
Cohomology of the classifying spaces of

loop groups

Daisuke KISHIMOTO and Akira KONO

1 Introduction

Let G be a compact connected Lie group and let LG denote the loop group
Map(S1, G). In [1] it is shown that there exists a homotopy equivalence

BLG ' LBG.

The purpose of this paper is to determine the cohomology of LBG over the
Steenrod algebra for G = U(n), SO(n). There are many approaches to compute
the cohomology of LBG. For example, the fibrewise homology of LBU(n) and
LBSO(n) is computed in [?]. Then the cohomology of LBU(n) and LBSO(n)
is obtained by taking the dual in principle, but it is hard to see the algebra
structure still the action of the Steenrod algebra. Since LBG and EG×G G is
fibrewise homotopy equivalent over BG, the equivarinant approach can also be
applied to compute the cohomology of LBG, where G acts on G by the adjoint
action.

Our approach is simple and different from any approaches as the above.
We define the map σ̂ : H∗(X) → H∗−1(LX) for a space X, which we call the
inner cohomology suspension, and show that σ̂ covers the cohomology suspension
σ : H̃∗(X) → H∗−1(ΩX). By making use of the inner cohomology suspension,
we determine the map of the cohomology induced from the inclusion LBU(n) →
LBU and LBSO(n) → LBSO. Then we can compute the action of the Steenrod
algebra by the homotopy equivalences

LBU ' BU × ΩBU, LBSO ' BSO × ΩBSO.

In section 1, we define the inner cohomology suspension and show the fun-
damental properties. In section 2, we compute the cohomology of LBU(n) over
the Steenrod algebra by making use of the inner cohomology suspension and
the similar computation is applied to the cohomology mod 2 of LBSO(n).

2 The inner cohomology suspension

Throughout this paper the coefficient of the cohomology is Z unless otherwise
indicated.
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Let B be a topological space. In this section we define the inner cohomology
suspension σ̂ : H∗(B) → H∗−1(LB). It is shown that σ̂ covers the cohomology
suspension σ : H̃∗(B) → H∗−1(ΩB) and has the properties analogous to σ. In
the special case that B is an H-group, we observe that σ̂ is represented by σ
and the multiplication of B.

At first we define the inner cohomology suspension.

Definition 2.1. Let B be a topological space and let ê : S1 ×LB → B be the
evaluation ê(t, l) = l(t) for (t, l) ∈ S1 × LB. The inner cohomology suspension
σ̂ : H∗(B) → H∗−1(LB) is

σ̂(x) = ê∗(x)/s,

where / denotes the slant product and s ∈ H1(S1) is the Hurewictz image of
[1S1 ] ∈ π1(S1).

We show that σ̂ covers σ when B is pointed. Let B be a pointed space and
let ê′ : S1×ΩB → B be the restriction of ê. Consider the commutative diagram
below.

S1 × ΩB

ê′

²²

proj // S1 ∧ ΩB

ad(1ΩB)

²²
B B

Since the cohomology suspension commutes with the suspension isomorphism
by taking the adjoint map, we have:

Proposition 2.1.
σ(x) = ê′∗(x)/s,

where x ∈ H̃∗(B).

Corollary 2.1.
i∗σ̂(x) = σ(x),

where i : ΩB → LB is the inclusion and x ∈ H̃∗(B).

We turn to the special case such that σ̂ can be represented explicitly. Let
G be an H-group and let h : LG → ΩG × G be a homotopy equivalence
h(l) = (l · l(1)−1, l(1)). We denote h∗(x × y) by xy for simplicity. Consider
the commutative diagram

S1 × LG
h //

ê

²²

S1 × ΩG×G

ê′×1

²²
G G×G,

µoo

where µ is the multiplication. Then we obtain :
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Lemma 2.1. Let x ∈ H∗(G) be µ∗(x) =
∑

i ai × bi, then we have

σ̂(x) =
∑

i

σ(ai)bi,

where we set σ(y) = 0 for y ∈ H0(G).

3 The cohomology of LBU(n) and LBSO(n)

In this section we compute the cohomology of LBU(n) over the Steenrod al-
gebra by making use of the inner cohomology suspension. We also obtain the
cohomology mod 2 of LBSO(n) over the Steenrod algebra by the same method.

Let ck denote the k-th Chern class. Since H∗(ΩBU(n)) ∼= ∧
(σ(c1), . . . , σ(cn)),

we have the following by Corollary 2.1 and the Leray-Hirsch theorem.

Proposition 3.1.

H∗(LBU(n)) ∼= Z[c1, . . . , cn]⊗
∧

(x̂1, . . . , x̂2n−1),

where x̂2k−1 = σ̂(ck).

Remark 3.1. In [Example 15.40, Part II, 3] the fibrewise homology of LBU(n)+BU(n)

is computed as

H∗
BU(n){BU(n)× S0;LBU(n)+BU(n)} ∼= Z[c1, . . . , cn]⊗

∧
(y1, . . . , y2n−1),

where |y2k−1| = −2k + 1. Then the fibrewise cohomology of LBU(n) is isomor-
phic to H∗(LBU(n)) and obtained by taking the dual of the fibrewise homology.
Since the dual of y2k−1 is less clear geometrically, the action of the Steenrod
algebra is not obtained by this method of computing H∗( BU(n)).

The advantage of Proposition 3.1 is that we can determine Lj∗n : H∗(LBU) →
H∗(LBU(n)), where jn : BU(n) → BU is the inclusion. By the naturality of
σ̂, we obtain :

Lemma 3.1. Lj∗n : H∗(LBU) → H∗(LBU(n)) is epic and

KerLj∗n = (ck, x̂2k−1 | k > n)

Since the action of the Steenrod algebra on x̂2k−1 is less clear, we consider
the other description of H∗(LBU(n)). It is known that BU is an H-group by the
multiplication µ : BU ×BU → BU induced from the inclusion U(m)×U(n) →
U(m + n). Then we have the homotopy equivalence LBU ' ΩBU × BU as in
section 1. Thus we obtain that

H∗(LBU) ∼= Z[c1, c2, . . . ]⊗
∧

(y1, y3, . . . ),

3



where y2k−1 is the image of σ(ck) ∈ H∗(ΩBU) by the homotopy equivalence
above. Consider the commutative diagram below.

ΩBU(n) //

Ωjn

²²

LBU(n) //

Ljn

²²

BU(n)

jn

²²
ΩBU // LBU // BU

By the Leray-Hirsch theorem, we have:

Proposition 3.2.

H∗(LBU(n)) ∼= Z[c1, . . . , cn]⊗
∧

(x1, . . . , x2n−1),

where x2k−1 denotes Lj∗n(y2k−1).

Since the action of the Steenrod algebra on ci and yi is known, we compute
Lj∗n(yi) to determine H∗(LBU(n)) over the Steenrod algebra. Since µ∗(ck) =∑

i+j=k ci ⊗ cj for ck ∈ H∗(BU), we have the following by Lemma 2.1.

x̂2k−1 = y2k−1 + c1y2k−3 + · · ·+ ck−1y1 ∈ H∗(LBU).

By Lemma 3.1 we have:

x2n+2k−1 = −c1x2n+2k−3 − c2x2n+2k−5 − · · · − cnx2k−1. (1)

Then, by Proposition 3.2 and the degree argument, we can choose A1
k, . . . , An

k ∈
H∗(LBU(n)) such that

x2n+2k−1 = A1
kx1 + A2

kx3 + · · ·+ An
kx2n−1. (2)

Proposition 3.3.

1 + Al
1 + Al

2 + · · · = (1 + c1 + · · ·+ cn−l)(1 + c1 + · · ·+ cn)−1

Proof. By substituting (2) to (1), we have:

n∑

l=1

Al
k+1x2l−1 =





n∑
m=1

n∑

l=1

cmAl
k−m+1x2l−1 k ≥ n

k∑
m=1

n∑

l=1

cmAl
k−m+1x2l−1 −

n∑

m=k+1

cmx2n+2k−2m+1 k < n

Thus we obtain:
n∑

m=0

cmAl
k−m+1 = 0 k ≥ n

k∑
m=0

cmAl
k−m+1 =

{
−cn+k−l+1 0 ≤ k < l < n

0 0 < l ≤ k < n
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Summing up the above in k, we have:

(1 + c1 + · · ·+ cn)(1 + Al
1 + Al

2 + · · · ) = 1 + c1 + · · ·+ cn−l

We determine the action of the Steenrod algebra on H∗(LBU(n)). Let Sq,P
be 1+Sq1 +Sq2 + · · · , 1+P1 +P2 + · · · and let πa be the modulo a reduction.
It is known that

Sqπ2y2k−1 =
∞∑

i=0

(
k − 1

i

)
π2y2k+2i−1,

Pπpy2k−1 =
∞∑

i=0

(
k − 1

i

)
πpy2k+2i(p−1)−1,

where p is the odd prime. Then we obtain the following.

Theorem 3.1. Let Al
k ∈ H2n−2l+2k(LBU(n)) be δn+k,l for −n + 1 ≤ k ≤ 0

and as in Proposition 3.3 for k > 0. Then we have the following for xi ∈
H∗(LBU(n)).

Sqπ2x2k−1 =
∞∑

i=0

n∑

l=1

(
k − 1

i

)
π2A

l
k+i−nx2l−1

Pπpx2k−1 =
∞∑

i=0

n∑

l=1

(
k − 1

i

)
πpA

l
k+i(p−1)−nx2l−1

We copmpute H∗(LBSO(n)) by the same method as H∗(LBU(n)).
We denote the k-th Stiefel-Whitney class by wk. It is well-known that

H∗(BSO;Z/2) ∼=
∧

(σ(w2), σ(w4), σ(w6), . . . ),

σ(w2n+1) = σ(wn+1)2.

Then we have the following by the same way as Proposition 3.1 and Lemma 3.1.

Lemma 3.2. Let jn : BSO(n) → BSO be the natural inclusion. We have

H∗(LBSO(n);Z/2) ∼= Z/2[w2, w3, . . . ]⊗∆(x̂1, x̂2, . . . ),

Ljn : H∗(LBSO;Z/2) → H∗(LBSO(n);Z/2) is epic and

KerLjn = {wk, x̂k−1|k > n},
where x̂k = σ̂(wk + 1).

Let Bl
k ∈ Hn−l+k(LBSO(n);Z/2) be defined as

1 + Bl
1 + Bl

2 + · · · = (1 + w2 + w3 + · · ·+ wn)−1(1 + w2 + w3 + · · ·+ wn−l)

for k > 0 and Bl
k = δn+k,l for −n + 1 ≤ k ≤ 0. Since µ∗(wk) =

∑
i+j=k wi ⊗wj

and Lemma 3.2 holds , we have the following analogously to Proposition 3.2 and
Proposition 3.3, where µ : BSO × BSO → BSO is the multiplication induced
from the inclusion SO(n)× SO(m) → SO(n + m).
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Lemma 3.3.

H∗(LBSO(n);Z/2) ∼= Z/2[w2, w3, . . . ]⊗∆(x1, x2, . . . ),

Lj∗n(σ(wn + k)) = B1
kx1 + B2

kx2 + · · ·+ Bn
k xn−1,

where xl = Lj∗n(σ(wl+1)) for 1 ≤ l ≤ n− 1.

We put m = [n/2] and sk to be the smallest number such that 2s(2k−1) ≥ n.
By Lemma 3.2 and 3.3, we obtain:

Theorem 3.2.

H∗(LBSO(n);Z/2) ∼= Z/2[w2, w3, . . . , wn]⊗ Z/2[x1, x3, . . . , x2m−1]/I,

Sqxk =
∞∑

i=0

n−1∑

l=1

(
k

i

)
Bl

k+i−nxl,

where I = (x2k − x2
k, x2sk

2k−1 −
∑n−1

l=1 Bl
(2k−1)2

sk xl|1 ≤ k ≤ m).

Remark 3.2. The fibrewise homology mod 2 of LBSO(n) is computed in [2].
But the method in Remark 3.1 is not applied.

Remark 3.3. The second author once pointed out that H∗(LBSO(n);Z/2) was
obtained by use of the Whitehead product.
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