Cohomology of the classifying spaces of loop groups

Daisuke KISHIMOTO and Akira KONO

1 Introduction

Let G be a compact connected Lie group and let $\mathcal{L} G$ denote the loop group $\operatorname{Map}\left(S^{1}, G\right)$. In [1] it is shown that there exists a homotopy equivalence

$$
B \mathcal{L} G \simeq \mathcal{L} B G
$$

The purpose of this paper is to determine the cohomology of $\mathcal{L} B G$ over the Steenrod algebra for $G=U(n), S O(n)$. There are many approaches to compute the cohomology of $\mathcal{L} B G$. For example, the fibrewise homology of $\mathcal{L} B U(n)$ and $\mathcal{L} B S O(n)$ is computed in [?]. Then the cohomology of $\mathcal{L} B U(n)$ and $\mathcal{L} B S O(n)$ is obtained by taking the dual in principle, but it is hard to see the algebra structure still the action of the Steenrod algebra. Since $\mathcal{L} B G$ and $E G \times{ }_{G} G$ is fibrewise homotopy equivalent over $B G$, the equivarinant approach can also be applied to compute the cohomology of $\mathcal{L} B G$, where G acts on G by the adjoint action.

Our approach is simple and different from any approaches as the above. We define the map $\hat{\sigma}: H^{*}(X) \rightarrow H^{*-1}(\mathcal{L} X)$ for a space X, which we call the inner cohomology suspension, and show that $\hat{\sigma}$ covers the cohomology suspension $\sigma: \tilde{H}^{*}(X) \rightarrow H^{*-1}(\Omega X)$. By making use of the inner cohomology suspension, we determine the map of the cohomology induced from the inclusion $\mathcal{L} B U(n) \rightarrow$ $\mathcal{L} B U$ and $\mathcal{L} B S O(n) \rightarrow \mathcal{L} B S O$. Then we can compute the action of the Steenrod algebra by the homotopy equivalences

$$
\mathcal{L} B U \simeq B U \times \Omega B U, \quad \mathcal{L} B S O \simeq B S O \times \Omega B S O
$$

In section 1, we define the inner cohomology suspension and show the fundamental properties. In section 2 , we compute the cohomology of $\mathcal{L} B U(n)$ over the Steenrod algebra by making use of the inner cohomology suspension and the similar computation is applied to the cohomology $\bmod 2$ of $\mathcal{L} B S O(n)$.

2 The inner cohomology suspension

Throughout this paper the coefficient of the cohomology is \mathbf{Z} unless otherwise indicated.

Let B be a topological space. In this section we define the inner cohomology suspension $\hat{\sigma}: \tilde{H}^{*}(B) \rightarrow H^{*-1}(\mathcal{L} B)$. It is shown that $\hat{\sigma}$ covers the cohomology suspension $\sigma: \tilde{H}^{*}(B) \rightarrow H^{*-1}(\Omega B)$ and has the properties analogous to σ. In the special case that B is an H-group, we observe that $\hat{\sigma}$ is represented by σ and the multiplication of B.

At first we define the inner cohomology suspension.
Definition 2.1. Let B be a topological space and let $\hat{e}: S^{1} \times \mathcal{L} B \rightarrow B$ be the evaluation $\hat{e}(t, l)=l(t)$ for $(t, l) \in S^{1} \times \mathcal{L} B$. The inner cohomology suspension $\hat{\sigma}: H^{*}(B) \rightarrow H^{*-1}(\mathcal{L} B)$ is

$$
\hat{\sigma}(x)=\hat{e}^{*}(x) / s,
$$

where / denotes the slant product and $s \in H_{1}\left(S^{1}\right)$ is the Hurewictz image of $\left[1_{S^{1}}\right] \in \pi_{1}\left(S^{1}\right)$.

We show that $\hat{\sigma}$ covers σ when B is pointed. Let B be a pointed space and let $\hat{e}^{\prime}: S^{1} \times \Omega B \rightarrow B$ be the restriction of \hat{e}. Consider the commutative diagram below.

Since the cohomology suspension commutes with the suspension isomorphism by taking the adjoint map, we have:

Proposition 2.1.

$$
\sigma(x)=\hat{e}^{\prime *}(x) / s
$$

where $x \in \tilde{H}^{*}(B)$.

Corollary 2.1.

$$
i^{*} \hat{\sigma}(x)=\sigma(x)
$$

where $i: \Omega B \rightarrow \mathcal{L} B$ is the inclusion and $x \in \tilde{H}^{*}(B)$.
We turn to the special case such that $\hat{\sigma}$ can be represented explicitly. Let G be an H-group and let $h: \mathcal{L} G \rightarrow \Omega G \times G$ be a homotopy equivalence $h(l)=\left(l \cdot l(1)^{-1}, l(1)\right)$. We denote $h^{*}(x \times y)$ by $x y$ for simplicity. Consider the commutative diagram

where μ is the multiplication. Then we obtain :

Lemma 2.1. Let $x \in H^{*}(G)$ be $\mu^{*}(x)=\sum_{i} a_{i} \times b_{i}$, then we have

$$
\hat{\sigma}(x)=\sum_{i} \sigma\left(a_{i}\right) b_{i}
$$

where we set $\sigma(y)=0$ for $y \in H^{0}(G)$.

3 The cohomology of $\mathcal{L} B U(n)$ and $\mathcal{L} B S O(n)$

In this section we compute the cohomology of $\mathcal{L} B U(n)$ over the Steenrod algebra by making use of the inner cohomology suspension. We also obtain the cohomology $\bmod 2$ of $\mathcal{L} B S O(n)$ over the Steenrod algebra by the same method.

Let c_{k} denote the k-th Chern class. Since $H^{*}(\Omega B U(n)) \cong \bigwedge\left(\sigma\left(c_{1}\right), \ldots, \sigma\left(c_{n}\right)\right)$, we have the following by Corollary 2.1 and the Leray-Hirsch theorem.

Proposition 3.1.

$$
H^{*}(\mathcal{L} B U(n)) \cong \mathbf{Z}\left[c_{1}, \ldots, c_{n}\right] \otimes \bigwedge\left(\hat{x}_{1}, \ldots, \hat{x}_{2 n-1}\right)
$$

where $\hat{x}_{2 k-1}=\hat{\sigma}\left(c_{k}\right)$.
Remark 3.1. In [Example 15.40, Part II, 3] the fibrewise homology of $\mathcal{L} B U(n)_{+B U(n)}$ is computed as

$$
H_{B U(n)}^{*}\left\{B U(n) \times S^{0} ; \mathcal{L} B U(n)_{+B U(n)}\right\} \cong \mathbf{Z}\left[c_{1}, \ldots, c_{n}\right] \otimes \bigwedge\left(y_{1}, \ldots, y_{2 n-1}\right)
$$

where $\left|y_{2 k-1}\right|=-2 k+1$. Then the fibrewise cohomology of $\mathcal{L} B U(n)$ is isomorphic to $H^{*}(\mathcal{L} B U(n))$ and obtained by taking the dual of the fibrewise homology. Since the dual of $y_{2 k-1}$ is less clear geometrically, the action of the Steenrod algebra is not obtained by this method of computing $H^{*}(B U(n))$.

The advantage of Proposition 3.1 is that we can determine $\mathcal{L} j_{n}^{*}: H^{*}(\mathcal{L} B U) \rightarrow$ $H^{*}(\mathcal{L} B U(n))$, where $j_{n}: B U(n) \rightarrow B U$ is the inclusion. By the naturality of $\hat{\sigma}$, we obtain :

Lemma 3.1. $\mathcal{L} j_{n}^{*}: H^{*}(\mathcal{L} B U) \rightarrow H^{*}(\mathcal{L} B U(n))$ is epic and

$$
\operatorname{Ker} \mathcal{L} j_{n}^{*}=\left(c_{k}, \hat{x}_{2 k-1} \mid k>n\right)
$$

Since the action of the Steenrod algebra on $\hat{x}_{2 k-1}$ is less clear, we consider the other description of $H^{*}(\mathcal{L} B U(n))$. It is known that $B U$ is an H-group by the multiplication $\mu: B U \times B U \rightarrow B U$ induced from the inclusion $U(m) \times U(n) \rightarrow$ $U(m+n)$. Then we have the homotopy equivalence $\mathcal{L} B U \simeq \Omega B U \times B U$ as in section 1. Thus we obtain that

$$
H^{*}(\mathcal{L} B U) \cong \mathbf{Z}\left[c_{1}, c_{2}, \ldots\right] \otimes \bigwedge\left(y_{1}, y_{3}, \ldots\right)
$$

where $y_{2 k-1}$ is the image of $\sigma\left(c_{k}\right) \in H^{*}(\Omega B U)$ by the homotopy equivalence above. Consider the commutative diagram below.

By the Leray-Hirsch theorem, we have:

Proposition 3.2.

$$
H^{*}(\mathcal{L} B U(n)) \cong \mathbf{Z}\left[c_{1}, \ldots, c_{n}\right] \otimes \bigwedge\left(x_{1}, \ldots, x_{2 n-1}\right)
$$

where $x_{2 k-1}$ denotes $\mathcal{L} j_{n}^{*}\left(y_{2 k-1}\right)$.
Since the action of the Steenrod algebra on c_{i} and y_{i} is known, we compute $\mathcal{L} j_{n}^{*}\left(y_{i}\right)$ to determine $H^{*}(\mathcal{L} B U(n))$ over the Steenrod algebra. Since $\mu^{*}\left(c_{k}\right)=$ $\sum_{i+j=k} c_{i} \otimes c_{j}$ for $c_{k} \in H^{*}(B U)$, we have the following by Lemma 2.1.

$$
\hat{x}_{2 k-1}=y_{2 k-1}+c_{1} y_{2 k-3}+\cdots+c_{k-1} y_{1} \in H^{*}(\mathcal{L} B U) .
$$

By Lemma 3.1 we have:

$$
\begin{equation*}
x_{2 n+2 k-1}=-c_{1} x_{2 n+2 k-3}-c_{2} x_{2 n+2 k-5}-\cdots-c_{n} x_{2 k-1} \tag{1}
\end{equation*}
$$

Then, by Proposition 3.2 and the degree argument, we can choose $A_{k}^{1}, \ldots, A_{k}^{n} \in$ $H^{*}(\mathcal{L} B U(n))$ such that

$$
\begin{equation*}
x_{2 n+2 k-1}=A_{k}^{1} x_{1}+A_{k}^{2} x_{3}+\cdots+A_{k}^{n} x_{2 n-1} . \tag{2}
\end{equation*}
$$

Proposition 3.3.

$$
1+A_{1}^{l}+A_{2}^{l}+\cdots=\left(1+c_{1}+\cdots+c_{n-l}\right)\left(1+c_{1}+\cdots+c_{n}\right)^{-1}
$$

Proof. By substituting (2) to (1), we have:

$$
\sum_{l=1}^{n} A_{k+1}^{l} x_{2 l-1}= \begin{cases}\sum_{m=1}^{n} \sum_{l=1}^{n} c_{m} A_{k-m+1}^{l} x_{2 l-1} & k \geq n \\ \sum_{m=1}^{k} \sum_{l=1}^{n} c_{m} A_{k-m+1}^{l} x_{2 l-1}-\sum_{m=k+1}^{n} c_{m} x_{2 n+2 k-2 m+1} & k<n\end{cases}
$$

Thus we obtain:

$$
\begin{aligned}
\sum_{m=0}^{n} c_{m} A_{k-m+1}^{l} & =0 \\
\sum_{m=0}^{k} c_{m} A_{k-m+1}^{l} & = \begin{cases}-c_{n+k-l+1} & 0 \leq k<l<n \\
0 & 0<l \leq k<n\end{cases}
\end{aligned}
$$

Summing up the above in k, we have:

$$
\left(1+c_{1}+\cdots+c_{n}\right)\left(1+A_{1}^{l}+A_{2}^{l}+\cdots\right)=1+c_{1}+\cdots+c_{n-l}
$$

We determine the action of the Steenrod algebra on $H^{*}(\mathcal{L} B U(n))$. Let $S q, \mathcal{P}$ be $1+S q^{1}+S q^{2}+\cdots, 1+\mathcal{P}^{1}+\mathcal{P}^{2}+\cdots$ and let π_{a} be the modulo a reduction. It is known that

$$
\begin{aligned}
S q \pi_{2} y_{2 k-1} & =\sum_{i=0}^{\infty}\binom{k-1}{i} \pi_{2} y_{2 k+2 i-1} \\
\mathcal{P} \pi_{p} y_{2 k-1} & =\sum_{i=0}^{\infty}\binom{k-1}{i} \pi_{p} y_{2 k+2 i(p-1)-1}
\end{aligned}
$$

where p is the odd prime. Then we obtain the following.
Theorem 3.1. Let $A_{k}^{l} \in H^{2 n-2 l+2 k}(\mathcal{L} B U(n))$ be $\delta_{n+k, l}$ for $-n+1 \leq k \leq 0$ and as in Proposition 3.3 for $k>0$. Then we have the following for $x_{i} \in$ $H^{*}(\mathcal{L} B U(n))$.

$$
\begin{aligned}
S q \pi_{2} x_{2 k-1} & =\sum_{i=0}^{\infty} \sum_{l=1}^{n}\binom{k-1}{i} \pi_{2} A_{k+i-n}^{l} x_{2 l-1} \\
\mathcal{P} \pi_{p} x_{2 k-1} & =\sum_{i=0}^{\infty} \sum_{l=1}^{n}\binom{k-1}{i} \pi_{p} A_{k+i(p-1)-n}^{l} x_{2 l-1}
\end{aligned}
$$

We copmpute $H^{*}(\mathcal{L} B S O(n))$ by the same method as $H^{*}(\mathcal{L} B U(n))$.
We denote the k-th Stiefel-Whitney class by w_{k}. It is well-known that

$$
\begin{gathered}
H^{*}(B S O ; \mathbf{Z} / 2) \cong \bigwedge\left(\sigma\left(w_{2}\right), \sigma\left(w_{4}\right), \sigma\left(w_{6}\right), \ldots\right), \\
\sigma\left(w_{2 n+1}\right)=\sigma\left(w_{n+1}\right)^{2}
\end{gathered}
$$

Then we have the following by the same way as Proposition 3.1 and Lemma 3.1.
Lemma 3.2. Let $j_{n}: B S O(n) \rightarrow B S O$ be the natural inclusion. We have

$$
H^{*}(\mathcal{L} B S O(n) ; \mathbf{Z} / 2) \cong \mathbf{Z} / 2\left[w_{2}, w_{3}, \ldots\right] \otimes \Delta\left(\hat{x}_{1}, \hat{x_{2}}, \ldots\right)
$$

$\mathcal{L} j_{n}: H^{*}(\mathcal{L} B S O ; \mathbf{Z} / 2) \rightarrow H^{*}(\mathcal{L} B S O(n) ; \mathbf{Z} / 2)$ is epic and

$$
\operatorname{Ker} \mathcal{L} j_{n}=\left\{w_{k}, \hat{x}_{k-1} \mid k>n\right\},
$$

where $\hat{x}_{k}=\hat{\sigma}\left(w_{k}+1\right)$.
Let $B_{k}^{l} \in H^{n-l+k}(\mathcal{L} B S O(n) ; \mathbf{Z} / 2)$ be defined as

$$
1+B_{1}^{l}+B_{2}^{l}+\cdots=\left(1+w_{2}+w_{3}+\cdots+w_{n}\right)^{-1}\left(1+w_{2}+w_{3}+\cdots+w_{n-l}\right)
$$

for $k>0$ and $B_{k}^{l}=\delta_{n+k, l}$ for $-n+1 \leq k \leq 0$. Since $\mu^{*}\left(w_{k}\right)=\sum_{i+j=k} w_{i} \otimes w_{j}$ and Lemma 3.2 holds, we have the following analogously to Proposition 3.2 and Proposition 3.3, where $\mu: B S O \times B S O \rightarrow B S O$ is the multiplication induced from the inclusion $S O(n) \times S O(m) \rightarrow S O(n+m)$.

Lemma 3.3.

$$
\begin{gathered}
H^{*}(\mathcal{L} B S O(n) ; \mathbf{Z} / 2) \cong \mathbf{Z} / 2\left[w_{2}, w_{3}, \ldots\right] \otimes \Delta\left(x_{1}, x_{2}, \ldots\right), \\
\mathcal{L} j_{n}^{*}\left(\sigma\left(w_{n}+k\right)\right)=B_{k}^{1} x_{1}+B_{k}^{2} x_{2}+\cdots+B_{k}^{n} x_{n-1},
\end{gathered}
$$

where $x_{l}=\mathcal{L} j_{n}^{*}\left(\sigma\left(w_{l+1}\right)\right)$ for $1 \leq l \leq n-1$.
We put $m=[n / 2]$ and s_{k} to be the smallest number such that $2^{s}(2 k-1) \geq n$. By Lemma 3.2 and 3.3, we obtain:

Theorem 3.2.

$$
\begin{gathered}
H^{*}(\mathcal{L} B S O(n) ; \mathbf{Z} / 2) \cong \mathbf{Z} / 2\left[w_{2}, w_{3}, \ldots, w_{n}\right] \otimes \mathbf{Z} / 2\left[x_{1}, x_{3}, \ldots, x_{2 m-1}\right] / I \\
S q x_{k}=\sum_{i=0}^{\infty} \sum_{l=1}^{n-1}\binom{k}{i} B_{k+i-n}^{l} x_{l},
\end{gathered}
$$

where $I=\left(x_{2 k}-x_{k}^{2}, x_{2 k-1}^{2^{s_{k}}}-\sum_{l=1}^{n-1} B_{(2 k-1)^{2^{s_{k}}}}^{l} x_{l} \mid 1 \leq k \leq m\right)$.
Remark 3.2. The fibrewise homology $\bmod 2$ of $\mathcal{L} B S O(n)$ is computed in [2]. But the method in Remark 3.1 is not applied.

Remark 3.3. The second author once pointed out that $H^{*}(\mathcal{L} B S O(n) ; \mathbf{Z} / 2)$ was obtained by use of the Whitehead product.

References

[1] M.F. Atiyah,R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523-615.
[2] M. Crabb, Fibrewise homology, Glasg. Math. J. 43 (2001), no. 2, 199-208.
[3] M. Crabb and I. James, Fibrewise Homotopy Theory, Springer, 1998.

