 1,L, k +1)   they obtained, it seems that (9.25) is a correct definition.  Note

  s
−1 ⊗L⊗ s−1( ) o s ⊗L⊗ s( ) = (−1) k(k −1) / 2 .

By definition     c1Lk +1 = (−1)µ (1,L,k +1 )b1Lk +1.     b o b = 0  is equivalent to an equation

  (−1)µ (1,L,k +1; l,m )c1,Ll,m ,L, k +1cl ,L,m∑ = 0 .

Here the sum is taken for all    l,m   such that    deg(l,L,m) = deg(1,L,l,m,L,k + 1) = 0 ,  and

(9.27)

µ(1,L ,k + 1;l,m) = µ(1,L ,k + 1) + µ(l,L ,m)

+µ(1,L ,l,m ,L ,k + 1)+ deg eii+ 1
i=1

l −1

∑ .

The sign here is messy and complicated.  But in fact we do not need to calculate it so much,

since most of the calculation will be done by using  b   in place of  c .  (The reason we

introduced  c   (and  m )  is that the degree coincides with natural one (in sheaf cohomology)

for them.)

Now we go back to our situation.  We consider coefficient functions    ck [v1 ,L,vk +1]  for

  deg(1,L,k + 1) = 0 ,    [v1,L,v k +1] ∈ L(1,L,k + 1) .
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Axiom II

(−1)µ (1,L,k + 1;l , m )ck −m + l v1 ,L ,vl ,vm,L ,vk + 1[ ]∑ cm −l +1 vl ,L ,vm[ ] = 0,

where    µ(1,L,k +1;l,m)    is as in (9.27).

Lemma 9.28 If the coefficient functions satisfies Axiom II, then we have

 
  

(−1)µ (1,L,k +1; l,m ) mk − m +l +1 x12 ,L, xl −1 l ,mm −l +1 xl l +1 ,L, xm −1m( ), xm m +1,L,x k k +1( )∑ = 0.

Proof: Immediate from the definition and

Q(v1 ,L ,vk + 1) = Q(v1 ,L ,vl ,vm ,Lvk ) + Q(vl ,L ,vm ) ,

H α 1 ,L ,α k + 1 ;v1 ,L ,vk +1( ) = H (α 1 ,L ,α l ,α m ,Lα k + 1 ;v1 ,L ,vl ,vm ,Lvk)

+H α l ,L ,α m ;vl ,L ,vm( ).
We next define the notion that two coefficient functions to be homologous.  Let

  f j1 ,L, j k+1
(= f1,L,k +1 ) ∈Z   for    deg(1,L,k + 1) =1 .  We assume

(9.29) f j1 , j 2
= 1  for    ( j1, j2) ∈J(n, 2,1).

We have a map  
  
e12 Lek k+ 1[ ] a f1,L,k +1[e1 k+ 1]   of degree  0.  We extend it to

f : Ts(J) → Ts(J)   by

(9.30) f e12 Lekk + 1[ ] = fa (1)La( 2 )∑ fa ( 2 ) La(3) L fa (e −1)La( e ) ea (1) a (2) Lea ( e −1)a (e )[ ] .

Here the sum is taken over all    1 = a(1) < L < a(e) = k +1   such that

deg(a(e),L ,a(e + 1)) = 1.  We remark that there is no sign in (9.30) since  f   is of degree 0.

We then put

(9.31)   f k = s o dk o s−1 ⊗L⊗ s− 1( ) .

Let    ck
1[v1,L,v k +1]   and    ck

2[v1,L,vk +1]   be two coefficient functions satisfying Axioms I

and II.  Let    bk
1[v1 ,L,vk +1],   bk

1[v1 ,L,vk +1]  be functions corresponding to them by (9.25).

Definition 9.32 We say that c1  is homologous to  c2   if there exists  integer valued

function    f1,L, k +1[v1,L, vk +1]   for    deg(1,L,k + 1) =1  satisfying (9.29) such that

(9.33.1) f o b1 = b2 o f .

(9.33.2) If  bk[v1 ,L ,vk + 1] ≠0 , k ≠ 2, then    Re Q(v1,L,v k +1) < δ [v1,L,v k +1]
2
.

(9.33.3) bk[cv1 ,L ,cvk + 1] = bk [v1 ,L ,vk +1] .

Let  mk
1   and  mk

2   be maps obtained from  ck
1   and  ck

2 .  We define  dk   by (9.31).  dk
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also defines a map  nk .  (We use (9.33.2) to show the convergence.)  We find that (9.33.1)

implies

(9.34) 

±nk − m+ l x12 ,L ,x l −1l ,mm −l + 1
1 xll +1 ,L ,x m −1 m( ),xm m + 1 ,L ,x kk +1( )∑

= ±mi
2∑ na( 2 ) − a (1) +1 xa (1) a(1) +1 ,L ,xa (2) −1 a (2)( ),(

L ,na ( i )− a( i −1) + 1 x a( i −1) a ( i −1)+ 1 ,L ,x a (i )−1 a( i )( )).
(9.34) means that  n  defines an  A∞ functor from the  A∞ category determined by  mk

1   to

one determined by  mk
2 .  (See [15] for its definition.)  (9.29) implies that  n1   is identity.

Hence  n   is a homotopy equivalence in the sense of  [15].

We explain its implication by an example.  Consider the case  k = 3.  We assume

(9.35) m2(x12 ,x 23) = m2(x 23 ,x 34) = 0 .

This is the situation where we can define Massey triple product.  In our case, it is represented

by  m3
1(x12 ,x 23 ,x34)    or  m3

2(x12 ,x23 ,x 34) .  (We assume  m2
1 = m2

2  for simplicity.)  (9.34)

implies

(9.36)

m3
2(x12 ,x23 ,x 34) − m 3

1(x12 ,x 23 ,x 34)

= ±n2(x12 ,m 2(x23 ,x34)) ± n2(m2(x12 ,x23), x34)

±m 2(x12 ,n2(x23 ,x34)) ± m 2(n2(x12 ,x23), x34)

= ±m 2(x12 ,n2(x23 ,x34)) ± m 2(n2(x12 ,x23), x34)

It follows that  m3
1(x12 ,x 23 ,x34)   coincides with  m3

2(x12 ,x23 ,x 34)   modulo elements of the

form  m2 (x12 ,•) + m2(•,x34) .  This is consistent with the usual definition of Massey triple

product.  Thus the maps  n   determines the ambiguity of (higher) Massey products systematically.

We will apply (9.34) more systematically in §§ 11 and 12.
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§ 10  Multi Theta Series 2 (Calculation of the coefficients).

Now we determine the homology class of coefficient function.  For this purpose, we add

more axioms so that it is enough to characterize the homology class.  To find appropriate

axioms, we further study the counting problem of holomorphic polygons.  Namely we study

the structure of the wall of ck
hol.  For this purpose, we recall [12] Lemma 5.36.  It implies

Lemma 10.3 below, if we assume transversality.  We need some notations and remarks to

state the lemma.

Let    deg(1,L,k + 1) = 0 .  In § 9 we considered the wall      W (1,L,k + 1)   as a subset of

  L(1,L,k + 1) .  We can regard it also as a  V   invariant subset of  
  

V ˜ L jii =1

k +1∏ = ˜ L (1,L,k +1) .

We write      
˜ W (1,L,k + 1)   in the later case.

We next remark that, in case when    deg(1,L,k + 1) = 0  and  k +1 > 3,  the quadratic

function    Re Q : L(1,L,k + 1) → R   has negative eigenvalue.  (See Lemma 10.20 below.)  It

follows that there exists a domain in    L(1,L,k + 1)   where the coefficient function  ck   must

vanish by Axiom I.  This implies that if we know the wall  ˜ W (1,L ,k + 1)  as a cycle then we

can determine  ck .  More precisely we regard  the wall  ˜ W (1,L ,k + 1)  as a cycle as follows.

We first triangulate  ˜ W (1,L ,k + 1).  Let  ∆  be one of its top dimensional simplex.  We

assume that   ∆  is oriented.  Since  ˜ W (1,L ,k + 1)  is codimension one, we have an oriented

normal vector   
r 
n ( p)  for  p∈∆ .   We consider an integer

 
  
c(∆) = lim

ε →0
ck (p + ε

r 
n ( p)) − ck (p − ε

r 
n ( p))( ) .

 The sum  c(∆)∆∑   is a cycle.  We denote this cycle by      
˜ W (1,L,k + 1)   by abuse of notation.

In a similar way, we may regard  ck   as a top dimensional chain in  ˜ L (1,L ,k + 1)  as follows.

Let  Ul  be connected components of      
˜ L (1,L,k + 1) − ˜ W (1,L,k + 1) .  We put

    C (1,L,k + 1;c) = ck(U l)[Ul ]∑ .

Here  ck (Ul)   is the value of  ck   at a point on  Ul .  (ck (Ul)  is independent of the point on

Ul   by (9.7.3). )  C(1,L ,k + 1;c)   is a top dimensional chain and we have

(10.1)     ∂C (1,L,k + 1;c) = ˜ W (1,L,k + 1),

as chains.  Obviously      
˜ W (1,L,k + 1)  and  (10.1)  determine  mk   if  Q  is negative

somewhere on    
˜ L (1,L,k + 1) .  We remark that in the case when  deg(1,2,3) = 0,  Q  is

positive definite on  ˜ L (1,2,3) .  So    
˜ W (1,2,3)  determines  c2   only up to constant.  However,

in this case, we already know that  c2   is ±1  everywhere and   
˜ W (1,2,3) is empty, by [12]

Theorem 4.18.

We generalize the definition of     C (1,L,k + 1;chol )   to the case when    deg(1,L,k + 1) = d

with  d > 0   by

(10.2)
    
C (1,L,k + 1;chol ) = (v1 ,L,vk+ 1) ∈ ˜ L (1,L,k +1) ˜ M ( ˆ L j1 (v1),L, ˆ L jk +1

(vk +1)) ≠ ∅{ }.
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“Lemma 10.3” Let    deg(1,L,k + 1) = 0 .  The wall      
˜ W hol(1,L,k +1)   of    chol  is a sum of

(10.4)     C ( jl,L, jm ;chol ) × C( j1 ,L, jl , jm ,L, jk +1;c
hol)

here we take the sum over  l,m   such that    deg(l,L,m) =1  or   deg(1,L,l,m ,L,k + 1) = 1 .

We remark that    deg(l,L,m) =1 implies that the virtual dimension of

    
˜ M ( ˆ L j l

(vl),L, ˆ L jm (vm))  is  −1.  Hence      C (l,L,m;chol )   is a codimension one chain of
˜ L ( jl ,L , jm)   in that case.  (In case we regard      C (l,L,m;chol )   as a chain, (10.4) is a bit

imprecise, since we need to consider multiplicity and sign.)

As mentioned above, we do not prove Lemma 10.3 rigorously because of transversality

problem.  (One can certainly find a perturbation so that Lemma 10.3 holds after perturbation.

But we do not need to work out this heavy job.)  So instead we take it as an axiom.  However

to motivate the axiom, we explain the idea of the “proof” of “Lemma 10.3”.

In fact, we already explained the most essential part of the “proof” in [12] § 5.  Namely

[12] Lemma 5.36 “implies” that if      (v1,L,vk +1) ∈ ˜ W hol(1,L,k + 1)  then there exist l,m   such

that

(10.5) ˜ M ˆ L jl(vl ),L , ˆ L jm (vm)( ) × ˜ M ˆ L j1
(v1),L , ˆ L jl(vl ), ˆ L jm (vm),L , ˆ L jk +1

(vk + 1)( )
is nonempty.  Namely if  (v1 ,L ,vk + 1) = lime→∞ (v1

( e )
,L ,vk + 1

(e )
)   then the k + 1 gons in

˜ M ˆ L j1
(v1

(e )
),L , ˆ L jk +1

vk + 1
( e )

)( )   splits into a union of  m − l + 1-gon and k − m + l + 2 gon.  By

dimension counting, we find that the virtual dimension of (10.5) is −1.  We consider the

following three cases.

(10.6.1)   deg(l,L,m) =1,   deg(1,L,l,m ,L,k + 1) = 0 .

(10.6.2)   deg(l,L,m) = 0 ,   deg(1,L,l,m ,L,k + 1) = 1.

(10.6.3)   deg(l,L,m) >1 or   deg(1,L,l,m ,L,k + 1) > 1.

It is easy to see that if (10.6.1) or (10.6.2) holds then we have a term like (10.4).  On the

other hand, in the case when (10.6.3) is satisfied, the set of all    (v1,L,vk +1)   such that (10.5)

is nonempty is of codimension higher than one.  Hence to find the wall as a codimension one

cycle, we do not need to consider (10.6.3).  This completes the “proof” of “Lemma 10.3”.

To find a good axiom, we need to study the boundary of      C (1,L,k + 1;chol )   in the case

when    deg(1,L,k + 1) = d ,  d > 0  also.  The “result” is the following  “Lemma 10.8”.  We

remark that  if    deg(1,L,k + 1) = d   then the (virtual) codimension of      C (l,L,m;chol )   is  d .

The following lemma follows from (9.1.2).

Lemma 10.7 If    deg(1,L,k + 1) = d ,   deg(l,L,m) = d1 ,  and  (1,L,l,m,L,k +1) ∈ d2   then

d +1 = d1 + d2 .
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We next show :

“Lemma 10.8” Let    deg(1,L,k + 1) = d .  The boundary of the chain      C (1,L,k + 1;chol )   is

a sum  of

 (10.9)     ±C ( jl ,L, jm;chol) × C ( j1,L, jl , jm ,L, jk +1;chol ) ,

where the sum is taken over all  l,m   such that  deg(l,L ,m) = d1 ≥ 0 ,

deg(1,L ,l,m ,L ,k + 1) = d2 ≥0 .

“Proof” Again by [12] Lemma 5.36, we find that     (v1,L,vk +1) ∈∂C (1,L,k + 1;chol )   if

and only if (10.5) is nonempty.  We take  d1   and  d2   as in “Lemma 10.8”.  In the case when

d1 ,d2 ≥0  we find (10.9).  Otherwise we have  d1 > d + 1  or  d2 > d + 1  by Lemma 10.7.

Then the set of all    (v1,L,vk +1)   such that (10.5) is nonempty is of codimension higher than

d .  Hence, by dimension counting, it is 0 as a codimension  d + 1 chain.  The “proof” of

“Lemma 10.8” is complete.

Now we take Lemmata 10.3 and 10.8 as axioms.  Namely we consider :

Axiom III There exist locally finite chain      C
(d )(1,L,k + 1)  on    

˜ L (1,L,k + 1)   for

  deg(1,L,k + 1) = d ,  with the following properties.

(10.10.1) The codimension of      C
(d )(1,L,k + 1)  is  d .

(10.10.2)     C
(d )(1,L,k + 1)  is invariant of  V   action on    

˜ L (1,L,k + 1) .

(10.10.3)     C
(d )(1,L,k + 1)  is invariant of the map  [v1 ,L ,vk] a [cv1 ,L ,cvk] .

(10.10.4) Let    be a norm on   L(1,L,k + 1)    Then, there exists  δ > 0  such that

    (v1,L,vk +1) ∈C (d )(1,L,k + 1)  implies

  
Re Q(v1,L,v k +1) > δ v1,L,v k +1[ ] 2

.

(10.10.5)     ∂C ( d) (1,L,k + 1)  is a sum of

    (−1)µC ( d1 )(l,L,m) ×C (d 2 )(1,L,l, m,L,k +1) ,

where the sum is taken over all  l,m   such that  deg(l,L ,m) = d1 ≥ 0 ,

deg(1,L ,l,m ,L ,k + 1) = d2 ≥0 .

We fix the sign in (10.10.5) later during the proof of Theorem 10.17.  We can write

(10.10.5) roughly as

(10.11)     ∂C ( d) + ±∑ C ( ′ d ) oC ( d +1− ′ d ) = 0 .
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We regard (10.11) as a Maurer-Cartan equation or Batalin-Vilkovisky master equation as we

mentioned in the introduction.  It is natural that we find it here, since we here are studying a

family of A∞ categories parametrized by    (v1,L,vk +1)   and (10.11) describes a deformation of

A∞ structure (as is explained in the literatures quoted in the introduction.)

One advantage to restrict to such cycles  is the following lemma.

Lemma 10.12 Let  cs  be a one parameter family of coefficient functions of degree 0

satisfying Axiom I,II,III.  Then  c1   is homologous to  c0 .

Lemma 10.12 is an immediate consequence of Theorem 10.18, we prove later.

 Note that  ck ≡ 0  satisfies Axioms I,II,III.  We introduce an axiom which exclude such

trivial  ck . We consider the case when  k +1 = 3 .  Then   ∂C (1,2,3) = 0   by Axiom III.  Axiom

IV will determine the homology class of this cycle. We put

S(Q,1,2,3) = (v1 ,v2, v3) ∈ L(1, 2,3) Q(v1 ,v2 ,v3) > 0, [v1,v2 ,v3 ] = 1{ }.

Lemma 10.13 If  deg(1,2,3) = d   then the index of  Q  on  L(1,2,3)   is  d.

Corollary 10.14 If  L(1,2,3)   then  S(Q,1,2,3)   is homotopy equivalent to  S n− d −1 .

Corollary 10.14 is immediate from Lemma 10.13.  Lemma 10.13 is immediate from

definition.  In fact, we have   Q[0,v2 ,0] = Ω πL1
v2 ,πL3

v2( ) 2, where  πL i
: V ˜ L 2 → ˜ L i   is an

isomorphism.

Hereafter we omit  (d)   in      C
(d )(1,L,k + 1)  in case no confusion can occur.  Let

C (1,L ,k + 1;chol) ,  C (1,L ,k + 1)  be cycles on    L(1,L,k + 1)   induced from

    C (1,L,k + 1;chol ) ,  C(1,L ,k + 1)  respectively.

Theorem 10.15   [C (1,2,3;chol ) ∩ S(Q ,1,2,3)] ∈Hn −d −1 S(Q,1,2,3);Z( ) = Z  is the generator.

Theorem 10.15 is a generalization of [12] Theorem 4.18 (which is the case when  d = 0)

and is a motivation of Axiom IV below.  Note that we do not put Theorem 10.15 in the quote

while we put Lemmata 10.3 and 10.8  in the quote.  The difference is that the statement of

Theorem 10.15 is stable by the perturbation.  So though we do not specify the perturbation, it

is now standard to show that there exists a perturbation so that we can make sense of the left

hand side of Theorem 10.15.  On the other hand, it is not clear in what sense the statements

of Lemmata 10.3 and 10.8 are stable by perturbation.

Axiom IV   [C (1,2,3) ∩ S(Q,1,2,3)] ∈ Hn −d −1 S(Q,1,2,3);Z( ) = Z  is the generator.

Note that we need to fix the sign of the generator of Hn −d − 1 S(Q,1,2,3);Z( )  for Axiom

IV to make sense.  The simplest way to do so is to use Theorem 10.15.  Namely we assume

(10.16)   [C (1,2,3;chol ) ∩ S(Q ,1,2,3)] = [C (1,2,3) ∩ S(Q,1, 2,3)] .
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The orientation of    C (1,2,3; chol )  is determined by using its Morse homotopy limit.  We

discuss it later during the proof of Proposition 10.25.  Our main results of this section are as

follows :

Theorem 10.17 There  exists a coefficient function  c   satisfying Axioms I,II,III,IV.

Theorem 10.18 Let  c1 , c2   be two coefficient functions satisfying  Axioms I,II,III,IV.

Then  c1   is homologous to  c2 .

Proof of Theorem 10.15:     We use Morse homotopy in a similar way as the proof of [12]

Theorem 4.18.  We choose a complex structure on  V   so that  J ˜ L j1   is transversal to  ˜ L j2
and  ˜ L j3 .  Using it we regards  V = T* ˜ L j1 .  We regards  ˜ L j2   and  ˜ L j3  as graphs of closed one

forms   dV2 , dV3 ,  where  Vi   are quadratic functions on  ˜ L 1.  Let  ˜ L j2
ε   and  ˜ L j3

ε   be the graphs

of   εdV2 , εdV3   respectively.  We consider the isomorphism  V → V ,    v1 + v2 a v1 + εv2

where  v1 ∈ ˜ L j1   v2 ∈ J˜ L j1  .  We then obtain an isomorphism

Iε : V ˜ L 1 ×V ˜ L 2 × V ˜ L 3 ≅ V ˜ L 1 × V ˜ L 2
ε ×V ˜ L 3

ε .  We find  Q(Iε (v1,v2 ,v3 )) = ε2Q(v1 ,v2, v3) .  It

follows that the homology class in Theorem 10.15 does not change if we replace  ˜ L i   by  ˜ L i
ε .

So we may consider the limit where  ε → 0 .  By [18] this limit is described by Morse

homotopy.  Let us recall it here.

We remark that  L( j1 , j2 , j3 ) = [0,v2 ,0]{ } .  Let  ˜ L j2
ε (v2)   be the graph of   εdV2, q 2

.  It is

easy to find that there exists a linear isomorphism  I : V ˜ L 2 → ˜ L 1
*   such that

V2,q 2
= V2 + I(v2) .  Let  q31 = 0  and let  q12(v2) , q23(v2)   be the unique critical points of

V2,q 2
− V1  and V3 − V2 ,q 2

  respectively.  Let  U12(v2 ) , U23(v2 ), U31   be the unstable manifolds

of   grad V2 ,q 2
− V1( ), grad V3 − V2, q2

( ),  grad V1 − V3( )   respectively.  Then for sufficiently small

ε  , C ( j1 , j2 , j3 ;chol)   is diffeomorphic to :

(10.19) v2 U12(v2) ∩ U23(v2) ∩ U31 ≠∅{ } .

It is easy to see that (10.19) is a linear subspace of  L( j1 , j2 , j3 ) = [0,v2 ,0]{ }   and its codimension

is  2n −dimU12(v2) −dimU23(v2) −dimU31 = d .  This implies Theorem 10.15.

Proof of Theorem 10.17:     We first generalize Lemma 10.13 as follows.

Lemma 10.20 Let    deg(1,L,k + 1) = d .  Then the index quadratic form  Q  on

  L(1,L,k + 1)   is  d + k − 2 .

Proof: We take    l,m   with    l < l + 2 ≤ m .  We remark

  L(1,L,k + 1) = [v1,L,v l−1,0,v l+1 ,L,vm−1 ,0,vm +1,L, vk ]{ } .

We have
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(10.21)
  

Q v1 ,L,vl−1 ,0,vl+ 1,L,vm−1,0,vm +1 ,L, vk +1( )
= Q(vl +1,L, vm −1) + Q(v1,L,vl −1,vm +1 ,L,vk +1 ).

Using (10.21) and Lemmata 10.7, 10.13, we can prove Lemma 10.20 by an induction on  k .

We put

 S(Q,1,L ,k + 1) = [v1 ,L ,vk + 1] ∈L(1,L ,k + 1) Q(v1 ,L ,vk + 1) > 0, [v1 ,L ,vk +1] = 1{ } .

Corollary 10.22 H* S(Q,1,L ,k + 1),Z( ) ≅ H*( S n ( k −1) −( d + k −1) ,Z ) .

Corollary 10.22 is immediate from Lemma 10.20.

Now we start the proof of Theorem 10.17.  We construct      C (1,L,k + 1)  by induction on

k .  In case when  k +1 = 3 , we need to find    C (1,2,3)   satisfying Axiom IV.  Let

deg(1,2,3) = d ,  d > 0.  We take a codimension  d  linear subspace    C (1,2,3)   of  L(1,2,3)

such that  Q   is positive on it.  (We can choose such    C (1,2,3)   by Lemma 10.13 and d > 0.)

By perturbing it a bit, we may assume    C (1,2,3) ∩ Γ(1,2,3) ≅ Z dimC (1, 2, 3) .  This    C (1,2,3)

satisfies Axioms IV.

We next consider the case  k = 4 .  Let  deg(1,2,3,4) = d .  We consider the cycle :

(10.23)
(−1)µ 1 C(1,2,3) × C(1,3,4)( ) ∩ S(Q;1,2,3,4)[ ]

+(−1)µ2 C(2,3,4) × C(1,2,4)( ) ∩ S(Q;1,2,3,4)[ ]
where

(10.24.1) µ1 =deg(1,3,4) + deg(1,3) ,

(10.24.2) µ2 =deg(1,2,3) + deg(2,3,4) + deg(1,2,4) + deg(1,2)deg(2,3,4) + deg(1,3) + 1.

  (10.23) represents an element of H2 n−d −2 S(Q; j1 , j2 , j3, j4);Z( ) ≅ Z .

Proposition 10.25 (10.23)  represents  0  in the homology group.

Proof : We first show the following :

Lemma 10.26 If  J(n ,k ,d) ≠∅   then  d ≥ 2 − k .

Proof: Let  ( j1 ,L , jk + 1) ∈ J(n ,k ,d).  We choose a complex structure on  V   so that

J ˜ L j1   is transversal to  ˜ L jl  l = 2,L ,k + 1. Using it we regards  V = T* ˜ L j1 .  We regards  ˜ L jl
as graphs of closed one forms   dVl   etc. where  Vl   are quadratic functions on  ˜ L 1. Let

fl l+ 1 = Vl +1 − Vl .  Let  µ fll + 1( )  be the number of positive eigenvalues of  fl l+ 1.  By

definition we have
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(10.27)   µ f12( ) +L + µ fk k + 1( ) − µ f1 k +1( ) = η 1,L ,k + 1( ) .

On the other hand, since  f12 +L + fkk + 1 = f1 k +1 ,  it is easy to see that the right hand side of

(10.27) is nonnegative.  Lemma 10.26 follows.

Now let  deg(1,2,3,4) = d .  Using Lemma 10.26 and Axiom V,  we find that

C(1,2,3) × C(1,3,4)( ) ∩ S(Q,1,2,3,4)[ ]   and  C(2,3,4) × C(1,2,4)( ) ∩ S(Q,1,2,3,4)[ ]   both

represent the generator of  H 2n− d −1 S(Q,1,2,3,4);Z( ) .  We are going to check the sign and

show that (10.23) is  0   in the homology group.  For this purpose we recall the definition of

the orientation.  We regards  ˜ L i   as the graph of  dfi ,  where  fi   is a quadratic form on some
˜ L 0   and we identify  V = T* ˜ L 0 .  Let  S(a,b)   be the stable manifold of  fb − fa .  (Namely

S(a,b)   is the eigen space of negative eigenvalues.)  We remark that we may regards

  C (1,2,3)   as a linear subspace of  ˜ L 0 .  Then we define the orientation on    C (1,2,3)  etc. so that

(10.28)   S(1,2) ⊕ S(2,3) ≅ C (1,2,3) ⊕ S(1,3)

is an orientation preserving isomorphism.  Then we have orientation preserving isomorphisms

:

  

S(1,2) ⊕ S(2,3)⊕ S(3,4) ≅ C (1,2,3) ⊕ S(1,3) ⊕ S(3, 4)

≅ C (1,2,3)⊕C (1,3,4) ⊕ S(1,4)

S(1,2) ⊕ S(2,3) ⊕ S(3,4) ≅ S(1,2) ⊕ C(2,3,4) ⊕ S(2,4)

≅ (−1)deg(2,3,4)deg(1,2) C(2,3,4) ⊕ S(1,2) ⊕ S(2,4)

≅ (−1)deg(2,3,4)deg(1,2) C(2,3,4) ⊕ C(1,2,4) ⊕ S(1,4).

Namely we have    C (1,2,3) ⊕ C(1,3, 4) ≅ (−1)deg( 2,3 ,4 ) deg(1, 2 )C (2,3,4) ⊕C (1,2,4) .  Note

deg(2,3,4) + deg(1,2, 4) = deg(1,2,3) + deg(1,3,4)  by (9.1.2).  Proposition 10.25 follows.

By Proposition 10.25, we can choose a chain    C (1,2,3, 4)  which satisfies Axiom III.

Now the induction for the general  k   is as follows.  We assume that we have constructed

C(1,L , ′ k )  satisfying Axioms III for  ′ k ≤ k .  Let      ( j1,L, jk +1) ∈ J(n,k ,d) .

Lemma 10.29
    
∂ ± C (l,L,m) × C (1,L,l,m ,L,k + 1)( )

l ,m
∑ = 0 .

Proof: We first prove the lemma up to sign.  (Namely over Z 2  coefficient.)  The

argument of the sign (together one in the statement) will be given later.  We remark that the

left hand side is a sum of the terms of the form

(10.30)     C (a,L,b) × C (l,L,a,b,L,m) × C(1,L,l,m,L,k + 1)

for    1 < l < a < b < m < k .  We put  deg(a ,L ,b) = d1 ,   deg(l,L,a,b,L,m) = d2 ,
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  (1,L,l,m,L,k +1) = d3.  We may assume  d1,d2 , d3 ≥ 0 .  We consider the following three

cases.

Case 1: d1 + d2 > 0, d2 + d3 > 0 .   Since    deg(l,L,m) = d1 + d2 −1,

  deg(1,L,a,b,L,k + 1) = d2 + d3 −1, it follows that both     ∂ C (l,L,m) ×C (1,L, l,m,L, k +1)( )
and      ∂ C (a,L,b) × C(1,L,a,b,L,k +1)( )   appears in the left hand side of Lemma 10.29 and

contains (10.30).  Hence this case the term (10.30) cancels to each other (up to sign.)

Case 2: d1 + d2 = 0 .  We apply induction hypothesis Axiom III to   (l,L,m) .  We obtain

    
±C (a,L,b) × C(l,L, a,b,L, m)

a,b
∑ = 0 .

Hence the sum of such terms in the left hand side of Lemma 10.29 vanishes.

Case 3: d2 + d3 = 0.  The same as Case 2.

Thus we proved Lemma 10.29 up to sign.

We now consider the homology class

(10.31)
    ± C (l,L,m) × C(1,L, l,m,L, k + 1)( )∑ ∩ S(Q;1,L,k + 1)[ ].

This homology class is in  H n( k −1) −d − 2 S(Q;1,L ,k + 1),Z( ) .  Corollary 10.22 implies that

this group vanishes if  k + 1 ≥ 5.  Therefore we can find      C (1,L,k + 1)  which bounds

(10.31).  Namely this class satisfies Axiom III.

In the final step, namely in the case  d = 0 ,  we proceed in the same way. Axiom I,III,IV

are satisfied. We finally verify Axiom II.  Let    deg(1,L,k + 1) = −1.  We consider the sum

(10.32)     ±C (l,L,m) × C(1,L,l,m ,L,k + 1)∑ .

where the summations is taken over    (l,L,m)   such that

  deg(l,L,m) = deg(1,L,l,m,L,k + 1) = 0 .  (We discuss the sign later.)  In the same way as

Lemma 10.29 we can prove that (10.32) is a cycle.  On the other hand, (10.32) is the top

dimensional chain.  Hence (10.32) is equal to the constant times the fundamental class.  On

the other hand, since  Q   is not positive definite on   L(1,L ,k + 1),  it follows that the cycle

(10.32) is zero on some open set.  Therefore (10.32) is zero everywhere.  Axiom II follows

immediately.  We thus proved Theorem 10.17.

Remark 10.33 The proof of Theorem 10.17 as well as the proof of Theorem 10.18 is

somewhat similar to the method of Acyclic model discovered by Eilenberg and MacLane

[10] in the early days of homological algebra.

Before going further, we show how the wall    W   looks like combinatorially in the case
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k + 1 = 4,5,6 .  In the case  k + 1 = 5  and deg(1,2,3,4) = 0 , we have

  W (1,2,3, 4) = ±C (1,3, 4) ×C (1,2,3) ± C(1,2,4) × C (2,3, 4).

Note  deg(1,3,4) + deg(1,2,3) =1.  In case  deg(1,3,4) = 1, we may choose   C (1,3,4)   as a

codimension  1 linear subspace of  ˜ L (1,3,4) .  Hence    C (1,3,4) ×C (1,2,3) is a codimension 1

linear subspace.  The other case and other term    C (1,2,4) × C (2,3,4)  can be chosen to be a

codimension  1  linear subspace.  On the other hand, the index of  Q   on  L(1,2,3,4)   also is

1  by Lemma 10.13.  Hence we have the following Figure 10.

                     Figure 10

Here  Q < 0   on  A .  We have  c3 = ±1  on  B   and    c3 = m1  on  C ,  c3 = 0   elsewhere.

(Compare  [21] (3.0.1). )

In the case when  k + 1 = 5, there are several possibilities according to the Maslov

index. We first consider the case  deg(1,2) = 2 ,  d(i, j) = 0  for other  i < j .  (Note then

deg(1,2,3,4,5) = 0 .)  We find that      C (i, j,k ,l)  is of negative virtual codimension, except

  C (1,2,3,4) ,   C (1,2,3,5),   C (1,2,4,5).  Hence

  W (1,2,3, 4,5) = ±C (1,2,3,4) × C (1,4,5) ± C(1,2,3,5) × C (3,4,5) ±C (1,2,4,5) ×C (2,3, 4).

Therefore combinatorially    W (1,2,3, 4,5)   looks like as the following Figure 11.  (We remark

that index of  Q = 2   on  L(1,2,3,4,5)   in this case.)
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Figure 11

We remark however that Figure 11 is combinatorial or topological picture.  Namely

faces    C (1,2,3,4) ×C (1,4,5)  etc. are not liner in this case.  In fact, let us consider the case of

n = 2 .  Then  L(1,2,3,4) = R 4   and    C (1,3,4) ×C (1,2,3) ≅ R 2 .  Hence    ∂C (1,2,3,4)  is a union

of two  R2 's in  R4 .  It is impossible to find a chain    C (1,2,3,4)  contained in a single (flat)

hyperplain.  (We can take it as a union of two flat 3 dimensional sectors.)  This is the reason

why it is difficult to find a wall    W  such that    W ⊂ T 2nk   is compact.

Let us consider other cases of  k +1 = 5.  Here we take the negative eigenspace  L(−)

of  Q  and draw the figure of the intersection of  W  with a 2 dimensional plain parallel to

L(−).

If  deg(1,2) = deg(2,3) = 1 and deg(i, j) = 0  for other  i < j ,  then 4 of  C( j1 , j2 , j3 , j4) 's

can appear in   W (1,2,3, 4,5)  and we find Figure 12-1.  If  deg(1,2) = deg(3,4) =1 and

deg(1,2) = deg(2,3) = 1 for other  i < j , we have Figure 12-2.
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Figure 12-1

Figure 12-2

Let us consider the case when  k + 1 = 6.  In this case, index of  Q   on  L(1,2,3,4,5,6)

is  3.  We take a 3 dimensional subspace  L(−) and are going to draw the figures of the

intersection of    W   with a 3 dimensional plain parallel to  L(−).  Let us consider first the

case  deg(1,2) = 3,  deg(i, j) = 0   for other  i < j .  Then    W (1,2,3, 4,5,6)   is a union of 4

faces and looks like
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Figure 13.

Next we consider the case  deg(1,2) = deg(3,4) = deg(5,6) = 1,  deg(i, j) = 0   for other  i < j .

The we find that    W (1,2,3, 4,5,6)   looks like

Figure 14.
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This is a cell Stasheff introduced to study A∞-structure in  [45].

Finally we consider the case  deg(1,2) = deg(3,4) = deg(4,5) = 1, deg(i, j) = 0   for other

i < j .  We then find that the following figure :

Figure 15

Here the shaded region can belong any one of   C (1,2,3,6) × C (3,4,5,6),

  C (1,2,3,4,5) ×C (5,6,1) ,   C (1,2,3,4) ×C (4,5,6,1).  Note that we need to use the formula

  ±[C (1,5,6) × C(1,2,3,5)] ± [C (2,3,5) ×C (1,2,5,6)] ±[C (3,5,6) ×C (1,2,3,6)]

to draw Figure 15.

Proof of Theorem 10.18:     Let      C
i(1,L,k + 1)   i =1,2   be the classes associated to  mi .   We

are going to prove the following by induction on  k .

Lemma 10.34 There exist codimension    deg(1,L,k + 1) −1   chains      D (1,L,k + 1)   in

  
˜ L (1,L,k + 1)   with the following properties.

(10.35.1) D(1,2)  is the fundamental class.

(10.35.2)     D (1,L,k + 1)   is invariant of the translation by    V ⊆ ˜ L (1,L,k + 1)  and by
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  [v1,L,v k +1] a [cv1,L,cv k +1] .

(10.35.3) There exists  δ > 0   such that       (v1,L,vk +1) ∈D(1,L,k + 1)   implies

  
Re Q(v1,L,v k +1) > δ v1,L,v k +1[ ] 2

.

(10.35.4) The boundary       ∂D(1,L, k + 1)   of        D (1,L,k + 1)   is a difference of two types

of components.  One of them is the sum of

(10.36)     ±D a(1),L,a(2)( ) ×L × D a(t − 1),L,a(t)( ) × C 2 a(1), a(2),L,a(t)( )

where the sum is taken over all t  and  1 = a(1) <L < a(t) = k + 1   with

deg(a( i),L ,a( i + 1)) ≥ 0 , a( i + 1) ≥ a(i) + 1 ,  and deg a(1),a(2),L ,a( t)( ) ≥ 0 .

The other is the sum of

(10.37.1)     ±C 1 l,L,m( ) × D 1,L,l,m,L,k +1( ) ,

(10.37.2)     ±D l,L, m( ) × C1 1,L,l,m,L,k +1( ) ,

where the sum is taken over all   l,m   with deg 1,L ,l,m,L ,k + 1( ) ≥0 , deg l,L ,m( ) ≥ 0 .

(k + 1 ≥ m − l + 1 ≥ 3   in (10.37.1), k ≥ m − l + 1 ≥ 2   in (10.37.2).)

The sign will be fixed during the proof.

Remark 10.38 We can rewrite (10.35.3) as      ∂D +C 2 o D − D oC 1 = 0 .

The proof of Lemma 10.34 is similar to one of Theorem 10.17 and proceeds as follows.

Let us first give a proof up to sign.  (We discuss sign later.)  The proof is by induction on  k .

In the case  k + 1 = 2  we define  D  as in (10.35.1).  In the case  k + 1 = 3, (10.36) −
(10.37)  is    C

2 1,2,3( ) − C1 1,2,3( ) , which is homologous to 0 by Axiom IV.  Hence we have

  D 1,2,3( ).

Assume that    D   is constructed up to  k .  We consider the boundary of (10.36) −
(10.37).  It consists of three kinds of terms

(10.39.1)
±D a(1),L ,a(2)( ) ×L × D a( t −1),L ,a(t)( )

C2 a(1),L ,a(α ), a(β),L ,a( t)( ) × C2 a(α ), a(α + 1),L ,a(β )( ).

(10.39.2.1)

±C1 a(θ) + l,a(θ) + l + 1,L ,a(θ) + m( ) × D a(1),L ,a(2)( ) ×L

×D a(θ),L ,a(θ) + l,a(θ) + m ,L ,a(θ + 1)( ) ×L × D a( t −1),L ,a( t)( )
×C2 a(1),L ,a(t)( ).

(10.39.2.2)

±D a(θ) + l,a(θ) + l + 1,L ,a(θ) + m( ) × D a(1),L ,a(2)( ) ×L

×C1 a(θ),L ,a(θ) + l,a(θ) + m ,L ,a(θ + 1)( ) ×L × D a( t −1),L ,a( t)( )
×C2 a(1),L ,a(t)( ).

(10.39.3.1)     ±C 1 a,L,b( ) × C 1 l,L,a,b,L,m( ) × D 1,L,l, m,L,k + 1( ).
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(10.39.3.2)     ±C 1 a,L,b( ) × D l,L, a, b,L, m( ) ×C 1 1,L,l, m,L,k + 1( ).

(10.39.3.3)     ±C 1 a,L,b( ) × C 1 l,L,a,b,L,m( ) × D 1,L,l, m,L,k + 1( ).

For each term we can divide the case in the same way as the proof of Lemma 10.29.  In

one case, the term appears twice in the boundary of (10.36) −  (10.37) and hence cancels.  In

the other case, terms cancel to each other by induction hypothesis or Axiom II.

Therefore (10.36) −  (10.37) gives an element of  H*( S(Q,1,L ,k + 1),Z ).  We find the

degree is  n(k −1) − d −1. (This is  1 +  the degree in the case of the proof of Theorem 10.17.)

Note   H n( k −1) −d −1(S(Q,1,L ,k + 1),Z ) = 0   by Corollary 10.22.  Hence we obtain

    D 1,L,k + 1( ).  The proof of Lemma 10.34 is complete up to sign.

We can apply the same argument in the case when    deg(1,L,k + 1) = 0 .  Then we obtain

(10.36) =  (10.37) , since in this case they are top dimensional cycle which is zero somewhere.

We now use      D 1,L,k + 1( )  in case   deg 1,L,k + 1( ) = 1 in the same way as  C(1,L ,k + 1)

to obtain  f .  Then (10.36) =  (10.37) for   deg 1,L,k + 1( ) = 0  implies that  b2 o f = f o b1   in

the sense of Definition 9.32.  Therefore c1   is homologous to  c2 .  This completes the proof

of Theorem 10.18 up to sign.

Now we are going to discuss the sign in Axiom III and check the sign in the proofs of

Theorem 10.17 and Lemma 10.34.  For this purpose we continue the discussion of § 9 on the

A∞ structure.  In § 9, we consider only  ck   of degree  0   (or  bk   of degree −1)  we

generalize it to other degree.  We discuss using  bk   to simplify the sign.  Let

  deg(1,L,k + 1) = d .  We consider integral current    b1, L,k +1
(d ) [v1 ,L,vk +1] of degree  d   on

  L(1,L,k + 1) .  Let  Λ( λ ) [resp.  Λsmooth
( λ )

]   denote the vector space of all degree  λ   current

[resp. smooth differential forms] on    L(1,L,k + 1) .  We define

b(d ) : Ts(J) ⊗Λ smooth
( λ ) → Ts(J) ⊗Λ( λ + d )   by

(10.40)
b(d ) e12 Lek k + 1[ ] ⊗ u

 
 
  

 
 

= (−1)( d +1) deg(i , i+ 1)+ 1( )
i =1

l −1∑
l < m
∑ e12 Lel −1l el m em m + 1Lekk + 1[ ] ⊗ u ∧ b1,L,k + 1

(d )( ).
(Note that Ts(J)  degree of b ( d)  is  −d −1 and Ts(J)  degree of  eij   is  deg(i, j).)  Since the

current degree of  b(d )   is  d ,  the total degree of  b(d )   is  −1  and is odd. We consider the

equation

(10.41) db(d ) + (−1)d2 b( d2 ) o
d1 + d2 =d + 1

∑ b( d1 ) = 0 .

Here  d   is the exterior derivative on    L(1,L,k + 1) .

Lemma 10.42 (10.41)  is equivalent to
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(10.43) db1,L,k + 1
(d ) + (−1)d2 + ( d2 + 1) deg( i, i +1) +1( )i= 1

l− 1∑
l <m

d1 + d2 = d +1

∑ bl ,L,m
(d1 ) ∧ b1,L,l ,m ,L,k + 1

(d2 ) = 0 .

Proof: We apply db(d ) + (−1)d2 b( d2 ) o b( d1 )
d1 + d2 = d +1∑  to e12 Lekk + 1[ ] ⊗ 1 and obtain

(10.43).  On the contrary, if we apply 
  
db ( d) + (−1)d2 b(d 2 ) o b ( d1 )

d1 + d2 =d + 1∑ 　to general

  e•• Le••[ ] ⊗ u   we obtain the terms

(10.44)

e•• Le j1 jk +1
Le••

 
 

 
 

⊗ u ∧ db1,L,k + 1
(d ) + (−1)d2 + (d2 + 1) deg( i, i +1) +1( )i= 1

l− 1∑ bl ,L, m
( d1 ) ∧ b1,L, l , m ,L, k +1

(d2 )

l < m
∑

 

 
 

 

 
 

 

 
  

 

 
  ,

and

(10.45)
  
± e•• Lb( d2 )(e•• )Lb( d1 )(e•• )Le••[ ]± e•• Lb( d1 )(e•• )Lb( d2 )(e•• )Le••[ ] .

(10.44) vanishes by (10.43).  (10.45) cancels to each other since the total degree of  b ( d)   is

odd.  The proof of Lemma 10.42 is complete.

We now put

(10.46)   ck
(d ) = s o bk

( d ) o s−1 ⊗ L⊗ s−1( ).

We regards our chain      C k
(d )[v1 ,L,vk ]   in Axiom III as a degree  d   integral current. Let  bk

( d)

correspond to it by (10.46).  We choose the sign in (10.10.5) so that it is equivalent to (10.41)

or (10.43).  (We will check that this choice coincides with (10.23) and (10.24) in the case

k +1 = 4 later.)

To check that the sign in the proof of Theorem 10.17 is correct, we proceed as follows.

We construct  bk
( d)   by induction on  k  such that

(10.47)

  

dbk
( d) + (−1)d2 bk2

( d2 ) o
d1 +d2 =l +1
k1 + k2 = k + 1

∑ bk1

(d1 ) = 0 .

The proof of Theorem 10.7 for  k ≤ 3  gives  b2
( d ) , b3

( d ) . We calculate
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d (−1)d2 b
k2

( d2 ) o
d1 + d2 =l +1
k1 + k2 = k +1

∑ b
k1

( d1 )

= (−1)d2 db
k2

( d2 )
o

d1 + d2 = l+ 1
k1 + k2 = k +1

∑ b
k1

( d1 ) + b
k2

(d2 )
o

d1 + d2 = l +1
k1 + k2 =k + 1

∑ db
k1

(d1 )

=− (−1)d2 + d3 bk3

(d3 )
o bk2

(d2 − d3 +1)
o

d1 + d2 = l +1, d3
k1 + k2 + k3 =k + 2

∑ bk1

( d1 )

− (−1)d3 b
k2

(d2 ) o
d1 + d2 =l + 1,d3
k1 + k2 + k3 = k + 2

∑ b
k3

(d3 ) o b
k1

(d1 − d3 +1)

=0.

Thus induction works.

We next check that the choice of sign above coincides with (10,23), (10.24).  We

calculate  using

m2
(deg( j1 , j2 , j3 ))

(x j1 j2
,x j2 j3

) = (−1)deg( j1 j2 )+ 1 sb2[x j1 j2
,x j2 j3

] ,

and obtain

(−1)d2 b2
( d2 )

o b2
( d1 )

x12 x23 x 34[ ]∑
= (−1)deg(1,3,4)b2

(deg(1,3,4))∑ b2
(deg(1,2,3))

x12 x23[ ] x34[ ]
+(−1)(deg(2,3,4) + 1)(deg(1,2)+ 1) + deg(1,2,4) b2

(deg(1,2,4))
x12 b2

( d1 )
x23 x34[ ][ ]

= (−1)µ 1 sm2
(deg(1,3,4))

(m2
(deg(1,2,3))

(x12 ,x 23), x 34)

+(−1)µ2 sm2
(deg(1,2,4))

(x12 ,m2
(deg(2,3,4))

(x 23 ,x 34)).

where

µ1 = deg(1,3,4) + deg(1,2) + deg(1,3) ,

µ2 = (deg(2,3,4) + 1)(deg(1,2) + 1)+ deg(1,2,4) + deg(1,2) + deg(2,3)

= deg(1,2)deg(2,3,4) + deg(1,2,3)

+deg(1,2,4) + deg(2,3,4) + deg(1,3) + 1.

Thus the sign coincide with one of (10.23) and (10.24).  The proof of Theorem 10.17 is

complete.

We use  ck
(d )   in place of  ck  in  Definitions 9.13 and 9.17 and obtain a map

(10.48)

    

mk
( d ) : π12

* P( ˜ L j1 ,
˜ L j2 ; ˜ M j1 ,

˜ M j2 ) ⊗ L⊗π k k +1
* P( ˜ L jk , ˜ L jk +1

; ˜ M jk , ˜ M j k +1
)

→ π1 k+ 1
* P ( ˜ L j1 , ˜ L jk +1

; ˜ M j1 ,
˜ M jk +1

) ⊗ Λd M ( ˜ L j i
, ˜ M ji )∏( ).

where  
  
Λd M ( ˜ L j i

, ˜ M ji )∏( )   is the totality of degree d   currents on    M ( ˜ L j i
, ˜ M ji )∏ .  Note
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that the Floer degree of  mk
(d )

  is   2 − k − d .  Its current degree (degree as differential form)

is  d .  Using complex structure of    M ( ˜ L j i
, ˜ M ji )  we decompose

  
Λd M ( ˜ L j i

, ˜ M ji )∏( ) = ⊕
d 1 +d 2 = d

Λ( d1 ,d2 ) M ( ˜ L ji ,
˜ M ji )∏( ) .

Let    mk
( d ) = m k

(d 1, d2 )

d1 + d 2 = d
∑   be the decomposition of  mk

( d )   to  d1d2( )  forms.  We generalize

Proposition 9.20 as follows.

Theorem 10.49 ∂ mk
(0 d ) + ±mk2

(0 d2 )
o

d1 + d2 =l + 1
k1 + k2 = k +1

∑ mk1

(0d1 ) = 0 .

The sign is so that it is equivalent to

∂ Bk
(0 d ) + (−1)d2 Bk1

(0 d2 )
o

d1 + d2 =l + 1
k1 + k2 = k +1

∑ Bk2

(0d1 ) = 0

here  Bk
(0 d )   is the operator obtained from  bk

( d) .

Proof of Theorem 10.49.     As in the proof of Proposition 9.20, mk
(0 d )

 fails to be holomorphic

only because of its discontinuity.  Hence  (10.47) implies Theorem 10.49.

We turn to the proof of Lemma 10.34.  Consider degree d  integral current

  f1,L, k +1
( d) [v1,L, vk +1]   for    deg(1,L,k + 1) = d + 1.  We use it to define

f (d ) : Ts(J) ⊗Λ smooth
( λ ) → Ts(J) ⊗Λ( λ + d )   by

(10.50)

f (d ) e12 Lekk + 1[ ] ⊗ u 
 
  

 
 

= (−1)µ

d1 +L+ di− 1 =d
∑ ea (1)a (2) Lea ( i−1)a ( i )[ ] ⊗ u ∧ fa( i−1)La ( i )

( di− 1 ) ∧L ∧ fa(1)La (2)
(d1 )( )

where

  

µ = di−1 (deg(1,2) + 1) + L + (deg(a(i −1) −1, a(i −1)) + 1)( )
+LL+ d2 (deg(1,2) +1) + L + (deg(a(2) −1,a(2)) + 1)( ).

  We note that  Ts(J)   degree of  f (d )   is  −d   and current degree is  d .  Hence its total

degree is 0  and is even.  Now we consider the equation

(10.51)

  

df k
(d ) + (−1)d 2 fk 2

( d2 ) o
d1 + d2 =d +1
k1 +k 2 = k +1

∑ bk1

1( d1 ) − (−1)d 2 bk 2

2( d2 ) o fk1

(d1 )

d 1 +d 2 =d +1
k1 + k2 = k +1

∑ = 0 .

We solve it by induction on  k   in the same way as the proof of Theorem 10.17.  We can
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check using induction hypothesis that

  

d (−1)d 2 f ( d2 ) o
d1 +d2 = l +1

∑ b1( d1 ) − (−1)d 2 b2 ( d2 ) o f ( d1 )

d 1 + d2 =l +1
∑

 

 
 

 

 
 = 0 .

The proof of Lemma 10.34 and Theorem 10.18 is complete.

In a similar way as Theorem 10.49, we can define  nk
(0 d )   and show :

Lemma 10.52

  

∂ nk
( 0d ) + ±nk2

(0 d2 ) o
d1 + d2 = d+ 1
k1 + k2 = k +1

∑ mk1

1( 0d1 ) − ± mk 2

2 ( 0d 2 ) o nk1

( 0 d1 )

d 1 +d 2 = d +1
k1 + k2 =k +1

∑ = 0.

Where the sign is so that it is equivalent to

  

∂ Fk
(0 d) + (−1)d2 Fk2

( 0d 2 ) o
d1 +d 2 =d +1
k1 + k2 = k + 1

∑ Bk1

1(0 d1 ) − (−1)d 2 Bk 2

2( 0d 2 ) o Fk1

( 0d1 )

d1 + d 2 = d +1
k1 +k 2 = k+ 1

∑ = 0

where  Fk
(0 d)   is the operator corresponding to  f k

(d ) .

Remark 10.53 We can prove one more step.  Namely the homotopy equivalence  nk   is

unique up to chain homotopy.  The method of proof is similar. (See Remark 12.42.)  We can

further continue and will arrive the notion of  A∞ category consisting of all  A∞ functors.

(See [15].)  We do not discuss it here.
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§ 11  Extension and Floer cohomology 2
(Higher cohomology)

In this section we describe the isomorphisms in Theorems 3.1 and 6.1 in terms of  mk

and prove the commutativity of the higher cohomology analogue of Diagrams 1,2 in §6.  We

first consider the case of Abelian variety.  Let  (L ,L) ,   ( ′ L , ′ L )   be pairs of affine Lagrangian

submanifolds and  flat line bundles on it.  For simplicity, we assume that  L , ′ L   are

transversal to  Lpt .  Let  k   be the number such that

(11.1)   HF k ( ′ L , ′ L ),(L,L)( ) ≠ 0.

Since (T 2 n ,Ω)∨    is an Abelian variety, it follows from Corollary 5.27 that there exist

line bundles    E(Li(wi ),βi)   and an exact sequence

(11.2) 0 → E(L ,L) → E(L1(w1), β1)⊕ N1 →L → E(Lk + 2(wk + 2), β k + 2)
⊕ Nk +2

such that

(11.3.1) Ext m E(Li(wi), β i), E(L j(w j), β j)( ) =0   for  m ≠ 0 and  i < j ,

(11.3.2) Ext m E( ′ L , ′ L ), E(L j(w j), β j)( ) =0   for   m ≠ 0.

Hereafter we write  E(Li)   etc.  in place of  E(Li(wi), β i)   etc.  We put

Fi ≅ Ker E(Li)
⊕Ni → E(Li+ 1)⊕ Ni +1( ) .

Hence  0 → Fi → E(Li)
⊕ Ni → Fi+ 1 → 0   is exact and  F1 ≅ E(L,L) . It follows from Assumption

(11.1), (11.3) and Theorem 6.1 that   Ext k E( ′ L , ′ L ),E (L,L)( ) ≅

    Ext k E( ′ L , ′ L ),F1( ) ≅ L ≅ Ext1 E( ′ L , ′ L ),F k( ).  Therefore, we obtain an exact sequence  :

(11.4)
0 → Hom E( ′ L , ′ L ), Fk( ) → Hom E( ′ L , ′ L ), E(Lk )( )⊕Nk

→ Hom E( ′ L , ′ L ), Fk +1( )→ Ext k ( ′ L , ′ L ),(L ,L)( )→ 0.

We are going to construct a map  Φ : HF k ( ′ L , ′ L ),(L ,L)( )    ≅ Extk E( ′ L , ′ L ),E(L ,L)( )  by

imitating the above constructions in its mirror.  We first remark that the morphisms in (11.2)

are elements of    Hom E(L ,L),E(L1(w1), β1)( )⊕ N1   and

Hom E(Li −1(wi −1), β i −1), E(Li(w i), β i)( ) ⊗ M (N i −1 ,N i) , (where  M(Ni −1 , Ni)   is the totality of

Ni −1 × Ni   matrices.)  Since we have a canonical isomorphism between 0-th Floer cohomology

and  Hom   by Theorem 6.4,  we obtain elements

(11.5.1) x1 ∈HF 0 E(L ,L), E(L1(w1), β 1)( )⊕ N1
,
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(11.5.2) x i ∈HF 0 (Li−1(wi−1), β i−1),(Li(wi), β i)( ) ⊗ M (N i−1 ,N i) .

Since (11.2) is exact, it follows from Theorem 6.5 that

(11.5.3) m2 (x i , xi +1) = 0 .

Definition 11.6  Let  s∈HF k ( ′ L , ′ L ),(L ,L)( ) .  We define    ˜ Φ (s) ∈HF 0((L ,L), Lk + 1)⊕N k +1

≅ Hom(E(L ,L), E(Lk + 1))⊕N k+ 1   by

(11.7) ˜ Φ (s) = mk + 2 s,x1 ,L ,x k +1( ) .

Lemma 11.8 ˜ Φ (s) ∈Hom E( ′ L , ′ L ), Fk + 1( ).

Proof: m2 m k + 2 s,x1 ,L ,xk +1( ),xk + 2( ) = 0   by (11.5.3) , (11.3) and  A∞  formulae (Lemma

9.28.)  The lemma follows.

Definition 11.9 Φ(s)   is the image in    Ext k ( ′ L , ′ L ),(L,L)( )   of
˜ Φ (s) ∈Hom E( ′ L , ′ L ), Fk + 1( ).
Lemma 11.10 Φ(s)   is independent of the coefficient function defining mk .

Proof: Let  mk
1 , mk

2   be the higher multiplications obtained by two choices of coefficient

functions.  Then, by using Theorem 10.18, we obtain n .  Using (9.33) and Assumption

(11.5.3), we find that

  mk + 2
2 s,x1 ,L ,x k +1( ) − m k + 2

1 s,x1 ,L ,xk +1( ) =± m2 nk + 1 s,x1 ,L ,x k( ),x k +1( ) .

The proof of Lemma 11.10 is complete.

Proposition 11.11 Φ  is independent of the choice of the resolution (11.2).

Proof: We first consider the “dual” way to construct the map  Φ.  Let

(11.12) → E( ′ L k + 2( ′ w k + 2), ′ β k + 2)
⊕ ′ N k +2 → L→ E( ′ L 1( ′ w 1), ′ β 1)⊕ ′ N 1 → E( ′ L , ′ L ) → 0

be an exact sequence of sheaves such that

(11.13.1) Ext m E( ′ L i( ′ w i), ′ β i), E( ′ L j( ′ w j), ′ β j)( ) =0   for  m ≠ 0 and  i > j.

(11.13.2) Ext m E( ′ L j( ′ w j), ′ β j), E(L ,L)( ) =0   for   m ≠ 0.

(11.13.3) Ext m E( ′ L j( ′ w j), ′ β j), E(Li(w i), β i)( ) =0  for   m ≠ 0.
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Hereafter, we write  E( ′ L i)   in place of  E( ′ L i( ′ w i), ′ β i) .  We put

Gi ≅ coker E( ′ L i+ 1)
⊕ Ni +1 → E( ′ L i)

⊕ N i( ) .

Hence 0 → Gi +1 → E( ′ L i) → Gi → 0   is exact and  G1 ≅ E( ′ L , ′ L ).  We then have an exact

sequence

(11.14)
0 → Hom Gk ,E(L ,L)( ) → Hom E( ′ L k ), E(L ,L)( )⊕ ′ N k

→ Hom Gk +1 ,E(L ,L)( ) → Ext k ( ′ L , ′ L ),(L,L)( )→ 0.

Let y1 ∈HF 0 ′ L 1 ,( ′ L , ′ L )( )⊕ ′ N 1
,  and yi ∈HF 0 ′ L i , ′ L i −1( ) ⊗ M ( ′ N i , ′ N i −1)   be the elements cor-

responding to the maps in  (11.12).  We have  m2(y i , y i−1) = 0 .   We put

(11.15) ˜ ′ Φ (s) = mk + 2( yk +1 ,L , y1 ,s) ∈HF 0 ′ L k + 1 ,(L,L)( ) ≅ Hom E( ′ L k +1), E(L ,L)( ) .

We can prove that   ˜ ′ Φ (s) = Hom Gk + 1 ,E(L,L)( )  in the same way as Lemma 11.8 and

that the class  ′ Φ (s) ∈Ext k ( ′ L , ′ L ),(L ,L)( )  induced from  ˜ ′ Φ (s)   is independent of the

coefficient function.

Lemma 11.16 Φ(s) = ± ′ Φ (s) , where the sign depends only on the degree.

Proof: By A∞  formula and the fact the Floer cohomology of nonzero degree appears

only in  HF ( ′ L , ′ L ),(L ,L)( ) , we have

(11.17) m2 m k + 2( yk +1 ,L , y1 ,s), x1( ) =± m2 yk + 1 ,mk + 2( yk ,L , y1 ,s,x1)( ) ,

We compare (11.17) to the standard argument of double complex.  Let

Cab = HF( ′ L a, Lb) ⊗ M( ′ N a ,Nb) .  We define  δa b
1 :Ca b → Ca +1 b ,  δa b

2 :Ca b → Ca b+ 1   by

δab
1 (z) = m2(ya ,z) ,  δab

2 (z) = m2(z, xb ).

(11.2) and (11.14)  implies

  Ker δk +1 0
1( ) Im δ k 0

1( ) ≅ Ext k ( ′ L , ′ L ),(L,L )( ) ≅ Ker δ0 k + 1
2( ) Im δ0 k

2( ) .

The isomorphism Ker δk +1 0
1( ) Im δ k 0

1( ) ≅ Ker δ0 k +1
2( ) Im δ0 k

2( )   is constructed in standard ho-

mological algebra as follows.  Let  z ∈ Ker δ k +10
1( ) .  We obtain  zi ∈Ck +1− i i   such that  z = z 0

and δk +1− i i
2 (zi ) = δ k − i i + 1

1 (zi +1).  Then  zk +1 ∈Ker δ0 k +1
2( ) Im δ0 k

2( )   is the element corresponding

to  z .  We consider the case    z = zk +1 0 = mk +2(yk +1 ,L, y1 , s) .  (11.17) implies that we can take

  z1 = mk+ 2(y k ,L, y1 , s, x1) .  In a similar way, we can take  zi = mk + 2( yk − i+ 1 ,L , y1 ,s,x1 ,L ,x i) .

Thus we obtain    zk +1 = m k + 2(s, x1 ,L, xk +1 ).  Namely  ±Φ(s) = ′ Φ (s)  as required.
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It is easy to see that Proposition 11.11 follows from Lemma 11.16.

Theorem 11.18 The following diagram commutes up to sign.

  

HF ′ k ( ′ ′ L , ′ ′ L ),( ′ L , ′ L )( ) ⊗ HF k ( ′ L , ′ L ),(L,L )( ) m2 →  HF k + ′ k ( ′ ′ L , ′ ′ L ),(L,L)( )
↓ Φ ⊗Φ ↓ Φ

Ext ′ k E ( ′ ′ L , ′ ′ L ),E( ′ L , ′ L )( ) ⊗ Ext k E ( ′ L , ′ L ),E(L,L)( ) →  Ext k+ ′ k E( ′ ′ L , ′ ′ L ),(L,L)( )

Diagram 3

Here the map in the second horizontal line is Yoneda product.

To prove it we need another results, Propositions 11.20 and 11.22.  We recall
˜ Φ (s) ∈Hom E( ′ L , ′ L ), Fk + 1( ).  We first find a discontinuous section of E(Li)

⊕N i   which projects

to  ˜ Φ (s)   by  Hom E( ′ L , ′ L ), E(Lk)( )⊕ Nk −1 → Hom E( ′ L , ′ L ), Fk + 1( ) → 0 .  Let  (v,σ) ∈(T 2n ,Ω)∨

and  z ∈ E( ′ L , ′ L ) (v ,σ ) ≅ HF n ((L pt(v),σ),( ′ L , ′ L )) .  We put

(11.19) ˜ Φ k −1(s)(v,σ)(z) = mk + 2(z ,s,x1 ,L ,xk ) ∈HF n((L pt(v),σ), Lk)
⊕ Nk ≅ E(Lk −1) ( v,σ )

⊕ N k .

We remark that  mk + 2(z ,s,x1 ,L ,xk )   is ill-defined if  (v,σ) ∈(T 2n ,Ω)∨  is on a (Hausdorff)

codimension  k   subset that is the wall.  ˜ Φ k −1(s)  is discontinuous there.

Lemma 11.20 ˜ Φ k −1(s)(v,σ)   projects to  ± ˜ Φ (s)(v,σ) ∈Hom E( ′ L , ′ L ), Fk + 1( )  by the

sheaf homomorphism  Hom E( ′ L , ′ L ), E(Lk)( )⊕ Nk −1 → Hom E( ′ L , ′ L ), Fk + 1( ) → 0 .

Proof: By  A∞  formulae we have

m2 m k + 2(z ,s,x0 ,L ,xk ), xk +1( ) = ±m2 z,m k + 2(s,x0 ,L ,xk ,xk +1)( ) .

Lemma 11.20 follows.

Lemma 11.20 implies that in particular that    ˜ Φ k −1(s)(v,σ)   determines a smooth

element of    Hom E( ′ L , ′ L ), Fk + 1( ).  Namely the singularity is contained in the kernel of

E(Lk )⊕ Nk → Fk +1 .

Proof of Theorem 11.18:     We consider resolutions :

(11.21.1) 0 → E(L ,L) → E(L1)⊕ N1 →L → E(Lk + ′ k + 2)⊕ N k+ ′ k +2

(11.21.2) → E( ′ L k + ′ k + 2)⊕ ′ N k+ ′ k +2 → L→ E( ′ L 1)⊕ ′ N 1 → E( ′ ′ L , ′ ′ L ) → 0 .
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Suppose the maps in (11.21.1) is represented by  x i ∈HF 0 Li−1 ,Li( ) ⊗ M (N i −1 ,N i)   and the

maps in (11.21.2) is represented by  yi ∈HF 0 ′ L i , ′ L i −1( ) ⊗ M ( ′ N i , ′ N i −1) .  Let

′ s ∈HF ′ k ( ′ ′ L , ′ ′ L ),( ′ L , ′ L )( ) ,  s∈HF k ( ′ L , ′ L ),(L ,L)( ) ,  (v,σ) ∈(T 2n ,Ω)∨   and

z ∈ E( ′ L ′ k + 1) (v ,σ ) ≅ HF n((L pt(v),σ), ′ L ′ k +1) .  By definition

′ ˜ Φ ( ′ s )(v,σ)(z) = m2 z ,m ′ k + 2(y ′ k +1 ,L , y1 , ′ s )( ) .

Hence by Proposition 11.20 the Yoneda Product  Φ( ′ s ) oΦ(s)   is represented by a map

sending  z   to

(11.22) mk + 2 m 2 z ,m ′ k + 2(y ′ k + 1 ,L , y1 , ′ s )( ),s,x1 ,L ,xk( ).

By A∞  formula, we find that (11.22) is equal to

±m 2 z ,mk + 2 m ′ k + 2( y ′ k + 1 ,L , y1 , ′ s ), s,x1 ,L ,x k( )( )
= ±m 2 z ,mk + ′ k + 2 y ′ k + 1 ,L , y1 ,m2( ′ s ,s), x1 ,L ,x k( )( )

By the proof of Lemma 11.16, we find that this element is  ±Φ(m2( ′ s ,s)) .  The proof of

Theorem 11.18 is complete.

Theorem 11.23 Let    sii + 1 ∈HF((L(i),L(i)),(L(i + 1),L(i + 1))) ,  i =1,2,3.   Suppose

m2 (s12 ,s23) = m2(s23 ,s34) = 0 .  Then  Φ m3 (s12 ,s23, s34)( )   coincides with the triple Massey-Yoneda

product of  Φ(s12) ,   Φ(s23) ,  Φ(s34 )   up to sign.

Proof: Let  ki   be the degree of  sii + 1 .  We take resolutions :

(11.24)     → E( ′ L k +2 )⊕ ′ N k +2 → L→ E ( ′ L 1 )⊕ ′ N 1 → E(L(1),L(1)) → 0 ,

(11.25) 0 → E(L(4),L(4))→ E(L1)⊕ N1 →L → E(Lk + 2)
⊕N k +2 → ,

satisfying (11.3), (11.13).  Let  yi ∈HF0 ( ′ L i , ′ L i −1) , xi ∈HF0(Li −1 , Li)   be elements corresponding

to the boundary operators of  (11.24), (11.25).  Using assumptions we calculate

(11.26)

mk1 + k2 + k3 + 1 yk1 + k2 + k3
,L , y1 ,m3(s12 ,s23 ,s34)( )

= ±m k2 + k3 + 2 yk1 + k2 + k3
,L , yk1 + 2 ,m k1 + 2( yk1 +1 ,L , y1 ,s12), s23 ,s34( )

±m k3 + 2 yk1 + k2 + k3
,L , yk1 + k2 +1 ,m k1 + k2 + 2( yk1 + k2

,L , y1 ,s12 ,s23), s34( ).
On the other hand, by using  m2 (s12 ,s23) = 0   we have :

(11.27)
m2 yk1 + k2 +1 ,m k1 + k2 + 2(yk1 + k2

,L , y1 ,s12 ,s23)( )
= ±mk2 + 2 yk1 + k2 +1 ,L , yk1 + 1 ,mk1 + 2( yk1 + 1 ,L , y1 ,s12), s23( ).
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The right hand side of (11.27) belongs to    Hom(E( ′ L k 1+ k 2 +1),E(L(3)))   and goes to zero by

  Hom(E( ′ L k 1+ k 2 +1),E(L(3))) → Ext k1 + k2 (E(L(1)),E(L(3))) , since  m2 (s12 ,s23) = 0 .  Hence

  mk1 + k2 + 2 (yk1 +k 2
,L, y1 ,z12 , z23)   is a chain which bounds the cycle representing the Yoneda

product  m2 (z12 , z23) .  Thus the second term in (11.26) is one of the terms defining Massey-

Yoneda product.  In a similar way we find that the first term gives another term of Massey

Yoneda product.  The proof of Theorem 11.23 is complete.

Theorem 11.28 Φ : HF k ( ′ L , ′ L ),(L ,L)( ) → Ext k ( ′ L , ′ L ),(L ,L)( )   is an isomorphism.

Proof: We need to prove injectivity only since we know the groups are isomorphic to

each other by Theorem 6.1.  To show injectivity we study the map

mk + 2 : HF n((L pt(v,σ),( ′ L , ′ L )) ⊗ HF k(( ′ L , ′ L ),(L ,L))

⊗HF 0((L,L), L1) ⊗L ⊗ HF 0(Lk −1 ,Lk ) → HF n((L pt(v,σ), Lk ).

First we determine the combinatorial structure of its wall.  To save notation, we put

L0 = (L ,L)   and L−1 = ( ′ L , ′ L ) , ˜ L −2 = ˜ L pt  and  η(L j1
,L ,L jm

) = η( j1 ,L , jm) .  We consider

η( j1 ,L , jm )  only in the case  j1 < j2 <L < jm .  By Assumption (11.3.1) and Lemma 2.25,

we have

(11.29) η(−2,−1,0) = η(−1,0,i) = k   and all other  η( j1 , j2 , j3) =0 .

We can study the wall in the same way as the examples in § 10 (especially Figure 13)

and obtain the following :

Lemma 11.30  C(−2, −1,0, j1 ,L , jm −1) , (resp. C(−1,0, j1 ,L , jm ) )  is homeomorphic to a

product of the  nm − k − m   dimensional vector space and a cone of two  m − 1 - dimensional

simplexes.

We recall  Li = (Li(wi), β i) . We write  (L ,L) = (L0(w0), β 0) ,  ( ′ L , ′ L ) = (L−1(w−1), β −1)
˜ L pt = ˜ L −2 .  Note that here we move only  (v,σ) .  Namely the other variables  wi , βi   are

fixed. By Bair’s category theorem, we can choose the coefficient function  ck   such that the

following (11.31)  holds.

(11.31) If   j(i) ≠ −2, −1,0   then  C(−1,0, j(1),L , j(m))   does not contain

  [w−1 ,w0, wj (1) ,L,w j ( m)] .

We next use the Maurer-Cartan equation (Theorem 10.53) and obtain

(11.32)

  

∂ mk
( 0d ) + ±m k2

( 0d 2 ) o
d 1 +d 2 = l +1
k1 + k 2 =k +1

∑ mk1

(0 d1 ) = 0 .
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We remark we are moving only  v .  (11.32)  makes sense and holds in this situation because

of (11.31). We then have

(11.33) ∂ ˜ Φ k −1(s)( )(v,σ)(z) =± m2(z,m k
(01)

(s,x1 ,L ,x k)) .

Now we recall the exact sequence

Hom E( ′ L , ′ L ), Fk( ) → Hom E( ′ L , ′ L ), E(Lk )( )⊕Nk −1

→ Hom E( ′ L , ′ L ), Fk + 1( ) δ →  Ext 1(E( ′ L , ′ L ), Fk).

The standard construction of the coboundary operator

Hom E( ′ L , ′ L ), Fk + 1( ) → Ext 1(E( ′ L , ′ L ), Fk ) ,  in Dolbeault cohomology is as follows.  We start

from  u ∈Hom E( ′ L , ′ L ), Fk + 1( ).  We lift it to a section  ˜ u   of Hom E( ′ L , ′ L ), E(Lk)( )⊕ Nk −1

which is, in general, not holomorphic.  Then, since  u   is holomorphic,  ∂ ̃  u   is a section of

  Hom E( ′ L , ′ L ),Fk( ) ⊗ Λ( 01)   and represent the class  δu ∈Ext 1(E( ′ L , ′ L ), Fk) .  We consider

˜ Φ (s) ∈Hom E( ′ L , ′ L ), Fk + 1( ), the holomorphic section in Lemma 11.20.  By Lemma 11.20, we

can lift it to  ˜ Φ k −1(s) ,  which is a (discontinuous) section of  Hom E( ′ L , ′ L ), E(Lk)( )⊕ Nk −1
.

Hence the 01 current ∂ ˜ Φ k −1(s)   represents δ ˜ Φ (s) ∈Ext 1(E( ′ L , ′ L ), Fk ).  To be more explicit

we put

(11.34) Φk − 2(s) = mk +1
(01)

s,x1 ,L ,xk( ) .

Φ k − 2(s) is a Hom E( ′ L , ′ L ), E(Lk)( )⊕ Nk
 valued 01 current.

Lemma 11.35 Φk − 2(s)   is a  Fk   valued 01 current.

Proof: m2 m k + 1
(01)

s,x1 ,L ,x k( ),xk +1( ) =± mk + 1
2 s,x1 ,L ,xk −1 ,m2(xk ,xk + 1)( ) =0 .  The lem-

ma follows.  (In fact this lemma is also a consequence of the construction of boundary

operator summarized above.)

Thus, by (11.33), we have

Lemma 11.36 δ ˜ Φ (s) = ±Φ k − 2(s) .

We next find a 01 current with coefficient in  Hom E( ′ L , ′ L ), E(Lk −1)( )⊕N k− 1
  which goes

to   Φk − 2(s) .  We put

(11.37.1) ˜ Φ k − 2(s)(v,σ)(z) = mk +1
(01)

z,s,x1 ,L ,xk −1( ),

(11.37.2) Φk − 3(s) = mk
(02)

s,x1 ,L ,xk −1( ) .
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(11.37) implies  m2
˜ Φ k − 2(s), xk( ) = ±Φk −2(s) .  Using Theorem 10.53 we can show

∂ ˜ Φ k − 2(s) =±Φ k −3(s) .  Therefore  δδ ˜ Φ (s) = ±Φ k − 3(s) .  We continue in the same way and

conclude :

Proposition 11.38
    
δLδ( ) ˜ Φ (s)( ) ∈ Ext k(E( ′ L , ′ L ),F1 ) = Ext k (E( ′ L , ′ L ),E(L,L))   is rep-

resented by Dolbeault cycle  Ψ(s)   where

(11.39) Ψ(s)(v,σ)(z) = m2
(0 k )

(z ,s) .

We thus describe our element  Φ(s)   using Dolbeault cohomology.  To show that it is

nontrivial, we use the above representative and Serre duality.  Namely we prove the following

:

Theorem 11.40 The following diagram commutes up to nonzero constant.

  

HF k(( ′ L , ′ L ),(L,L)) ⊗ HFn− k((L ,L),( ′ L , ′ L )) → C

↓ Φ ⊗ Φ

Ext k(E( ′ L , ′ L ),E(L,L)) ⊗ Extn −k (E(L,L),E ( ′ L , ′ L )) → C

Diagram 4

Here the inner products are defined in Remark 3.3.

Proof: We apply Proposition 11.38 also to t ∈HF n− k((L ,L),( ′ L , ′ L ))   and obtain

Ψ( t) . To prove Theorems 11.40 and 11.26, we calculate  Ψ(s)   and  Ψ( t)   more explicitly.

We may regard  L(−2,−1,0) ≅ V ˜ L pt .  By definition, we may choose

  C (−2, −1,0) ⊆ L(−2,−1, 0)   as a codimension  k   linear subspace such that  Q   is positive

definite on it.  Furthermore, we may assume that      C (−2, −1,0) ∩ Γ ≅ Z n − k .  We put

  C (−2, −1,0) ∩ Γ ≅ Γ1 ,    C (−2,−1,0) = C (−2,−1, 0) Γ1 .  We consider the case  s = [p],  where

p ∈L ∩ ′ L .  Let  ˜ p ∈V   be a lift of it and  v(p) ∈V ˜ L pt   be its equivalence class.  Then the

support of  Ψ([ p])   is

(11.41)

  

T = [[v]] ˜ p ∈ ˆ L (v) + C(−2, −1,0){ } = [[v]] v − v(p) ∈C (−2,−1,0){ }
≅ T k ⊂ V ˜ L pt( ) Γ Γ ∩ ˜ L pt( ).

We consider  [[v]] ∈T .  Let  q1 ∈ L(v) ∩ L , q2 ∈ L(v) ∩ ′ L .  We are going to calculate

the  [q2 ] component of Φ0([p])([q1]).  It is zero unless

(11.42)   q1,q2 ∈v(p) + C(−2,−1,0) + ˜ L pt mod Γ .

In case (11.42) holds, we choose lifts  ˜ q 1 , ˜ q 2   in  V   such that

=
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(11.43)   ˜ q 1 , ˜ q 2 ∈v(p) + C(−2,−1,0) + ˜ L pt .

We may choose  ˜ q 1 ∈ ˆ L (v(p)) , ˜ q 2 ∈ ˆ ′ L (v( p)).  We put :

(11.44)

Θ0
(k ) (v,σ)p ,q 1, q2

= exp −2πQ(q1(γ ),v(p), q2(γ )( ) + 2π −1H(q1(γ ),v(p), q2(γ );β1 ,σ ,β2)).
γ ∈Γ1

∑

Here  {q1(γ )} = ˆ L (˜ q 1) ∩ L(v( p) + γ ) , {q2 (γ )} = ˆ ′ L ( ˜ q 2) ∩ L(v(p) + γ ) .

By definition the  [q2 ]  coefficient of  ˜ Φ 0([p])([q1])  around  (v,σ)   is (0,k)  component

of the delta current times   Θ0
(k ) (v,σ)p ,q 1, q2

.  We remark that

(11.45) Θ0
(k ) (v,σ)p ,q 1, q2

= Cγ exp 2π −1σ(q2(γ ) − q1(γ ))( ).
γ ∈ Γ1

∑

Here  Cγ   is independent of  σ .

We next consider  ˜ Φ 0(t).  Note L(−2,0,−1) ≅ L(−2, −1,0) ≅ V ˜ L pt , and

Q L( −2, 0,− 1) = −QL ( −2, −1, 0)   by this isomorphism.  Hence    C (−2,0, −1)   is transversal to

  C (−2, −1,0) .

Let  ′ p ∈L ∩ ′ L .  We consider  t = [ ′ p ] .  We define  v( ′ p ) ∈V ˜ L pt  in a similar way as

v(p) .  We put

(11.46)
  

′ T = [[v]] v − v( ′ p ) ∈C (−2,0,−1){ } ≅ Tn − k ⊂ V ˜ L pt( ) Γ Γ ∩ ˜ L pt( ) .

Let   [[v]] ∈ ′ T ,  q1 ∈ L(v) ∩ L , q2 ∈ L(v) ∩ ′ L .  We choose  ˜ ′ q 1 , ˜ ′ q 2   such that

  ˜ q 1 , ˜ q 2 ∈v(p) + C(−2,−1,0) + ˜ L pt ,  ˜ ′ q 1 ∈ ˆ L (v( ′ p )) , ˜ ′ q 2 ∈ ˆ ′ L (v( ′ p )) .  We define

(11.47)

Θ0
(n − k )(t)(v,σ ) ′ p , ′ q 1 , ′ q 2

= exp 2πQ( ′ q 1(γ ),v( ′ p ), ′ q 2 (γ )( ) − 2π −1H( ′ q 1(γ ),v( ′ p ), ′ q 2(γ ); β1 ,σ ,β2 )).
γ ∈Γ1

∑

Here  { ′ q 1(γ )} = ˆ ′ L ( ˜ ′ q 1) ∩ L(v( ′ p ) + γ ) , { ′ q 2 (γ )} = ˆ ′ L ( ˜ ′ q 2) ∩ L(v( ′ p ) + γ ).  We have

(11.48) Θ0
(n − k )(t)(v,σ )p,q 1, q2

= ′ C γ exp −2π −1σ ( ′ q 2(γ ) − ′ q 1(γ ))( ).
γ ∈Γ2

∑

Let  ω n   be the nontrivial holomorphic  n   form on  (T 2 n ,Ω)∨ .  By definition, we have

(11.49)

˜ Φ 0([ p]) ∧
( T2 n ,Ω )∨∫ ˜ Φ 0([ ′ p ]) ∧ω n

= C Θ( k )([ p])(v,σ) ∧
σ∈(T 2 n ,Ω )∨∫ Θ( n−k )([ ′ p ])

v∈T ∩ ′ T 
∑ (v,σ) dσ.

By (4.45), (4.45), we find that (4.49) is equal to
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(11.50) C Cγ1
Cγ 2

exp 2π −1σ q2(γ) − q1(γ) − ′ q 2(γ) + ′ q 1(γ)( )( )dσ
σ ∈( T2 n , Ω )∨∫

γ 1 ∈Γ1 ,
γ2 ∈Γ2

∑ .

We remark that  q1(γ) − q2(γ) ∈ C(−2, −1,0), q1(γ) − ′ q 2(γ) ∈ C(−2,0,−1).  Since

C(−2, −1,0) ∩ C(−2,0, −1) ={0}, it follows that the integral in (11.50) is  0  unless

q1(γ ) − q2(γ ) = ′ q 1 (γ ) − ′ q 2 (γ ) = 0.  Therefore  (11.50) is zero unless  v( p) = v( ′ p ) = v .  In that

case, (11.50) is  CC0C0Vol(T n)   and is a constant.  The proofs of Theorems 11.40 and 11.28

are complete.

We finally consider the case when  (T2 n ,Ω)∨   is not necessary an Abelian variety.  In

that case we define  Φ : HF k ( ′ L , ′ L ),(L ,L)( ) → Ext k ( ′ L , ′ L ),(L ,L)( )   by (10.39).  Then by the

argument above,  Φ   is an isomorphism.  We are going to prove Theorems 11.18 and 11.23

by using this definition of   Φ .  (Then they are generalized to the case when  (T2 n ,Ω)∨   is not

necessary an Abelian variety.)

Alternative proof of Theorem 11.18:     Let  s, ′ s   be as in the proof of Theorem 11.18.  By

Theorem 10.49, we have

(11.51)
Ψ(m2(s, ′ s ))(v,σ)(z) = m2

(0 k + ′ k )
(z ,m2(s, ′ s ))

= ±m2
(0 ′ k )

m2
(0 k )

(z ,s), ′ s  
 
  

 
 ± ∂ m3

(0 k + ′ k −1) 
 
  

 
 (z ,s, ′ s ).

Since  ∂ m3
( 0k + ′ k −1)   is zero in Dolbeault cohomology Theorem 11.18 follows.

Alternative proof of Theorem 11.23:     Let  s12 ,s23 ,s34   be as in the proof of Theorem 11.23.

By Theorem 10.49, we have

(11.52)

Ψ(m3(s12 ,s23 ,s34))(v,σ)(z)

= m2
(0 k1 + k2 + k3 −1)

(z,m 3(s12 ,s23 ,s34))

= ±m 3
(0 k2 + k3 −1)

(m2
(0 k1 )

(z ,s12), s23 ,s34)) ± m2
(0 k3 )

(m3
(0 k1 + k2 −1)

(z ,s12 ,s23), s34))

± ∂ m4
(0 k1 + k2 + k3 −2) 

 
  

 
 (z ,s12 ,s23 ,s34).

By (11.51)   z a ±m 3
(0 k1 + k2 −1)

(z ,s12 ,s23)   is a Dolbeault chain which bounds

  z a m2
( 0 ′ k ) m2

(0 k )(z ,s12 ),s23( ) .  Therefore the right hand side of (11.52) is the Massey-Yoneda

product of  Φ(s12),Φ(s23 ),Φ(s34).  The proof of Theorem 11.23 is complete.
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§ 12 Resolution and Lagrangian surgery
　
The purpose of this section is to show that multi theta function  mk   describes various

important properties of the sheaves on complex tori.  In fact, in this section, we do not use so

much the fact that our complex manifold is a torus.  Many of the arguments of this section

may be generalized if we can construct  mk   satisfying Theorem 10.49 etc. on more general

complex manifolds.  We study the derived category  D (T 2 n,Ω)∨( )  of coherent sheaves of

complex torus.  Note that the derived category we study in this section is the usual one (see

[23], [22]) and not one we introduced in § 2.  For    F ∈Ob D (T2 n ,Ω)∨( )( ) ,  u ∈Z   let

  F[u] ∈Ob D (T 2n ,Ω)∨( )( )   be the object obtained by shifting degree.  Namely

  H
k (T 2n ,Ω)∨ ,F (u)( ) ≅ H k +u (T2n ,Ω)∨,F( ) .  Roughly speaking, we construct objects such as

⊕
a

E L0, a(w0,a),α 0, a( )[u(0,a)] → L → ⊕
a

E LI ,a(w I , a),α I, a( )[u(I ,a)] .

We consider

(12.1) x i , j;a , b ∈HF i − j + u ( j,b )−u ( i,a )+ 1 (Li, a(wi, a),α i ,a),(L j ,b(w j ,b),α j , b))( ).

For each  0 ≤ i < j ≤ k ,  a,b   we consider an equation

(12.2)
i =l (1) <L<l (k + 1)= j
a =c(1),L, c (k + 1)= b

∑
k
∑ (−1)µ mk xl (1), l(2 ) ; c (1), c( 2 ) ,L ,xl (k ), l ( k +1); c(k ), c ( k + 1)( ) =0 .

Here the sign is so that it is equivalent to :

(12.3)
i =l (1) <L<l (k + 1)= j
a =c(1),L, c (k + 1)= b

∑
k
∑ bk xl (1), l (2); c(1), c (2) L xl (k ), l ( k +1); c ( k ), c( k +1)[ ] = 0 .

Definition 12.4 We say a system  L= (Li ,a(wi ,a),α i , a)( ),(u( i,a)), x i, j; a , b( )( )  a  Lagrangian

resolution, if (12.2) is satisfied.

Theorem 12.5 For any Lagrangian resolution  L,  we have an object

E(L) ∈ObD (T 2n ,Ω)∨( )( ).

Remark 12.6 Any Lagrangian resolution determines an  A∞  functor

Lag((T 2 n ,Ω)) → Ch .  (See  [15] for definition and notation.)   Hence Theorem 12.5 associates

an object of a derived category of sheaves of the mirror to certain A∞  functors

Lag((T 2 n ,Ω)) → Ch .  The conjecture we mentioned in the introduction of  [12] is

D (T 2 n,Ω)∨( ) ≅ Func Lag((T 2 n,Ω)), Ch( )op

, (where  Func Lag((T 2n ,Ω)), Ch( )op

 is the opposite
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category of the A∞  category of  A∞  functors  Lag((T 2 n ,Ω)) → Ch .  See [15].)  Thus

Lagrangian resolution naturally appears in homological mirror conjecture.

Conjecture 12.7 Any object of  D (T 2 n,Ω)∨( )  is obtained as  E(L)   from some Lagrangian

resolution  L,  if  (T 2 n ,Ω)∨   is an Abelian variety.

Remark 12.8 Mukai mentioned to the author that he proposed a conjecture (10 years

ago) that any coherent sheaf on abelian variety has a resolution by semi-homogeneous sheaves.

Conjecture 12.7 will follow from this conjecture of Mukai.

Proof of Theorem 12.5:    We first give an idea of the proof of Theorem 12.5.  The detail will

be given later in this section.  We consider a direct sum of holomorphic vector bundles :

(12.9)
    
C(L) = ⊕

d, i,a
E(Li , a(wi,a ),αi, a) ⊗ Λ(0, d ) ,

where the degree of an element of  Λ( 0 , d ) E(Li, a(wi ,a),α i ,a( )   is  d + i − u( i ,a).  We will

define a boundary operator on (12.9) and will regard it as a complex of  O( T2 n ,Ω )∨   module

sheaves.  Let    i = l(1) <L < l(k) = j ,    a = c(1),c(2),L,c(k) = b .  We put    
r 
l = (l(1),L,l(k)) ,

  
r 
c = (c(1),L,c(k)) .  Let

(12.10)
d(

r 
l ,

r 
c ) = l(s) − l(s + 1) + u(l(s + 1),c(s + 1)) − u(l(s), c(s)) + 1( )

s =1

k −1

∑ + 2 − k

= l(1)− l(k) + c(k) − c(1)+ 1.

If  l1(k1) = l 2(1)  and  c1(k1) = c2(1), we put

(
r 
l 1 ∪

r 
l 2)( i) =

l1( i) i ≤ k1

l2( i − k1 + 1) i > k1 ,

 
 
 

    (
r 
c 1 ∪

r 
c 2)(i) =

c1(i) i ≤ k1

c2(i − k1 + 1) i > k1 .

 
 
 

Definition  12.11 We define a distribution valued homomorphism

m(
r 
l ,

r 
c ) : E(Li, a(wi, a),α i, a) → E(L j ,b(w j ,b),α j , b) ⊗Λ( 0 , d(

r 
l ,

r 
c )) ,  by

(12.12) m(
r 
l ,

r 
c )(z) = m k

(0 d(
r 
l ,

r 
c ))

z ,xl (1), l (2); c (1), c(2) ,L ,xl ( k −1), l ( k );c (k −1), c (k )( ).

Here    z ∈E(Li, a(wi ,a),α i, a) (v ,σ ) ≅ HFn(Lpt (v),σ ),(Li, a(wi, a),αi , a)) .

(12.10) implies that the right hand side of (12.12) is in

  E(Lj ,b(w j,b ),α j ,b )(v, σ ) ≅ HFn (Lpt(v),σ),(L j,b(w j , b),α j, b)) ⊗ Λ( 0,d ) .

Definition  12.13 Let  S = (s i,a )   is a smooth section of    C(L).  We define a distribution

section  
ˆ ∂ S   of  

ˆ ∂ S   by
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(12.14) ˆ ∂ S( )
j,b

= ∂ sj ,b + (−1)µ (
r 
l ,

r 
c )+ deg S+ d (

r 
l ,

r 
c )

r 
l ,

r 
c 

∑ m(
r 
l ,

r 
c )(si ,a) .

Here the sum is taken over all    (
r 
l ,

r 
c )   such that    i = l(1) <L < l(k) = j ,

  a = c(1),c(2),L,c(k) = b .   µ(
r 
l ,

r 
c ) in (12.14) is determined so that

(−1)µ (
r 
l ,

r 
c ) B(

r 
l ,

r 
c )

( d ) = so m(
r 
l ,

r 
c ) o s−1 ⊗L ⊗ s−1( )  Here  s   in this formula is the suspension in

§9 and  B(
r 
l ,

r 
c )

(d )
  is defined from  bk

(d )
  in the same way as we defined  m(

r 
l ,

r 
c )

(d )
  from  ck

(d )
.

Lemma 12.15   
ˆ ∂ o ˆ ∂   is well-defined and    

ˆ ∂ o ˆ ∂ = 0 .

Proof: Note that  ˆ ∂ S   is in general not well-defined for a distribution section.  However

the definition of  mk
( d )   implies that  ˆ ∂ o ˆ ∂ ( S)   is well-defined for smooth  S .  We calculate

(12.16)

± ˆ ∂ o ˆ ∂ ( )S 
 
  

 
 

j ,b
= ∂ ∂ sj ,b − (−1)deg S+ d (

r 
l ,

r 
c )∂ o

r 
l ,

r 
c 

∑ B(
r 
l ,

r 
c )(si, a)

− (−1)deg S+1 + d (
r 
l ,

r 
c )B(

r 
l ,

r 
c ) o

r 
l ,

r 
c 

∑ ∂ (si ,a)

− (−1)d (
r 
l 1 ,

r 
c 1 )

r 
l =

r 
l 1 ∪

r 
l 2r 

c =
r 
c 1 ∪

r 
c 2

∑ B(
r 
l 1 ,

r 
c 1 ) o B(

r 
l 2 ,

r 
c 2 )( )(si, a)

= − ∂ B(
r 
l ,

r 
c )( )(si , a)

r 
l ,

r 
c 

∑ − (−1)µ (
r 
l 1 ,

r 
c 1 )

r 
l =

r 
l 1 ∪

r 
l 2r 

c = r 
c 1 ∪r 

c 2

∑ B(
r 
l 1 ,

r 
c 1 ) o B(

r 
l 2 ,

r 
c 2 )( )(si, a).

(Note that our convention in (10.40) is that we take wedge with  b  from the right.)  On the

other hand, (12.2) implies

(12.17)

(−1)( d2 )
r 
l ,

r 
c 

∑ B (d2 ) o B (d1 )( )(si, a ,xl (1), l (2 ) ; c (1), c (2) ,L ,x l( k −1), l ( k );c ( k −1), c (k ))

= (−1)µ (
r 
l 1 ,

r 
c 1 )

r 
l =

r 
l 1 ∪

r 
l 2r 

c = r 
c 1 ∪ r 

c 2

∑ B(
r 
l 1 ,

r 
c 1 ) o B(

r 
l 2 ,

r 
c 2 )( )(si, a).

Theorem 10.49 and (12.17) implies that  (12.16) vanishes.  Lemma 12.15 is proved.

We remark that  ˆ ∂   is an  O( T2 n ,Ω )∨   module homomorphism.  (∂   is an O( T2 n ,Ω )∨

module homomorphism and  
  
m

(
r 
l ,

r 
c )

  does not contain derivative and so is an  O( T2 n ,Ω )∨

module homomorphism.)  Thus we are almost done.  Namely we obtain a “complex of

O( T2 n ,Ω )∨  module sheaf”,  which gives an element of  Ob D (T2 n,Ω)∨( )( ) .

However there is one trouble.  Namely  
  
m

(
r 
l ,

r 
c )

  is singular.  Hence, we need to be careful

to choose the regularity we assume to associate  O( T2 n ,Ω )∨   module sheaf to the holomorphic

bundle    C(L).  Namely if we consider the sheaf of smooth sections  S , then 
  
m

(
r 
l ,

r 
c )

(S)  is not

smooth hence  ˆ ∂   does not give a sheaf homomorphism.  On the other hand, if we consider
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the sheaf of distribution valued sections  S , then   
  
m

(
r 
l ,

r 
c )

(S)  is not well defined in general.

We go back to this point later in this section.

The next result calculates the cohomology of  E(L) .  We define a chain complex

C O,L( ) .  We put :

(12.18)   
    
C l

O,L( ) = ⊕HF l− i +u( i, a ) Lst ,0( ), Li,a(wi , a),α i,a( )( ) .

We next define      δ : Cl
O,L( ) → C l +1

O,L( ) .   Let  S = (si,a) ∈Cl
O,L( ).  We put

(12.19) (δS) j ,b = (−1)µ (
r 
l ,

r 
c )

r 
l ,

r 
c 

∑ m k si ,a ,xl (1), l (2); c (1), c( 2 ) ,( L ,x l ( k −1), l ( k ); c(k −1), c ( k )) .

Here   µ(
r 
l ,

r 
c )  is as in (12.14).

Lemma 12.20 δδ = 0 .

The proof is a straight forward calculation using  A∞   formulae and (12.2).  We omit it.

Theorem 12.21
  
H k (T 2n ,Ω)∨ ,E(L )( ) ≅ H k C*

O,L( ),δ( ) .

We can generalize Theorem 12.21 as follows.  Let    L, ′ L   be Lagrangian resolutions.

We put

(12.22.1)   
    
C l ′ L , L( ) = ⊕HF l +i − j − ′ u ( i,a )+ u ( j,b) ′ L i ,a( ′ w i, a), ′ α i ,a( ), L j ,b (w j, b),α j ,b( )( )

(12.22.2)

(δS) ′ i ,i ; ′ a ,a = (−1)µ (
r 

′ l ,
r 
′ c ;

r 
l ,

r 
c )

r 
′ l ,

r 
′ c ,

r 
l ,

r 
c 

∑ m k + ′ k −1 ′ x ′ l (1), ′ l (2 ) ; ′ c (1), ′ c ( 2 ) ,L( ,

′ x ′ l ( ′ k −1), ′ l ( ′ k ); ′ c ( ′ k −1), ′ c ( ′ k ) ,s ′ l ( ′ k ), l (1); ′ c ( ′ k ), c (1) ,x l (1), l (2); c(1), c (2) ,

L ,xl ( k −1), l (k );c ( k −1), c(k ) ).
Again by using  A∞   formulae and (12.2) we can check  δ oδ = 0.

Theorem 12.23
  
Ext k E( ′ L ),E(L)( ) ≅ H k C* ′ L ,L( ),δ( ) .

Remark 12.24 We can also describe the Yoneda and Massey-Yoneda products among

elements of  
  
Ext k E( ′ L ),E(L)( )   in terms of  mk .  We leave it to the reader.  (Compare  the

definition of (higher) compositions among  A∞  functors in  [15].)

Next we slightly rewrite Theorem 12.21.  We recall

HF Lst ,0( ), Li , a(w i, a),α i, a( )( ) ≅ HF Li ,a(w i ,a),α i , a( ), Lst ,0( )( )* .  We use the (canonical) basis

of them to associate element  si ,a
* ∈HF Li ,a(wi , a),α i, a( ), Lst ,0( )( )*   to each element of
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si ,a ∈HF Lst ,0( ), Li, a(w i, a),α i ,a( )( ) .

Corollary 12.25 H (T 2 n,Ω)∨ ,E(L)( )  is isomorphic to the linear space of the solutions of

the linear equations

  
(−1)µ (

r 
l ,

r 
c )

r 
l ,

r 
c 

∑ m k si, a , xl(1),l (1); c (2), c (2) ,( L,x l(k −1 ),l (k );c ( k− 1), c( k) ) = 0 ,

(−1)µ (
r 
′ l ,

r 
′ c )

r 
′ l ,

r 
′ c 

∑ m ′ k x ′ l (1), ′ l (2 ) ; ′ c (1), ′ c ( 2 ) ,( L ,x ′ l ( ′ k −1), ′ l ( ′ k ); ′ c ( ′ k −1), ′ c ( ′ k ) ,sj, b
* ) = 0 ,

for  S = si,a( ) .

Corollary 12.25 follows immediately from Theorem 12.11 by using the cyclicity :

m ′ k ti ,a ,x ′ l (1), ′ l (2); ′ c (1), ′ c (2) ,( L ,x ′ l ( ′ k −1), ′ l ( ′ k ); ′ c ( ′ k −1), ′ c ( ′ k )),s j, b( )
= m ′ k ti ,a ,x ′ l (1), ′ l (2 ) ; ′ c (1), ′ c ( 2 ) ,( L ,x ′ l ( ′ k −1), ′ l ( ′ k ); ′ c ( ′ k −1), ′ c ( ′ k ) ),sj, b

*

=± m ′ k x ′ l (1), ′ l (2 ) ; ′ c (1), ′ c (2) ,( L ,x ′ l ( ′ k −1), ′ l ( ′ k ); ′ c ( ′ k −1), ′ c ( ′ k ) ,sj, b
* ),ti, a .

Before proving theorems, we give some examples.

Example 12.26 Suppose  η( ˜ L 1 , ˜ L 2) = 0.  We choose

(12.27) x = cp[ p]
p∈L1 (w1 )∩ L2 ( w2 )

∑ ∈HF 0((L1(w1),α 1),(L2(w2),α 2)) ,

(L1(w1),α1),(L2(w2),α 2), x  determine a Lagrangian resolution  L.   Then  E(L)   is an

element of  
  
E(L) ∈Ob D (T2 n ,Ω)∨( )( )  determined by the complex

E(L1(w1),α1)
Φ (x ) →   E(L2(w2),α 2) .

Example 12.28 (Compare [41].)   Suppose  η( ˜ L 1 , ˜ L 2) = 1.  We choose

x ∈HF1((L1(v1),α1),(L2(v2),α 2)) . (L1(w1),α1),(L2(w2),α 2), x  determine  a Lagrangian res-

olution  L.   (u(2) = 1.)  We have an exact sequence

(12.29) 0 → E(L2(w2),α 2) → E(L)[1]→ E(L1(w1),α1) → 0 .

which corresponds to    x ∈Ext1(E(L1(w1),α1),E (L2(w2),α 2)) .  To show (12.29) we consider

the operator  
ˆ ∂   we used in the proof of the Theorem 12.5.  In our case

    C
d(L) = E(L1(w1),α1) ⊗ Λ( 0,d )( ) ⊕ E(L2 (w2),α 2) ⊗ Λ(0, d )( ) ,  and    

ˆ ∂ : Cd(L) → Cd +1(L)  is

ˆ ∂ (s1 ,s2) = ∂ s1 ,∂ s2 + m2
(1)

(s1 ,x)( ) .
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Therefore the Dolbeault  resolution  
  
⊕
d

E(L2 (w2),α2) ⊗ Λ(0 ,d )( )   of    E(L2(w2 ),α2 )  is  a

subcomplex of the complex  C*(L)   defining  E(L)[1]  and we have an exact sequence

    
0 → ⊕

d
E(L2(w2),α2) ⊗ Λ( 0,d )( ) → C∗(L) → ⊕

d
E(L1(w2),α1) ⊗ Λ(0 ,d)( ) → 0 .

compatible with differentials.  (12.29) follows.

Example 12.30 Let  η*( ˜ L 1 , ˜ L 2) = η*( ˜ L 3 , ˜ L 4) = 1 and η*( ˜ L i , ˜ L j) = 0  for  other  i < j.  We

put  u(1) = 0 , u(2) = u(3) =1, u(4) = u(5) = 2   and consider

x ij ∈HF
dij Li(w i),α i( ), L j(w j),α j)( )( ),  where  d12 = d34 = 1,  d23 = d45 = d13 = d14 = d35 = 0.

Our equation (12.2) is

(12.31.1) m3(x 23 ,x 34 ,x45) ± m2(x 24 ,x45) ± m2(x23 ,x35) = 0

(12.31.2)
m4(x12 ,x 23 ,x34 ,x45) ± m3(x13 ,x34 ,x45) ± m3(x12 ,x24 ,x45)

±m 2(x13 ,x 35) ± m 2(x14 ,x 45) =0.

They are third and fourth order equations of L1 • L2 + L2 • L3 + L3 • L4 + L4 • L5

+ L1 • L3 + L1 • L4 + L2 • L4 + L3 • L5   variables.   (The number of equations is

L2 • L5 + L1 • L5 .)   In case when  E(L)[2]   is represented by a vector bundle, we have a

diagram of exact sequences :

0

↓
0 → E2 → F → E1 → 0

0
↓↓

E(L)[2] E3 → 0

↓ ↓
0 → E4 → H → G → 0

↓ ↓
E5 0

↓
0

          Diagram 5
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0

↓
F

↓
0 → E4 → ϑ → E3 → 0

↓ ↓ ↓
0 → E4 → H → G → 0

↓
0

Diagram 6

Here  Ei = E(Li(wi),α i) .  The extension of the first line in Diagram 5 is given by  x12 .  The

composition    E2 → F → E3   is  x23 .  There exists a lift     F → E3   of  x23   since

  Ext1(E1 ,E3) = 0.  The lift is not unique.  The ambiguity is controlled by  x13 ∈Hom(E1 ,E3) .

The extension of the first horizontal line in Diagram 6 is given by  x34 ∈Ext 1(E3 ,E4) .  Note

that we can find    H  as in the second horizontal line of Diagram 6, since    Ext1(F ,E4) = 0 .

(The extension    H   such that Diagram 6 commutes is not unique.  The ambiguity is

controlled by  x14   and  x24 .)  The equations  (12.31)  give a condition for the map

x45 ∈Hom(E4 ,E5)   to  extend to  H → E5 .  It seems possible but complicated to identify

this obstruction as an element of    Hom(E1 ,E5) ⊕ Hom(E2 ,E5) .  We do not need to do so since

we can construct Diagram 5 directly from

ˆ ∂ =

∂ 0
m2

(1)
(•,x12) ∂ 

m3(•,x12 ,x23)

±m 2(•,x13)
m 2(•,x23) ∂ 

m4(•,x12 ,x23, x34)

±m3(•,x13 ,x 34)

±m2(•,x14)

m 3(•,x23 ,x34)

± m 2(•,x24)
m 2

(1)
(•,x 34) ∂ 

0 0
m3(•,x34 ,x45)

± m2(•,x35)
m2(•,x 4) ∂ 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

.

 We next explain how Theorems 12.5 12.21 and 12.23 are related to the study of

Lagrangian submanifolds in tori.  We will show what  Examples 12.26 and 28 correspond in

the mirror.  We regard  L1(w1) ∪ L2(w2)   as a singular Lagrangian submanifold  in  (T 2 n ,Ω) .

We suppose  B = 0  for simplicity.  We can perform Lagrangian surgery at each

p∈L1(w1) ∩ L2(w2)   and obtain a smooth Lagrangian submanifold  L ⊆ T 2 n ,ω( ).  In case

n = 2,  L1(w1) • L2(w2) = 1,  we obtain a genus two Lagrangian surface in  T 4 .

Conjecture 12.32 The  bundle  E(L ,L)  constructed in § 2 is equal to  E(L)   with  cp ≠ 0 .
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We explain an argument to justify the conjecture.  Let  (v,σ) ∈(T 2n ,Ω)∨ .  The fiber

E(L) ( v,σ )   is a cohomology of the complex

(12.33) HF((L pt(v),σ),(L1(w1),α 1))
m2 ( •, x ) →    HF((L pt(v),σ),(L2(w2),α 2)) .

We remark that the isomorphism class of the complex (12.33) is independent of  cp   as

far as it is nonzero.  In fact if  ′ c p = κcp ,  we have an isomorphism which is  ×κ   on

HF((L pt(v),σ),(L2(w2),α 2)) .

On the other hand, the fiber  E(L ,L) (v ,σ )   of   E(L ,L)  is the Floer cohomology

  HFn((Lpt(v),σ ),(L,L))   by definition.  Floer’s chain complex to calculate it is (as graded

Abelian group) :

(12.34)

CF((L pt(v),σ),(L ,L)) =
p∈L pt (σ )∩L

∑ Hom L(σ) p ,Lp( )
≅

p∈L pt (σ )∩L 1 (w1 )
∑ Hom L(σ) p ,L(α1)( ) ⊕

p∈L pt (σ )∩ L2 ( w2 )
∑ Hom L(σ) p ,L(α 2)( )

≅ HF L(σ) p ,L(α1)( ) ⊕ HF L(σ) p ,L(α 2)( ).
Floer’s boundary operator of  CF((L pt(v),σ),(L ,L))   is obtained by counting the number of

holomorphic 2 gons bounding  L pt(v)   and  L .  As can be seen in Figure 16, such 2 gon will

become a holomorphic triangle used in the definition of  m2   in (12.33).
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Figure 16

Thus we find that the boundary operator in (12.33) and the map in (12.32) coincides.

Hence      E(L)(v,σ ) ≅ E (L,L)( v ,σ ) .

From this argument, the reader finds that calculating  mk  gives a way to calculate Floer

homology of various Lagrangian submanifolds (which are not affine) in tori.  We do not

pursue this line in this paper and leave it to future research.

We now go back to the proof of Theorem 12.5.  To overcome the difficulty mentioned

before, we are going to replace  mk
( d ) ,  (which are singular), by smooth one.  In § 9, we

constructed a family  ck
(d )

  of integral currents  by solving the equation :

(12.35) dck
(d ) + ±ck1

( d1 )
o∑ ck − k1 +1

( d − d1 +1) = 0

inductively.  We do the same process but using smooth forms  in place of integral currents.

First we take a smooth  d   form  csmooth(1,2,3)   for each  deg(1,2,3) = d .  More precisely, we

choose ′ c smooth(1,2,3)   first so that the following is satisfied.

(12.36.1)
supp ′ c smooth(1,2,3)( )

⊆ [v1 ,v2 ,v3] ∈L(1,2,3) Q[v1 ,v2 ,v3] ≥δ [v1 ,v2 ,v3]
2 

 
 

 
 
 .
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(12.36.2) ′ c smooth(1,2,3)   is invariant of  [v1 ,v2 ,v3] a [cv1 ,cv2 ,cv3] .

(12.36.3) ′ c smooth(1,2,3)   is smooth outside origin.

(12.36.4) d ′ c smooth(1,2,3) = 0 .  And  ′ c smooth(1,2,3)  represents a generator in

H DR
d ( S(Q,1,2,3),R ) .

To remove the singularity at the origin we replace it by  csmooth(1,2,3)   such that

(12.37.1)
supp csmooth(1,2,3)( )

⊆ [v1 ,v2 ,v3] ∈L(1,2,3) Q[v1 ,v2 ,v3] >δ [v1 ,v2 ,v3]
2

− C
 
 
 

 
 
 

for some constant  C .

(12.37.2) csmooth(1,2,3)   is invariant of  [v1 ,v2 ,v3] a [cv1 ,cv2 ,cv3]   outside a compact

set  K(1,2,3) .

(12.37.3) csmooth(1,2,3)   is smooth.

(12.37.4) csmooth(1,2,3) − ′ c smooth(1,2,3) = d ∆c(1,2,3)( )   where  ∆c(1,2,3)   is of compact

support in  K(1,2,3) .

We next construct  csmooth(1,L ,k + 1)  inductively.  We can solve (12.35) inductively

since appropriate De-Rham cohomology vanishes.  We then obtain  csmooth(1,L ,k + 1)  which

is smooth.  Also we may choose it so that a condition similar to (12.37.1) , (12.37.2) hold

outside the set  K(1,L ,k + 1),  where K(1,L ,k + 1)  is defined inductively as :

(12.38)
K(1,L ,k + 1) = K0(1,L ,k + 1) ∪ K(1,L ,l,m ,L ,k + 1)U × C(l,L ,m)

∪ C(1,L ,l,m ,L ,k + 1)U × K(l,L ,m).

Here  K0(1,L ,k + 1) is a small compact neighborhood of the origin.

We now use  ck , smooth  in place of  ck   in Definitions 9.13 and 9.17 to obtain  mk , smooth
(d )

.

We remark that the properties (9.7.1) and (9.7.2) are used to show that  mk
(d )

  converges.

However we can easily find that it is enough if (12.37.1) , (12.37.2) are satisfied and

K(1,L ,k + 1) is of the form  (12.38).  We then can use exponential decay estimate to prove

that   mk , smooth
(d )

  is a (homomorphism bundle valued) smooth  d  form.

We want to use  mk , smooth
(d )

  in place of  mk
(d )

  to construct  C(L), ˆ ∂ smooth( ) .   However

xi , j; a, b   satisfies  (12.2) for  mk   but not for  mk ,smooth .  So we need to replace  xi , j; a, b   by

′ x i , j;a , b   as follows.

We use the method of the proof of Theorem 12.18 to find  nk
(d )

  such that

(12.39) ∂ nk
(0 d ) +

d1 + d2 =d + 1
k1 + k2 = k +1

∑ ± nk2

(0 d2 )
o mk

(0 d1 ) +
d1 + d2 = d +1
k1 + k2 = k +1

∑ ± omk , smooth
(0d1 )

o nk1

(0d2 ) = 0 .

(See Lemma 10.52.  Sign is as in there.)   Now we put
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(12.40) ′ x i , j;a , b = (−1)µ (
r 
l ,

r 
c )nk x l (1), l (1); c (2), c (2) ,L ,xl ( k ), l (k + 1); c ( k ), c( k +1) )( )r 

l ,
r 
c 

∑ .

Then (12.2) and the  d = 0   case of (12.39) imply

(12.41) (−1)µ (
r 
l ,

r 
c ) mk ,smooth ′ x l (1), l (2); c(1), c (2) ,L , ′ x l( k ), l (k + 1); c ( k ), c (k + 1)( ) = 0

r 
l ,

r 
c 

∑ .

Hence we can use  ′ x i , j; a, b   and  mk , smooth
(0d )

  to construct  C(L), ˆ ∂ smoot( ) .  (We remark that

mk , smooth
(0d )

  satisfies the conclusion of Theorem 10.49.)  We then take the sheaf of smooth

sections and regard  ˆ ∂ smoot   as a chain complex of O( T2 n ,Ω )∨    module sheaf.  Note that the

difference of   C(L), ˆ ∂ smoot( )   from the direct sum of Dolbeault complex is degree zero term

with smooth coefficient.  Hence by usual Fredholm theory (elliptic estimate) we find that the

cohomology sheaf of   C(L), ˆ ∂ smoot( )   is coherent.  We  now define

Definition  12.42
  
E(L) = C(L),

ˆ ∂ smoot
 
 

 
 .

The proof of Theorem 12.5 is complete.

We remark that we can start with  mk , smooth
(0d )

  and can avoid using singular  mk
(0 d )

.

However it seems that  mk
(0 d )

  is more canonical than  mk , smooth
(0d )

.  In fact  mk
(0 d )

  has a theta

series expansion whose coefficients are integers.  While the coefficients of the expansion of

mk , smooth
(0d )

  are not integer.

Remark 12.43 We can prove that   E(L) in Definition 12.42  is independent of the

smoothing  ck ,smooth
(d )   as follows.  Let  ck ,smooth

1( d) , ck ,smooth
2( d)   etc. be two choices.  Let  nk

1(0 d)   and

nk
2( 0 d)   be as in (12.38) and let  xi , j; a, b

1 , xi , j; a, b
2   be as in  (12.39).  We also have  nk

12 (0 d )   such

that

(12.44) ∂ nk
12(0d ) +

d1 + d2 =d + 1
k1 + k2 = k +1

∑ ± nk2

12(0d2 )
o mk1 ,smooth

1(0 d1 ) +
d1 + d2 = d +1
k1 + k2 =k + 1

∑ ± omk2 ,smooth
2(0d2 )

o nk1 ,smooth
(0d1 ) = 0 .

We put

(12.45) ′ x i , j;a , b
2 = (−1)µ (

r 
l ,

r 
c )nk

12 xl (1), l (1); c (2), c(2)
1 ,L ,xl (k ), l (k + 1); c( k ), c ( k +1)

1 )( )r 
l ,

r 
c 

∑ .

We cam easily check

(12.46) (−1)µ (
r 
l ,

r 
m )mk , smooth

2 ′ x l (1), l (2 ) ; c(1), c (2)
2 ,L , ′ x l (k ), l (k +1); c (k ), c (k +1)

2( ) = 0
r 
l ,

r 
c 

∑ .
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Namely we can use either  xi , j; a, b
2   or  ′ x i , j; a, b

2   (together with  mk , smooth
2(0 d )

)  to construct

  
C(L),

ˆ ∂ smooth
2 

 
 
 .  Let  

  
C(L),

ˆ ∂ smooth
2 

 
 
   be one obtained from  xi , j; a, b

2   and  
  

C(L),
ˆ ′ ∂ smooth

2 
 

 
   be

one obtained from  ′ x i , j; a, b
2 .  We can use  nk

12 (0 d )   to construct a chain map

  
n12 : C(L),

ˆ ∂ smooth
1 

 
 
 → C(L ),

ˆ ′ ∂ smooth
2 

 
 
 .  (We use Formula (12.45) to do so.)  Using the fact

that  n1
(00 )   is isomorphism (identity)  we can show that  n12   is an isomorphism.

So it suffices to show that  
  

C(L),
ˆ ′ ∂ smooth

2 
 

 
 = C(L),

ˆ ′ ∂ smooth
2 

 
 
   as an element of

  F ∈Ob D (T2 n ,Ω)∨( )( ) .  For this purpose we need to proceed as follows.  We use the terminology

of  [15].)  Let us consider the composition of  A∞ functors    n
12 o n1   and another  A∞   functor

n2 .  (Here  n i   is an A∞ functor constructed from  nk
i( 0d ) .)  We can prove that they are

homotopic.  The proof is similar to the proof is Theorem 10.18 and is by Acyclic model.

Using the homotopy we can construct a chain homotopy equivalence

  
C(L),

ˆ ′ ∂ smooth
2 

 
 
 ≅ C(L),

ˆ ′ ∂ smooth
2 

 
 
 .  We omit the detail of the proof.

Proof of Theorem 12.20:     We construct  
  
C*

O,L( ),δ smooth( )   in the same way as

  
C*

O,L( ),δ( )   and by using   mk , smooth
(0d )

  and  ′ x i , j; a, b   in place of  mk
(0 d )

  and  x i , j;a , b .

Lemma 12.47
  
C*

O,L( ),δ smooth( )   is chain homotopy equivalent to  
  
C*

O,L( ),δ( ) .

Proof: Let  nk
( d)  satisfy (12.39).  We define  

  
N : C*

O,L( ),δ( ) → C*
O,L( ),δ smooth( )   by

  
N(S)i,a = (−1)µ (

r 
l ,

r 
c )

r 
l ,

r 
c 

∑ nk s i,a ,x l( 1), l( 2); c(1),c ( 2) ,( L, xl ( k −1), l(k ); c(k −1 ),c (k )) ,

where  S = (s i,a ) .  By using (12.2), (12.39), (12.40)  and (12.41) we find that  N   is a chain

map.  Since  n1
(0 ) = identity ,  we find that  N   is an isomorphism.  The proof of Lemma 12.47

is complete.

We next define a chain map

(12.48)
  
Ψ : C*

O,L( ),δsmooth( ) → Γ C(L)( ), ˆ ′ ∂ smooth
2 

 
 
 .

(Here  Γ C(L)( )   is the vector space of smooth sections of  C(L) .)  We put

(12.49)

  

ΨS( ) j ,b(v,σ ) = (−1)µ(
r 
l ,

r 
c ) + d (

r 
l ,

r 
c )+ deg S

r 
l ,

r 
c 

∑ mk +1 ,smooth
( 0d (

r 
l ,

r 
c )) x0(v,σ),s i,a , ′ x l (1), l( 1); c( 2), c( 2) ,(

L, ′ x l(k −1 ),l (k );c ( k− 1), c( k) ).
where  deg S   is the degree as differential form.

Lemma 12.50 Ψ  is a chain map.
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Proof: This is an easy calculation using A∞  formulae and (12.39), (12.40)  and (12.41).

We omit it.

We now prove that  Ψ  induces an isomorphism in cohomologies.  The proof is by

induction on  I   (the number of  i ’s).  In case when  I = 1,  Ψ  coincides with the

composition of the direct sum of the map Ψ  in Proposition 11.38 and the isomorphism  N .

Hence  Ψ  induce an isomorphism by Theorem 11.28.  Let us assume that   Ψ  induces an

isomorphism for  I −1.  We consider  I = I1 + I2 + 1.  Let us consider  Li ≤I1
 and  Li ≥I1 +1 ,

where  Li ≤I1
  is the part of  L  for  i ≤ I1   and  Li ≥I1 +1   is a part for  i ≥ I1 + 1.  There is a

chain homomorphism  
  

C(L),
ˆ ∂ smooth

 
 

 
 → C Li≤ I1

( ), ˆ ∂ smooth
 
 

 
  whose kernel is

  
C Li ≥ I1 +1( ), ˆ ∂ smooth

 
 

 
 .

Lemma 12.51 There exists an exact triangle

  
C Li ≥ I1 +1( ), ˆ ∂ smooth

 
 

 
 

  
C Li ≤ I1( ), ˆ ∂ smooth

 
 

 
 

  
C(L),

ˆ ∂ smooth
 
 

 
 

Proof: We can use a part of  ˆ ∂   to define  C Li ≤I1
( ), ˆ ∂ smooth( )→ C Li ≥I1 + 1( ), ˆ ∂ smooth( )[1] .

The lemma follows.

One the other hand we have an exact sequence

  
0 → C*

O,Li ≥ I1 + 1( ),δ smooth( ) → C*
O,L( ),δsmooth( ) → C*

O,Li≤ I1
( ),δ smooth( ) → 0

of chain complex.  Therefore we obtain a diagram of long exact sequences :

  

→ H k C*
O,Li≥ I1 +1( ),δsmooth( ) → H k C*

O,L( ),δ smooth( ) → H k C*
O,Li ≤ I1( ),δ smooth( ) →

↓ ↓ ↓

→ H k ((T2n ,Ω)∨,E(Li ≥I 1 + 1)) → H k((T2n ,Ω)∨,E(L )) → H k((T 2n ,Ω)∨,E(Li ≤ I1
)) →

Diagram 7

The diagram commutes by definition.  Hence the induction hypothesis and five lemma imply

that  Ψ  induces an isomorphism for  I .  The proof of Theorem 12.20 is complete.

The proof of Theorem 12.23 is similar to one of Theorem 12.20 and is omitted.
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In this section, we consider  x ij   for  i < j  only.  Hence in the mirror we have a “tree”

of Lagrangian submanifolds.  It seems possible to study more general “graph” of Lagrangian

submanifolds.  Then we remove the restriction  i < j  in the sheaf theory sides.  The

construction in that case seems to become more complicated.

We finally remark that there is one important point of view which is not studied in this

paper.  That is, in this paper we fix  (T2 n ,Ω)   and regard  mk   as a function on Abelian

variety.  In the theory of theta function, it is more important to regard it as a function of  Ω
(the moduli parameter of Abelian variety).  This point of view is important also for Mirror

symmetry.  Note that we can generalize the equation  ∂ m ( d ) + ±m ( ′ d ) o∑ m (d − ′ d +1) =0   so

that  ∂   include derivative with respect to  Ω,  under certain circumstances.  In the case when

d = 0  and the case when the image of the wall is compact in  T 2n , this equation can be

regarded as one to control wall crossing of a function  mk .  (Here we regard it as a function

of  Ω.)  The wall crossing studied in  [6], [21] seems to be more directly related to it.

We leave systematic study of multi theta function as a function of  Ω,  as a target of the

future research.
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