
Chapter 10. Lagrangian Surgery and holomorphic discs.1

The purpose of this chapter is to prove Theorem Z and to study several examples
arising from the study of affine Lagrangian tori and their Lagrangian surgery in the
flat symplectic tori. This chapter provides explicit examples of various constructions
that have been carried out in the previous chapters. Theorem Z describes how
the moduli space of pseudo-holomorphic (k + 1)-gons with Lagrangian boundary
condition is related to that of the pseudo-holomorphic k-gons under the Lagrangian
surgery. In the case of affine Lagrangian tori in the flat symplectic tori, the moduli
space of pseudo-holomorphic polygons are discussed in [Fuk02III]. However our
study of the moduli space of pseudo-holomorphic polygons for the purpose of this
chapter does not depend on [Fuk02III].

A brief outline of the contents of each of the sections of this chapter is in order.
In §54, we recall the construction of Lagrangian surgery with a precise descrip-

tion of the way we do the surgery. This will be used for the later study of the
metamorphosis of the moduli spaces of holomorphic polygons under the surgery. In
this section, we also clarify the multiplicity one condition that appears in Theorem
Z. In §55 we restate Theorem Z in a more precise and detailed way and state some of
its generalizations. In §56 - 57 we use these to discuss various examples arising from
Lagrangian surgery of affine Lagrangian tori. In §58 we review some basic properties
of the moduli space of pseudo-holomorphic polygons. The proof of Theorem Z is
then carried out in §59 - 62 using a gluing argument. As in [FuOh97], we first need
to construct a local model of pseudo-holomorphic discs to be implanted into a small
neighborhood of the point at which we perform the surgery. We describe the moduli
space of such pseudo-holomorphic discs in §59 - 60. In §61, we use the local model
constructed in §59-60 to smooth-off a corner of the pseudo-holomorphic triangle. In
§62, we show that the pseudo-holomorphic discs constructed in §61 exhaust all such
pseudo-holomorphic discs near the given pseudo-holomorphic triangle and complete
the proof of Theorem Z.

The analytic details of §61-62 are closely related to those discussed in the context
of ‘symplectic field theory’ in the literature. (See [BEHWZ03] for example.) Partly
because the rigorous foundation of ‘symplectic field theory’ is not yet established at
the time of writing this book and also because we are unable to find the literature
containing a rigorous proof of what we need, we give detailed and self-contained
proofs without relying on the literature : Especially the details of the surjectivity
result like the one proven in §62 are rarely given in the literature, while this is the
most delicate and difficult part of the corresponding matters. In this regard, we
like to mention that the idea of separately estimating the ‘horizontal’ and ‘vertical’
energies of the holomorphic maps in the setting of the symplectization is essential
for this purpose. Such an idea is originally due to Hofer [Hof93].
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In the earlier part of this book, we have been trying to prove the results as general
as possible. On the other hand in this chapter, we sometimes put some inessential
restrictions on the almost complex structure J in order to simplify the argument.
Such restrictions, for example Assumption 54.20, could be certainly removed from
Theorem Z but with paying the price of making the volume of the current book even
bigger. Because the main purpose of this chapter is to illustrate the constructions
of this book, we do not attempt to deal with such analytic details but to restrict
ourselves to the cases that we need for the purpose of providing rigorous explanation
of our examples given in §56 - 57.

§54. Lagrangian surgery and local
structure of pseudo-holomorphic polygons.

The main purpose of this section is to review Lagrangian surgery and fix no-
tations. We also give the precise statement on the multiplicity one condition in
Theorem Z and review the structure of tangent cones at the vertices of pseudo-
holomorphic polygons. The materials in this section are largely a review of known
results in the literature. We organize them in the way suitable for our study of the
metamorphosis of the moduli space of pseudo-holomorphic (k + 1)-gons to k-gons
under the Lagrangian surgery.

54.1. Lagrangian surgery in symplectic geometry.

In §54.1 and §54.2 we review Lagrangian surgery. In §54.1 we discuss the stan-
dard Lagrangian surgery studied in the symplectic geometry. In §54.2 we include the
effect of the presence of almost complex structure. We refer to [LaSi91], [Pol91I] for
some applications of Lagrangian surgery to the study of topology of Lagrangian sub-
manifolds. We will be interested in the analytical aspects related to the Lagrangian
surgery and pseudo-holomorphic discs. Because of this, we need to describe the La-
grangian surgery in relation to the presence of almost complex structures compatible
with the symplectic form.

Let L1 and L2 be a pair of oriented Lagrangian submanifolds in (M,ω) that
intersect transversely at p12. We fix an ordering of the pair as (L1, L2). We can
always choose a Darboux chart in a neighborhood U of p12, I : U → V ⊂ Cn so
that I(p12) = 0,

I(L1 ∩ U) = Rn ∩ V, I(L2 ∩ U) =
√
−1 Rn ∩ V.

The proof follows from a version of Darboux theorem (see [Theorem 7.1, Wei71])
but strongly relies on the following well-known fact in symplectic linear algebra
whose proof we omit.
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Lemma 54.1. The linear symplectic group Sp(2n) acts transitively on the set of
transversal pairs of Lagrangian subspaces.

We would like to point out that U(n) ⊂ Sp(2n) does not act transitively on the
set of such pairs. (See Lemma 54.10.)

Let ≤ be a real number sufficiently close to 0. We choose the function f≤ :
Rn \ {0} → R defined by

(54.2) f≤(x) = ≤ log |x|,

and denote by H≤ ⊂ Cn the graph of df≤(x).
This is a Lagrangian submanifold in T ∗(Rn\{0}) ∼= Cn\

√
−1 Rn which is asymp-

totic to
√
−1 Rn as |x| → 0, and to Rn as |x| → 1. Noting that we have

(54.3) df≤(x) = ≤
x · dx

|x|2 =
≤

|x|2
nX

j=1

xjdxj

we can write

(54.4) H≤ =
Ω

(z1, · · · , zn)
ØØØØ yj =

≤xj

|x|2 , j = 1, · · · , n

æ

in coordinates. Here we denote the complex coordinates of Cn as zj = xj +
√
−1 yj

for j = 1, · · · , n.
Let τ : Cn → Cn be the reflection along the diagonal

∆ = {(z1, z2, · · · , zn) |xi = yi},

i.e., be the map

(x1 +
√
−1 y1, · · · , xn +

√
−1 yn) 7→ (y1 +

√
−1 x1, · · · , yn +

√
−1 xn).

We remark that (54.4) implies |x|2|y|2 = |≤|2, hence we also have

H≤ =
Ω

(z1, · · · , zn)
ØØØØ xj =

≤yj

|y|2 , j = 1, · · · , n

æ

In other words τ(H≤) = H≤. Note inf{|~z| | ~z ∈ H≤} =
p

2|≤|.
Next we consider a function ρ : R+ → R such that

ρ =

(
log r − |≤| if r ≤

p
|≤|S0

log
p
|≤|S0 if r ≥ 2

p
|≤|S0

ρ0(r) ≥ 0, ρ00(r) ≤ 0,
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here S0 is a sufficiently large number, which will be fixed at the begining of §61.5.
≤ is chosen so that

p
|≤|S0 is sufficiently small. We then define the function ef≤ :

Rn \ {0} → R by

(54.5) ef≤(x) = ≤ρ(|x|).

Consider the graph Graph d ef≤ and define a Lagrangian submanifold H 0
≤ so that

the following holds :

(54.6.1) τ(H 0
≤) = H 0

≤.
(54.6.2)

{(x1 +
√
−1 y1, · · · , xn +

√
−1 yn) | ∀i xi ≥ yi} ∩H 0

≤

= {(x1 +
√
−1 y1, · · · , xn +

√
−1 yn) | ∀i xi ≥ yi} ∩Graph d ef≤.

Figure 54.1

By construction, H 0
≤ is invariant under τ and H 0

≤ = Rn ∪
√
−1 Rn outside the ball

B2n(2
p
|≤|S0) around 0 in I(U) ⊂ R2n. Therefore for a given ordered pair (L1, L2),

we can construct a Lagrangian submanifold L≤ ⊂ M such that

L≤ − U = L1 ∪ L2 − U, I(L≤ ∩ U) = H 0
≤ ∩ V.

Definition 54.7. For a given ordered pair (L1, L2), we call L≤ the Lagrangian
submanifold obtained from L1 and L2 by Lagrangian surgery at p12 ∈ L1 ∩ L2 and
write L1#≤L2 = L≤.

Note that, if we change the ordering of the pair L1, L2 at p ∈ L1 ∩ L2 and
change the sign of ≤ at the same time, then the resulting Lagrangian submanifolds
are isomorphic. In fact, we have

Rn#≤

√
−1 Rn =

√
−1Rn#−≤Rn.
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We call the pre-image

(L1#≤L2) ∩ U = I−1(H 0
≤ ∩ V )

a Lagrangian handle and its meridian sphere Sn−1 a vanishing cycle of the La-
grangian surgery L≤.

We say that the pair L1, L2 or its associated Lagrangian surgery L1#≤L2 with
≤ > 0 is positive at p12 if

Tp12L1 ⊕ Tp12L2 = (−1)n(n−1)/2+1Tp12M

as an oriented vector space and negative otherwise. (Here we equip Tp12M with
the symplectic orientation.) For example, for L1 = R, L2 =

√
−1R ⊂ C with

the standard orientation on R,
√
−1R, the Lagrangian surgery L1#≤L2, ≤ > 0, is

negative. (This example is directly extended to the case of L1 = Rn, L2 =
√
−1Rn ⊂

Cn.) It is easy to check that only the positive surgery allows to glue the orientations
on L1 and L2 to have the surgery L1#≤L2 carry a compatible orientation. (In the
case of L1 = R, L2 =

√
−1R ⊂ C, it is easy to see that it is impossible to give an

orientation of L1#≤L2, which is compatible with both standard orienatations of Li.
Similar remark also holds for L1 = Rn, L2 =

√
−1Rn ⊂ Cn)

We remark that L1#≤L2 is not even isotopic to L2#≤L1 (or L1#−≤L2) in general
even when both are orientable. On the other hand, it is easy to check that L1#≤L2

are Lagrangian isotopic to one another for different ≤’s with the same signs. However
they are not Hamiltonian isotopic to one another in general.

Remark 54.8. If L1, L2 are spin manifolds, the surgered manifold L1#≤L2 is
also a spin manifold. However, there is a slightly delicate issue about the choice of
spin structures. We explain the way to obtain the spin structure. (The argument
can be extended to relative spin pair or tuples of Lagrangian submanifolds.)

Let X be a spin manifold, which is not necessarily connected. Let pi ∈ X and
Di small discs around pi, i = 1, 2. Consider the operation of attaching a 1-handle

Z = X × [0, 1] ∪h Dn × [1, 2],

where h : Dn×{i} → Di×{1} is the attaching map. After smoothing the corner of
Z, we obtain a cobordism between X and a new manifold X 0. For a spin structure
on X, the spin structure on X 0 is described as follows.

Give the orientation on Dn×{i} as open subsets of the boundary of Dn× [1, 2],
i = 1, 2. Denote by Pspin(X), Pspin(Dn × [1, 2]) the principal spin bundles, i.e., the
spin structures of X and Dn × [1, 2], respectively. Pick a lift ∂pi : Pspin(X)|pi →
Pspin(Dn× [1, 2])|(0,i) of h−1

∗ : TpiX → T(0,i)D
n ⊂ T(0,i)D

n× [1, 2]. Clearly (∂p1 , ∂p2)
and (−∂p1 ,−∂p2) derive the same spin structure. Here −1 denotes the non-trivial
element in (ker : Spin(n) → SO(n)). Then h and (∂p1 , ∂p2)/{±1} determines a spin
structure on Z, hence a spin structure on X 0 in its boundary.
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If p1, p2 belong to different connected components X1 and X2, the spin structure
is independent of the choice of (∂p1 , ∂p2). Since there is an automorphism of the
principal spin bundle, which is identity except on the component X1 and is given
by the right multiplication by −1 ∈ (ker : Spin(n) → SO(n)) on X1. This action
changes ∂p1 to −∂p1 with keeping ∂p2 invariant. Hence the spin structure is uniquely
determined by the spin structure on X and the attaching map h.

However, when p1 and p2 belong to the same connected component, (∂p1 , ∂p2) and
(∂p1 ,−∂p2) derive different spin structures. This point is important, for example,
when we consider singular Lagrangian fibrations with nodal singular fibers. Suppose
that there is an irreducible nodal singular fiber, which is spin. Regular fibers around
it are obtained as Lagrangian surgery. In the 2-dimensional case, the monodromy
is given by the Dehn twist along the vanishing cycle. Thus we find that the spin
structure obtained in the above construction is not perserved under the monodromy.

Remark 54.9. The discussion on the surgery of this chapter is related to homo-
logical mirror symmetry in the following way. Let L1, L2 be a pair of Lagrangian
submanifolds in a symplectic manifold M . Consider, for example, that M is Calabi-
Yau 3 fold for which we have a mirror complex manifold M†. We then consider
Lagrangian submanifolds Li whose Maslov classes vanish. Suppose that Li are
unobstructed and have mirror objects E(Li) on M† which are objects of the de-
rived category of coherent sheaves. Let L be another Lagrangian submanifold of M
with vanishing Maslov class whose mirror is E(L). We furthermore assume that L1

intersects with L2 at one point p12 transversely.
We assume that L1 ∩ L2 ∩ L = ∅ and L is transversal to L1 and L2. We assume

also that there exists no pseudo-holomorphic triangle as in Figure 54.2 below. We
have

(L ∩ L1) ∪ (L ∩ L2) = L ∩ (L1#≤L2)

if ≤ > 0 is sufficiently small. Since there is no pseudoholomorphic discs as in
Figure 54.2, we can show (by an easier analogy of Theorem Z) that CF (L;L1) is a
subcomplex of CF (L;L1#≤L2). Moreover we have the following long exact sequence

(*) → HF (L;L1) → HF (L;L1#≤L2) → HF (L;L2) →

where the connecting homomorphism

HF (L;L2) → HF (L;L1)

is induced by
[x] 7→ m2([p12], [x]).

Here m2 is the composition of the A1-category, which is defined by counting holo-
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morphic triangles [Fuk02III].

Figure 54.2

The exact sequence (*) can be interpreted in the mirror side by the distinguished
triangle

E(L1) → E(L1#≤L2) → E(L2) → E(L1)[1].

This observation was made in [FOOO00] and [Fuk02III]. A similar observation was
made independently by R. Thomas in [Tho01]. See also §38.4 of [HoVa03].

We remark that in case L1 = Sn and L1 intersects with L2 at one point trans-
versely, L1#≤L2 is the image of the L2 by the Dehn twist centered at L1. In this
case the above exact sequence coincides with one by Seidel [Sei03I].

54.2. Lagrangian surgery in almost Kähler geometry.

When we study pseudo-holomorphic maps together with the Lagrangian surgery,
we need to describe the Lagrangian surgery in the almost Kähler setting (M,ω, J).
In this section, we relate the model handle H≤ ⊂ Cn implanted in the surgery to
a particular Lagrangian submanifold used in [HaLa82], [Law89], [ThYa02]. This
particular model is useful for our later analysis of metamorphosis of the moduli
space of pseudo-holomorphic polygons under the Lagrangian surgery.

Let Cn be the standard complex vector space with standard complex structure
J0 and standard symplectic structure ω0. Namely

J0

µ
@

@xi

∂
=

@

@yi
, ω0 =

X
dxi ∧ dyi,

where zi = xi +
√
−1yi (i = 1, · · · , n) is the standard coordinate of Cn.
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Let V1, V2 ⊂ Cn be a transversal ordered pair of oriented Lagrangian linear
subspaces. Recall Corollary 2.6 which reads that there exists a unique symmetric
unitary matrix Ai ∈ U(n) such that

Ai · Rn = Vi for i = 1, 2.

The following lemma is an easy consequence of this whose proof is omitted.

Lemma 54.10. There exists a unique collection of angles

0 < α1 ≤ · · · ≤ αn < π

and a matrix A ∈ U(n) such that A(V1) = Rn and

A(V2) =
n≥

eα1
√
−1v1, · · · , eαn

√
−1vn

¥ ØØØ v1, · · · , vn ∈ R
o

,

as an oriented vector space. Here we define an orientation of the right hand side by
the isomorphism

(v1, · · · , vn) 7→
≥
eα1

√
−1v1, · · · , eαn

√
−1vn

¥
.

We call α1, · · · , αn the Kähler angles between V1 and V2.

Definition 54.11. For a transversal pair L1, L2 of oriented Lagrangian submani-
folds, we define their Kähler angles at p12 ∈ L1∩L2 to be the Kähler angles between
the tangent spaces Tp12L1, Tp12L2.

Referring to [ThYa02] for the description of the Lagrangian surgery for general
Kähler angles, we restrict ourselves to the case where all Kähler angles of Λ are the
same, i.e.,

α1 = · · · = αn =: α, 0 < α < π.

We closely follow the presentation of Thomas and Yau [ThYa02] below with some
notational changes.

To any given embedded curve ∞ : I → C and I ⊂ R a connected interval, we
associate a Lagrangian submanifold

L∞ = {(∞(t)a1, · · · , ∞(t)an) | t ∈ I, a = (aj)n
j=1 ∈ Sn−1 ⊂ Rn ⊂ Cn}.

Under this notation, Rn is represented by the curve ∞1(r) = (r, 0), r ∈ [0,1) and
Λ by

∞2(r) = e
√
−1αr, r ∈ [0,1).
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The Lagrangian surgery Rn#≤Λ for ≤ > 0 is represented by any smoothing off the
cone at the origin of ∞1 ∪ ∞2 which stays inside the cone

{re
√
−1θ | r > 0, θ ∈ [0, α]}

and coincides with ∞1 ∪ ∞2 outside a compact set.
For the case ≤ < 0, the Lagrangian surgery Rn#≤Λ is represented by a similar

smoothing of ∞1 ∪ ∞2 which stays inside the cone

{re
√
−1θ | r > 0, θ ∈ [α, π]}

instead.

Figure 54.3

For the later purpose, we will use the model for the neck in the transition region by
the following curve

∞α
≤ =

Ω
re
√
−1θ ∈ C

ØØØ |2≤| π
2α = r

π
α sin

µ
πθ

α

∂
, θ ∈ (0, α)

æ
≤ > 0,(54.12.1)

∞α
≤ =

Ω
re
√
−1θ ∈ C

ØØØ |2≤| π
2α = r

π
α sin

µ
π(θ − α)
π − α

∂
, θ ∈ (α, π)

æ
≤ < 0.

(54.12.2)

These give rise to the Lagrangian submanifolds Hα
≤ by

(54.12.3) Hα
≤ = ∞α

≤ · Sn−1
Rn ⊂ Cn.

Hα
≤ becomes special Lagrangian submanifolds when α = π

2 which are precisely
the local model constructed by Harvey-Lawson [HaLa82] and also used by Lawler
[Law89]. When α = π

2 , this coincides with the local model given in (54.4), i.e.,
H≤ = H

π
2

≤ .
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We can modify Hα
≤ and construct (Hα

≤ )0 in the same way as §54.1 as follows. Let
us consider the case ≤ > 0. (The case ≤ < 0 is similar.) We consider a function

θ(r) : [
p

2|≤|,1) → [0, α/2]

such that

(54.13.1) θ(r) = 0 for r ≥ 2S0

p
|≤|.

(54.13.2) If r ≤ S0

p
|≤|, then

|2≤| π
2α = r

π
α sin

µ
πθ(r)

α

∂
.

In particular θ(
p

2|≤|) = α/2.

(54.13.3)
dθ

dr
≤ 0.

And we put

(54.14.1)
(∞α

≤ )0 =
n

re
√
−1θ(r)

ØØØ r ∈ [
p

2|≤|,1)
o
∪

n
re
√
−1(α−θ(r))

ØØØ r ∈ [
p

2|≤|,1)
o

.

We then define

(54.14.2) (Hα
≤ )0 = (∞α

≤ )0 · Sn−1
Rn ⊂ Cn.

Figure 54.4.
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54.3. The tangent cones of a pseudo-holomorphic polygon at its corners.

In this subsection, we consider pseudo-holomorphic polygons that appear in the
definition of A1 category of a symplectic manifold [Fuk93,Fuk02II]. Especially we
state a result on the structure of the image of general pseudo-holomorphic polygons
near the corner. This then will be used to study some singular perturbation problem
in relation to the Floer cohomology of the Lagrangian surgery later in this chapter.

Let J be an almost complex structure compatible with ω on M . The triple
(M,ω, J) then defines an almost Kähler structure. Let L = (L0, L1, L2, · · · , Lk) be
a (k+1)-tuple of compact Lagrangian submanifolds in (M,ω) that intersect pairwise
transversely. Let (Σ, ~u) denote an element in Mb,main

k+1 (see Definition 2.20) (~u =
(u01, · · · , u(k−1)k, uk0)) and denote by u(j−1)juj(j+1) the segment of @Σ between
u(j−1)j and uj(j+1) for j = 0, · · · , k.

Let w : Σ → M be a map that satisfies the boundary condition

w(u(j−1)juj(j+1)) ⊂ Lj(54.15.1)
w(uj(j+1)) ∈ Lj ∩ Lj+1.(54.15.2)

We denote by M(L, ~u, J) the set of J-holomorphic maps that satisfy (54.15). (See
§58 for further discussion on this moduli space.)

Let p12 ∈ L1∩L2 and assume that the Kähler angles αi (i = 1, · · · , n) between L1

and L2 at p12 are all the same. We denote the common angle by α = α1 = · · · = αn.
Using Lemma 54.10, we can always choose a Darboux chart in a neighborhood U
of p12, I : U → V ⊂ Cn so that I(p12) = 0,

(54.16.1) I(L1 ∩ U) = Rn ∩ V, I(L2 ∩ U) = e
√
−1α Rn ∩ V = Λ,

and J(p12) = (I∗J0)(p12), i.e.,

(54.16.2) Dp12I ◦ J = J0 ◦Dp12I on Tp12M

where
Dp12I : Tp12M → T0Cn = Cn

is the differential of I at p12.
Let w : (Σ, ~u) → M be an element of M(L, ~u;J) with w(u12) = p12. We

conformally identify (Σ, u12) with (H∪ {1}, 0) and consider the composition I ◦w
in a neighborhood of 0 in H. We put α = α/π.

Theorem 54.17. There exists m ∈ Z≥0, δ > 0 and a vector a = (a1, · · · , an) ∈
Rn \ {0} such that

|(I ◦ w)(z)− zm+αa| ≤ C|z|m+α+δ

in a neighborhood of 0.

Here the branch of zm+α is taken as

(54.18) zm+α = rm+αe(m+α)θ
√
−1

if z = reθ
√
−1, θ ∈ [0, π]. (Note z ∈ H.)
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Definition 54.19. In the case where Theorem 54.17 holds, we call m + 1 the
multiplicity of w at 0 and call the map

z 7→ zm+αa

the tangent cone of w at 0.

The multiplicity one condition in Theorem Z just means that w is asymptotic to
z 7→ zαa at 0.

Theorem 54.17 is not new and can be extracted, for example, from the main
result in [RoSa01]. For reader’s convenience, we give a simple proof thereof under
the following additional assumption which will be satisfied for the main examples
we consider in this chapter.

Assumption 54.20. Let I : U → V ⊂ Cn be a Darboux chart satisfying (54.16)
at p12 ∈ L1 ∩ L2. We assume in addition that J = I∗J0 on a neighborhood U of
p12, i.e.,

DpI ◦ J = J0 ◦DpI on TpM

for every p ∈ U .

We remark that, compared to (54.16), Assumption 54.20 is much more restrictive.
(For example, it implies that J is integrable in a neighborhood of p12.) We put this
additional assumption because the analysis of scaled gluing problems entering in
our study of metamorphosis of the moduli space under the Lagrangian surgery is
much simpler than otherwise and also because this will be enough for the analysis
of our main examples in §56 - 57.

Proof of Theorem 54.17 under Assumption 54.20. Consider the map

u(z) = z−α(I ◦ w)(z),

on a neighborhood W of 0 in H. (Here the branch of zα is taken as in (54.18).) By
(54.16.1), we have

(54.21) u(W ∩ @H) ⊂ Rn.

We consider the double

cW = W ∪ {z | z ∈ W} ⊂ C.

The real boundary condition (54.21) enables us to apply the reflexion principle and
extend u to a smooth holomorphic map

bu : cW → Cn.

We then obtain the conclusion by taking Taylor expansion of bu at 0. §
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§55. Theorem Z and its generalizations.

We first make the statement of Theorem Z more precise.
Fix a compatible almost complex structure J on M . Let L = (L0, L1, L2) be a

triple of Lagrangian submanifolds of a symplectic manifold M such that they are
mutually transversal. Let pij ∈ Li ∩ Lj and assume that

(55.1) The Kähler angles between L1 and L2 at p12 are all equal to α.

For given three points u01, u12, u20 ∈ @D2, we consider the moduli spaceM(L, ~u, J)
of J-holomorphic maps introduced in §54.3. (Here ~u = (u01, u12, u20).)

Denote by wtri ∈M(L, ~u, J) a J-holomorphic triangle that satisfies the following
:

(55.2.1) The multiplicity of wtri at u12 is one. (See Definition 54.19.)
(55.2.2) wtri is Fredholm regular. Namely the linearization of the Cauchy-
Riemann equation at wtri is surjective. (See §58 for the Fredholm theory of the
moduli space M(L, ~u, J).)
(55.2.3) wtri is isolated in M(L, ~u, J).

We then perform Lagrangian surgery at p12 ∈ L1 ∩ L2 and get L≤1 = L1#≤1L2

as defined in §54.1, §54.2 and consider the set of J-holomorphic 2-gons

w : D2 → M

with the following properties :

(55.3.1) w(u01u20) ⊂ L≤1 , w(u20u01) ⊂ L0.
(55.3.2) w(u01) = p01, w(u20) = p20.

We denote the set of such w’s by fM((L≤1 , L0), (u01, u20), J) and its quotient
under the action of Aut(D2, (u01, u20)) ∼= R by M((L≤1 , L0), (u01, u20), J). And we
denote by M((L≤1 , L0), (u01, u20), J ;wtri, ≤2) the subset of M((L≤1 , L0), (u01u20), J)
consisting of the elements represented by w ∈ fM((L≤1 , L0), (u01, u20), J) satisfying

(55.4) max
z∈D2

dist(w(z), wtri(z)) ≤ ≤2.

Theorem 55.5. Let J and wtri satisfy (55.1) and (55.2) respectively. We also
suppose Assumption 54.20. Then for each sufficiently small ≤2 and ≤1 with |≤1| < ≤1002

we have the following :

(55.6.1) If ≤1 < 0, then M((L≤1 , L0), (u01, u20), J ;wtri, ≤2) consists of one point
which is Fredholm regular.
(55.6.2) If ≤1 > 0, then M((L≤1 , L0), (u01, u20), J ;wtri, ≤2) is diffeomorphic to
Sn−2. Each element of it is Fredholm regular.
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Figure 55.1.

Theorem 55.5 is the precise form of Theorem Z whose proof will be given in §59 -
62.

For some of our applications, we also need to consider the case where wtri appears
as a continuous family i.e., where the condition (55.2.3) fails to satisfy. We can
generalize Theorem 55.5 to such a situation as Theorem 55.7 below.

Let K be a compact subset of M(L, ~u, J) and U be its relatively compact open
neighborhood. Let M((L≤1 , L0), (u01, u20), J ;K, ≤2) be the set of the elements in
M((L≤1 , L0), (u01, u20), J) represented by w ∈ fM((L≤1 , L0), (u01, u20), J) satisfying
(55.4) for some wtri ∈ K.

Theorem 55.7. Let J and wtri satisfy (55.1) and (55.2) respectively. We also
suppose Assumption 54.20. We assume in addition that any element wtri of U
satisfies (55.2.1) and (55.2.2).

Then, for each sufficiently small ≤2 and |≤1| < ≤1002 , there exists an open neigh-
borhood M((L≤1 , L0), (u01, u20), J,K, ≤2)+ of M((L≤1 , L0), (u01, u20), J,K, ≤2) and a
map

π : M((L≤1 , L0), (u01, u20), J,K, ≤2)+ → U

with the following properties :

(55.8.1) Every element of M((L≤1 , L0), (u01, u20), J,K, ≤2)+ is Fredholm regular.
(55.8.2) If [w] ∈ M((L≤1 , L0), (u01, u20), J,K, ≤2)+ and π([w]) = [wtri] then we
have

dist(w(z), wtri(z)) ≤ C≤2

by re-choosing the representative w in the class [w] if necessary.
(55.8.3) If ≤1 < 0 then the restriction π−1(K) → K of π is a diffeomorphism.
(55.8.4) If ≤1 > 0 then the restriction π−1(K) → K of π is a fiber bundle whose
fiber is diffeomorphic to Sn−2.
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The proof is a straightforward generalization of that of Theorem 55.5.
We can generalize Theorems 55.5 and 55.7 in a straightforward way to the case

where more than three Lagrangian submanifolds are involved. We do not state this
generalization here since we do not use it in this book.

We next discuss the Lagrangian surgery of immersed Lagrangian submanifolds.
Let i : L → M be a Lagrangian immersion. Assume that p ∈ M is the unique
double point of i(L) with i−1(p) = {p1, p2} ⊂ L and so i|L\{p1,p2} is an embedding.

We give an ordering for the tangent spaces of the two branches of L at p. It
seems that the following terminology of Polterovich [Pol91I] is useful for the further
discussion of Lagrangian surgeries.

Definition 55.9. Let i : L → M be a Lagrangian immersion and p ∈ i(L) ⊂ M
be a transversal self-intersetion point. We call an equipment at p an ordering of the
tangent spaces of the two branches of L at the self-intersection p.

With this terminology, one can say that Lagrangian surgery at a self-intersection
point depends on the equipment at p.

Again we assume that the Kähler angles between the two branches at p are all
the same α and let I be a Darboux chart on a neighborhood of p such that

(55.10) I(i(L)) = Rn ∪ eα
√
−1Rn and J(p) = (I∗J0)(p).

Let fM((L, i), 1, J ; p) be the set of J-holomorphic maps w : D2 → M satisfying

w(@D2) ⊂ i(L), w(1) = p.

We denote its quotient by the action of Aut(D2, 1) by M((L, i), 1, J ; p).
Given an equipment of L at p, we perform Lagrangian surgery on L at p and

obtain L≤ for ≤ with sufficiently small |≤|. (The discussion of §54.1, 54.2 can be
generalized to the case of self intersection in an obvious way.)

Denote the set of J-holomorphic discs w : (D2, @D2) → (M,L) by fM(L≤, J) and
its quotient by the action of PSL(2; R) = Aut(D2) by M(L≤, J).

Let K be a compact subset of M((L, i), 1, J ; p) and U be its relatively compact
open neighborhood. Define M(L≤1 , J ;K, ≤2) to be the set of elements of M(L≤1 , J)
represented by w ∈ fM(L≤1 , J) for which there exists w0 ∈ M((L, i), 1, p, J) such
that

max
z∈D2

dist(w(z), w0(z)) ≤ ≤2.

Now the following is the analog to Theorem 55.7 for this case.

Theorem 55.11. Let i : L → M be a Lagrangian immersion and let p ∈ i(L) ⊂ M
the unique double point as above. Suppose J = I∗J0 in a neighborhood of p ∈ M ,
Condition (55.10) and that every element of U ⊂ M((L, i), 1, J ; p) is Fredholm
regular and of multiplicity 1 at 1 ∈ @D2.
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Then for each sufficiently small ≤2 and ≤1 with |≤1| < ≤1002 , there exists an open
neighborhood M(L≤1 , J,K, ≤2)+ of M(L≤1 , J,K, ≤2) and a map

π : M(L≤1 , J,K, ≤2)+ → U

with the following properties :

(55.12.1) Every element of M(L≤1 , J,K, ≤2)+ is Fredholm regular.
(55.12.2) If [w] ∈M(L≤1 , J,K, ≤2)+ and π([w]) = [w0] we have

dist(w(z), w0(z)) ≤ C≤2

by changing the representative w if necessary.
(55.12.3) If ≤1 < 0 then the restriction π−1(K) → K of π is a diffeomorphism.
(55.12.4) If ≤1 > 0 then the restriction π−1(K) → K of π is a fiber bundle whose
fiber is diffeomorphic to Sn−2.

Figure 55.2.

The proof is entirely similar to that of Theorem 55.7.
We also consider the case of a pair of Lagrangian submanifolds L1 and L2 in-

tersecting at two points, say p1, p2. In this case, after performing Lagrangian
surgery at p2, we obtain an immersed Lagrangian submanifolds L≤ which has a self-
intersection p1. Under the assumption similar to those in Theorems 55.7 and 55.11,
the moduli space of 2-gones with boundary on L1∪L2 is related to the moduli space
M((L≤, i), 1, J ; , p1) above. Since we can treat this case in the same way as above
we omit its discussion.

We next discuss some homological property of the moduli chain induced by the
family of pseudo-holomorphic 2-gons in the fiber of the fiber bundle that appears
in (55.6.2) and (55.8.4).

Consider the moduli space fM((L≤1 , L0), (u01, u20), J). Denote by u01u20 the
(open) arc segment of @D2 containing u12 among the two connected components
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of @D2 \ {u01, u20}. We have the natural action of Aut(D2; {u01, u20}) ∼= R on the
product

fM((L≤1 , L0), (u01, u20), J)× u01u20; (w, u) 7→ (w ◦ g−1, g(u)).

We have the canonical evaluation map

(55.13) ev :
fM((L≤1 , L0), (u01, u20), J)× u01u20

Aut(D2; {u01, u20})
→ L≤1 ; ev(w, u) = w(u).

Now we assume ≤1 > 0 and use the notation from Theorem 55.7. For given
[w0] ∈ K, we parameterize its fiber π−1([w0]) by the sphere Sn−2. We denote by
[wx] an element corresponding to x ∈ Sn−2. Identifying Aut(D2; {u01, u20}) and
u01u20 with R respectively, the above evaluation map (55.13) restricted to this fiber,
which we denote by

ev[w0] : Sn−2 × R → L≤1 ,

can be written as
ev[w0](x, t) = wx(t).

We represent the Lagrangian handle of L≤1 by

Sn−1 × (0, 1) ⊂ L≤1 .

(See §54.1.)
The following theorem can be derived from the proof of Theorem Z.

Theorem 55.14. Let ≤ = 2−100.

(1) There exist an interval (a, b) ⊂ R and points x, y ∈ Sn−1 such that

dist(ev[w0](S
n−2 × {a}), (x, 0)) ≤ ≤

dist(ev[w0](S
n−2 × {b}), (y, 1)) ≤ ≤

where (x, 0), (y, 1) are regarded as boundary points of Lagrangian handle Sn−1 ×
(0, 1) ⊂ L≤1 , and the image

ev[w0](S
n−2 × [a, b])

is contained in the Lagrangian handle Sn−1 × (0, 1).
(2) Consider the cycle obtained by filling the holes of the image ev[w0](S

n−2×[a, b]) ⊂
Sn−1 × (0, 1) around the points (x, 0) and (y, 1) in Sn−1 × (0, 1) respectively and
its homology class in Hn−1((Sn−1 × (0, 1)), Z) ∼= Z. Then this homology class is a
generator of Hn−1((Sn−1 × (0, 1)), Z).
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Figure 55.3.

Finally a few remarks about Assumption 54.20 are in order, which we put on
(L1, L2) and J in Theorems 55.5, 55.7, 55.11, 55.14. This is a rather restrictive
assumption since it requires the pair (L1, L2) is locally isomorphic to the standard
pair of linear Lagrangian submanifolds in Cn upto a symplectic and biholomorphic
isomorphism. This assumption is indeed superfluous and can be removed as we
mentioned before.

On the other hand a standard cobordism argument enable us to derive from The-
orems 55.5, 55.7, 55.11, 55.14 a similar conclusion in the homology level for general
transversal pair (L1, L2) and for a general compatible almost complex structure.
Namely we have the following Corollary 55.15 in general. We only consider the case
of Theorem 55.5 and only give a sketch of the proof of Corollary 55.15 since we do
not use this in our analysis of the main examples in this chapter.

Corollary 55.15. Under the same assumption as Theorem 55.5 except Assumption
54.20. For each sufficiently small ≤2 and |≤1| < ≤1002 , the followings hold :

(55.16.1) M((L≤1 , L0), (u01, u20), J ;wtri, ≤2) is compact and has an oriented Ku-
ranishi structure without boundary. Let (U,E, s) be its Kuranishi neighborhood.
(The automorphism group Γ is trivial in this case.) There is a compact neighbor-
hood U of M((L≤1 , L0), (u01, u20), J, wtri, ≤2) in U such that s−1(0) is contained in
U.
(55.16.2) If ≤1 < 0, then we may perturb s away from U \ U so that the order of
s−1(0) counted with sign is 1.
(55.16.3) If ≤1 > 0, then we may perturb s away from U \U so that the following
holds : s−1(0) is a compact oriented n− 2 dimensional manifold without boundary.
If we define

ev : s−1(0)× R → L≤1 ,

in the same way as in the situation of Theorem 55.14, then :
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(55.16.3.1) There exist an interval (a, b) ∈ R and points x, y ∈ Sn−1 such that

dist(ev(s−1(0)× {a}), (x, 0)) ≤ ≤

dist(ev(s−1(0)× {b}), (y, 1)) ≤ ≤

where (x, 0), (y, 1) is regarded as boundary points of Lagrangian handle Sn−1×(0, 1)
and

ev(s−1(0)× [a, b])

is contained in the Lagrangian handle Sn−1 × (0, 1).
(55.16.3.2) The homology class of the cycle obtained by respectively filling the
holes of ev[w0](s

−1(0)× [a, b]) ⊂ Sn−1× (0, 1) around (x, 0) and (y, 1) in the handle
(Sn−1 × (0, 1) is a generator of Hn−1((Sn−1 × (0, 1))) ∼= Z.

Sketch of the proof. We sketch how to deduce (55.16.2) from Theorem 55.5. (55.16.1)
is easy to show. Consider a smooth path of almost complex structures connecting
the given almost complex structure J and Jδ that satisfies Assumption 54.20, i.e.,
Jδ = I∗J0 where J0 = J(p) is the constant almost complex structure on TpM .

Theorem 55.5 implies M((L≤1 , L0), (u01, u20), Jδ;wtri, ≤2) is Fredholm regular and
consists of one point. It is cobordant to M((L≤1 , L0), (u01, u20), J, wtri, ≤2) as the
space with Kuranishi structure. (See §A1.) Therefore (55.16.2) follows.

(55.16.3) can be deduced by a similar cobordism argument using Theorem 55.14.
We omit the detail. §

An inspection shows that the conclusions of Corollary 55.15 (and other similar
conclusions in the above theorems) are enough for the applications we present in
§56-57. This is roughly because we only need to study the virtual fundamental
chains in the ‘homology level’ for these applications.

§56. Affine Lagrangian tori in flat symplectic tori

In this section, we will also use the result on the number of holomorphic polygons
in the flat symplectic tori. In [Fuk02III], the first named author formulated some
axioms that the numbers of holomorphic polygons should satisfy for the case of flat
Lagrangian subspacs ∼= Rn in the complex vector space Cn, and did some calculation
of the numbers based on the axioms. However, the proof of the axioms was not
given in [Fuk02III] at that time. The properties that were assumed as an axiom
in [Fuk02III] are now proved in this book, at least for 2 Lagrangians. We did not
provide the details of the proof for the cases where there are more than 2 Lagrangian
submanifolds. However it would be a minor modification of the argument presented
in this book and so omitted. As far as the cases we are interested in, we will provide
a self-contained proof in Proposition 56.3. In this and next sections, we use Maslov
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type indices associated to pseudo-holomorphic polygons. See §58 for the definition
and discussion about them.

We will discuss the 4 and 6 dimensional flat tori separately.

56.1. The case of 4 dimensional flat tori.

We represent the flat 4-torus as C2/(Z[
√
−1])2 and let zi = xi +

√
−1 yi, i = 1, 2

be its coordinate. Let A = (aij) be a symmetric real-valued 2× 2 matrix and put

ωA =
X

aijdxi ∧ dyj .

ωA is nondegenerate and so becomes a symplectic structure on C2/(Z[
√
−1])2, if A

is invertible. The standard complex structure of C2/(Z[
√
−1])2 is compatible with

ωA if A is positive definite. Hereafter we assume that A is positive definite. We
consider three Lagrangian submanifolds defined by

L0 = {[z1, z2] ∈ C2/(Z[
√
−1])2 | y1 = y2 = 0},

L1 = {[z1, z2] ∈ C2/(Z[
√
−1])2 | x1 = x2 = 0},

L2 = {[z1, z2] ∈ C2/(Z[
√
−1])2 | x1 = y1, x2 = y2}.

These are Lagrangian sub-tori of T 4.
Let v = (v1, v2) ∈ T 2 = R2/Z2 and put

L1(v) = {(z1, z2) | x1 = v1, x2 = v2}.

We assume (v1, v2) 6= (0, 0). Then we have the pairwise intersections

L1(v) ∩ L2 = {(v1(1 +
√
−1), v2(1 +

√
−1))},

L2 ∩ L0 = {(0, 0)},
L0 ∩ L1(v) = {(v1, v2)}.

We denote

p12(v) = (v1(1 +
√
−1), v2(1 +

√
−1)), p20 = (0, 0), p01(v) = (v1, v2).

We now perform Lagrangian surgery of L1(v) and L2 at p12(v) and obtain a one-
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parameter family L≤ = L≤(v).

Figure 56.1

Figure 56.2

Note that π2(T 4, Li) = 0 in our case. In particular the Maslov class defined on this
group vanishes.

One can also easily see that the class in π2(T 4, L≤) associated to the vanishing
cycle of L≤ with the obvious bounding disc has Maslov index zero. Therefore (using
the fact n = 2) the virtual dimensions of the moduli spaces of the holomorphic
discs bounding L0 or L≤ are all 0 + 2 − 3 = −1 < 0. It follows from Definition
10.6 (or Theorem C) that all the obstruction classes thereof vanish automatically.
Hence the Floer cohomology HF (L0, L≤(v)) is well defined. We remark that in the
present case of the pair (L0, L≤), it follows that mk = mk for L0 and L≤ and b = 0
is a bounding cochain for both L0 and L≤. We will omit b = 0 from the notation of
Floer cohomology in the discussion followed hereafter.

Since the first Chern class of (T 4, ωA) and the Maslov classes of Li are trivial, it
follows from the index formula that the virtual dimension of the moduli space

M(L0, L≤; p20, p01(v)) = fM(L0, L≤; p20, p01(v))/R
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consisting of w : R × [0, 1] → M satisfying (55.3) does not vary componentwise
for given fixed p01(v), p20. A simple Maslov index calculation shows that this is
zero for both ≤ > 0 and ≤ < 0. Similarly the virtual dimension of components of
M(L0, L≤; p01(v), p20) are −2. Furthermore it is not difficult to check that the only
nontrivial matrix element of the boundary operator is hδ[p20], [p01(v)]i, which we
now compute below.

We first consider the set of maps w : D2 → T 4 satisfying

(56.1.1)

(
w(u01) = p01(v), w(u12) = p12(v), w(u20) = p20,

w(u01u12) ⊂ L1(v), w(u12u20) ⊂ L2, w(u20u01) ⊂ L0.

Lemma 56.2. The set of homotopy classes of the maps w : D2 → T 4 satisfying
(56.1.1) has one-one correspondence with π−1(v) ∼= Z2. And for each ev ∈ π−1(v),
the map w corresponding to ev has the symplectic area

Z
w∗ωA =

1
2
evtAev.

Proof. Let ev = (ev1, ev2) ∈ R2 be a lift of v. We put

eL0 = {(z1, z2) ∈ C2 | y1 = y2 = 0},
eL1(ev) = {(z1, z2) ∈ C2 | x1 = ev1, x2 = ev2},

eL2 = {(z1, z2) ∈ C2 | x1 = y1, x2 = y2}.

We denote their pairwise intersections by ep01(ev), ep12(ev) and ep20 respectively. Con-
sider the maps ew : D2 → C2 that satisfy

(56.1.2)

(
ew(u01) = ep01(v), ew(u12) = ep12(v), ew(u20) = ep20,

ew(u01u12) ⊂ eL1(v), ew(u12u20) ⊂ eL2, ew(u20u01) ⊂ eL0.

For each map w : D2 → T 4 satisfying (56.1.1), there exists a unique ev and a unique
lift ew of w satisfying (56.1.2). And the maps satisfying (56.1.2) are homotopic to
one another. Therefore the set of homotopy classes of w corresponds one to one
to that of the lifts of v. The statement on the area is evident. Hence follows the
lemma. §

Now we prove the following result which we will use in the later discussion. A
weaker version of this proposition was proved in [Fuk02II,02III] using a cobordism
argument that is based on the adiabatic degeneration result from [FuOh97].

Here we give a more direct proof by an explicit construction and in fact also
prove the uniqueness result, which will be used in our gluing construction for the
surgery L≤.



23

Proposition 56.3. For any given ev ∈ π−1(v), there exists a unique element w
in the moduli space of M(eL0, eL1(ev), eL2; ep01(ev), ep12(ev), ep20). The element w is of
multiplicity one at ep12 in the sense of Definition 54.19 and is Fredholm regular.

Proof. Consider the triangle ∆ formed by the vertices

ep20 = (0, 0), ep01(ev) = (ev1, ev2), ep12(v) = (1 +
√
−1)(ev1, ev2)

in C2. It follows that this is contained in the complex linear subspace C·ep12(ev). Then
Riemann mapping theorem gives a unique, modulo holomorphic re-parametrization,
holomorphic map ew from the disc whose image becomes this triangle and has mul-
tiplicity one. This proves that M(eL0, eL1(ev), eL2; ep01(ev), ep12(ev), ep20) is nonempty.

Now we prove the uniqueness of such a holomorphic triangle. Let ew0 : D2 → C2

be any element in M(eL0, eL1(ev), eL2; ep01(ev), ep12(ev), ep20). Since it lies in the same
homotopy class as ew and holomorphic, it has the same area as ew. Furthermore
both maps are area minimizing in their homotopy class. On the other hand, we
consider the complex projection

π(ev1,ev2) : C2 → C · (ev1, ev2)

along the plane C · (−ev2, ev1). The composition π(ev1,ev2) ◦ ew0 is another holomorphic
disc satisfying (56.1.2), i.e., also lies in M(eL0, eL1(ev), eL2; ep01(ev), ep12(ev), ep20) and so
have the same area as ew.

Because the vector (ev1, ev2) is a real vector, the complex direct sum

C2 =
≥
C · (ev1, ev2)

¥
⊕

≥
C · (−ev2, ev1)

¥

is also Hermitian orthogonal. Therefore the projection π(ev1,ev2) is a unitary projec-
tion.

Furthermore it is easy to check that all three Lagrangian planes eL0, eL1(ev), eL2

are parallel along the projection π(ev1,ev2) in that the three direct sums

eL0 = (eL0 ∩ C · (ev1, ev2))⊕ (eL0 ∩ C · (−ev2, ev1))

and so on of eL0, eL1(ev) and eL2 are orthogonal. This implies that the image of
π(ev1,ev2) ◦ ew0 covers the whole triangle ∆. Writing the image of π(ev1,ev2) ◦ ew as
a, possibly multi-valued, graph over the plane C · (ev1, ev2), this also implies the
inequality

(56.4) Area( ew0) ≥ Area(π(ev1,ev2) ◦ ew0) ≥ Area(∆) = Area( ew).

It follows from these inequalities that the first and the last areas are the same if
and only if the images of ew and of ew0 coincide with ∆ with the same multiplicity
1. In other words, ew and ew0 coincide upto the re-parametrization. We can check
the Fredholm regularity by the explicit description given above. This finishes the
proof. §



24

Remark 56.5. The proof of Proposition 56.3 implies that all the holomorphic tri-
angles whose edges lie in L0, L1(v) and L2 respectively are flat. This is rather
exceptional and is a consequence of our special choice of L0, L1(v), L2. If we re-
place them by other more general affine Lagrangian submanifolds, the corresponding
holomorphic triangles are not necessarily flat in general.

For a generic choice of v, holomorphic triangles in class ev will intersect p12 only
at the point u12 ∈ @D2. Furthermore, the image of the triangle in the universal
covering C2 is uniformly away from the inverse image of the surgery point ep over
all (1 +

√
−1)ev = (k, `) + ev0 with |k|+ |`| ≤ K for given constant K > 0 except the

unique surgery point ew(u12). By Proposition 56.3 we can apply Theorem 55.3.
In each of the cases ≤ > 0 or ≤ < 0, the difference between symplectic area of

the pseudo-holomorphic triangle and that of peudoholomorphic disc obtained by
Theorem 55.5 in this way is proportional to |≤|. Namely we have :

Lemma 56.6. Let w≤ be the unique element near w corresponding to the class ev.
Then we have

Area(w≤)−
1
2
evtAev = Csign ≤(S0, α)|≤|

for any ev ∈ π−1(v). Here α is the Kähler angle between L1 and L2.

We omit the proof. Here the number C±(S0, α) ∈ R is the area of the domain
described in the Figure 56.3 below.

Figure 56.3

We now consider the cases L≤ for ≤ > 0, and ≤ < 0, separately. We first consider
the case ≤ < 0.

By choosing ≤ sufficiently small, the error appearing in Lemma 56.6 can be made
as small as we want for each given class ev ∈ Z2 + v. In fact this error can be made
small uniformly over all ev with |k|+ |`| ≤ K for any given constant K > 0.

Thus combining Theorems 55.5, Proposition 56.3 and Lemma 56.6, we have
proved the following theorem.
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Theorem 56.7. Let π : C2 → T 4 be the projection. For any given R > 0, we can
choose ≤ < 0 with |≤| sufficiently small so that we have

(56.8) hδ[p20], [p01(v)]i ≡
X

ev:π(ev)=v

T
1
2 evtAev−C−(S0,π/4)|≤| mod TR.

In particular, the Floer cohomology HF (L0, L≤(v); ΛZ
nov) vanishes for ≤ < 0.

The last statement follows because the right hand side of (56.8) is invertible in
the universal Novikov ring ΛZ

nov or ΛQ
nov.

Remark 56.9. We may put T = e−1 to (56.8) and also consider the “convergent
power series version” of the Floer cohomology. The identity (56.8) then will become
a theta-type function ϑA(v). This relation of the theta function to Floer cohomology
was discovered by M. Kontsevich in [Kon93] in the case of elliptic curve. It was
further studied by Polishchuk-Zaslow [PoZa98], and was partially generalized by
the first named author [Fuk02II, Fuk02III] to the higher dimension.

Remark 56.10. Remark 56.9 implies that the “convergent power series version of
Floer cohomology” is nonzero if and only if ϑA(v) = 0. Note that it is not known in
general whether the power series expression of hδx, yi converges or not after we put
T = e−1. In our case of flat Lagrangian tori L0, L≤(v), the convergence follows from
Theorem 56.7. However some of the properties of Floer cohomology, especially its
invariance under Hamiltonian isotopies, do not hold for the convergent power series
version of Floer cohomology. In fact, in our example, one can find a Hamiltonian
diffeomorphism φv : T 4 → T 4 for each v, such that L≤(v) ∩ φv(L0) = ∅, provided
≤ < 0. Namely HF (L≤(v), φv(L0)) = 0 but HF (L≤(v), L0) 6= 0 in case ϑA(v) = 0 in
the convergent version. (The case A = I is illustrated below.)

Figure 56.4

To obtain something invariant under the Hamiltonian isotopy out of the convergent
power series version of Floer cohomology, we need to include the 1-loop effect.
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Namely we need to include the order of zero and/or infinity of the Floer cohomology
analog of Reidemeister torsion (or more precisely the invariant that Hutchings and
Lee [HuLe99] constructed in the finite dimensional situation.)

Remark 56.11. The Floer cohomology HF (L0, L≤(v); ΛQ
0,nov) is a torsion. Namely

HF (L0, L≤(v); ΛQ
0,nov) ∼=

ΛQ
0,nov

TE≤ΛQ
0,nov

.

Here E≤ = E0 − C−(S0, π/4)|≤| with

E0 = min
Ω

1
2
evtAev

ØØØØ π(ev) = v

æ
.

Note, we can apply Theorem J in this situation.

Next we consider the case when L≤, ≤ > 0. Since we did not check the orientation
of the elements in Theorem 55.5, we work over the Z2 coefficient. (By the argument
of Chapter 8, we can work over Z2 in case the dimension is 2, which implies that all
Lagrangian submanifolds are semi-positive.) Then Theorem 55.5 and Proposition
56.3 imply the following.

Theorem 56.12. Let ≤ > 0 be sufficiently small. For the Floer complex for
(L0, L≤), we have :

hδ[p20], [p01(v)]i ≡ 0 mod 2.

In particular, we have

HF (L0, L≤(v); ΛZ2
nov) ∼= ΛZ2

nov ⊕ ΛZ2
nov

Using the invariance of Floer cohomology under the Hamiltonian deformation,
we immediately obtain

Corollary 56.13. For ≤ > 0, L≤(v) ∩ φ(L0) 6= ∅ for any Hamiltonian diffeomor-
phism φ.

We remark that there exists a Hamiltonian diffeomorphism φ such that L≤(v) ∩
φ(L0) = ∅ with ≤ < 0. Therefore it follows from Corollary 56.13 that L≤(v) and
L−≤(v) are not Hamiltonian isotopic. It is an interesting problem to check whether
they are Lagrangian isotopic.

We will return to the study of the case of 4 dimensional tori in §57.

56.2. The case of 6 dimensional flat tori
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We now consider 6 dimensional torus T 6 = C3/(Z[
√
−1])3. We take a symmetric

and positive definite real-valued 3×3 matrix A = (aij) and define ωA =
P

aijdxi∧
dyj . We define L0, L1(v) and L2 in the same way as before, i.e.,

L0 = {[z1, z2, z3] ∈ C3/(Z[
√
−1])3 | y1 = y2 = y3 = 0},

L1(v) = {[z1, z2, z3] ∈ C3/(Z[
√
−1])3 | x1 = v1, x2 = v2, x3 = v3},

L2 = {[z1, z2, z3] ∈ C3/(Z[
√
−1])3 | x1 = y1, x2 = y2, x3 = y3}.

(Here v = (v1, v2, v3).)
We perform Lagrangian surgery at all of the pairwise intersection points of the

three,
p12(v) ∈ L1(v) ∩ L2, p20 ∈ L2 ∩ L0, p01(v) ∈ L0 ∩ L1(v).

We then obtain a Lagrangian submanifold which we denote by L = L≤12,≤20,≤01(v).
Here ≤12, ≤20, ≤01 are the parameters entering in the Lagrangian surgery at these
three points, respectively.

In a way similar to the proof of Lemma 56.2, we observe that the set of homotopy
classes of maps from D2 → T 6 satisfying (56.1.1) one-one corresponds to Z3. We
can also identify this with the set

π−1(v) = {ev ∈ R3|π(ev) = v},

where π : R3 → R3/Z3 is the projection. Similarly as in the proof of Proposition
56.3, we can show that there exists a unique holomorphic triangle in each homotopy
class. We denote this unique holomorphic triangle by wev : D2 → T 6 for each
ev ∈ π−1(v). We can also prove that wev is of multiplicity one at p01, p12, p20 in
the sense of Definition 54.19 and is Fredholm regular. Using these observations and
Theorem 55.5, we will study the obstruction classes for the well-definedness of Floer
cohomology of L≤12,≤20,≤01(v). We denote by

βev ∈ H2(T 6, L≤12,≤20,≤01(v); Z)

the relative homology class represented by a map w0ev : (D2, @D2) → (T 6, L≤12,≤20,≤01(v))
close to the triangle wev.

We first consider the case ≤12, ≤20, ≤01 < 0. Let ev0 be the element of π−1(v) for
which Z

w∗ev0
ω =

1
2
evt
0Aev0 = E0 = min

Ω
1
2
evtAev

ØØØØ π(ev) = v

æ
.

We put `ev0 = w0ev0∗(@D2) ∈ H1(L). Using the assumption ≤12, ≤20, ≤01 < 0, we find
that the Maslov index of `ev0 is 0 and L is oriented. Since all oriented 3-manifolds
are spin, we can use the rational coefficient in our construction. In fact, we can
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even use the Z-coefficients noting that all 3 dimensional Lagrangian submanifolds
are semi-positive.

Now in the same way as the proof of Theorem 56.7, we can prove the zero di-
mensional moduli space M(βev) consists of one point which contributes as ±1. Note
that L≤12,≤20,≤01(v) is spin. Although the spin structure is not uniquely determined
(Remark 54.8), the moduli space M(βev) consists of a unique element, hence we can
compute its contribution to the obstruction cycle up to sign. Combining all these,
we have proved the following theorem

Theorem 56.14. If ≤12, ≤20, ≤01 < 0, then the first obstruction o1 to the well de-
finedness of the Floer cohomology of L≤12,≤20,≤01(v) is ±PD[`ev0 ] ∈ H2(L≤12,≤20,≤01(v); Z).

We remark that the cohomology class PD[`ev0 ] does not lie in the image of
H2(T 6) → H2(L). This implies that Mdef(L) is empty. Moreover since the ob-
struction lies in H2(L), it follows that Mdef,weak(L) is also empty.

We remark that Theorem 56.14 provides an example mentioned in (1.16.4) (a).
In the same way, we prove that the algebraic order of M(L≤12,≤20,≤01(v);βev) is

one for any ev ∈ R3 if ≤12, ≤20, ≤01 < 0 are sufficiently small. Unfortunately we do not
know a correct way of counting the order of the moduli space M(L≤12,≤20,≤01 ; kβev)
for k ≥ 2.

The naive definition of the order, which would be obtained just by counting the
number of elements of M(L≤12,≤20,≤01(v);βev, J) for a regular J , will depend on the
choice of J ’s and others unlike the case of closed holomorphic curves. It turns out
that to obtain a really symplectic invariant of the pair (M,L) one has to look at
the whole system of numbers that are matrix coefficients of the operations. This
definition will depend on how we deform the intersection product to an A1 algebra.
We recall how we deform the cup product into an A1 algebra in §30.2 : We choose
diffeomorphisms ϕ0, ϕ1 : L → L and modify the cup product x ∩ y of two cochains
x, y to ϕ0(x) ∩ ϕ1(y).

For example, we consider the case k = 2 and a simple pseudo-holomorphic disc
u : (D2, @D2) → (M,L) with [u] = β. To study the contribution of the double cover
of u, we need to take ϕ0, ϕ1 so that ϕ0(u(@D2)) is transverse to ϕ1(u(@D2)). Such a
choice, however, is not unique up to homotopy : Let ϕ00 be another diffeomorphism.
We connect this to ϕ0 by an isotopy ϕt

0 such that

ϕ0 = ϕ0
0, ϕ00 = ϕ1

0.

Then we note that ϕt
0(u(@D2))∩ϕ1(u(@D2)) = ∅ for generic t except in a codimen-

sion one set of t ∈ [0, 1] such that ϕt
0(u(@D2))∩ϕ1(u(@D2)) is a one point. Thus if

we make two different choices of ϕ0 the number of the pseudo-holomorphic discs of
homology class 2β could be different.

Of course, the A1 algebra (C(L),m) as a whole is independent of such choices
up to homotopy equivalence.
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Modulo the problem of counting multiple covered discs mentioned above, we can
calculate the filtered L1 structure on H(L≤12,≤20,≤01(v); Λ0,nov). Especially we can
determine the structure up to the order of TE0+c for some c > 0, which is small,
but independent of ≤. We would like to point out that this structure is indeed
independent of the choices of perturbations of J or of abstract perturbations and so
defines an invariant of the pair (M,L).

Let S2
12, S2

20 and S2
01 be the vanishing cycles of p12(v), p20 and p01(v) respectively.

By definition, the supports of these spheres are contained in the neighborhoods
p12(v), p20 and p01(v) which are the central cross section of the corresponding
Lagrangian handles of the Lagrangian surgery.

Figure 56.5.

We now remark that we have the identity

[S2
12] = [S2

20] = [S2
01]

in homology. We denote

a1 = the Poincaré dual to this common homology class
a2 = PD[`ev0 ].

Theorem 56.14 bis. In the situation of Theorem 56.14 we have

ha1, lk(a1, · · · , a1)i ≡ ± 1
k!

TE0+o(≤) mod TE0+c

all other operations lk vanishes modulo TE0+c.

Here and hereafter o(≤) are real numbers such that lim≤→0 o(≤) = 0. In fact,
o(≤) = |≤| (2C−(π/4) + C−(π/2)).

Proof. Theorem 56.14 bis is a consequence of Proposition 37.38 and its proof. This
is because we know that the algebraic order of M(βev0) is ±1. §
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To describe the contributions of other ev’s we use the superpotential

™ : H1(L; Λ+
0,nov) → Λ+

0,nov

introduced in §11.4 (11.49). We remark that T 6 is a Calabi-Yau 3 fold and the
Maslov class of L≤12,≤20,≤01(v) is zero if ≤12, ≤20, ≤01 < 0. Therefore we are in the
situation of §11.4.

For each R > 0, we can choose ≤ij < 0 so small that, for b ∈ H1(L≤12,≤20,≤01(v); Λ0,nov),
we have

™(b) ≡ ±
X

ev:π(ev)=v

eb∩[@ev]T
1
2 evtAev+o(≤)

+ (contribution of multiple covered discs) mod TR.

Here and hereafter, o(≤) is a real number depending on ≤ij such that lim
≤ij→0

o(≤) = 0.

We now consider the case where one of the ≤ij , say ≤12 is positive. In this
case the Maslov index of `ev0 is 1. In particular L is not oriented. So we use
Z2 coefficient. Theorems 55.5 and 3 dimensional analogue of Proposition 56.3 in
this case implies that the moduli space of holomorphic discs (D2, @D2) → (T 6, L) of
homology class βev is diffeomorphic to S1. By Theorem 55.14, the fundamental cycle
of the evaluation map : M1(βev) = S1×S1 → L is homologous to the vanishing cycle,
the 2 sphere S2

12, which is supported in a neighborhood of L1(v)∩L2. (Recall that
≤12 > 0 is the parameter corresponding to the surgery at L1(v)∩L2.) Furthermore,
the homology class of the vanishing cycles is independent of the choice of the vertices
ev with π(ev) = v. By a dimension counting, we can prove that all obstruction
classes are trivial, possibly except the class 2βev. For the class 2βev, it defines a top
dimensional class, which, however, cannot be surjective from the above description
of the fundamental cycle and hence again gives null contribution. Hence we have :

Theorem 56.15. We consider the case that ≤20, ≤01 < 0 < ≤12. Then for each
R > 0, we may choose |≤ij | small such that

m0(1) ≡
X

ev:π(ev)=v

(T
1
2 evtAev+o(≤)e

1
2 ) a1 mod TR

in H1(L≤12,≤20,≤01(v); ΛZ2
0,nov).

Next we consider the case when ≤01 < 0 < ≤12, ≤20. Then the Maslov index
of [`ev] is 2. Hence L = L≤12,≤20,≤01(v) is oriented. The moduli space M(βev) of
holomorphic discs (D2, @D2) → (T 6, L) of the homology class βev is diffeomorphic
to S1 × S1 by Theorem 55.7. (In fact, Theorem 55.7 only asserts the existence
of fiber bundle S1 → M(βev) → S1. We can show that this bundle is trivial by
inspecting its proof. We omit the detail since this point is not necessary for our
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purpose to prove Theorem 56.17.) The image of the evaluation map S1×S1×S1 →
L (namely ev : M1(βev) → L) can be deformed to a subset of `ev ∪ S2

12 ∪ S2
20.

Hence it is homologous to zero. Namely the corresponding obstruction class in
H3−2+µL(`ev)(L) ∼= H2−µL(`ev)(L) = H0(L) vanishes. We can also show that the
other obstruction classes also vanish in this case.

Theorem 56.16. If ≤01 < 0 < ≤12, ≤20 or 0 < ≤12, ≤20, ≤01, then L≤12,≤20,≤01(v) is
unobstructed. (We use Z coefficients in the first case and Z2 coefficients in the
second case.)

Proof. We already discussed the case ≤01 < 0 < ≤12, ≤20.
In the case 0 < ≤12, ≤20, ≤01, the Maslov index of `ev is 3. Hence L≤12,≤20,≤01(v)

is unoriented. So we use Z2 coefficient. We then find that obstruction is in
H3−2+µL(`ev)(L≤12,≤20,≤01(v); Z2) = H2−µL(`ev)(L≤12,≤20,≤01(v); Z2) = H−1(L≤12,≤20,≤01(v); Z2) =
0 and hence vanishes automatically. §

Theorem 56.16 gives an example where the obstruction vanishes while the moduli
space of pseudo-holomorphic discs is nonempty.

Let us continue and calculate partially the operators m1, m2 and m3 in the
canonical model. We work over Z2 coefficient in order to avoid the discussion on
sign, which is rather delicate.

Theorem 56.17. In the situation of Theorem 56.16 we have

(56.18) HF (L≤12,≤20,≤01(v); ΛZ2
0,nov) ∼= H(L≤12,≤20,≤01(v); ΛZ2

0,nov).

In case ≤01 < 0 < ≤12, ≤20, we have

(56.19.1) m2(a2, a2) ≡ (TE0+o(≤)e) a2 mod TE0+c,

In case 0 < ≤12, ≤20, ≤01, we have

(56.19.2) m2(a2, a2) ≡ (TE0+o(≤)e3/2) a1 mod TE0+c,

(56.19.3) m3(a2, a2, a2) ≡ (TE0+o(≤)e3/2) a2 mod TE0+c.

Note (56.19.1), (56.19.2), (56.19.3) are equalities in the group (56.18).

Remark 56.20. Contrary to the situation of Theorems 37.30, 37.32 we can not
symmetrize m to l in order to obtain nontrivial product structure, in the situation
of Theorem 56.17. This is not only because we work over Z2 coefficients but also
because the product l2(a2, a2) is automatically zero since a2 has an odd degree after
the degree shifting.

We remark that Theorems 56.16 and 56.17 show that L≤12,≤20,≤01(v) provides an
example we mentioned in (1.16.4) (c). We also remark that (56.19.1) - (56.19.3)
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imply an existence theorem of J-holomorphic discs bordered on L≤12,≤20,≤01(v) for
any compatible almost complex structure J .

Proof of Theorem 56.17. We first prove (56.18). We prove the case ≤01 < 0 < ≤12, ≤20
in detail and leave the other case to the interested readers. We recall M1(βev) ∼=
S1 × S1 × S1. The evaluation map ev : M1(βev) → L≤12,≤20,≤01(v) = L can be
deformed so that its image becomes contained in `ev ∪ S2

12 ∪ S2
20. More precisely we

can deform the image to that of the map h : S1×S1×S1 → L described as follows.
Take a disjoint union of arcs [a0, a1] ∪ [b0, b1] ⊂ S1. Here and hereafter we put, for
s, t ∈ S1,

[s, t] = {u | s, u, t respects the cyclic order.}

Recall @βev = [`ev] in H1(L). We decompose the loop `ev into `ev = `1 ∪ `2 ∪ `0 so that

`a ∩ `b = `ev ∩ S2
ab(= single point)

for pairs of (a, b) = (1, 2) or (2, 0) or (0, 1). (Note `i almost lies in Li.) We require
h to satisfy the following properties (see Figure 56.6) :

(56.21.1) If t ∈ [a1, b0]∪ [b1, a0] then h(S1×S1×{t}) is one point. We write the
common image point as h(t).
(56.21.2) {h(t) | t ∈ [a1, b0]} = `2. {h(t) | t ∈ [b1, a0]} = `0 ∪ `1.
(56.21.3) If t ∈ [a0, a1] and x ∈ S1 then h({x}×S1×{t}) is one point. We write
it as h1(x, t).
(56.21.4) h1(x, t) ∈ S2

12. Moreover h1 : S1 × [a0, a1] → S2
12 is of degree one. (We

remark that h1(S1 × {ai}) are one points. So the degree makes sense.)
(56.21.5) If t ∈ [b0, b1] and y ∈ S1 then h(S1×{y}×{t}) is one point. We write
it as h2(y, t).
(56.21.6) h2(y, t) ∈ S2

20. Moreover h2 : S1 × [b0, b1] → S2
20 is of degree one.

Figure 56.6



33

Figure 56.7

The fact that the image of ev : M1(βev) → L≤12,≤20,≤01(v) can be deformed to that
of such a map h follows from Theorem 55.14.

Now we calculate the boundary operator m1,βev . We will mainly study m1,βev (PD[`ev]).
(It is easy to see that other contributions are zero. For example the contribution of
multiple covered discs vanishes by the degree reason.) We perturb `ev to `0ev in the
same homology class so that `0ev∩`ev = ∅ and `0ev intersects transversely to S2

12, S2
20 at

h1(x0, t1), h2(y0, t2), respectively. We consider the image of the fiber product chain

(56.22) ev0 : M1+1(βev) ev1 × `0ev → L≤12,≤20,≤01(v).

We may identify M1+1(βev) = M1(βev) × S1 = (S1)4. So the image of the map
(56.22) consists of two copies of S1 × S1. Namely we decompose

M1+1(βev) ev1 × `0ev ∼= {(x0, y, t1, s) | y ∈ S1, s ∈ S1} ∪ {(x, y0, t2, s) | x ∈ S1, s ∈ S1}
def.= T1 t T2.

See Figure 56.7. It is easy to see that ev0(T1) ∼ S2
20, ev0(T2) ∼ S2

12. (Here ∼ means
homologous.) Thus

(56.23) m1,βev (PD[`ev]) = PD (ev0(M1+1(βev) ev1 × `0ev)) = PD[S2
12]+PD[S2

20] = 0.

This implies that m1 = 0 and hence (56.18) holds for ≤01 < 0 < ≤12, ≤20.

Remark 56.24. To prove a result similar to (56.18) for Q (or Z) coefficient in
case ≤01 < 0 < ≤12, ≤20, we need to check the sign in the above discussion carefully.
Especially we need to find whether (56.23) gives ±2a1 or 0. We are almost sure
that it is 0. We can prove it in case ev = ev0 as follows. We consider

hl1,ev0(a2), a2i = hm1,ev0(a2), a2i.
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Since the proof of Proposition 37.38 works at least for the leading term (namely in
case ev = ev0) it follows from cyclic symmetry that

hl1,ev0(a2), a2i = −hl1,ev0(a2), a2i = 0.

This implies that the sum (56.23) is 0 over Q coefficient in case of ev = ev0.
The above argument implies that m1 vanishes over Q if cyclic symmetry

(56.25) hm1(x), yi = (−1)(deg x+1)(deg y+1)hm1(y), xi

holds. (56.25) follows from the argument of §§37.2, 37.3 as far as the term m1,βev0
concerns. To prove it in general we need some more arguments which will appear
elsewhere. This is the reason why we state (56.18) over Z2 coefficients.

We next prove (56.19.1). It is easy to see that because we are interested in
finding the lowest order term we only need to study m2,βev0

(a2, a2). We use the map
h again for this purpose. Hereafter we write ` = `ev0 and ev = ev0. Take perturbations
`(1), `(2) of ` so that they becomes disjoint from each other and that `(j) intersect
transversely with S2

12, S2
20 at h1(x

(j)
0 , t(j)1 ), h2(y

(j)
0 , t(j)2 ), respectively. (t(j)1 ∈ [a0, a1],

t(j)2 ∈ [b0, b1].) We may assume x(1)
0 6= x(2)

0 , y(1)
0 6= y(2)

0 . See Figure 56.8.
We regard Mmain

2+1 (βev) as a submanifold of M2+1(βev) which is a resolution of
M1(βev)×S1×S1 ∼= (S1)5 along the diagonal. So in particular Mmain

2+1 (βev) ⊂ (S1)5.
Then the image of the fiber product chain

(56.26) ev0 : Mmain
2+1 (βev) (ev1,ev2) × (`(1) × `(2)) → L≤12,≤20,≤01(v)

consists of two copies of arcs in L≤12,≤20,≤01(v). Namely we have

Mmain
2+1 (βev) (ev1,ev2) × (`(1) × `(2)) ∼= {(x(1)

0 , y(2)
0 , t(1)1 , t(2)2 , s) | s ∈ [t(2)2 , t(1)1 ]}

∪ {(x(2)
0 , y(1)

0 , t(2)1 , t(1)2 , s) | s ∈ [t(2)1 , t(1)2 ]}
def.= I1 t I2.

It is easy to see that ev0(I1) = `0 ∪ `1, ev0(I2) = `2. Thus

m2,βev0
(a2, a2) = ev0(Mmain

2+1 (βev) (ev1,ev2) × (`(1) × `(2)))

= PD[`0 ∪ `1 ∪ `2] = PD[`] = a2.
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(56.19.1) is proved.

Figure 56.8

We next prove (56.19.2). Namely we consider the case 0 < ≤12, ≤20, ≤01. In this
case M1(βev) ∼= S1 × S1 × S1 × S1 and the evaluation map ev : M1(βev) → L can
be deformed to h with the following properties. (This fact follows from Theorems
55.11 and 55.13.) Let a0, a1, b0, b1, c0, c1 ∈ S1 which respect counter clockwise cyclic
order of S1. See Figure 56.9.

(56.27.1) If t ∈ [a1, b0]∪ [b1, c0]∪ [c1, a0] then h(S1 × S1 × {t}) is one point. We
write it as h(t).

(56.27.2) {h(t) | t ∈ [a1, b0]} = `2. {h(t) | t ∈ [b1, c0]} = `0. {h(t) | t ∈
[c1, a0]} = `1.

(56.27.3) If t ∈ [a0, a1] and x ∈ S1 then h({x}×S1×S1×{t}) is one point. We
write it as h1(x, t). If t ∈ [b0, b1] and y ∈ S1 then h(S1 × {y} × S1 × {t}) is one
point. We write it as h2(y, t). If t ∈ [c0, c1] and z ∈ S1 then h(S1×S1×{z}× {t})
is one point. We write it as h3(z, t).

(56.27.4) hi (i = 1, 2, 3) define maps h1 : S1× [a0, a1] → S2
12, h2 : S1× [b0, b1] →

S2
20, h3 : S1 × [c0, c1] → S2

01, of degree one.
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Figure 56.9

Figure 56.10

We take perturbations, `(1), `(2) of ` such that

` ∩ `(1) = ` ∩ `(2) = `(1) ∩ `(2) = ∅,

and that `(j) intersect with S2
12, S2

20, S2
01 at one point (x(j), t(j)1 ), (y(j), t(j)2 ), (z(j), t(j)3 ),

respectively. We remark that t(j)1 ∈ [a0, a1], t(j)2 ∈ [b0, b1], t(j)3 ∈ [c0, c1].
We now consider the fiber product

(56.28) Mmain
2+1 (βev) (ev1,ev2) × (`(1) × `(2)).

It consists of 6 copies of S1× interval. Namely

(56.29.1) {x(1)} × {y(2)} × S1 × [t(2)2 , t(1)1 ],
(56.29.2) {x(1)} × S1 × {z(2)} × [t(2)3 , t(1)1 ],
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(56.29.3) {x(2)} × {y(1)} × S1 × [t(2)1 , t(1)2 ],
(56.29.4) {x(2)} × S1 × {z(1)} × [t(2)1 , t(1)3 ],
(56.29.5) S1 × {y(1)} × {z(2)} × [t(2)3 , t(1)2 ],
(56.29.6) S1 × {y(2)} × {z(1)} × [t(2)2 , t(1)3 ].

The ev0 image of (56.29.1) is homologous to S2
01 since [c0, c1] ⊆ [t(2)2 , t(1)1 ]. We

find that ev0 image of (56.29.2) is 0 since [b0, b1] ∩ [t(2)3 , t(1)1 ] = ∅. In a similar way,
we find that ev0 images of (56.29.3), (56.29.4), (56.29.5), (56.29.6) are 0, S2

20, S2
12,

0, respectively.
Therefore

m2,βev (a2, a2) = ev0∗(Mmain
2+1 (βev) (ev1,ev2) × (`(1) × `(2)))

= [S2
01] + [S2

12] + [S2
20] = a1.

(56.19.2) is proved. The proof of (56.19.3) is similar and is left to interested read-
ers. §

Remark 56.30. If we were able to lift (56.19.3) to Z then the cyclic symmetry
would imply

ha2,m3,βev (a2, a2, a2)i = −ha2,m3,βev (a2, a2, a2)i = 0,

and would be inconsistent with (56.19.3). We remark however that L≤12,≤20,≤01(v)
is not oriented and hence Poincaré duality h i in the above formula is defined only
over Z2.

We next construct an example mentioned in (1.16.3) (b), that is, an example
where obstruction vanishes but m1 6= m1. We recall that the cancellation (56.23)
occurs because [S2

20] = [S2
12]. So we need to modify the Lagrangian torus so that

this equality fails to hold.
We put

T 60 = C3/((2Z + 3
√
−1Z)⊕ (Z +

√
−1Z)2).

We take affine Lagrangian subspaces eL0, eL1(ev), eL2 of C3 and let L00, L01(v), L02 be
the Lagrangian subtorus of T 60 induced by them.

We note L00 ∩ L02 consists of 2 points, which we denote by

L00 ∩ L02 = {pj
20 | j = 1, 2}.

And L01(v) ∩ L02 consists of 3 points, denoted by

L01(v) ∩ L02 = {pm
12(v) | m = 1, 2, 3}.

Finally L00 ∩ L01(v) consists of a single point

L00 ∩ L01(v) = {p01(v)}.
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Figure 56.11

We perform surgery to L00 ∪ L01(v) ∪ L02 at those 6 points. More precisely, we
perform the surgery for ≤ > 0 at the 5 points pj

20, pm
12(v) respectively, and the

surgery for ≤ < 0 at p01(v). (In other words, we consider ≤01 < 0 < ≤12, ≤20.) We
denote by L0≤12,≤20,≤01(v) = L0 the Lagrangian submanifolds obtained in this way.
In a way similar to the proof of Theorem 56.16 we can prove that L0≤12,≤20,≤01(v) is
unobstructed.

There are 6 = 2 × 3 × 1 choices of the triple (pj
20, p01(v), pm

12(v)). By taking a
vector v appropriately, among the triangles whose vertices are p1

20, p01(v), p1
12(v) and

whose edges are in L00, L01(v), L02, we may assume that there exists a unique choice
of (p1

20, p01(v), p1
12(v)) and then that of the homotopy class ev0 with the smallest

possible area, respectively. Let E0 be this area of βev0 . We put [@ev0] = a02. Let
S2

p1
20

, S2
p1
12(v) be the 2 spheres, i.e. vanishing cycles, in L0≤12,≤20,≤01(v) which lie in a

neighborhood of p1
20, p

1
12(v) respectively. Now the proof of Theorem 56.17 (especially

Formula (56.23)) implies

(56.31) m1,ev0(a
0
2) = ±PD([S2

p1
20

])± PD([S2
p1
12(v)]).

The right hand side of (56.31) is nonzero since [S2
p1
20

] 6= ±[S2
p1
12(v)].

We remark that the fundamental cycle [L0≤12,≤20,≤01(v)] is nonzero in Floer coho-
mology. This follows from the spectral sequence in Theorem D by using the fact
that the union of ev(M(βev)) for various ev does not cover L0≤12,≤20,≤01(v). Thus we
have :

Theorem 56.32. L0≤12,≤20,≤01(v) is unobstructed. Moreover we have :

0 6= HF (L0≤12,≤20,≤01(v); ΛR
0,nov) 6= H(L0≤12,≤20,≤01(v); ΛR

0,nov)

for any field R.
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Thus L0≤12,≤20,≤01(v) provides an example we mentioned in (1.16.4) (b).
We next construct an example mentioned in (1.16.4) (d), that is a pair of La-

grangian submanifolds such that the boundary operator of the Floer cohomology
is trivial but the bimodule structure is nontrivial. Consider T 6 and L0, L1(v), L2

as before. We choose another L1(v0) by taking different v0 ∈ T 3. Let L≤12,≤20,≤01(v)
be a Lagrangian submanifold obtained by Lagrangian surgery as before. We note
L0 ∩ L1(v0) and L2 ∩ L1(v0) consist of a single point respectively. We denote them
by

x = (v01, v
0
2, v

0
3) ∈ L0 ∩ L1(v0),

y = (v01(1 +
√
−1), v02(1 +

√
−1), v03(1 +

√
−1)) ∈ L2 ∩ L1(v0).

Then it follows that x, y give rise to the intersection points of L≤12,≤20,≤01(v) and
L1(v0). We denote them by the same letter

x, y ∈ L1(v0) ∩ L≤12,≤20,≤01(v).

By suitably choosing ev0, we may assume that

(56.33)
1
2
ev0 ·Aev0 = E1 < E0 =

1
2
ev ·Aev.

where E0 is the minimal area of pseudo-holomorphic triangle whose edges lie on L0,
L1(v), L2, which is close to the minimal area of pseudo-holomorphic discs bordered
on L≤12,≤20,≤01(v), and E1 is the minimal area of pseudo-holomorphic triangle whose
edges lie on L0, L1(v0), L2, respectively.

Figure 56.12

By Theorem F we have a filtered A1
≥
H(L≤12,≤20,≤01(v); ΛQ

0,nov), H(L01(ev0); Λ
Q
0,nov)

¥

bimodule structure nk1,k2 on ΛQ
0,nov[x]⊕ ΛQ

0,nov[y]. The following theorem provides
some partial information on this bimodule structure.
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Theorem 56.34. If ≤20 < 0 < ≤12, ≤01, then

(56.35) n0,0([x]) ≡ ±(TE1+o(≤)) · [y] mod TE1+c.

If ≤01 < 0 < ≤12, ≤20 then

(56.36.1) n0,0([x]) = 0,

and

(56.36.2) n1,0(a2, [x]) ≡ ±(TE1+o(≤)e) · [y] mod TE1+c.

Proof. By Proposition 56.3, the order, counted with sign, of the moduli space
M(L0, L1(v0), L2; p20, x, y) is ±1. (Note that the orientation of the moduli space of
holomorphic discs depends on the spin structure. The spin structure is not uniquely
determined, cf. Remark 54.8.) For the case ≤20 < 0 < ≤12, ≤01, the element of the
moduli space M(L0, L01(ev0), L2; p20, x, y) gives a unique pseudo-holomorphic 2-gon,
which contributes to the boundary operator hm1,βev ([x]), [y]i. This implies (56.35).

For the case ≤01 < 0 < ≤12, ≤20, the index difference between x and y is 2
and hence we have (56.36.1). To show (56.36.2), we remark that each element
of M(L0, L01(ev0), L2; p20, x, y) defines an S1 parameterized family of holomorphic
2-gons. Namely M(L≤12,≤20,≤01(v), L1(v0);x, y;β) is diffeomorphic to S1 where β is
an appropriate homotopy class.

Consider the moduli space M1,0(L≤12,≤20,≤01(v), L1(v0);x, y;β), consisting of the
elements of M(L≤12,≤20,≤01(v), L1(v0);x, y;β) together with one marked point on the
boundary R × {0}. We may assume that it is S1 × R, although we do not specify
its orientation here (cf. Remark 54.8) and the evaluation map

ev : M1,0(L≤12,≤20,≤01(v), L1(v0);β) → L≤12,≤20,≤01(v)

represents the class ±[S2
20]. (Theorem 55.14.) (56.36.2) follows. §

It seems to be interesting to study the collection of the Lagrangian submanifolds
obtained by Lagrangian surgeries, starting from the flat Lagrangian tori and carried
out at more complicated configurations of intersections in a similar way. (We refer
to the last section of [Fuk02III] for some related study.) This is a subject of the
future research.

Remark 56.37. In this section we have used suitable chains representing given
cohomology classes in our calculations of various operations.

The discussion presented in §30 proves that we can use any choice of chains,
as long as the transversality condition is satisfied, for the calculation up to the
level (n, K) we want to calculate. Then the whole discussion in §30 is designed to
verify that the An,K structure we compute using the chosen particular choice can
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be extended to an A1 structure and the resulting A1 structure is independent of
such choices up to homotopy equivalence.

In this section we illustrated analysis of contributions of the moduli spaces of
the lowest energy level. Therefore we can safely work with homology classes rather
than cycles because the relevant moduli spaces have no boundary.

We like to compare the machinery developed in §30 with that of usual singular
homology theory : This plays a role similar to the way how the general theory of
the standard singular homology theory works in the homology theory. Recall, for
example, that when we compute an intersection pairing of two homology classes in
the usual singular homology theory, we take appropriate representatives satisfying
some relevant transversality conditions for the computation. The general algebraic
and geometric machinery of the singular homology theory ensures that such cal-
culation is independent of the choice of representatives used. We recall that while
actual calculations using the transversal representatives look rather ad hoc and sim-
ple, this general singular (or any kind of) homology theory needed for justification
is rather heavy and not simple at all. By the same token, we emphasize that our
rather ad-hoc looking calculations carried out in this section are completely rigorous
which are justified by the general heavy machinery developed in §30.

More specifically speaking, in actual calculation of the A1 (or An,K) structures,
the general theory established in §30 and others makes it unnecessary to go back
to the details of proofs carried out in §30 : To obtain the structure constants
of the A1 (or An,K) structures, we have only to analyze the moduli spaces of
pseudo-holomorphic discs up to the order that we want to know. They can then
be calculated by taking appropriate chains that satisfy the relevant transversality
conditions, and then taking the fiber products among them and etc.

§57. Wall crossing and monodromy.

In this section we consider the case n = 2 and ω =
P

dxi ∧ dyi. (In this
section we only consider the case when the Kähler angle α between two Lagrangian
submanifolds we consider is π/2.) Then, C2 has a family of automorphisms realising
hyper-Kähler rotation : for each θ ∈ (−π, π], we define a diffeomorphism Rotθ :
C2 → C2 by

(57.1)
Rotθ(x1 +

√
−1 y1, x2 +

√
−1 y2)

= (x1 +
√
−1 (y1 cos θ + y2 sin θ), x2 +

√
−1 (−y1 sin θ + y2 cos θ)).

Although it is not a symplectic diffeomorphism (with respect to standard symplec-
tic structure), a straightforward calculation shows that this rotation preserves the
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Lagrangian property of the particular Lagrangian submanifold H≤, defined in (54.4).
Namely all of

H|≤|e
√
−1θ = Rotθ(H|≤|)

stay Lagrangian and so we have S1-family of Lagrangian submanifolds each of which
is asymptotic to R2 ∪

√
−1 R2. We would like to use this S1-family to define an

S1-family of Lagrangian surgery at each double point of an immersed Lagrangian
surface. However this rotation does not preserve the Liouville class. (See below.) In
particular, H≤ is not exact unless ≤ is real. This makes it impossible to interpolate
it, by a Lagrangian surface, to R2 ∪

√
−1 R2 which is exact. So unlike the case

where ≤ is real and so H≤ is exact, we cannot localize the other surgery for θ 6= 0, π,
but need to use a more global construction for them.

We first analyze how the Liouville class of H≤ changes over ≤ = |≤|e
√
−1θ with

θ ∈ (−π, π]. When ≤ is positive real (i.e., when θ = 0), we consider the circle
∫0 : S1 → C2 ∼= T ∗R2 defined by

∫0(φ) = dfr(
p
|≤|(cos φ, sinφ))

For ≤ = |≤|e
√
−1θ, θ ∈ (−π, π], we put

∫≤ = ∫θ := Rotθ ◦∫0 : S1 → H≤,

where Rotθ : C2 → C2 is the diffeomorphism defined in (57.1). We denote by [∫≤]
the homotopy classs H2(C2, H≤) through the natural isomorphism H2(C2, H≤) ∼=
H1(H≤) ∼= Z. This generates H2(C2, H≤). Then a simple computation shows that

∫∗θ (−(y1dx1 + y2dx2)) = −|≤| sin θdφ

where −(y1dx1 + y2dx2) is the Liouvile form. It follows from this that

(57.2) ω[∫≤] = −2π|≤| sin θ






= 0 for θ = 0, π,

< 0 for θ ∈ (0, π),
> 0 for θ ∈ (−π, 0).

This in particular shows that H≤ is not exact, unless ≤ is real, i.e, θ = 0, π.
Before proceeding further, we study the moduli spaceM(C2, H≤; [∫≤]), ≤ = |≤|e

√
−1θ

for each θ ∈ (−π, π].

Proposition 57.3. M(C2, H≤; [∫≤]) consists of one point if θ = −π/2 and is empty
otherwise. Similarly M(C2, H≤; [−∫≤]) consists of one point if θ = π/2 and is empty
otherwise.

Proof. We first note that all H≤ are congruent because they are the images of H|≤|
under the map Rotθ which are all isometries. Furthermore, for the case of H|≤|, the
flat disc with boundary w|≤| : (D2, @D2) → (C2, H|≤|) defined by

w|≤|(z) =
p
|≤|(z, z)
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is not only a minimal disc (in the Riemannian geometric sense) but also area
minimizing among the maps representing the homotopy class [@w|≤|] = [∫0] ∈
π2(C2, H|≤|) ∼= π1(H|≤|). In fact if w : (D2, @D2) → (C2, H≤) is any map homo-
topic to w|≤| then

Area(w(D2)) ≥
Z

w∗ω =
Z

w∗|≤|ω = Area(w|≤|(D2)).

Obviously the image of this disc under the rotations which lies in H≤ is again
area-minimizing in the corresponding class [∫θ] ∈ π1(H≤) ∼= π2(C2, H≤). Denote this
disc by w≤ : (D2, @D2) → (C2, H≤). Therefore if there exists a holomorphic map
representing the class ∫≤, the map w≤ must be holomorphic. However it is easy to
see that w≤ can be holomorphic only if θ = −π/2 and is anti-holomorphic only if
θ = π/2. The proof of Proposition 57.3 follows. §

Now we want to implant the S1-family of local models H≤ into a given compact
symplectic manifold at each double point of a Lagrangian immersion.

Let ™ : Σ → M be a Lagrangian immersion into a symplectic 4-manifold. We
assume that ™ is an embedding on Σ\{p, q} and has an ordinary double point at
x = ™(p) = ™(q). As in §54, we choose a small neighborhood U of x and take a
symplectic diffeomorphism I : U → D4 ⊂ C2 where D4 is the unit ball in C2. I maps
the two branches of the immersion to (R2 ∪

√
−1 R2) ∩D4. We put A = D4\ 1

2D4.
Here 1

2D4 is the four ball of radius 1
2 centered at the origin. Let Ar = A ∩ R2,

Ai = A∩
√
−1 R2. (Here r and i stand for ‘real’ and ‘imaginary’, respectively.) We

may identify the neighborhoods Ur, Ui of Ar, Ai in C2 with neighborhoods of the
zero section of the cotangent bundle of Ar, Ai respectively.

We consider the Lagrangian submanifolds H≤ in C2 for ≤ = |≤|e
√
−1θ defined in

(54.4) for θ ∈ (−π, π]. Since H≤ ∩ A converge to (R2 ∪
√
−1 R2) ∩ A as |≤| → 0

and so are contained as a Lagrangian graph in the above Darboux neighborhood
of Ar ∪ Ai, there exist closed one forms ur, ui on Ar, Ai such that H≤ ∩ A can be
identified with the graphs of ur, ui respectively on the cotangent bundle. In fact,
with respect to the polar coordinates (tr, φr) of Ar

∼= [ 12 , 1]× S1 ⊂ R2
x1,x2

, we have

(57.4.1) ur = −|≤| sin θdφr + |≤| cos θ
dtr
tr

.

Similarly due to the symmetry of H≤ along the diagonal ∆, we also have

(57.4.2) ui = −|≤| sin θdφi + |≤| cos θ
dti
ti

on Ai
∼= [ 12 , 1] × S1 ⊂ R2

y2,y1
. Here (ti, φi) is the polar coordinates on the (y2, y1)-

plane.



44

We denote
Σout = Σ\™−1

≥1
2
D4

¥
∼= ™(Σ)\1

2
D4

It is easy to see that we can implant the local model H≤∩D4 at the double point to
produce the required Lagrangian surgery L≤, if we can find a closed one form u on
Σout such that the restrictions of u to Ar, Ai are ur, ui respectively. By considering
the exact sequence

−→ H1(Σout; R) −→ H1(@Σout; R) δ−→ H2(Σout, @Σout; R) →

we can find such a closed one form if δ([ur]⊕ [ui]) = 0.
Recall that, if Σout is orientable,

H2(Σout, @Σout; R) ∼= (H0(Σout; R))∗

by the Lefschetz duality. Therefore if we assume in addition that Σ is connected,
we have H2(Σout, @Σout; R) ∼= R and so in this case, δ([ur] ⊕ [ui]) is characterized
by the real number

δ([ur]⊕ [ui])[Σout] = ([ur]⊕ [ui])(@Σout).

This number vanishes by (57.4), provided Σ is oriented and the self-intersection
point is positive in the sense of §54.1. Therefore [ur] ⊕ [ui] ∈ H1(Ar ∪ Ai; R) is
always in the image of H1(Σ; R). This proves the following proposition.

Proposition 57.5. Suppose that Σ is connected and oriented so that the self-
intersection point is positive in the sense of §54.1. Then for each ≤ = |≤|e

√
−1θ

with |≤| sufficiently small there exists a Lagrangian submanifold Σ≤ ⊆ M such that :

(57.6.1) Σ≤ ∩ (M\U) will converge to ™(Σ) ∩ (M\U) in C1 topology as ≤ goes
to zero.
(57.6.2) I(Σ≤ ∩ V ) = ( 1

2D4 ∩H≤) where x ∈ V ⊂ V ⊂ U.

Remark 57.7. (1) If Σ is connected and Σout is non-orientable, H2(Σout, @Σout; R)
vanishes. Hence there is no obstruction to extending ur, ui to closed one-forms on
Σout. If Σ is connected and oriented such that the self-intersection point is negative
in the sense of §54.1, we cannot perform the Lagrangian surgery unless ≤ is real.
(Note that to make the parametrization of @Σout consistent with the induced bound-
ary orientation of @Σout, we should parameterize the two components @Σout ∩ Ar

and @Σout ∩Ai in the opposite directions.)
(2) When p belongs to a component different from that of q in Σ, the above

argument shows that [ur]⊕ [ui] does not lie in the image

Im(H1(Σ, R) → H1(Ar ∪Ai; R)) ⊂ H1(Ar ∪Ai; R)
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unless ≤ is real. Therefore in this case, we cannot find L≤ satisfying (57.6) in Propo-
sition 57.5. This is the case, for example, when M = T 4, ™(Σ) = T 2 ∪ T 2 where
the two tori intersect transversely at one point.

(3) By generalizing the above argument to a configuration of several Lagrangian
submanifolds, one can derive a sufficient condition for a simultaneous surgery at
several intersections points in terms of the data at the intersection points and of
the topology of the configuration. Since we do not need such a study in this paper,
we do not discuss this point further here.

Example 57.8. Let us consider the case of T 4 studied in §56.1 and consider the
symplectic form dx1 ∧ dy1 + dx2 ∧ dy2. We take L0, L1(v) ⊂ T 4 as in §56.1. We put

L02 = {(z1, z2) | x1 = y1, x2 = −y2}.

We first perform a surgery of their union L0∪L1(v)∪L02 at two of their intersection
points, say p020 and p012(v). (Here p020 ∈ L0 ∩ L02, p012(v) ∈ L1(v) ∩ L02.) We then
obtain L0≤20,≤12 for sufficiently small real numbers ≤20, ≤12.

We remark that L0≤20,≤12 is an immersed Lagrangian submanifold with self inter-
section at p01(v). (See Figure 57.1 below.) It follows from the two dimensionality
of the Lagrangian immersions that the surgery L0≤20,≤12 gives rise to an oriented
submanifold with either equipment at p01(v) in the sense of Definition 55.9. This in
particular implies that the self-intersection point p01(v) is positive in the sense of
§54.1.

We remark that Kähler angle of our Lagrangian submanifolds at p01(v) is π/2.
Therefore Σ = L0≤20,≤12 satisfies the assumption of Proposition 57.5 and hence we

can construct a Lagrangian submanifold Σ≤ = (L0≤20,≤12)≤ for each complex number
≤ (which is sufficiently close to 0).

Figure 57.1

We remark that we can not use L2 = {(z1, z2) | x1 = y1, x2 = y2} in place of
L02 in the above construction. In fact then the self intersection at p01(v) will be
negative.
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Example 57.9. We also have the following example where the assumption of
Proposition 57.5 is satisfied. Let M be an elliptic K3 surface and π : M → B
be the associated fibration. Recall that K3 surface is hyper-Kähler and carries a
S2-parameterized family of symplectic structures, which are all Kähler with respect
to the given complex structure J on M . We take the one, among those symplectic
structures, with respect to which the fibers of π become (special) Lagrangian sub-
manifolds. If M has a type-I singular fiber F = π−1(b0) in the sense of Kodaira
classification, F is the image of a Lagrangian immersion of S2. In this case, the La-
grangian submanifold Σ≤ appearing in Proposition 57.5 can be taken as the smooth
fiber π−1(b) where b is a base point near the critical value b0.

Now we continue our discussion from §54, §56.1. Consider the Lagrangian sub-
manifold Σ≤ given as in Proposition 57.5 and the second Lagrangian submanifold
L. More specifically, we consider the following pair : Let Σ≤ = (L0≤20,≤12)≤ be as in
Example 57.8. Here we assume ≤20 = ≤12 < 0 We put ≤0 = −≤01. Take bv ∈ T 2

different from but close to v and consider

L2(bv) = {(z1, z2) | y1 = x1 + bv1, y2 = x2 + bv2}

and put

x = (bv1, bv2), y = (bv1, bv2) + ((1 +
√
−1)(v1 − bv1), (1 +

√
−1)(v2 − bv2)).

Figure 57.2

We assume bv1 6= v1. We then have L2(bv) ∩ Σ≤ = {x, y} since L02 ∩ L2(bv) = ∅. We
will now study Floer cohomology

HF (Σ≤, L2(bv)).

We use Z2 coefficients. For this purpose, we study the moduli spaceM(Σ≤, L2(bv);x, y)
used to define the boundary operator of the Floer cohomology. We assume ≤0 is suf-
ficiently small compared to |≤|.
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We put
q(v1, v2) = v2

1 − v2
2

and
E0 = inf

Ω
1
2
q(ev)

ØØØØ π(ev) = v, q(ev) > 0
æ

.

We remark that 1
2q(ev) is the symplectic area of the triangle whose vertices are ep020,

ep001(ev), ep012(ev). (Here ep020, ep001(ev), ep012(ev) are appropriate lifts of p020, p001(v), p012(v),
respectively.)

By taking v ∈ Q2, for example, we may assume that E0 > 0.
We then assume that there exists a lift ebv ∈ R2 of bv such that

1
2
(ev − ebv) · (ev − ebv) = E1 < E0.

We remark that Σ≤ and L2(bv) are unobstructed with 0 as a bounding chain by the
degree reason. In the following theorem, we work with Z2-coefficients.

Theorem 57.10. If Re ≤ < 0 then we have

(57.11) hδ[x], [y]i ≡ TE1+h1(≤)+h2(≤
0) mod TE1+c.

Here lim≤→0 h1(≤) = 0. lim≤0→0 h2(≤0) = 0 and c > 0 is independent of ≤ and ≤0.
If Re ≤ > 0 then we have

(57.12) hδ[x], [y]i ≡ TE1+h1(≤)+h2(≤
0) + TE1+h1(≤)+2π| Im ≤|+h2(≤

0) mod TE1+c.

Here lim≤→0 h1(≤) = 0. lim≤0→0 h2(≤0) = 0 and c > 0 is independent of ≤ and ≤0.

Proof. By Proposition 56.3, the moduli space M(L0, L2(bv), L1(v); p01(v), x, y;β)
consists of a single point w0 whose symplectic area is E1. (Here β is the homotopy
class of ‘small’ holomorphic triangle as drawn in Figure 57.3 below.) Moreover w0

is of multiplicity one at p01(v) and is Fredholm regular.

Figure 57.3
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Then we can apply Theorems 55.5 to characterize M(Σ≤, L2(bv);x, y) when ≤ is
real. In this way, we obtain (57.11), (57.12) in that case.

Precisely speaking, we provide an equipment (see Definition 55.9) at the self-
intersection point p01(v) of Σ = L0≤20,≤12 and obtain the associated surgery Σ≤.
With respect to one of the two possible equipments at p01(v), we will have a unique
pseudo-holomorphic 2-gon for the case ≤ ∈ R<0 and two distinct holomorphic 2-gons
for the case ≤ ∈ R>0 in a given Hausdorff neighborhood of w0. For the latter case
≤ ∈ R>0, if we denote the homology class of one of the J-holomorphic discs by, say
ξθ, then the other’s homology class will be ξθ + [∫≤]. Here [∫≤] is as in Proposition
57.3.

If we choose the other equipment at p01(v), the sign of ≤ will be reversed in the
above discussion.

We now turn to the case when ≤ = |≤|e
√
−1 θ is not necessarily real. We may

choose |≤| arbitrarily small. Then we only need to study pseudo-holomorphic 2-
gons sufficiently close to the pseudo-holomorphic triangle w0.

We start from ≤ ∈ R, i.e, θ = 0 and vary θ towards 2π. A standard cobor-
dism argument proves that the order, counted with sign, of the moduli space
M(Σ≤, L2(bv);x, y) does not change as long as there occurs no bubbling. Observe
that the bubbling is possible only when there exists a pseudo-holomorphic disc bor-
dered on Σ≤ with its symplectic area ≤ E1. Using E1 < E0, it is easy to see that
the image of such a disc is necessarily supported in a small neighborhood of p01(v).
Proposition 57.3 then implies that such a disc exists if and only if θ = ±π/2.

Therefore if Re ≤ < 0, there is a unique pseudo-holomorphic 2-gon from which
(57.11) follows.

If Re ≤ > 0, there are two pseudo-holomorphic 2-gons (in a neighborhood of w0)
with one in homology class, say ξθ, the other ξθ +[∫≤]. We then obtain (57.12) from
(57.2). §

We immediately obtain the following non-vanishing result (Corollary 57.13) of
the Floer cohomology. Recall the decomposition

HF (Σ≤, L2(bv); ΛZ2
0,nov) ∼=

≥
ΛZ2

0,nov

¥⊕a
⊕

bM

i=1

ΛZ2
0,nov

T∏iΛZ2
0,nov

from (28.32). We note that

TEHF (Σ≤, L2(bv); ΛZ2
0,nov) = 0

if and only if
a = 0 and E ≥ ∏i (all i).
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Corollary 57.13. There exists c > 0 such that if |≤|, |≤0| are sufficiently small
compared with c, then the following are equivalent :

(1) TE1+cHF (Σ≤, L2(bv); ΛZ2
0,nov) 6= 0

(2) ≤ is a real number and positive.

Proof. The part of non-vanishing follows from Theorem 57.10 and the ‘only if’ part
of the second statement follows immediately from Theorem 57.10. On the other
hand, the ‘if’ part of the latter can be proved in the same way as the proof of
Theorem 56.7. §

If we continuously trace the homotopy class ξθ as θ varies from −π to π, the
class ξ2π will become ξ0 + [∫0] because of the presence of non-trivial monodromy.
Note that ≤ = |≤|e

√
−1 θ = |≤|e

√
−1 (θ+2π). From these observations, we find that

M(L≤, L2(bv);x, y) pictorially looks like Figure 57.4 below.

Figure 57.4

Theorem 57.10 and Figure 57.4 show how a wall crossing phenomenon of Floer
cohomology occurs at θ = ±π/2.

We remark that Theorem 57.10 does not apply to the cases θ = ±π/2 : This
is because the moduli space M(Σ≤, L2(bv);x, y) is not transversal for the cases, as
can be seen from Figure 57.4. For these cases, the moduli space M(Σ≤; [∫≤]) has
its virtual dimension −1 but is nonempty. To make the relevant moduli spaces
transversal and to define Floer cohomology, we need to perturb the moduli space
by a suitable perturbation. Depending on the way how we perturb it, the moduli
space M(Σ≤, L2(bv);x, y;β) may consist of either two points or of a single point.

Let n
(1)
0,0 and n

(2)
0,0 be the operations obtained by the two different perturbations,

respectively. They will have the expression

(57.14.1) n
(1)
0,0([x]) = TE1+h1(≤)+h2(≤

0)[y] mod TE1+c
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(57.14.2) n
(2)
0,0([x]) ≡ (TE1+h1(≤)+h2(≤

0) +TE1+h1(≤)+2π| Im ≤|+h2(≤
0))[y] mod TE1+c.

We can also easily see that

(57.14.3) n
(1)
1,0(@[∫≤]⊗ [x]) ≡ TE1+h1(≤)+h2(≤

0)[y] mod TE1+c.

The discrepancy between the two operations is measured by a filtered A1 ho-
momorphism

f∗ : (H(Σ≤; Λ0,nov),m(2)) → (H(Σ≤; Λ0,nov),m(1)).

Here we observe

(57.15) f0(1) ≡ T 2π| Im ≤|PD(@[∫≤]) mod T c.

The isomorphism between the Floer cohomologies stated in Theorem 14.5 is given
by the identity

(57.16) n
(1)
∗,∗(ef∗(0), [x], e0) = n

(2)
∗,∗(e0, [x], e0)

for the current example. (We remark that ω(∫≤) = 2π Im ≤ by (57.2).) This formula
is consistent with the ones given in (57.14) and (57.15).

We also remark that the conclusion of Theorem 57.10 is based on our specific
choice of J . The wall crossing line itself is not well-defined in that it depends on
the choices of almost complex structures J and of multi-sections of the Kuranishi
structure. However “the homology class” of the wall crossing line will have some
invariant meaning. For example, the number of the times at which bifurcations of
the moduli space occur will be at least two for any choice of J as we move along
from θ = 0 to θ = 2π. (A similar phenomenon was exploited in [Fuk02III] for some
calculation.)

Here in Theorem 57.10 we restrict ourselves to the case of Lagrangian subman-
ifold of the special type provided in Example 57.8. However the same kind of the
bifurcation picture as in Figure 57.4 can be shown to occur for the more general
case where the Lagrangian submanifold Σ≤ is the one as in Proposition 57.5. Espe-
cially it holds for the example of type-I singular fiber in K3 surface. (See Example
57.9.) This case seems to have an important implication in relation to the mirror
symmetry as we remark below.

Remark 57.17. In the paper [KoSo04] of the year 2004, Kontsevich-Soibelman
discussed a complex structure of the K3 surface M† appearing as the mirror of
another K3 surface M which forms a fibration over B = S2 whose singular fibers are
of type I. They stated an axiom which the quantum effect on the complex structure
of the K3 surface M† are supposed to satisfy. This quantum effect conjecturally
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occurs along the locus consisting of the points x ∈ B at which the Lagrangian fiber
π−1(x) admits some nontrivial pseudo-holomorphic discs. (Such a phenomenon had
been observed in some physics literature before, and also by the first-named author
in [Fuk05I].) One of the axioms, Axiom 1 in §9.2, stated in [KoSo04] reads that
at a point x0 where π−1(x0) is of type I singular fiber, the locus of non-trivial
quantum effect consist of two lines flowing out. This axiom exactly coincides with
the discussion in this section (Proposition 57.3) and that of §29 of 2000 version of
this book ([FOOO00]).

§58. Fredholm theory of pseudo-holomorphic polygons

In this section, we review the Fredholm theory of the moduli space M(L, ~u;J)
of pseudo-holomorphic polygons w : D2 → M satisfying (54.15), where L is the La-
grangian chain intersecting pairwise transversely without triple intersections. (See
the beginning of §54.3.) We have already used this Fredholm theory in the previous
sections in order to define an appropriate notion of Fredholm regularity of pseudo-
holomorphic polygons, for example. The discussion of this section is not new and
has been known among the experts.

We can generalize the story to the case where Lagrangian submanifolds are of
clean intersections. Then for the case where L = (L, · · · , L) of ‘total collapse’ the
discussion here goes back to the one provided in §29.

We fix a sufficiently small closed neighborhood Ui ⊂ D2 of ui(i+1) for i =
0, 1, · · · , k so that they are disjoint and fix a conformal isomorphism

ϕi : Ui \ {ui(i+1)} → (−1, 0]× [0, 1] for i = 0, · · · , k − 1

and
ϕk : Uk \ {uk0} → [0,1)× [0, 1].

In other words, we regard the punctures u01, · · · , u(k−1)k as incoming ends and uk0

as the outgoing end.
We denote by τ +

√
−1t the standard complex coordinate of R× [0, 1], and fix a

metric h on each Int D2 such that

h = π(dt2 + dτ2)

on Ui near the puncture ui(i+1).
Note in §29 we used a parametrization of the moduli space of marked disc over

the moduli space of metric ribbon trees. Based on this parametrization we gave a
canonical way to find such a coordinate in a neighborhood of each ui(i+1) together
with a metric given as above. When we do not move but fix the point ui(i+1),
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making such a canonical choice is not an essential matter. In this chapter we are
mainly interested in the case of three marked points for which we can fix ui(i+1)

after reparametrization.
We fix a Riemannian metric g on M so that Li are totally geodesic near the the

intersections Li ∩Lj for all i 6= j, and expp : TpM → M the associated exponential
map at p ∈ Li ∩ Lj . Then we can choose a neighborhood Vp of the zero of TpM
such that

expp(TpLi ∩ Vp) ⊂ Li, expp(0) = p

at each intersection p ∈ Li ∩ Lj . We also fix such neighborhoods Vp for each
p ∈ Li ∩ Lj .

Now for given pij ∈ Li ∩ Lj , we define

αpij = min{α ∈ (0, π) | α are Kähler angles between Li and Lj at pij}.

By the hypothesis that Li’s are pairwise transversal, we have αpij > 0. Now we fix
a constant δ so that

0 < δ < αpij .

For the simplicity of notation, we denote

Ḋ2 = D2 \ {u01, · · · , u(k−1)k}.

For a given positive constant p > 2, we consider the maps

w : Ḋ2 → M

satisfying (54.15), (54.16) and

(58.1.1) w ∈ W 1,p
loc

(58.1.2)
Z

eδ|τ |
≥ØØ(w ◦ ϕ−1

i )(τ, t)
ØØp +

ØØ(∇w ◦ ϕ−1
i )(τ, t)

ØØp
¥

dτdt < 1

for each i. Here integration is taken on (−1, 0]×[0, 1] for i 6= 0 and on [0,+1)×[0, 1]
for i = 0.

The condition (58.1.1) implies that w is continuous thanks to the choice p > 2.
The condition (58.1.2) then implies that the map w converges to a point in Li∩Li+1

as u → ui(i+1) because it provides an exponential decay as u → ui(i+1) in the
coordinates τ +

√
−1t on Ui. Therefore we can impose the following asymptotic

condition

(58.1.3) w(ui(i+1)) ∈ pi(i+1) ∈ Li ∩ Li+1 for such maps w.
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Now we define the set

W 1,p
δ (Ḋ2,L; ~p), ~p = {p01, p12, · · · , pk0}

to be the set of all w : Ḋ2 → M satisfying (54.15) and (58.1). Any such map defines
a continuous map w : D2 → M satisfying the condition (54.15) and

(58.2) w(ui(i+1)) = pi(i+1).

We denote by
π2(L; ~p)

the set of homotopy classes of such continuous maps and by B an element from
π2(L; ~p). Finally we define the set

(58.3) W 1,p
δ (Ḋ2,L; ~p;B) = {w ∈ W 1,p

δ (Ḋ2,L; ~p) | [w] = B}.

By the exponential decay property of w ∈ M(L; ~p;B) with its decay rate being
at least e−αpij |τ | at pij and by the choice of δ satisfying 0 < δ < αpij , we have

M(L; ~p;B) ⊂ W 1,p
δ (Σ̇,L; ~p;B).

We write
C0(w) = TwW 1,p

δ (Ḋ2,L; ~p;B)

and
C1(w) = Lp

δ(Λ
(0,1)(w∗TM)).

Then the formal linearization of the Cauchy-Riemann operator @ defines a linear
Fredholm operator

Dw@ : C0(w) → C1(w)

in a standard way.

Remark 58.4. Since Li and Lj are transversal, the operator

Dw@ : TwW 1,p(Ḋ2,L; ~p) → Lp(Λ(0,1)(w∗TM))

is actually Fredholm. In other words, we do not need to use weighted Sobolev space
for Fredholm theory here. We put weight eδ|τ | here in order only for the boundary
value w(ui(i+1)) to be well defined for w which may not be pseudo-holomorphic.

On the othe hand, when we use the cylindrical metric on the target space M
also (as we do in §60 - 62), we do need to use weighted Sobolev space. This is
because if we use cylindrical metric on the target space M , the linearization of
Cauchy-Riemann equation is degenerate at the end.
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§59. Local model of holomorphic discs
in Cn I: construction of local models

59.1. Statement of the result of §59 and §60.

In this section, we consider the pair

Rn, e
√
−1αRn = Λ ⊂ Cn

of Lagrangian subspaces with the common Kähler angle α.
In terms of the labelling

L1 = Rn, L2 = e
√
−1αRn = Λ

we denote the relevant surgery by L≤ = Rn#≤Λ. We divide our discussion into two
different cases : one is the case for ≤ > 0 and the other for ≤ < 0. We assume

0 < α < π.

We will obtain all the proper holomorphic curves bordered on Hα
≤ with appropriate

asymptotic conditions : the solutions will be explicit or algebraic for the case

≤ > 0, or ≤ < 0, α =
π

2
.

For the remaining cases, ≤ < 0, ≤ 6= π
2 the solutions will be more transcendental and

so not be given explicitly.
In this section we study the case ≤ > 0 or α = π/2. The other case will be studied

in the next section.
Consider a holomorphic map w : Int H → Cn such that :

(59.1.1) w extends continuously to H → Cn.
(59.1.2) w(@H) ⊂ Hα

≤ .
(59.1.3) There exist τ0 and c, C > 0 such that

e−ατ
ØØØw(eπ(τ+

√
−1t))− (eα(τ−τ0+

√
−1t), 0, · · · , 0)

ØØØ ≤ Ce−cτ

for τ > 0.

We remark that Condition (59.1.3) implies that w(z) is asymptotic to

Eα =
n

(z, 0, · · · , 0) ∈ Cn
ØØØz = re

√
−1θ, 0 < θ < α

o
.

and corresponds to the requirement of multiplicity 1 in Theorem 55.5.
Denote by Aut(H) (or Aut(H, {1})) the group of affine transformations z 7→

az + b, (a, b ∈ R, a > 0). We remark that Aut(H) is the group of biholomorphic
automorphism of H which fix 1.

The following is the main result of this section and the next.
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Theorem 59.2. Let 0 < α < π and consider the holomorphic maps

w = (w1, · · · , wn) : H → Cn

satisfying (59.1).

(59.3.1) If ≤ > 0, such w is unique modulo the action of Aut(H). Moreover
w2 = · · · = wn = 0.
(59.3.2) If ≤ < 0, then the set of such w’s, modulo the action of Aut(H), is
parameterized by Sn−2.

We remark that the sign of ≤ in (59.3) appears in a different way from Theorem
55.3. See Remark 61.23 about this point.

59.2. The case ≤ > 0.

In this subsection, we consider the case ≤ > 0 and prove (59.3.1).
The proof will be carried out in a series of lemmata. We define the (double)

cones as follows :

WC(α) = {z ∈ C | 0 ≤ arg z ≤ α or π ≤ arg z ≤ π + α} ∪ {0},
C+(α) = {z ∈ C | 0 ≤ arg z ≤ α} ∪ {0},
C−(α) = {z ∈ C | π ≤ arg z ≤ π + α} ∪ {0}.

Note that the projection of Hα
≤ to each factor is contained in WC(α).

Lemma 59.4. Let w = (w1, · · · , wn) : H → Cn be a holomorphic map satisfying
(59.1) for Hα

≤ . Then the followings hold :

(59.5.1) The image of w1 is contained in C+(α). Moreover 0 /∈ w1(Int H).
(59.5.2) For i = 2, · · · , n, if wi is not constant then the image of wi is contained
in either C+(α) or C−(α). Moreover 0 /∈ wi(Int H) if wi is not constant.
(59.5.3) w−1(0, · · · , 0) = ∅.

Proof. Denote by πi : Cn → C the coordinate projection to the i-th coordinate
plane for i = 1, · · · , n.

Recall that Hα
≤ is defined by Hα

≤ = ∞α
≤ ·Sn−1 (see (54.12.3)) and hence it follows

that the image πi(Hα
≤ ) is contained in the double cone WC(α). By the boundary

condition (59.1.2), we have wi(@H) ⊂ WC(α). And (59.1.3) implies that

(59.6.1) w1(@H) ∩ C+(α) 6= ∅.

We will now prove

(59.6.2) wi(H) ⊂ WC(α) for all i.
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Suppose to the contrary that (59.6.2) does not hold for some i. Then it follows
from (59.1.3) that there exists an interior point z ∈ H such that wi(z) /∈ WC(α)
and that wi(z) is in the boundary of wi(H). Since z is an interior point of H this
contradicts to the maximum principle and hence follows (59.6.2).

Now if wi is non-constant and 0 ∈ wi(Int H), wi(Int H) must contain a neigh-
borhood of 0 which will contradict to (59.6.2). This and (59.6.2) imply (59.5.2).
(59.5.1) can be proved similarly using (59.6.1), and (59.6.2).

Finally for the proof of (59.5.3), we note that (59.5.1) implies that w(u) can be
(0, · · · , 0) only at a point u ∈ @H. However this is impossible by the boundary
condition (59.1.2) which is w(u) ∈ Hα

≤ for u ∈ @H. This finishes the proof. §

Motivated by (59.5.3), we consider the holomorphic map

g : H → CPn−1

defined by
g(u) = [w1(u) : · · · : wn(u)].

Lemma 59.8. The boundary condition (59.1.2) implies

(59.9) g(@H) ⊂ RPn−1.

Proof. Let (z1, · · · , zn) = (x1 +
√
−1y1, · · · , xn +

√
−1yn) ∈ Hα

≤ . By the definition
of Hα

≤ (see (54.12)), we have
zi = re

√
−1θai,

where

(2≤)
π
2α = r

π
α sin

µ
πθ

α

∂
,

X
a2

i = 1.

Then it follows that we have

[z1 : · · · : zn] = [re
√
−1θa1 : · · · : re

√
−1θan] = [a1 : · · · : an] ∈ RPn−1

which proves (59.9). §

The condition (59.1.3) enables us to extend g to a continuous map g : H∪{1} →
CPn−1 by setting

(59.10) g(1) = [1 : 0 · · · : 0].

We now prove the following :
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Lemma 59.11. In the above situation, g must be the constant map having the value
[1 : · · · : 0] ∈ CPn−1. In particular, we have

(59.12) w2 = · · · = wn ≡ 0.

Proof. Using Lemma 59.8, we apply the reflection principle to g : H → CPn−1 and
obtain a real holomorphic map bg : CP 1 → CPn−1 as follows :

bg(u) =
Ω

g(u) if u ∈ H
g(u) if u ∈ C \ H.

To finish the proof, it is enough to prove that bg is a constant map bg ≡ [1 : 0 : · · · : 0].
Suppose to the contrary that bg is non-constant and so has non-zero degree. Then

the image of bg must intersect the hyperplane {[z1 : · · · : zn] ∈ CPn−1 | z1 = 0} at a
finite number of points. Considering A ·w for a matrix contained the isotropy group
SO(n − 1) ⊂ SO(n) of (1, 0, · · · , 0) if necessary, we may assume that w2(u) 6= 0
whenever w1(u) = 0.

We then can define g2 : H → CP 1 by g2(u) = [w1(u) : w2(u)]. Then g2 con-
tinuously extends to H ∪ {1} in the same way as above. We denote its double
by bg2 : CP 1 → CP 1. It follows from (59.5.2) that either w2(H) ⊂ C+(α) or
w2(H) ⊂ C−(α).

We first consider the case w2(H) ⊂ C+(α). We obtain

(59.13.1) −α ≤ arg
µ

w2

w1

∂
≤ α and − α ≤ arg

µ
w2

w1

∂
≤ α.

This implies that the image of bg2 does not contain [1 : −1]. This is a contradiction.
In the case w2(H) ⊂ C−(α) we obtain

(59.13.2) π − α ≤ arg
µ

w2

w1

∂
≤ π + α and π − α ≤ arg

µ
w2

w1

∂
≤ π + α.

This implies that the image of bg2 does not contain [1 : 1]. This is a contradiction.
Therefore bg must be the constant map bg ≡ [1 : 0 : · · · : 0]. Hence we derive

w2 = w3 = · · · = wn = 0 which proves the lemma §

Now Theorem 59.2 for ≤ > 0 immediately follows from Lemma 59.11. §

59.3. The case ≤ < 0, α = π/2.

In this subsection, we consider the case ≤ < 0, α = π/2 and prove (59.3.2) in case
α = π/2. We recall in case ≤ < 0, our Lagrangian submanifold Hπ/2

≤

Hπ/2
≤ = ∞≤ · Sn−1

Rn
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where the curve ∞≤ ⊂ C is defined by

∞≤ = {re
√
−1θ | 2≤ = r2 sin 2θ,

π

2
≤ θ ≤ π}.

This case is much more subtle to deal with than the previous case of ≤ > 0.
It turns out that an explicit description of the solution of Cauchy-Riemann equa-

tion with boundary condition (59.1) for ≤ < 0, does not seem to be easy, except the
case of α = π

2 . In this subsection, we provide an explicit description of the case
with α = π

2 . In the next section, we will study the case α 6= π
2 in a more indirect

and transcendental way.

Proposition 59.14. Let ≤ < 0 and α = π
2 . Consider the holomorphic maps w =

(w1, · · · , wn) : H → Cn satisfying (59.1). Then the set of such w’s, modulo the
action of Aut(H), is parameterized by Sn−2.

Proof. We define

(59.15) f(u) =
nX

i=1

wi(u)2

In case α = π/2, the condition z = reθ
√
−1 ∈ Hα

≤ is equivalent to r2 sin 2θ = 2≤. It
follows that Im z2 = 2≤. Therefore the boundary condition of w implies that

(59.16) f(@H) ⊂ R + 2≤
√
−1.

Lemma 59.17. f is a biholomorphic map between H and

H + 2≤
√
−1 = {z ∈ C | Im z > 2≤}.

Namely, by composing with an element of Aut(H), we may assume :

f(u) = u + 2≤
√
−1.

Proof. We define bf : CP 1 → CP 1 by

bf(z) =

(
f(z) if z ∈ H
f(z)− 2≤

√
−1 + 2≤

√
−1 if z ∈ C \ H.

(59.16) implies that bf is continuous and holomorphic. (59.1.3) implies that

bf−1({1}) = {1}
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and the multiplicity is 1. Therefore bf is biholomorphic. (59.1.3) implies

lim
Im u→1

Im f(u) = 1.

Hence the lemma. §

Lemma 59.17 implies that f has a unique zero u0 = −2≤
√
−1 and f 0(u0) 6= 0.

In particular we have w(u) 6= (0, · · · , 0) unless u 6= u0. On the other hand, since
f 0(u0) 6= 0, it also follows that w(u0) 6= (0, · · · , 0). Therefore w−1(0, · · · , 0) = ∅
and we can define the projectivization of w denoted by

(59.18) g(u) = [w1(u) : · · · : wn(u)] ∈ CPn−1.

We can smoothly extend g to bg : CP 1 → CPn−1 by putting

bg(u) = g(u).

for u ∈ CP 1 \ H.

Lemma 59.19. bg : CP 1 → CPn−1 is of degree one.

Proof. We put

(59.20) X =
n

[z1 : · · · : zn] ∈ CPn−1
ØØØ
X

z2
i = 0

o
.

X is a hypersurface of degree 2. Since u0 is a unique zero of f on H and f 0(u0) 6= 0 it
follows that bg(H) intersects with X at one (interior) point transversally. Since bg on
H is obtained by reflection and X is invariant of reflection (complex conjugation),
it follows that the intersection number between bg(CP 1) and X is 2. Therefore bg is
of degree one as required. §

Now we are in the position to prove Proposition 59.14. Note that u0 = −2≤
√
−1

is the unique point with f(u0) = 0.

Lemma 59.21. Let ≤ < 0, α = π/2, f(u) = u + 2≤
√
−1, u0 = −2≤

√
−1. Let X be

as in (59.20).
Then there exists a one-one correspondence via the equation (55.18) of w and g

between the following two sets of w and g :

(59.22.1) w = (w1, · · · , wn) : H → Cn satisfies (59.1) and (59.15).
(59.22.2) The double bg : CP 1 → CPn−1 of g is of degree one, and satisfies the
formulas bg(1) = [1 : 0 : · · · : 0], bg(u0) ∈ X.

Proof. Construction of g out of w has been already carried out in Lemma 59.19 and
the discussions above. Therefore we will focus on the other direction of the lemma.
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Let f and bg be given as in the hypothesis. We would like to construct the lifting
of g = bg|H to a map w = (w1, w2, · · · , wn) : H → Cn so that it satisfies (59.22.1).
Since bg has degree one, there is exactly one u = u1 ∈ CP 1 such that

g(u) ∈ {[z1 : · · · : zn] | z2 = 0} ⊂ CPn−1

whose intersection multiplicity is 1. (59.22.2) implies that u1 = 1. In other words,
there exists gj : H → C, (j 6= 2) such that

bg(u) = [g1(u) : 1 : g3(u) : · · · : gn(u)].

We define w2 by the equation

(59.23) w2(u)2 =
f(u)≥

1 +
P

j 6=2 g2
j (u)

¥ .

By assumption, we have

f(u) = 0 ⇐⇒ u = u0 ⇐⇒ 1 +
X

j 6=2

g2
j (u) = 0

and u0 is a simple zero of both equations. Hence (59.23) defines

w2 : Int H → C \ {0}.

(59.23) determines w2 uniquely in terms of bg and f upto the multiple of ±1. We
take one of the two choices of w2 uniquely so that

w1(u) = g1(u)w2(u)

satisfies (59.1.3).
We then put

wj(u) = gj(u)w2(u)

for j 6= 1, 2. (59.16) and (59.22) then immediately follow. The proof of Lemma
59.21 is complete. §

We recall that the set of degree one rational curve Σ on CPn−1 that is defined
over R and [1 : 0 : · · · : 0] ∈ Σ is parameterized by RPn−2.

For each such Σ and given u0, there exist two choices of bg : CP 1 → Σ ⊂ CPn−1

such that

(59.24) bg(1) = [1 : 0 : · · · : 0], bg(u0) ∈ X,

since Σ ∩X consists of two points.
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Therefore, by Lemma 59.21, the set of w has one-one correspondence with the
non-trivial double cover of RPn−2 which is precisely diffeomorphic with Sn−2. The
proof of Proposition 59.14 is now complete. §

For the case n = 2, we have X = {(±
√
−1, 1)} ⊂ CP 1. It follows that bg(u) =

[± u
2≤ : 1]. So

w2(u)2 =
u + 2≤

√
−1

1 + u2/(2≤)2
=

(2≤)2

u− 2≤
√
−1

.

Therefore we have

(59.25)

(
w1(u) = u(u− 2≤

√
−1)−1/2,

w2(u) = ±2≤(u− 2≤
√
−1)−1/2.

Similarly for the dimension n ≥ 3, we can find an explicit solution for each given
degree one curve bg : CP 1 → CPn , i.e., complex line satisfying (59.24) in a similar
way.

From this explicit expression of the model solution for α = π
2 , we obtain the

following corollary.

Corollary 59.26. Let α = π
2 . Then all the model solution satisfy

(1) min
z∈@H

|w(z)| =
p

2|≤|

and the minimum is realized at the unique point z = (0, 0) ∈ @H. We have

(2) 0 < min
z∈H

|w(z)| <
p

2|≤|.

Proof. (1) follows from a straightforward calculation. One can also easily see (2)
by computing the normal derivative

@|w|
@y

(0, 0) < 0.

We omit the detail since we do not use this in the rest of this book. §

Remark 59.27. The readers might find that our analysis of the model solutions
using the coordinate transformation Cn \ {0} → C× CPn−1 given by

(z1, · · · , zn) 7→ (z2
1 + · · ·+ z2

n, [z1 : z2 : · · · : zn])
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looks rather ad hoc. This coordinate transformation can be shed some light on in
terms of the standard Lefschetz fibration

q : Cn → C ; q(z1, · · · , zn) = z2
1 + · · ·+ z2

n.

In terms of this singular fibration, we have just shown that

q(Hα
≤ ) ⊂ H +

√
−1 · [2≤,1) ⊂ C.

As ≤ → 0 i.e., when the base of the fiber approaches the branch point of q, the corre-
sponding Lagrangian submanifold degenerates to the union of two affine Lagrangian
planes Rn ∪

√
−1Rn.

§60. Local model of holomorphic discs in Cn

II : Fredholm regularity of the local models

The purpose of this section is to study the case ≤ < 0, α 6= π/2 and complete
the proof of Theorem 59.2 by proving (59.3.2). The discussion of §59 is rather
elementary and we obtain explicit description of the local models there. Since we
do not know such explicit description of the local model in the case ≤ < 0, α 6= π/2
our proof in this section is rather indirect. Namely we start with the case α = π/2
and will prove that the moduli space of local model does not change when we vary
α in (0, π).

We will prove this by showing the smoothness of the moduli space of local model
for any α ∈ (0, π). (See Theorem 60.26.) For this purpose, we set up an appropriate
Fredholm theory and study the linearized operator of the Cauchy-Riemann equation
defined on an appropriate function spaces.

In §60 - §62, we use the Fredholm theory of the moduli space of pseudo-holomorphic
discs in a symplectic manifold with cylindrical ends. We study Fredholm theory and
gluing argument in the Bott-Morse situation and so follows the line of ideas which
works in general for various similar cases, and in particular those we gave in §29.
The main difference is that in §60 - §62, we use cylindrical coordinates not only for
the domain but also for the target, while in §29 we used cylindrical coordinate for
the domain but not for the target.

In the current setting the target becomes noncompact and so we need to use an
idea going back to Hofer [Hof93] for the relevant analysis. We will adapt various
arguments used in the existing literature to our current relative setting and provide
full details of the proofs for completeness’ sake. In the case of 3 dimensions, the
basic references are a series of papers [HWZ96I], [HWZ95], [HWZ96II], [HWZ99]
by Hofer-Wysocki-Zehnder. Hereafter, in the rest of this chapter, we will just quote
them as [HWZ] unless we need to specify a particular one to quote. There is
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also a paper [Abb04] by Abbas which deals with the case of pseudo-holomorphic
strip in the symplectization of 3 dimensional contact manifold and the Legendrian
boundary condition. Some of those results are generalized to higher dimensions in
[BEHWZ03], [HWZ02]. (See also Remark 61.48 for [Bou02].)

The main novelty of this section is the proof of transversality of the model so-
lutions stated in Theorem 60.26, where we use the O(n)-invariance of the relevant
boundary value problem in the Bott-Morse setting in an essential way.

60.1. Cylindrical coordinates of the end of the target Cn.

We first review the description of symplectic structure on the target space Cn

in the cylindrical coordinate and the relevant Lagrangian submanifold Hα
≤ . We

identify
Cn \ {0} ∼= R× S2n−1(1)

via its cylindrical coordinates (s,Θ) where r = es and the standard symplectic form
on Cn \ {0}

ω0 = d(e2sΘ∗∏).

We always equip the end of Cn \ {0} with the cylindrical metric ds2 + gS2n−1 on
R×S2n−1 where gS2n−1 is the standard metric on the unit sphere S2n−1 = S2n−1(1).
In the standard polar coordinates (r,Θ), this metric is translated to

dr2

r2
+ gS2n−1 =

1
r2

gCn

where gCn is the standard Euclidean metric on Cn.
We note that the unit sphere S2n−1 has the standard contact form given by

∏ =
1
2

nX

i=1

(xidyi − yidxi)

and the associated Reeb vector field by

X∏ =
X

i=1

µ
xi

@

@yi
− yi

@

@xi

∂
.

Let Hα
≤ (≤ 6= 0, α ∈ (0, π)) be the Lagrangian submanifold Hα

≤ . As s → 1 the
spherical part Θ(Hα

≤ ) thereof is asymptotic to the union of

Sn−1
Rn := S2n−1(1) ∩ Rn, Sn−1

Λ := S2n−1(1) ∩ Λ
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where Λ = eα
√
−1Rn ⊂ Cn. These are Legendrian submanifolds of the contact

manifold (S2n−1(1), ∏).
Let

w : R× [0, 1] → R× S2n−1

be a J0-holomorphic strip with the boundary condition

w(τ, 0) ∈ Rn w(τ, 1) ∈ Λ.

It is well-known (see [HWZ]) that the spherical projection

Θ ◦ w : R× [0, 1] → S2n−1

can be regarded (at least intuitively) as a gradient line of the action functional

(60.1) ∞ 7→
Z

∞
∏

defined on the path space :

{∞ : [0, 1] → S2n−1(1) | ∞(0) ∈ S2n−1(1), ∞(1) ∈ S2n−1
Λ (1)}.

The critical point of (60.1) is known to be an integral curve of the Reeb vector
field. An integral curve of Reeb vector field connecting two (possibly the same)
Legendrian submanifolds is called a Reeb chord. We will call a chord any curve, not
necessarily an integral curve, in the above path space.

It follows from the expression of the Reeb vector field X∏ that the minimal Reeb
chords (that is the Reeb chord for which the value of (60.1) is minimal) of the pair
(Sn−1

Rn , Sn−1
Λ ) are given by the curves ∞α

a = ∞a : [0, 1] → Cn satisfying

(60.2) ∞α
a (t) = ∞a(t) = e

√
−1αta, a ∈ Sn−1

Rn .

We note that, for the pair (Rn,Λ), all such Reeb chords have the same periods
and are nondegenerate in the Bott-Morse sense. (Namely the set of Reeb chords of
the form (60.2) is a nondegenerate critical submanifold of the Bott-Morse function
(60.1).)

60.2. Fredholm formulation in symplectization.

In this subsection, we set up an appropriate Fredholm theory for moduli space
of pseudo-holomorphic maps satisfying (59.1). The weighted Sobolov space we will
use for this purpose is similar to one we used in §29.
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We take a cylindrical coordinate (τ, t) ∈ R × [0, 1] = H \ {0} of H. Namely we
put

(60.3) z = x +
√
−1y = eπ(τ+

√
−1t).

We identify H \ {0} ∼= R × [0, 1] by this isomorphism. We define a (cylindrical)
metric hH that has the form

hH = π(dτ2 + dt2)

for τ large. Our metric hH is conformal to the standard Euclidean metric |dz|2 on
H such that

hH = (|z|0)−2|dz|2

where |z|0 : H → R is a positive radial function (namely |z|0 depends only on |z|)
such that

(60.4) |z|0 = |z|

when |z| sufficiently large. We also equip a metric

(60.5.1) g0Cn = µ(r)gCn , µ > 0

on Cn such that µ : Cn → R is a positive radial function and g0Cn becomes the
cylindrical metric

ds2 + gS2n−1 =
1
r2

gCn

when r =
Pn

i=1 |zi|2 is sufficiently large, i.e.,

(60.5.2) µ(r) =
1
r2

.

Lemma 60.6. Let w : H → Cn be a holomorphic map satisfying (59.1). Then there
exists ck, Ck, R0, s0 such that

(60.7) |∇k(w − wflat
a0,s0

)|(τ, t) < Cke−ckτ

for τ > R0. Here

wflat
a0,s0

(τ, t) = (ατ + s0, e
√
−1αta0), a0 = (1, 0, · · · , 0).

We use the metrics hH and g0Cn in (60.7).

Proof. By rewriting (59.1.3) with cylindrical coordinates, we obtain (60.7) for k = 0.
Lemma 60.6 then follows from elliptic regularity. §

Lemma 60.6 dictates the adequate function space for the proper Fredholm theory
of the pseudo-holomorphic curves in our problem, which we now explain. Let δ < α
be a positive number and p > 2.

With respect to these metrics on the domain and the target, we now define the
space W 1,p

δ (H, Cn;Hα
≤ , a, τ0) for each fixed a ∈ Sn−1 and τ0 ∈ R as follows.
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Definition 60.8. W 1,p
δ (H, Cn;Hα

≤ , a, τ0) is the set of all w such that

(60.9.1) w ∈ W 1,p
loc

(60.9.2) Using the coordinates (τ, t) as in (60.3), w satisfies

e
δ|τ|

p kw(τ, t)− eα(τ−τ0+
√
−1t)∞α

a (t)k ∈ W 1,p([0,1)× [0, 1], R)

where we use the metrics hH to define W 1,p and the metric g0Cn of Cn to define k k.
(∞α

a ) is as in (60.2).)

We like to remind the readers that the metrics hH and g0Cn are of product type
on the ends of H ⊂ C and on Cn respectively.

Lemma 60.6 implies that any holomorphic map w : H → Cn satisfying (59.1) is
contained in

W 1,p
δ (H, Cn;Hα

≤ , a0, τ0)

for some τ0. Define

W 1,p
δ (H, Cn;Hα

≤ ) =
[

a∈Sn−1

[

τ0∈R
W 1,p

δ (H, Cn;Hα
≤ , a, τ0).

Definition 60.10. Using the metric g0Cn and hH on Cn, H respectively, we define :

(60.11.1) fM(H, Cn;Hα
≤ ) = {w ∈ W 1,p

δ (H, Cn;Hα
≤ ) | w is holomorphic}.

(60.11.2) fM(H, Cn;Hα
≤ , a) = fM(H, Cn;Hα

≤ ) ∩W 1,p
δ (H, Cn;Hα

≤ , a).

(60.11.3) fM(H, Cn;Hα
≤ , a, τ0) = fM(H, Cn;Hα

≤ ) ∩W 1,p
δ (H, Cn;Hα

≤ , a, τ0).

Aut(H) acts on fM(H, Cn;Hα
≤ , a) and fM(H, Cn;Hα

≤ , a). Its subgroup R ⊂ Aut(H)
consisting of translation z 7→ z + v acts on M(H, Cn;Hα

≤ , a, τ0). We put

(60.12.1) M(H, Cn;Hα
≤ ) =

fM(H, Cn;Hα
≤ )

Aut(H)

(60.12.2)
M(H, Cn;Hα

≤ , a) =
fM(H, Cn;Hα

≤ , a)
Aut(H)

∼=
fM(H, Cn;Hα

≤ , a, τ0)
R

We remark that the moduli spaces appeared in Theorem 59.2 isM(H, Cn;Hα
≤ , a0).
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Lemma 60.13. W 1,p
δ (H, Cn;Hα

≤ ) has structure of Banach manifold such that the
obvious projection

(60.14) W 1,p
δ (H, Cn;Hα

≤ ) → R× Sn−1

is a locally trivial fiber bundle.

Proof. The tangent space of this Banach manifold is constructed in a similar way
to Lemma 29.5 as follows. We take a function χ : [0,1) → [0, 1] such that χ(τ) = 1
for τ larg and χ(τ) = 0 for τ < 1.

Let w ∈ W 1,p
δ (H, Cn;Hα

≤ , a, τ0).
We consider the set of all triple (W,VSn−1 , VR) such that

(60.15.1) VSn−1 ∈ TaSn−1, VR ∈ R ∼= Tτ0R.
(60.15.2) W ∈ W 1,p

loc (H;w∗TCn).
(60.15.3)

e
δ|τ|0

p kW (τ, t)− χ(τ)αVRw(τ, t)− χ(τ)eα((τ−τ0)+
√
−1t)VSn−1kg0Cn

∈ W 1,p(H, R)

Here we regard VSn−1 as a vector normal to a in Rn and then as an element of Cn.
g0Cn is as in (60.5.1). |τ |0 = |τ | for τ ≥ 2 and |τ |0 = 1 for τ ≤ 1.

Let C0(w) be the set of all such triples. It becomes a Banach space with norm

k(W,VSn−1 , VR)kp

=
∞∞∞∞e

δ|τ|
p

ØØØW (τ, t)− χ(τ)αVRw(τ, t)− χ(τ)eα((τ−τ0)+
√
−1t)VSn−1

ØØØ
g0Cn

∞∞∞∞
p

W 1,p

+ kVSn−1kp + kVRkp.

We remark that VSn−1 , VR are determined from W in case k(W,VSn−1 , VR)k is finite.
It is standard to check that W 1,p

δ (H, Cn;Hα
≤ ) is a Banach manifold and

C0(w) = TwW 1,p
δ (H, Cn;Hα

≤ ).

To show that (60.14) is a locally trivial fiber bundle we use the O(n) action as a
biholomorphic isometry on Cn which preserves Hα

≤ . It induces an O(n) action on
W 1,p

δ (H, Cn;Hα
≤ ). Then the map (60.14) is O(n)-equivariant. (Here the O(n) action

on Sn−1 is an obvious one.)
On the other hand the group R ∼= Aut(H, {0}) ∼= Aut(D2; {±1}) acts on our

space W 1,p
δ (H, Cn;Hα

≤ ) as the automorphism of the domain. Then (60.11) is R-
equivariant. (Here the R-action on R is the one given by translations.)

The local triviality (60.14) follows from this equivariance and the fact that R×
Sn−1 is a homogeneous of R×O(n) action. §
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We next put
C1(w) = Lp

δ(H,Λ(0,1)(w∗TCn)),

where we use the metri hH on H and g0Cn on Cn. Then there exists an infinite
dimensional vector bundle over W 1,p

δ (H, Cn;Hα
≤ ) whose fiber at w is C1(w).

The formal linearization of the Cauchy-Riemann operator @ defines an operator

(60.16) Dw@ : C0(w) → C1(w).

We apply Dw@ only the first component W . Using the fact that

(Dw@)
≥
αVRw(τ, t)− eα((τ−τ0)+

√
−1t)VSn−1

¥

goes to zero in the exponential order as τ → 1, we can show that (Dw@)(W ) is
contained in C1(w).

Lemma 60.17. ([HWZ],[Bou92]) The operator (60.16) is Fredholm.

Proof. Using the Bott-Morse property of the Reeb chords ∞α
a in our interest, the

proof of Lemma 60.17 is standard by now. We recall the proof for completeness.
We first rewrite the equation @w = 0 near 1 ∈ H ∪ {1} ∼= D2 with respect to

the cylindrical coordinates (τ, t) on H and the polar coordinates

(s,Θ) : Cn \ {0} → R× S2n−1; x = esΘ ∈ Cn \ {0}.

Denote by Ker ∏ the standard CR-structure (or contact structure) on S2n−1 and
then we have

TS2n−1 = R ·X∏ ⊕Ker ∏.

Here X∏ is the Reeb vector field. Then we have the decomposition

T(r,Θ)Cn = R · @

@r
⊕ R ·X∏ ⊕Ker ∏

Let Π be the projection to the third factor. We note @/@s = r@/@r. (r = es.) Now
we have the formula

dw = d(s ◦ w)⊗ @

@s
+ d(Θ ◦ w)

= d(s ◦ w)⊗ @

@s
+ ∏(d(Θ ◦ w))X∏ + Π ◦ d(Θ ◦ w)

where d(Θ ◦ w) : TH → TS2n−1 is the derivative of the composition Θ ◦ w : H →
S2n−1, and ∏(d(Θ◦w)) : TH → R is the one-form on H that measures the coefficient
of X∏-component of the derivative d(Θ ◦ w). It follows

@w =
µ

d(s ◦ w)− ∏ ◦ d(Θ ◦ w) ◦ j

2

∂
@

@s

+
µ

∏ ◦ d(Θ ◦ w) + d(s ◦ w) ◦ j

2

∂
X∏ + (Πd(Θ ◦ w))(0,1).
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where (Πd(Θ ◦ w))(0,1) is the (0, 1)-component of Πd(Θ ◦ w) which is given by

(Πd(Θ ◦ w))(0,1) =
ΠdΘ ◦ w + J ◦ (ΠdΘ ◦ w) ◦ j

2
.

Therefore the equation @w = 0 can be written into

d(s ◦ w)− (Θ ◦ w)∗∏ ◦ j = 0,(60.18.1)
ΠdΘ ◦ w + J ◦ (ΠdΘ ◦ w) ◦ j = 0.(60.18.2)

In the cylindrical coordinates (τ, t) near 1 ∈ H ∪ {1}, (60.18) can be also written
as

sτ = ∏

µ
@Θ
@t

∂
, st = −∏

µ
@Θ
@τ

∂
(60.19.1)

Π
µ

@Θ
@τ

∂
+ (J ◦Π)

µ
@Θ
@t

∂
= 0(60.19.2)

with respect to the coordinates (s,Θ) : Cn \ {0} → R × S2n−1 and the cylindrical
coordinates (τ, t) near 1 ∈ H ∪ {1} .

Now the Fredholm property of the operator (60.16) is a consequence of the general
theory of elliptic operators on the spaces with cylindrical ends (see [LoMc85] for
example). The index is independent of the choice of the constant δ as long as

0 < δ < ∏min = α

where ∏min is the smallest eigenvalue of the asymptotic operator

−J

µ
@

@t
− (DX∏)(∞α

a )
∂

.

acting on the space of W 1,p sections b on [0, 1] of (∞α
a )∗TS2n−1 with b(0) ∈ T∞α

a (0)S
n−1
Rn ,

b(1) ∈ T∞α
a (1)S

n−1
Λ . The number ∏min can be explicitly calculated, which is precisely

α in the current case of our interest. §

We next review the computation of the index of Dw@, in terms of another Maslov-
type index that is assigned to each map w ∈ W 1,p

δ (H, Cn;Hα
≤ ). (This calculation is

not used in the other part of this book.)
Let w : H → Cn lying in W 1,p

δ (H, Cn;Hα
≤ , ∞α

a , τ0). To each such map w, we can
assign a loop ∏w in the Lagrangian Grassmannian Λ(n) (see beginning of §2.1) in
the following way : First, we consider the Gauss map

(60.20) @H → Λ(n) ; θ 7→ Tw(θ)H
α
≤ .
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We compactify @H = R to S1 = R ∪ {1}. The map (60.20) is not continuous at
1. But using the asymptotic condition

w(1, t) = ∞α
a (t),

we can connect limx→+1 Tw(x)H
α
≤ = Rn to limx→−1 Tw(x)H

α
≤ = Λα by a path

(60.21) θ 7→ eiθ · Rn ; θ ∈ [0, α].

This is the kind of path described in Proposition 2.3. Then the concatenation of
(60.20) and (60.21) provides a loop of Lagrangian subspaces to which we can assign
the Maslov index given in [Arn67].

Definition 60.22. Let w : H → Cn be a map lying in W 1,p
δ (H, Cn;Hα

≤ ) with
its asymptotic Reeb chord given by ∞α

a . We consider the loop ∏w of Lagrangian
subspace obtained by concatenating (60.20) and (60.21). We denote its Maslov
index µ(∏w) by

µ(w;Hα
≤ ).

Because in both cases of Hα
≤ ⊂ Cn of our current interest, all the disc maps w

with the given asymptotic Reeb chord are homotopic to each other, this index in
fact depends only on the pair (∞a, Hα

≤ ).

Proposition 60.23. We have

µ(w;Hα
≤ ) =

Ω
1 if ≤ > 0,

n− 1 if ≤ < 0.

Proof. For the case ≤ > 0, this immediately follows by an explicit calculation of the
Maslov index considering the unique solution w obtained in §59 and using the fact
that its image is contained in the coordinate plane C · a : Consider the model w on
the plane C · a0

∼= C and the Lagrangian loop αw,∞a0
which is the Gauss map of w

θ 7→ Tw(θ)H
α
≤ = Tw(θ)∞≤ ⊕ w(θ) · Rn−1 ⊂ Cn

followed by the path θ ∈ [0, α] 7→ eiθ · Rn. From this expression, we obtain
µ(∞a;Hα

≤ ) = 1 : the normal contribution to µ(αw,∞a0
) from the {0} ⊕ Cn−1-

component is zero while the contribution from C⊕ {0}n−1 is 1.
On the other hand, for the case ≤ < 0, one can prove this either by direct

calculation or by analyzing the change of Maslov index under the Lagrangian surgery
from Hα

≤ . We refer readers to [Proposition 8, Pol91] for this latter study. §

The next theorem is a consequence of the standard result of the index theory of
elliptic operators with product type end. (See [EGH00].)

We can also derive it from the explicit calculation of the index in the next sub-
section. (See the end of §60.3.)
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Theorem 60.24. Let w ∈ W 1,p
δ (H, Cn;Hα

≤ ) with its asymptotic Reeb chord given
by ∞α

a . Then we have

(60.25) IndexDw@ = µ(w;Hα
≤ ) + n.

60.3. Surjectivity of the linearization.

The main result of this section is the following surjectivity of the linearization
operator

Dw@ : C0(w) → C1(w).

We note that since the almost complex structure on Cn is integrable, we have

Dw@ = the standard Dolbeault operator.

Theorem 60.26. Let w be a pseudo-holomorphic disc in M(H, Cn;Hα
≤ ) with the

asymptotic data (a, τ0). Then the operator

(60.27) Dw@ ⊕Dπ : C0(w) → C1(w)⊕ (Tτ0R⊕ TaSn−1)

is surjective.

(We remark that π : W 1,p
δ (H, Cn;Hα

≤ ) → R× Sn−1 is as in (60.14).)

Remark 60.28. We remark that Theorem 60.26 still holds when we replace Hα
≤

by (Hα
≤ )0. (The proof given below equally works without change.)

Proof. By the O(n)-invariance of the equation, it suffices to consider the case when
a0 = (1, 0, · · · , 0) in (60.27). We first recall that we have a splitting :

(60.29) C0(w) = TwW 1,p
δ (H, Cn;Hα

≤ ) = Rn(w)⊕W 1,p
δ (w∗TCn;w∗THα

≤ ).

In fact O(n) acts on Cn with O(n − 1) as the isotropy subgroup of the vector
a0 = (1, 0, · · · , 0). We identify o(n)/o(n − 1) with Rn−1 and find an embedding
Rn−1 ↪→ o(n) such that

Rn−1 ⊕ o(n− 1) = o(n).

We also take a generator X of R ∼= aut(H, {0}), which corresponds to X = 1
r

@
@r in

the standard coordinates z = x +
√
−1y on H with r = |z|. Then the assignments

A ∈ o(n)/o(n− 1) 7→ A · w, X 7→ LXw
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defines an embedding

(60.30) Rn ∼= R⊕ Rn−1 → C0(w) = TwW 1,p
δ (H, Cn;Hα

≤ )

whose composition with the projection

Dπ : TwW 1,p
δ (H, Cn;Hα

≤ ) → T(τ0,a)(R× Sn−1)

is an isomorphism : See the proof of Lemma 60.13. Here π is the projection defined
in (60.14). Since W 1,p

δ (w∗TCn;w∗THα
≤ ) is the kernel of Dπ from definition, we

obtain the decomposition (60.29) if we set Rn(w) as the image of the embedding
(60.30). More explicitly, we can write

Rn(w) = R · LXw ⊕ (o(n)/o(n− 1)) · w

where (o(n)/o(n− 1)) · w is realized as the span of the variations given by

z 7→ d

d≤

ØØØ
≤=0

(exp ≤Aj · w(z))

for a set of basis Aj ∈ o(n) that induces a basis of o(n)/o(n− 1).
Because each element of O(n) and of Aut(H) acts as a biholomorphic map, pre-

serves the boundary condition and moves each minimal Reeb chord to another, we
have

(60.31) Rn(w) ⊂ Ker Dw@.

We derive from this that
dimKer Dw@ ≥ n.

Thanks to (60.31), to prove Theorem 60.26, it suffices to prove the surjectivity
of the map

E(w) := Dw@
ØØØ
W 1,p

δ (w∗TCn,w∗THα
≤ )

: W 1,p
δ (w∗TCn, w∗THα

≤ ) → C1(w).

By the integrability of the standard complex structure of Cn, the operator E(w)
becomes the standard Dolbeaut operator

@ : W 1,p
δ (w∗TCn, w∗THα

≤ ) → Lp
δ(Λ

(0,1)w∗TCn).

We denote
η = β

µ
@

@z

∂
.
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Then the one-form β = ηdz has its norm given by the canonical norm kβk induced
by the metric hH on H and g0Cn on Cn. More explicitly, we have

kβk = |z|0kηk = |z|0
p

µ(w)|η|Cn

where the norm kηk is the norm associated to the metric g0Cn and |η|Cn to the
standard Euclidean norm on Cn. Asymptotically at the infinity of Cn, we have

(60.32) kβk ∼ |z|0kηk ∼ |z||η|Cn

|w|Cn
.

Now we consider the adjoint operator

E(w)∗ : (Lp
δ(Λ

(0,1)w∗TCn))∗ → (W 1,p
δ (w∗TCn, w∗THα

≤ ))∗.

Note we use the metric hH = |z|0−2|dz|2 on the domain and the metric g0Cn on the
target to define the weighted Sobolev space above.

We define hermitian metric h0Cn on Cn by

h0Cn = µ(r)hCn

where hCn is the standard Herminitan metric on Cn. Then h0Cn induces Riemannian
metric g0Cn by complex structure J0. (We remark that (h0Cn , J0) is not Kähler.)

By the nondegenerate pairing

(·, ·) = Reh·, ·i : Lp
δ(Λ

(0,1)w∗TCn)× Lq
−δ(Λ

(1,0)w∗TCn) → R,

(here we use hH and h0Cn to define the pairing h , i), we identify (Lp
δ(Λ

(0,1)w∗TCn))∗

with Lq
−δ(Λ

(1,0)w∗TCn) for q satisfying

1
p

+
1
q

= 1,

and E(w)∗ with the adjoint

E(w)† : Lq
−δ(Λ

(1,0)w∗TCn) → (W 1,p
δ (w∗TCn, w∗THα

≤ ))∗.

(We remark that we take 2 < p < 1 and hence 1 < q < 2.) Then an element
β ∈ Ker E(w)† is characterized by the equation

(60.33)
Z

H
Rehβ, @ξi = Re

Z

H
hβ, @ξi = 0 for all ξ ∈ C0(w).

By the standard elliptic regularity of the Cauchy-Riemann operator with totally
real boundary condition, any solution η = β(@/@z) of (60.33) is smooth up to the
boundary and satisfies the conjugate boundary condition. (See [McSa04] P548,
Theorem C2.3 (ii).) We now use this fact and integration by parts to prove the
following lemma
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Lemma 60.34. Let β is a solution of (60.33) and β = ηdz for η ∈ coker Dw@ ⊂
Lq
−δ(w

∗TCn). Then β is characterized by the equation

(60.35)
Ω

@
∗
β = 0

η(x, 0) ∈ Tw(x,0)H
α
≤

where @
∗

is the formal adjoint of @ defined in (60.37).

Proof. We use the standard complex coordinates z of H and (w1, · · · , wn) of Cn,
and denote the metrics hH on H and g0Cn on Cn with cylindrical ends chosen before
by

hH = hzzdzdz

g0Cn =
X

i,j

g0
ij

dwidwj

in coordinates. Then we have

hzz = |z|0−2
, g0

ij
= δijµ(w) ∼

δij

|w|2 .

We denote
β = ηdz =

X

i

ηi
@

@wi
⊗ dz

and
@ξ =

X

j

@ξj

@z

@

@wj
⊗ dz.

We obtain

hβ, @ξi =
X

i,j

ηi

µ
@ξj

@z

∂
δij |z|

02µ(w) =
X

i

ηi

µ
@ξi

@z

∂
|z|02µ(w)

and hence

hβ, @ξi dAh = hβ, @ξi
√
−1dz ∧ dz

2|z|02

=
X

i

ηi

µ
@ξi

@z

∂
µ(w)

√
−1dz ∧ dz

2

=
X

i

ηi

µ
@ξi

@z

∂
µ(w)

√
−1dz ∧ dz

2

= d

√
X

i

ηiξi
µ(w)

√
−1

2
dz

!

−
X

i

ξi
@

@z
(µ(w)ηi)

√
−1dz ∧ dz

2
.
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(Here dAhH is the volume form of the metric hH.) By Stokes’ formula, we have
derived

Z

H
hβ, @ξi dAhH =

Z

@H

X

i

ηiξi
µ(w)

√
−1

2
dz

−
Z

H

X

i

ξi
@

@z
(µ(w)ηi)

√
−1dz ∧ dz

2
.

Therefore if β = η dz satisfies E(w)†(β) = 0, then we derive the equation

(60.36)






Re

√Z

H

X

i

ξi
@

@z
(µ(w)ηi) dxdy

!

= 0

Re

√Z

R

X

i

ηiξi
µ(w)

√
−1

2
dx

!

= 0

for all ξ satisfying ξ(x) ∈ Tw(x)H
α
≤ for x ∈ @H. Noting that

Re

√
X

i

ηiξi
µ(w)

√
−1

2

!

= − Im

√
X

i

ηiξi
µ(w)

2

!

= − Im

√
X

i

ηiξi

!
µ(w)

2
=

µ(w)ω0(η, ξ)
2

,

we derive that the second equality of (60.36) becomes

η(x) ∈ Tw(x)H
α
≤

and the interior equation is nothing but @
∗
β = 0 in coordinates since we have

(60.37) @
∗
β =

X

i

|z|02 @

@z
(µ(w)ηi)

@

@wi
.

This finishes the proof. §

Formula (60.37) also provides the coordinate expression of the operator @
∗

whose
symbol coincides with @ and so (60.35) is an elliptic first order boundary value
problem with scalar symbol. In particular, we can apply Aronzjasin’s unique con-
tinuation theorem [Aro57] to the system (60.35).

Now we would like to show that the only solution of (60.35) is β = 0. For this
purpose, we use the O(n)-invariance of the problem. More precisely, we consider a
vector field ξ along w give by

ξ = A · w or LXw
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for any Lie algebra element A ∈ o(n)/o(n− 1) and A ·w is the vector field along w
generated by the infinitesimal action of A and X = r@/@r.

To analyze a solution η of (60.35), we will use the fact that LXw and A · w
provide elements Ker Dw@ and their asymptotic values span the tangent space
Tw(1,t)Cn point-wise at each w(1, t) = ∞a0 along the asymptotic chord ∞a0 . (a0 =
(1, 0, · · · , 0).)

Let ξ be any of w0 or A · w. Then we compute

@

@z
hξ, ηi =

@

@z
(ξiηiµ(w)) = ξi

@

@z
(µ(w)ηi) +

@ξi

@z
ηiµ(w)

= ξi
@

@z
(ηiµ(w)) +

@ξi

@z
ηiµ(w) = 0

using the equation @ξ = 0 and (60.37). This shows that the natural Hermitian inner
product

hξ, ηi
associated to the given metrics hH and h0Cn is a holomorphic function that satisfies
the boundary condition

Im(hξ, ηi(x)) = 0, for x ∈ @H.

The latter boundary condition follows from the fact that both η(x) and ξ(x) lie in the
same Lagrangian subspace Tw(x,0)H

α
≤ . Therefore the reflection principle produces

an entire function on C.
Next we will prove that hξ, ηi converges to zero when Im z →1 so must vanish

by Liouville’s theorem. We recall

β = ηdz ∈ Lq
−δ(Λ

(1,0)w∗TCn)

with respect to the metric hH and g0Cn which is equivalent to saying that |z|kηk ∼ kβk
lies in Lq

−δ(w
∗TCn). We regard η as a Cn valued function on H. And we have

(60.38) LXw ∼ z
α
π a0, A · w ∼ z

α
π Aa0.

On the other hand (60.37) implies that µ(w)η =: ≥ is an anti-holomorphic vector
function on H, and ≥ satisfies the boundary conditions

(60.39) ≥(τ, t) ∈ Tw(x,t)H
α
≤

for t = 0, 1. We also remark that w is asymptotic to z
α
π .

Since we denote by kβk and by kηk the norms of β = ηdz and of η with respect
to the metric hH = |z|0−2|dz|2 and g0Cn = µ(w)gCn , and by |η|Cn the standard norm
of η as a vector in Cn, we have

kβk = kηk|z| = |η|Cn |z|
|w|
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on
H|z|>R = {z ∈ H | |z| > R},

for some sufficiently large R > 0. We put

f(z) = (µ(w)η(z))z1+α/π−δ/q.

We remark

(60.40) @f = 0.

Since β ∈ Lq
−δ implies that kβk|z|−

δ
q lies in Lq with respect to the metric hH = |dz|2

|z|02 ,
|w(z)| ∼ |z|α/π and hence

|f(z)| ∼ η(z)
|w(z)|2 z1+α/π−δ/q

∼
µ
|η|Cn |z|
|w|

∂
|z|−

δ
q ∼ kβk|z|−

δ
q

it follows that f(z) is of Lq class associated to the metric hH on H and the metric
g0Cn on Cn. We also write f(τ, t) = f(eπ(τ+

√
−1t)). Then f lies in Lq in the standard

metric dτ2 + dt2 on [0,1)× [0, 1], and

lim
τ→1

f(τ, 0)
|f(τ, 0)| ∈ Rn ∩ S2n−1, lim

τ→1

f(τ, 1)
|f(τ, 1)| ∈ eπ

√
−1δ/qRn ∩ S2n−1

Here to show the second equality we calculate

lim
τ→1

arg fi(τ, 1) = π + α− α + πδ/q = π + πδ/q.

Here f = (f1, · · · , fi, · · · , fn) and we use (60.39).
More precisely there exists ∞0(τ) = (∞0,1(τ), · · · , ∞0,n(τ)) ∈ Rn and ∞1(τ) =

(∞1,1(τ), · · · , ∞1,n(τ)) ∈ Rn such that

arg fi(τ, 0) = ∞0,i(τ),(60.41.1)
arg fi(τ, 1) = ∞1,i(τ),(60.41.2)

ØØØØ
dk

dτk
(∞0,i − 0)

ØØØØ < Cke−ckτ , k = 0, 1, 2, · · · ,(60.41.3)
ØØØØ

dk

dτk
(∞1,i − δ1/q)

ØØØØ < Cke−ckτ , k = 0, 1, 2, · · · .(60.41.4)

Moreover f was shown to be in Lq and anti-holomorphic.
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Lemma 60.42. Let f be as above. Then f ∈ L1, i.e., there exists C > 0

kfkL1 < C

where k · kL1 is taken in the standard norm on Cn.

Proof. This lemma seems to be well-known. We will however give a proof below for
completeness, since elliptic estimate of boundary valued problem in terms of W 1,q

norm with 2 > q > 1 is not so standard.
We use the cylindrical coordinates H \ {0} ∼= R× [0, 1]. Since the interior bound

will be easier to prove, we will focus on the bound at points in the boundary R×{0}.
The boundary points on R× {1} can be handled similarly.

Let Iτ = (Iτ,1, · · · , Iτ,n) : Cn → Cn, be a linear anti-holomorphic involution
such that

Iτ,i|e
√
−1∞0,i(τ) = id, i = 1, · · · , n.

Denote by I0 : Cn → Cn the complex conjugation. It follows from (60.41.3) that
we have

(60.43)
∞∞∞∞

dk

dτk
(Iτ − I0)

∞∞∞∞
Ck

< ok(τ0), k = 0, 1, 2, · · ·

Consider the open disc

Dρ(τ0, 0) = {(τ, t) ∈ R2 | (τ − τ0)2 + t2 < ρ2}

and the semi-disc

D≥0
ρ (τ0, t0) = {(τ, t) ∈ Dρ(τ0, t0) | t ≥ 0}.

For a given function F = (F1, · · · , Fn) : D≥0
ρ (τ0, t0) → Cn satisfying

arg Fi(τ, 0) = ∞0,i(τ)

we define its double Ref F : Dρ(τ0, t0) → Cn by the formula

Ref F (τ, t) =
Ω

F (τ, t) if t ≥ 0
Iτ (F (τ,−t)) if t ≤ 0

By construction, we have

Ref(@F ) = @(Ref(F )) + P (Ref(F ))

for a differential operator P of first order whose coefficients are continuous and
smaller than o(τ0) pointwise. (Here the function o(τ0) denotes any function satisfy-
ing limτ0→1 o(τ0) = 0.) Now we choose a cut function χ : D≥0

ρ (τ0, t0) → 1 which is
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1 on D≥0
ρ/2(τ0, t0) and is zero on D≥0

ρ (τ0, t0) \ D≥0
2ρ/3(τ0, t0). By applying the above

equality we have

(60.44) @(Ref(χf)) = Ref(@(χf))− P (Ref(χf)).

Using @f = 0 and (60.44) we have

(60.45) k@(Ref(χf))kLq ≤ CkfkLq(D≥0
ρ (τ0,t0)) + o(τ0)kRef(χf)kW 1,q .

Since Ref(χf) is of compact support in Dρ/2(τ0, t0) we have

(60.46) kRef(χf)kW 1,q ≤ C(kRef(χf)kLq + k@(Ref(χf))kLq ) :

This inequality follows from the fact 1
πz
√
−1

is the fundamental solution of @ on
R2 ∼= C.

Combining (60.45), (60.46) we obtain

kRef(χf)kW 1,q ≤ CkfkLq(D≥0
ρ (τ0,t0)),

as long as τ0 is sufficiently large, say |τ0| ≥ R1. It follows that

kfk
W 1,q

≥
D≥0

ρ/2(τ0,t0)
¥ ≤ CkfkLq(D≥0

ρ (τ0,t0)).

Therefore from the Sobolev embedding W 1,q ↪→ L2q/2−q we obtain

kfk
L2q/(2−q)

≥
D≥0

ρ/2(τ0,t0)
¥ ≤ CkfkLq(D≥0

ρ (τ0,t0)).

By repeating the same argument twice (namely using Moser’s iteration) and using
Sobolev inequality again, we obtain

k fk
C0

≥
D≥0

2−4ρ
(τ0,t0)

¥ ≤ Ckfk
W 1,2

≥
D≥0

2−3ρ
(τ0,t0)

¥

≤ C4kfkLq(D≥0
ρ (τ0,t0)) ≤ C4kfkLq(H) < 1

for all (τ0, t0) with t0 = 0 and |τ0| ≥ R1. We note that the constant C appearing
above can be chosen independent of τ0. Easier argument gives rise to the same
pointwise bound at an interior point of H. Redefining C to be C4kfkLq(H) we have
finished the proof. §

Let ξ = A · w. Then we have

(60.47) kξk = kA · wk ∼ kwk ∼ kz α
π a0k = |z|α

π
1
|w| = |z|α

π · 1
|z|α

π
= 1.
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Therefore it follows from the definition of f (see right above (60.40)) and Lemma
60.42 that the holomorphic function hξ, ηi satisfies

lim
τ→1

|hξ, ηi(τ, t)| ≤ lim
τ→1

ØØØØ
η(τ, t)
w(τ, t)

ØØØØ ≤ lim
τ→1

C|z|δ/q−1 = 0.

Here the last identity follows if we choose δ so small that 0 < δ < q.
From this, we derive

hξ, ηi ≡ 0,

everywhere in H, as the double of hξ, ηi is an entire function on C that converges
to zero as |z| → 1.

Using the property LXw ∼ z
α
π , whose order is the same as that of A ·w, similar

computation gives
hLXw, ηi ≡ 0,

everywhere in H. By considering the asymptotic values of η and ξ at infinity,

hξ, ηi = hLXw, ηi = 0

for all A ∈ o(n)/o(n− 1) in a neighborhood of 1 ∈ D2 where w is embedded. Since
the set

{LXw} ∪ {A · w | A ∈ o(n)}

complex linearly spans w∗TCn near ∞a0 at each point of z in a neighborhood of the
infinity, we have derived that η must vanish on the neighborhood and so everywhere
by the unique continuation. This finishes the proof of Theorem 60.26. §

Since we have established surjectivity of the linearization operator Dw@, the
moduli space M(H, Cn;Hα

≤ ) becomes a smooth manifold whose tangent space can
be identified with the kernel of the operator Dw@ : C0(w) → C1(w).

Therefore Theorem 59.2 which was already proved in §59 for the case ≤ > 0
or ≤ < 0, α = π/2 immediately proves the following theorem. This in particular
computes the index of Dw@, when combined with the surjectivity proven in the
previous subsection.

Theorem 60.48. Assume 0 < δ1 < ∏min. Let w be the pseudo-holomorphic disc
constructed in §57 associated to the Reeb chord ∞α

a for a given a ∈ Sn−1
Rn . Then we

have
dimKer Dw@ =

Ω
n + 1 for ≤ > 0
2n− 1 for ≤ < 0

Proof. We remark that it suffices to consider the case when α = π/2, since index is
invariant under the continuous deformation of Fredholm operators.

Theorem 59.2 implies that in case ≤ < 0 the set of holomorphic map w satisfying
(59.1) is n−2 dimensional modulo Aut(H). We note Aut(H) is two dimensional and
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one of them corresponds to the R factor of Sn−2 × R in (60.14). Hence Theorem
60.26 implies

Ker Dw@ = n− 2 + 2 + n− 1 = 2n− 1.

The case ≤ > 0 is similar. §

We would like to separately state the following obvious corollary of Theorem
60.28 and 60.48.

Corollary 60.49. We have

IndexDw@ =
Ω

n + 1 for ≤ > 0
2n− 1 for ≤ < 0.

Proof of Theorem 60.24. This is an immediate consequence of Corollary 60.49 and
Proposition 60.23. §

60.4. Proof of Theorem 59.2.

In this subsection we complete the proof of Theorem 59.2 assuming the following
theorem whose proof will be postponed until §62.8.

Theorem 60.50. The map

(60.51.1)
[

α∈(0,π)

M(H, Cn;Hα
≤ ) → (0, π)

is proper. Here (60.51.1) maps elements in M(H, Cn;Hα
≤ ) to α.

The topology on
S

α∈(0,π) M(H, Cn;Hα
≤ ) is the induced topology from the topol-

ogy of
S

α∈(0,π) W 1,p
δ (H, Cn;Hα

≤ ), which will be defined in §62.8.
Theorem 60.26 implies that

(60.51.2)
[

α∈(0,π)

M(H, Cn;Hα
≤ , a0) → (0, π)

is proper, where ≤ < 0 and a0 = (1, 0, · · · , 0). Theorem 60.26 implies that (60.51.2)
is a submersion. Therefore (60.51.2) is a locally trivial fiber bundle. In particular
the diffeomorphism classes of the fibers M(H, Cn;Hα

≤ , a0) are independent of α. We
already proved in §59.3 that

M(H, Cn;Hπ/2
≤ , a0) ∼= Sn−2
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Thus we have proved (59.3.2). The proof of Theorem 59.2 is complete. §

We also have the following symmetry statement for our moduli space. For this
we need some notations.

Let Ref α
2

: C → C is the reflection about the line arg z = α
2 . We denote

(Ref α
2
, · · · ,Ref α

2
) : Cn → Cn

by Ref α
2

also. We can check easily that

Ref α
2
(Hα

≤ ) = Hα
≤ .

We also define an action of O(n− 1) on Cn by

(z1, · · · , zn) = (z1, z
n−1) 7→ (z1, Azn−1).

We first note that the Lagrangian submanifold Hα
≤ and the Reeb chord ∞a0 of Hα

≤ are
invariant under the reflection and the action of O(n−1). We note that the action of
O(n−1) is holomorphic and the reflection is anti-holomorphic. Therefore the O(n−
1)-action on Cn naturally induces an action on the moduli space M(H, Cn;Hα

≤ , a0)
and Ref α

2
induces an involution (Ref α

2
)∗ on M(H, Cn;Hα

≤ , a0) by

(Ref α
2
)∗([w]) = [Ref α

2
◦w ◦ ∗]

where ∗ : H → H is defined by ∗z = −z.

Proposition 60.52.
(60.53.1) The action of O(n− 1) on M(H, Cn;Hα

≤ , a0) is transitive.
(60.53.2) The action of (Ref α

2
)∗ on M(H, Cn;Hα

≤ , a0) is trivial : For any element
of M(H, Cn;Hα

≤ , a0) we have a representative w such that

(60.54) w(−z) = Ref α
2
(w(z))

Proof. We can prove that the action of O(n − 1) is transitive and the action of
(Ref α

2
)∗ is trivial for α = π/2 by its explicit description given in (59.25). Since the

transitivity and triviality of the action of compact groups are preserved under the
deformation of the actions, it follows from the proof of Theorem 60.50 that both
hold for all α ∈ (0, π).

Now we prove existence of a representative w ∈ fM(H, Cn;Hα
≤ , a0) satisfying

(60.54). It follows from the triviality of the action of (Ref α
2
)∗ on M(H, Cn;Hα

≤ , a0)
that any representative w satisfies

Ref α
2
(w(−z)) = w(az + b)

for some a > 0 and b ∈ R. Since Ref α
2
(w(−z)) satisfies (59.1.3) for the same τ0 as

w, it follows that a = 1. Replacing now w by z 7→ w(z − b/2), we find w satisfying
(60.54) which finishes the proof. §
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60.5. Local models do not hit the origin.

In this subsection, we will prove that the local models do not hit the origin. This
property will be used later in our gluing arguments in section §61 and §62.

We first examine Hα
≤ for ≤ < 0 more closely. We put

(60.55) Sn−1
c = ec

√
−1Rn ∩ S2n−1,

for c ∈ R. By definition, for s > log
p

2|≤|, we have

(60.56) Hα
≤ ∩ ({s} × S2n−1) = {s} × (Sn−1

h1(s)
∪ Sn−1

h2(s)
),

where
h1(s) < 0 < α < h2(s)

and

(60.57)






lim
s→1

h1(s) = 0, lim
s→log

√
2|≤|

h1(s) =
α

2
− π

2
, h01(s) > 0,

lim
s→1

h2(s) = α, lim
s→log

√
2|≤|

h2(s) =
α

2
+

π

2
, h02(s) < 0.

These follow from the definition of ∞≤ for ≤ < 0 and from (54.12.3).

Figure 60.1
We have :

(60.58.1) ∏|Hα
≤

=

(
−dh1

ds ds on
S

s({s} × Sn−1
h1(s)

)

+dh2
ds ds on

S
s({s} × Sn−1

h2(s)
)

It implies
d∏|Hα

≤
= 0,(60.58.2)

∏|Hα
≤ ∩({s}×S2n−1) = 0 for all s.(60.58.3)

With this preparation, we prove
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Proposition 60.59. Let w : H → Cn be a holomorphic map satisfying (59.1).
Then 0 = (0, · · · , 0) ∈ Cn is not in the image of w.

Proof. In case ≤ > 0, this was proved in Lemma 59.4. We consider the case ≤ < 0
now. Recall that we write both the contact form on S2n−1

∏ =
1
2

√
X

i

xidyi − yidxi

!ØØØØØ
S2n−1

,

and its pull-back to R × S2n−1 by the same letter ∏. Via the diffeomorphism
(s,Θ) : Cn \ {0} ∼= R × S2n−1 we also regard ∏ as a form on Cn \ {0}. We alert
readers that ∏ is not the Liouville one-form which is given by

1
2

√
X

i

xidyi − yidxi

!

on Cn.

Lemma 60.60. If C ⊂ Tp(Cn \ {0}) is a one dimensional complex linear subspace,
then d∏|C = cdx ∧ dy with c ≥ 0.

Proof. We recall that Ker∏ = ξ is a J0-invariant linear subspace of TS2n−1 ⊂ TCn.
(In fact it gives the standard CR structure on S2n−1.)

Considering the translational invariant distribution, also denoted by ξ, on R ×
S2n−1 ∼= Cn we have the decomposition

T (R× S2n−1) = spanR

Ω
@

@s
, J0

µ
@

@s

∂æ
⊕ ξ.

(Here J0 is the standard complex structure of Cn and s is a coordinate of R. See
§60.1.) Moreover

(X,Y ) 7→ (d∏)(X, J0Y )

defines a positive definite symmetric bilinear form on ξ and vanish on spanR
©

@
@s , J0

°
@
@s

¢™
.

The lemma immediately follows from these facts. §

Let
w−1(0) = {z1, · · · , zm} ⊂ Int H

(We would like to show this set is empty.) Writing

wi(z) = (z − zi)nigi(z), ni ≥ 1

with gi(zi) 6= 0, we easily obtain

(60.61) lim
δ→0

X Z

@Bzi (δ)
w∗∏ = 2π

mX

i=1

ni ≥ 2πm.

Here Bzi(δ) = {z ∈ C | |z − zi| ≤ δ}. We next prove
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Lema 60.62. Z

@H
w∗∏ + lim

R→1

Z

@B0(R)∩H
w∗∏ = π.

Proof. It follows from (59.1.3) that the set

{x ∈ @H = R | w(x) ∈ {s} × S2n−1}

consists of two points x1(s) < 0 < x2(s) for s sufficiently large. Then (60.58) implies
that Z x2(s)

x1(s)
w∗∏

depends only on the homology class

w∗([x1(s), x2(s)],@[x1(s), x2(s)])

∈ H1(Hα
≤ ∩ ([−1, s]× S2n−1), Hα

≤ ∩ ({s} × S2n−1)).

We use this fact and (60.57) to find

(60.63)
Z x2(s)

x1(s)
w∗∏ = h1(s)− h2(s) + π.

In fact we can deform the arc w([x1(s), x2(s)]) to the union of the following three
paths (here we put a0 = (1, 0 · · · , 0)) :

(I) t 7→ (s− t, e
√
−1h2(s−t)a0), for t ∈ [0, s− log

p
2|≤|].

(II) t 7→ (log
p

2|≤|, e
√
−1( α

2 + π
2 )(cos t, sin t, 0, · · · , 0)), for t ∈ [0, π] :

(III) t 7→ (t + log
p

2|≤|, e
√
−1h1(t+log

√
2|≤|)a0), for t ∈ [0, s− log

p
2|≤|]

Figure 60.2.
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Since h2(log
p

2|≤|) = α
2 + π

2 , it follows from (60.58.1) that the integral on the part
(I) is α

2 + π
2 − h2(s).

By (60.58.3), the integral on the part (II) is 0.
Since h1(log

p
2|≤|) = α

2 −
π
2 , it follows from (60.58.1) that the integral on the

part (III) is h1(s)− α
2 + π

2 . (60.63) then follows.
By (60.63) and (60.57) we have

(60.64)
Z

@H
w∗ω = lim

s→1

Z x2(s)

x1(s)
w∗∏ = lim

s→1
(h1(s)− h2(s)) + π = π − α.

On the other hand, by (59.1.3) we have

lim
R→1

Z

@B0(R)∩H
w∗∏ = α.

This finishes the proof of Lemma 60.62. §

(60.61) and Lemma 60.62 imply
Z

H
w∗d∏ ≤ π − 2πm.

But Lemma 60.60 implies that the left hand side is nonnegative. Hence m = 0, as
required. This finishes the proof. §

§61. Proof of Theorem Z, I : Gluing

In this section and the next we will complete the proof of Theorem Z which is
Theorem 55.5. We associate a pseudo-holomorphic strip (resp. a family of pseudo-
holomorphic strips parameterized by Sn−2) between L0 and L−≤1 (resp. L0 and
L+≤1) to each pseudo-holomorphic triangle w. In the next section, we will show
that the family we will construct in this section are all the pseudo-holomorphic
strips near the given pseudo-holomorphic triangle w. We assume w is isolated and
Fredholm regular.

61.1. Cylindrical models.

We start with studying symplectic and almost complex structures in the cylin-
drical coordinate. Let (Cn, ω0, J0) be the standard linear complex space endowed
with the standard Kähler structure. We denote by (r,Θ) the polar coordinates

Cn \ {0} → (0,1)× S2n−1(1)
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of Cn \ {0}. By putting r = e2s, where s ∈ R, we have a diffeomorphism

(61.1.1) (s,Θ) : Cn \ {0} → R× S2n−1(1).

We denote by

(61.1.2) ϕ : R× S2n−1(1) → Cn \ {0}

the inverse of (61.1.1).
We denote also by ω0 and J0 the induced sympletic and complex structures on

(0,1)× S2n−1(1) or on R× S2n−1(1). We denote by ∏ the canonical contact form
given by

1
2

√
X

i

xidyi − yidxi

!ØØØØØ
S2n−1

on the unit sphere S2n−1, or the corresponding scale invariant one form on Cn\{0} ∼=
R×S2n−1. (We like to alert the readers that this form is not the Liouville one form

1
2

√
X

i

xidyi − yidxi

!

on Cn.) Then we have

ω0 = 2rdr ∧ ∏ + r2d∏ = e2s(2ds ∧ ∏ + d∏) = d(e2s∏).

Here r = es. We denote by X∏ = J0
@
@r the Reeb vector field on S2n−1.

We fix a positive number ≤0 > 0 such that the Darboux chart

expI
p12

:= I−1 : B2n(≤0) → M

chosen as in (54.16) induces a diffeomorphism onto its image. Here B2n(≤0) ⊂ Cn ∼=
(Tp12M,Jp12) is the ball of radius ≤0 centered at origin. We denote the corresponding
image by B(p12; ≤0) ⊂ M . (54.16.1) implies

expI
p12

(Rn ∩B2n(≤0)) ⊂ L1, expI
p12

(Λ ∩B2n(≤0)) ⊂ L2.

Recall that ≤0 depends only on the size of the Darboux chart at p12, which can be
chosen depending only on (M,ω).

We compose expI
p12

with the diffeomorphism (61.1.2) and obtain

expI
p12
◦ϕ : (−1, log ≤0)× S2n−1 → B(p12; ≤0).
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By our choice we have

(61.2)
ϕ−1(L1 \ (L1 ∩ L2)) = (−1, log ≤0)× Sn−1

R ,

ϕ−1(L2 \ (L1 ∩ L2)) = (−1, log ≤0)× Sn−1
Λ .

The next proposition states that the pull back of the complex structures of M to
Tp12M is asymptotic to the standard one as s → −1. In the next lemma and
hereafter we use the product metric gR×Sn−1 on R × Sn−1 to define the norms of
tensors on it.

We may also choose the Darboux chart I so that the differential of dp12I :
(Tp12M,Jp12) → Cn becomes a unitary transformation. Using these facts we easily
obtain the following :

Lemma 61.3. There exists ck, Ck independent of ≤1, ≤0 such that the following
holds for k = 0, 1, · · · , s ≤ log ≤0 :

|(∇k((expI
p12
◦ϕ)∗ω − ω0)(s, x)|gR×S2n−1 < Ckecks,(61.4.1)

|∇k((expI
p12
◦ϕ)∗J − J0)(s, x)|gR×S2n−1 < Ckecks.(61.4.2)

Proof. (61.4.1) follows by standard exponential estimates starting from

| expI
p12
◦ϕ(s, t)|, |d expI

p12
◦d ϕ(s, t)| ∼ const es

One can then easily derive (61.4.2) from this. We omit the details of these deriva-
tions. §

61.2. Description of L≤1 in cylindrical coordinates.

In this subsection, we review the construction of the Lagrangian surgery and
rewrite it in terms of the cylindrical coordinate. Recall we have

(61.5) Hα
≤1 = Rn#≤1Λ = ∞α

≤1 · S
n−1
Rn

where ∞α
≤1 is given by (54.12).

In (54.14), we modified Hα
≤1 in the domain B(2S0

p
|≤1|) \ B(S0

p
|≤1|) and glue

it with (Rn ∪ Λ) \B(2S0

p
|≤1|) to obtain (Hα

≤1)
0. Namely we have :

(61.6.1) (Hα
≤1)
0 ∩B(S0

p
|≤1|) = Hα

≤1 ∩B(S0

p
|≤1|).

(61.6.2) (Hα
≤1)
0 \B(2S0

p
|≤1|) = (Rn ∪ Λ) \B(2S0

p
|≤1|).
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By construction of L1#≤1L2 we have

(L1#≤1L2) ∩B(p12; ≤0) = expI
p12

((Hα
≤1)
0) ∩B(p12; ≤0)

where I is the Darboux chart defined on a neighborhood U of p12 so that I(U) =
B2n(2≤0) ⊂ Cn and so

expI
p12

: B2n(2≤0) → U, B(p12; ≤0) ⊂ U

and satisfies (54.16.1) i.e.,

(61.7) (expI
p12

)(Rn ∩B2n(2≤0)) ⊂ L1, (expI
p12

)−1(Λ ∩B2n(2≤0)) ⊂ L2.

61.3. Implanting the local model.

We next implant the local model of §59 - 60 into a neighborhood of p12 and
smooth off the corner at p12 of the given pseudo-holomorphic triangle.

Consider the set of holomorphic maps w : H → Cn satisfying (59.1.1),

(59.1.20) w(@H) ⊂ (Hα
≤1)
0

and

(59.1.30.a) e−ατ
ØØØw(eπ(τ+

√
−1t))− eα(τ−τ0+

√
−1t)a

ØØØ
Cn
≤ Ce−cτ

for some a ∈ Sn−1 ⊂ Rn ⊂ Cn, τ0 ∈ R and c, C > 0. (Here the norm in the left
hand side is the standard Euclidean norm.)

We denote the set of such w’s by fM(H, Cn; (Hα
≤1)
0, a) and denote

(61.8)






fM(H, Cn; (Hα
≤1)
0) =

[

a∈Sn−1

fM(H, Cn; (Hα
≤1)
0, a),

M(H, Cn; (Hα
≤1)
0) =

[

a∈Sn−1

M(H, Cn; (Hα
≤1)
0, a),

M(H, Cn; (Hα
≤1)
0, a) = fM(H, Cn; (Hα

≤1)
0, a)/Aut(H, {1}),

M(H, Cn; (Hα
≤1)
0) = fM(H, Cn; (Hα

≤1)
0)/Aut(H, {1}).
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Proposition 61.9. There exists a constant S0(α) independent of ≤1 with the fol-
lowing properties : Let 0 < α < π and S0 ≥ S0(α). Then M(H, Cn; (Hα

≤1)
0, a) is

diffeomorphic to M(H, Cn;Hα
≤1 , a).

Proof. We prove the case ≤1 > 0. The case ≤1 < 0 is similar. Consider

≤−1/2
1 (Hα

≤1)
0 = {≤−1/2

1 z | z ∈ (Hα
≤1)
0}.

By definition of (Hα
≤1)
0, we have

≤−1/2
1 (Hα

≤1)
0 ∩B(S0) = Hα

1 ∩B(S0).

In particular the left hand side is independent of ≤1.
Moreover the difference between ≤−1/2

1 (Hα
≤1)
0 and Hα

1 is estimated by a number
depending only on S0 and converging to zero as S0 → 1. More precisely we have
a family of diffeomorphisms

√S0 : Cn → Cn

such that the following holds for k = 0, 1, · · · , es = |x|.

|∇k(√S0 − id)| < min{Cke−ckS0 , e−ck|s|}(61.10.1)

√S0(H
α
1 ) = ≤−1/2

1 (Hα
≤1)
0.(61.10.2)

For each w ∈ fM(H, Cn;Hα
1 , a0), (61.10.1) implies

|@(√S0 ◦ w)|(τ, t) < min{Ce−cS0 , Ce−c|τ |} :

Here the constants C, c are not uniform over w but may depend on w.
Using (61.10) and the Fredholm transversality, we can apply the implicit function

theorem to √S0◦w to obtain an element of fM(H, Cn; ≤−1/2
1 (Hα

≤1)
0, a) for a sufficiently

large S0.
Conversely for each element w0 ∈ fM(H, Cn; ≤−1/2

1 (Hα
≤1)
0, a) we find an element of

fM(H, Cn;Hα
1 , a0) in a neighborhood of √−1

S0
◦ w0.

Since the rescaling ≤−1/2
1 × : Cn → Cn induces a obvious one-one correspondence

(61.11) fM(H, Cn; ≤−1/2
1 (Hα

≤1)
0, a) ∼= fM(H, Cn; (Hα

≤1)
0, a)

which is equivariant under the action of Aut(H, {1}). Proposition 61.9 follows. §

We next determine a good slice of fM(H, Cn; (Hα
≤1)
0, a) for the action Aut(H, {1})

so that we have some uniform decay estimates for the representatives in the slice
over the elements in the quotient M(H, Cn; (Hα

≤1)
0, a).

Since Refα/2((Hα
≤1)
0) = (Hα

≤1)
0 and Refα/2(C · a) = C · a for a ∈ Sn−1

Rn , it follows
that Refα/2 acts on M(H, Cn; (Hα

≤1)
0, a). Moreover, since the action of Refα/2 on

Cn commutes with SO(n) action, it follows from Proposition 60.52 the following
lemma :
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Lemma 61.12. On each Aut(H, {1})-orbit of fM(H, Cn; (Hα
≤1)
0, a), there exists

exactly one element w that satisfies
(61.13.1) Refα/2(w(z)) = w(z∗),

(61.13.2) e−ατ
ØØØw(eπ(τ+

√
−1t))− eα(τ+

√
−1t)a

ØØØ
Cn
≤ Ce−cτ .

for τ ≥ 0. (Note the norm in (61.13.2) is the standard Euclidean norm.)

We remark (61.13.2) means that (59.1.30.a) holds with τ0 = 0.

Proof. By Proposition 60.52, we can find a representative that satisfies (61.13.1).
Such a representative is unique up to the action of R+ ⊂ Aut(H, {1}). Here R+

acts by v · z = vz. Then the condition (61.13.2) fixes the unique representative. §

Definition 61.14. We denote by fM0(H, Cn; (Hα
≤1)
0, a) the set of elements w ∈

M(H, Cn; (Hα
≤1)
0, a) satisfying (61.13). We denote any element therein by wlmd.

(Here ‘lmd’ stands for ‘local model’.) Then we form the union
fM0(H, Cn; (Hα

≤1)
0) =

[

a∈Sn−1

fM0(H, Cn; (Hα
≤1)
0, a)

and call any element therein a normalized local model.

We remark that fM0(H, Cn; (Hα
≤1)
0) ∼= M(H, Cn; (Hα

≤1)
0) and SO(n) acts on

fM0(H, Cn; (Hα
≤1)
0) via the standard action of U(n) ⊃ SO(n) on the target Cn.

The projection
(π1, π2) : W 1,p

δ (H, Cn; (Hα
≤ )0) → Sn−1 × R

is defined in an obvious way and induces a projection

π : fM0(H, Cn; (Hα
≤1)
0) → Sn−1

which is equivariant under this SO(n)-action.

Lemma 61.15. Let a ∈ Sn−1 ⊂ Rn ⊂ Cn and consider the action of the isotropy
group

SO(n)a := {g ∈ SO(n) | ga = a} ∼= SO(n− 1)
on the fiber π−1(a).
(1) If ≤1 > 0, this action is trivial.
(2) If ≤1 < 0, the action has the isotropy group isomorphic to SO(n − 2) at each
w ∈ π−1(a) and so induces a diffeomorphism

π−1(a) ∼= SO(n− 1)/SO(n− 2) ∼= Sn−2.

Proof. (1) is obvious from construction and from #( fM0(H, Cn; (Hα
≤1)
0) = 1. (2)

follows from Theorem 59.2, Propositions 61.9 and 60.52. (We remark that the
process to go from Hα

≤1 to (Hα
≤1)
0 does not change the symmetry at all.) §

Denote
T≤1 = − 1

α
log(

p
|≤1|S0) = − 1

α

µ
1
2

log |≤1|+ log S0

∂
.
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Lemma 61.16. Let w ∈ π−1(a) ⊂ fM0(H, Cn; (Hα
≤1)
0). Then we have the following

inequality (61.17) for k = 0, 1, · · · , and for τ ≥ 0.

(61.17)
ØØØ∇k(w − wflat

a,−αT≤1
)
ØØØ (τ, t) ≤ Cke−ck(τ−T≤1 ),

where
wflat

a,−αT≤1
(τ, t) = (α(τ − T≤1), e

α
√
−1ta)

and Ck, ck is independent of w, a, ≤1.

Proof. This is a restatement of Lemma 60.6 except the uniformity of the constants.
The uniformity of the estimate (that is independence of Ck, ck of w, a, ≤1) can be
proved as follows.

We consider w ∈ fM0(H, Cn; (Hα
≤1)
0). Then

(61.18) (τ, t) 7→ |≤1|−1/2w(τ, t) = ew(τ, t)

is an element of fM0(H, Cn; (Hα
1 )0). (61.17) is equivalent to

ØØ∇k( ew − wflat
a,−αT1

)
ØØ (τ, t) ≤ Cke−ck(τ−αT1).

(Note T1 = −α−1 log S0 and the scaling ≤−1/2
1 × : Cn \ {0} → Cn \ {0} corresponds

to the translations (τ, x) 7→ (τ − 1
2 log |≤1|, x) in cylindrical coordinate.)

We use Fredholm theory to show that the constant Ck, ck can be taken uniformly
as far as w lies in a small open set of our moduli space fM0(H, Cn; (Hα

1 )0). Then,
since w, a run on compact space, the uniformity of the estimate follows. §

Let @J0 be the @ operator on R × S2n−1 with respect to the pull back almost
complex structure (ϕ ◦ exppI

12
)∗J =: J 0, where ϕ is as in (61.1.2).

Lemma 61.19. We have

wlmd(@H) ⊂ (Hα
≤1)
0,(61.20.1)

|@J0 ewlmd(τ, t)|g0
R×S2n−1

< Ce−cτ for τ ≥ 0.(61.20.2)

Proof. (61.20.1) is an immediate consequence of the construction. By definition
@J0 ewlmd = 0. (61.20.2) then follows from (61.8.2). §
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61.4. Pseudo-holomorphic triangle in cylindrical coordinate.

We identify Int D2 = Int H and put

u20 = u02 = −1, u21 = u12 = 0, u10 = u01 = +1.

Let
wtri = w : D2 = H ∪ {1} → M

be an element of
M((L0, L2, L1); (u02, u21, u10);J),

defined in §54.3. (Here ‘tri’ stands for ‘triangle’.) In other words

(61.21) wtri(0) = p12, wtri(1) = p01, wtri(−1) = p20.

and wtri is a pseudo-holomorphic map

wtri : H ∪ {1} → M

such that

wtri([−1, 0]) ⊂ L2(61.22.1)
wtri([0,+1]) ⊂ L1(61.22.2)
wtri((−1,−1] ∪ [+1,1)) ⊂ L0.(61.22.3)

Remark 61.23. We here remark one rather confusing point of our notation. In
Theorem 55.3 we start with an element of

M((L0, L1, L2); (u01, u12, u20);J),

and then Theorem 55.3 asserts that we can find an element of (resp. Sn−2 parametrized
family of elements of)

M((L1#≤1L2, L0), (u01, u20), J ;wtri, ≤2)

for ≤1 < 0 (resp. ≤1 > 0).
In this section, we start with an element of

M((L0, L2, L1); (u02, u21, u10);J).

So to prove Theorem 55.3 it suffices to find an element of (resp. Sn−2 parametrized
family of element of)

M((L1#≤1L2, L0), (u12, u20), J ;wtri, ≤2),
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for ≤1 > 0 (resp. ≤1 < 0). In §61 and §62, we prove this statement. In fact, we have

L1#≤1L2
∼= L2#−≤1L1.

In other words, the signs of ≤1 appear in an opposite way in §61, §62 and in §55.
See Figures 61.1 and 61.2.

Figure 61.1.

Figure 61.2.

We put
H|z|<o = {z ∈ H | |z| < o}.

We may choose a positive number o so that

wtri(H|z|<o) ⊂ B(p12; ≤0).
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We may choose Darboux chart ϕ at p12 such that the tangent cone (Definition
54.19) of wtri at u12 = 0 is

z 7→ zα/πa0, a0 = (1, 0, · · · , 0).

Furthermore the multiplicity one condition at 0 ∈ H on wtri implies that w is
embedded on H|z|<o for a sufficiently small o > 0. In particular, we have

wtri(H0<|z|<o) ⊂ B(p12; ≤0) \ {p12}

which enables us to define

ewtri : H0<|z|<o → R× S2n−1

by
ewtri = ϕ−1 ◦ wtri.

Lemma 61.24. There exist τtri, Ck > 0, ck > 0 such that

(61.25)
ØØ∇k( ewtri − wflat

a0,−ατtri
)
ØØ (τ, t) ≤ Ckeckτ ,

for τ ≤ 0. Here
wflat

a,−ατtri
(τ, t) = (α(τ − τtri), eα

√
−1ta0).

We remark that the sign ckτ is opposite to those appearing in Lemma 61.16
etc. This is because we study the asymptotic behavior as τ → −1 here but we do
as τ → +1 in Lemma 61.16. Lemma 61.24 follows from Theorem 54.17 and the
multiplicity one assumption we put on wtri.

61.5. Pregluing.

Note that, in §61.1, we took a constant ≤0 that is the size of the Darboux neigh-
borhood of p12 in M . ≤0 depends only on M . We take the constant S0 appeared in
§54.1 so that S0 ≥ S0(α) where S0(α) is as in Proposition 61.9. It is large and can
be taken independent of ≤1. The positive number ≤1 parametrizes the way how we
perform the Lagrangian surgery to obtain L≤1 . The number ≤1 may depend on ≤0
and S0.

We define R≤1 > 0 so that

(61.26) −T≤1 + R≤1 + 1 = τtri + (2α)−1 log ≤0.

We remark that by taking ≤1 small compared to ≤0 and e−S0 we may assume R≤1 > 0.
Note that R≤1 →1 as ≤1 → 0 by the definition and T≤1 = −α−1( 1

2 log ≤1 +log S0) >
0. From now one we take ≤1 sufficiently small. (We do not change ≤0, S0.)
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We consider a normalized local model

w≤1
lmd ∈ fM0(H, Cn; (Hα

≤1)
0).

We denote the right hand side of (61.26)

τ 0tri = τtri + (2α)−1 log ≤0.

We recall from Proposition 60.59, that the image of w≤1
lmd is away from the origin

0 ∈ Cn. Therefore we can define

ew≤1
lmd = ϕ−1 ◦ w≤1

lmd : H → R× S2n−1.

We denote the annuli domain

(61.27) A(≤1) = {z = eπ(τ+
√
−1t) | −T≤1 +R≤1/2 < τ < −T≤1 +R≤1/2+1, t ∈ [0, 1]}.

It follows from Lemmata 61.19 and 61.24 that we can write

ewtri(τ, t) = exp ew≤1
lmd(τ,t)(X(τ, t))

on A(≤1) for
X(τ, t) ∈ T ew≤1

lmd(τ,t)(R× S2n−1)

if ≤1 is sufficiently small. Here exp is the exponential map of the Riemannian
manifold R× S2n−1. We also have

(61.28) |(∇kX)(τ, t)| ≤ Cke−ckR≤1

on A(≤1). We take a cut-off function

χT≤1 ,R≤1
: R → [0, 1]

such that

(61.29) χT≤1 ,R≤1
(τ) =

Ω
0 τ < −T≤1 + R≤1/2
1 τ > −T≤1 + R≤1/2 + 1.
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Using the cylindrical coordinates Cn \ {0} ∼= R×S2n−1, we now glue w≤1
lmd and wtri

on the annuli domain A(≤1). See Figure 61.3.

Figure 61.3.

Definition 61.30. We define

wapp = w≤1
lmd#wtri : H → M

as follows (Here ‘app’ stands for approximate solution.) :

wapp(z) =






ϕ ◦ exp ew≤1
lmd(τ,t)(χT≤1 ,R≤1

(τ)X(τ, t)), z = eπ(τ+
√
−1t) ∈ A(≤1),

wtri(z), |z| > e−T≤1+R≤1/2+1,

w≤1
lmd(z), |z| < e−T≤1+R≤1/2.

Lemma 61.31. wapp has the following properties.

(1) wapp([−1, 1]) ⊂ L≤1 .
(2) wapp((−1,−1] ∪ [1,1)) ⊂ L0.
(3) On (−1, α−1 log ≤0]× [0, 1] we have

(61.32) |(@Jwapp)(τ, t)| < Ce−cR≤1 .

(4) wapp is J-holomorphic outside the domain (−1, α−1 log ≤0]× [0, 1].

Proof. (1),(2),(4) are obvious from construction. (Note that R≤1 is sufficiently
large.) Let us prove (61.32). By construction wapp is equal to wtri outside (−1,−T≤1+
R≤1/2+1)× [0, 1] and hence is J holomorphic there. On (−1,−T≤1 +R≤1/2+1)×
[0, 1], we note

distCn(p12, wapp(τ, t)) < Cec(−T≤1+R≤1/2+1)
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which in turn implies
|J − I∗J0| < Ce−cR≤1

since −T≤1 + R≤1/2 + 1 < −R≤1/2 + τtri. (Here C may depend on τtri.) Therefore it
does not matter whether we use J or I∗J0 to prove (61.32). The inequality (61.32)
then follows from (61.20.2) and (61.28). §

Lemma 61.31 implies that wapp provides a good approximate solution of the
equation we want to solve.

61.6. Weighted Sobolev norm and a right inverse.

Let ok be a sequence of positive numbers such that limk→1 ok = 0. We denote
by Ck a sequence of positive numbers which are independent of ≤1. We consider the
set of maps of the form

w : (H, @H;−1, 1) → (M,L≤1 ∪ L0; p20, p01)

such that
w(τ, t) = expwapp

(Y (τ, t))

with pointwise bounds

(61.33) |(∇kY )(τ, t)| ≤ ok.

Here in (61.33) we use the following metric g0M on M . We decompose

M = B(p12; ≤0) ∪ (M \B(p12; ≤0))

and
B(p12; ≤0) = B(p12;S0

p
|≤1|) ∪ (B(p12; ≤0) \B(p12;S0

p
|≤1|)).

Let gM , gR×S2n−1 , gCn be the metric on M , standard metrics on R× S2n−1 and on
Cn, respectively. We equip a metric g0M adapted to this decomposition by

g0M =






(≤0)−1/2gM on M \B(p12; ≤0)
ϕ∗gR×S2n−1 on (B(p12; ≤0) \B(p12;S0

p
|≤1|))

(S0

p
|≤1|)−1/2I∗gCn on B(p12;S0

p
|≤1|)

with a suitable smoothing along the gluing hypersurfaces : Here we note that the
restrictions of the metrics (≤0)−1/2I∗gM and (S0

p
|≤1|)−1/2gCn on their boundaries

provide a family of metrics uniformly quasi-isometric to S2n−1 with the standard
metric over all ≤0 > 0 smaller than a constant depending only on M , and ≤1 satisfying
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0 < S0

p
|≤1| < ≤0. Therefore we will use the metric g0M in our derivation of the

required uniform estimates for w independent of ≤1.

Figure 61.4.

We take a smooth function ρ : (−1, τ 0tri] → R>0 such that

(61.34) ρ(τ) =






1 τ ≤ −T≤1 ,

eδ|τ+T≤1 | −T≤1 ≤ τ ≤ −T≤1 + R≤1/2,

eδR≤1/2 −T≤1 + R≤1/2 ≤ τ ≤ −T≤1 + R≤1/2 + 1,

eδ|τ−τ 0tri| −T≤1 + R≤1/2 + 1 ≤ τ ≤ τ 0tri.

See Figure 61.5. (Note τ 0tri = τtri + (2α)−1 log ≤0 = −T≤1 + R≤1 + 1.)

Figure 61.5.
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We use this metric g0M and weight function ρ to define a weighted Sobolev space
W 1,p

ρ (w∗TM ;w∗(L≤1)) in the following way.
Let V be a section of w∗TM (defined on H) of locally W 1,p class. We define its

W 1,p
ρ norm by

(61.35)

kV kp
1,p,ρ

= |V (−T≤1 + R≤1/2 + 1/2, 1/2)|p +
Z

z∈H,|z|>e
πτ0tri

°
|∇V |pg + |V |pg

¢
dz

+
Z

(−1,τ 0tri]×[0,1]
ρ(τ)

≥
|∇(V − V0)|pgR×S2n−1

+ |(V − V0)|pgR×S2n−1

¥
dAhH ,

where V0 will be defined by (61.39) below. Here dAhH is the volume element of the
metric hH = (|z|0)−2|dz|2. We consider the decomposition

(61.36) Tw(τ,t)(R1 × S2n−1) ∼= Ts(τ,t)R1 ⊕ TΘ(τ,t)S
2n−1.

(Here we write w(τ, t) = (s(τ, t),Θ(τ, t)) ∈ R× S2n−1.) We decompose

(61.37) V (−T≤1 + R≤1/2 + 1/2, 1/2) = V0,s ⊕ V00,Θ

according to (61.36).
We next consider so(n) = so(n−1)⊕Rn−1 where so(n−1) is the isotropy group

of a = (1, 0, · · · , 0). We fix complement Rn−1 of this direct sum decomposition, and
let A1, · · · , An−1 be a basis of it. We then take the orthonormal decomposition

(61.38) TΘ(τ,t)S
2n−1 = Rn−1 ⊕ (Rn−1)⊥

where the first component Rn−1 is spanned by

Ai(Θ(τ, t)), i = 1, 2, · · · .

(Note element of so(n) ⊂ u(n) ⊂ so(2n) induces a vector field on S2n−1. In the
above formula, we denote by Ai the vector field induced by Ai.) Let

V0,Θ(−T≤1 + R≤1/2 + 1/2, 1/2) =
n−1X

i=1

aiAi(Θ(−T≤1 + R≤1/2 + 1/2, 1/2))

be the projection of V00,Θ to the first component of (61.38).
Next take a smooth function χ : R → [0, 1] such that

χ(τ) =
Ω

1 τ < τ 0tri − 1,

0 τ > τ 0tri

and define

(61.39) V0(τ, t) = χ(τ)V0,s ⊕ χ(τ)
X

aiAi(Θ(τ, t)).

Here we identify Ts(τ,t)R ∼= Ts(−T≤1+R≤1/2+1/2,1/2)R in an obvious way. This finishes
the description of the norm kV k1,p,ρ.
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Definition 61.40. We define W 1,p
ρ (w∗TM ;w∗T (L≤1)) as the set of all sections V

of w∗TM which satisfy the following conditions.

(61.41.1) V is locally of W 1,p class.
(61.41.2) kV k1,p,ρ < 1.
(61.41.3) V (z) ∈ Tw(z)(L≤1) if z ∈ @H.

Note that V0(τ, t) satisfies the boundary condition (61.41.3) and so the boundary
condition is consistent with the norm kV k1,p,ρ. And since W 1,p section is continuous,
it makes sense to put boundary condition (61.41.3).

We remark that the definition here is similar to that of the norm k(V,~v)k1,p,α

appearing right before (29.26) in §29.
The space W 1,p

ρ (w∗TM ;w∗T (L≤1)) is a Banach space with norm kV k1,p,ρ.
We next define Lp

ρ(Λ0,1(w∗TM⊗)).

Definition 61.42. Lp
ρ(Λ0,1(w∗TM⊗)) is the set of all sections V of Λ0,1(w∗TM⊗)

on H locally of Lp class such that

kV kp
p,ρ =

Z

z∈H,|z|>e
πτ0tri

|V |pg0M ,hH
dz

+
Z

(−1,τ 0tri]×[0,1]
ρ(τ)|V |pgR×S2n−1

dAhH < 1,

where dAhH is as in (61.35).

Lemma 61.43. If the constant δ in (61.34) is smaller than a positive constant
(which is independent of ≤1) then the operator

Dw@J : W 1,p
ρ (w∗TM ;w∗TL≤1) → Lp

ρ(Λ
0,1(w∗TM⊗))

is Fredholm and is bounded by a constant independent of small constants ≤1.

Proof. By choosing δ sufficiently small in the definition of the weight function ρ, we
obtain

kDw@J(V0)kp,ρ < Ce−cR≤1 |V (−T≤1 + R≤1/2 + 1/2, 1/2)|.

Uniform bound of Dw@J follows from this fact. The rest of the proof is by now
standard and omitted. §

Proposition 61.44. If the constant δ in (61.34) is smaller than a positive constant
(which is independent of ≤1) then there exists

Qw : Lp
ρ(Λ

0,1(w∗TM⊗)) → W 1,p
ρ (w∗TM ;w∗T (L≤1))

such that
Dw@J ◦Qw = identity
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and that the operator norm of Qw is bounded by a constant independent of small
constants ≤1.

Proof. This proposition is a consequence of Theorem 60.26 and the same argument
as the proof of Proposition 29.27. In fact Theorem 60.26 implies that the operator

(61.45) C0(wlmd) → C1(wlmd)⊕ T(τ0,a)(R× Sn−1)

is surjective. On the other hand, we assumed that the solution wtri of @J equation is
Fredholm transversal i.e., its linearized operator is surjective. Our operator Dw@J

is obtained by gluing these two operators in the same way as in §29. Hence the
construction of its right inverse Qw is the same as the proof of Proposition 29.27.
We remark that including the second factor T(τ0,a)(R × Sn−1) to the surjectivity
of (61.45) is crucial here for the surjectivity of the glued operator Dw@J : This
corresponds to the transversality of the evaluation maps which appeared in §29 and
played a crucial role in the proof of Lemma 29.20 there. §

Now we are in the position to complete the first half of the proof of Theorem Z.
Let c be the constant in (61.32). Taking a δ smaller than c/3, we derive the error
bound

k(@Jwapp)kp,ρ < Ce−cR≤1/2

from (61.32). Combining Proposition 61.44 and (61.32), we can perturb wapp to
find a J-holomorphic curve w of the form

w(τ, t) = expwapp
(Y (τ, t))

with kY k < Ce−cR≤1/2. The argument of this step is by now standard and omitted :
it has been carried out in many literature in various contexts starting from Taubes’
celebrated work on the existence of anti-self-dual connections on 4 manifolds. For
the case of the pseudo-holomorphic curve, a similar argument can be found, for
example, in [MaSa94].

So far we have discussed the case of ≤1 > 0. The case of ≤1 < 0 can be treated
by the same way, except that we start with the Sn−2-family of wlmd’s in place of a
single wlmd. (Note fM0(H, Cn; (Hα

−≤1)
0, a0) ∼= Sn−2. This provides representative of

each element of M(H, Cn; (Hα
−≤1)

0, a0) ∼= Sn−2.)
Now we summarize the result of this section as follows (see also Remark 61.23) :

Theorem 61.46. Let J and wtri satisfy (55.1) and (61.21), (61.22), (55.2) re-
spectively. Then for each sufficiently small ≤2 and ≤1 with |≤1| < ≤1002 we have the
following :

(1) If ≤1 > 0, then M((L≤1 , L0), (u01, u20), J ;wtri, ≤2) contains an element which
is Fredholm regular.
(2) If ≤1 < 0, then M((L≤1 , L0), (u01, u20), J ;wtri, ≤2) contains an Sn−2 parametrized
family of elements. Each element of it is Fredholm regular.
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Remark 61.47. Bourgeois [Bou02] previously studied a gluing problem similar to
that of this section in the context without Lagrangian boundary condition. More
precisely speaking, he looked at the case of pseudo-holomorphic annuli in the sym-
plectization of a contact manifold where the moduli space of closed Reeb orbits is
not isolated but forms a Bott-Morse family. Both the gluing analysis in [Bou02]
(that is, §5.3.3 thereof) and the one in this section are somewhat similar to the one
given in [FOOO00] §18 or in [Fuk96II]. This kind of gluing analysis in the context
that is degenerate at infinity, has its origin in Mrowka’s thesis [Mrow89]. However
the decay estimate carried out in §62 (or in [Bou02]), which is crucial for the proof
of compactness etc. in the study of proper pseudo-holomorphic curves in the sym-
plectization of a contact manifold, uses ideas different from those needed in §18
[FOOO00] or in [Fuk96II]. This, especially the idea of using the ∏-energy, is due to
Hofer [Hof93]. (See the next section.) We also like to mention that there are other
references such as [Abb04] closely related to the content of this section.

Remark 61.48. We take this opportunity to point out that it is safe to say that
only the parts of gluing analysis and decay estimate from [Bou02] are salient enough.
This is because there are some essential drawbacks in other parts of [Bou02]. It
seems to us that many points that we carefully discussed in this book or in [FOOO00]
should appear in a similar way in the context of [Bou02].

More specific concerns of ours lie in the following points (1),(2),(3) concerning
the reference [Bou02] :

(1) The statements of Propositions 6.4 and 6.5 [Bou02] do not make much sense
as they are :

(1.a) The notion of relative virtual cycles is not defined.
(1.b) The isotopy class of virtual fundamental chain (or cycle) will depend on

the choice of perturbations in general.
As far as we see, there seems to be no reasonable way to make sense out of

the statements of Propositions 6.4 and 6.5 [Bou02]. This is because there is no
natural way of stating the well-definedness of virtual fundamental chains/cycles
in terms of a single moduli space, e.g., if we fix a homology class of the relevant
pseudo-holomorphic maps. In general Floer theory in which bubbling phenomena
are present, the matrix coefficients of the boundary operator do depend on the
choice of perturbations even in the simplest case. What is well-defined is the chain
homotopy class of a chain complex. This invariant encodes characteristics of the
virtual fundamental chains/cycles of many moduli spaces. (This point has been
mentioned many times throughout this book.) It turns out that a relevant homo-
logical algebra should be developed in order to formulate a correct statement on
this kind of well-definedness. In relation to this, we have developed full details of
this homological algebra in many parts of Chapters 3-5 of this book.

(2) In order to be able to apply virtual fundamental chain techniques to the prob-
lem of studying the adiabatic limit ≤ → 0 as in the context of §11 of [BEHWZ03],
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one needs to construct a Kuranishi neighborhood (or ‘virtual neighborhood’) which
contains both the limiting moduli space and the one near to the limit. Here the limit-
ing moduli space involves both Morse gradient trajectories and pseudo-holomorphic
maps. Defining such a Kuranishi neighborhood is a highly non-trivial problem,
which has not been carried out in the existing literature yet.

In [Bou02], there is some discussion on the compactness statement on this limiting
problem in the context where one perturbs the moduli space of proper pseudo-
holomorphic curves with cylindrical ends, by a Morse function defined on the Morse-
Bott critical manifold consisting of Reeb orbits. However [Bou02] lacks the relevant
Fredholm theory which is crucial for construction of a Kuranishi neighborhood.

(3) In page 80 [Bou02], it is casually stated that one uses an induction on en-
ergy and etc. to construct a coherent system of multi-sections. However as we
demonstrated in §30.2 of this book, this induction does not seem possible with the
induction over the energy alone, when one needs to use fiber products of various
moduli spaces.

As a consequence it is very difficult to achieve transversality via perturbations of
the critical submanifold with a single Morse function, if possible at all : This makes
hardly convincing the author’s claim in [Bou02] that this can be done.

On the the other hand, several calculations involving the contact homology car-
ried out in [Bou02] are very interesting. One needs to resolve this transversality
matter in order to justify his calculation. Various techniques laid out in §30 are
developed to achieve this kind of transversality via the framework of singular ho-
mology instead of the analytically much harder framework of taking the adiabatic
degeneration of perturbations of small Morse functions. Alternatively we can ap-
ply the method of continuous family of perturbations (see §33) using the de Rham
theory.

§62. Proof of Theorem Z, II : No other solutions

62.1. Statement of the results and outline of its proofs.

In this section we prove that the pseudo-holomorphic strips between L0 and L≤

we produced in Theorem 61.46 exhausts all the solutions nearby the given pseudo-
holomorphic triangle, and complete the proof of Theorem Z. A more detailed de-
scription on what is achieved in this section is in order.

The proof of similar ‘surjectivity’ is one of the essential components of the study
of moduli spaces of pseudo-holomorphic curves in non-compact symplectic mani-
folds with cylindrical ends. There are many announced results related to various
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gluing formulae in the literature based on some degeneration and compactness ar-
guments but without treating this surjectivity problem in detail. (See [EGH00] and
others, for example.) The proof of ‘surjectivity’ is closely related to but is harder
to study than that of ‘compactness’. However we hardly find a proof of this kind of
‘surjectivity’ in the literature that is applicable to the case we study in this book.
Because of this we will give a complete self-contained proof of this surjectivity in
our context.

Many of the methods we use in this section can be used in a more general
situation. Since it is not our main purpose in this book to study pseudo-holomorphic
curve in noncompact symplectic manifold, we will restrict ourselves to the case
directly relevant to prove Theorem Z. We do not attempt to discuss the general
case of pseudo-holomorphic maps from a bordered Riemann surface to non-compact
symplectic manifold with Lagrangian boundary conditions with cylindrical ends.
Instead we take short cuts in several places exploiting the special feature of our
situation.

We state our result of this section only for the harder case of L−≤1 (≤1 > 0). The
case of L+≤1 is similar and easier to deal with. Let wtri be the pseudo-holomorphic
triangle regarded it as a map wtri : H → M satisfying the boundary condition

wtri([−1, 0]) ⊂ L2, wtri([0, 1]) ⊂ L1, wtri(R \ [−1, 1]) ⊂ L0.

(See Remark 61.23.) We assume (55.2). For the notational convenience, we will
just denote H for H∪ {1} from now on, as long as there is no danger of confusion.

Consider the family of solutions

wb : H → M

constructed by Theorem 61.46, which is parameterized by b ∈ Sn−2. These have
the following properties :

(62.1.1) wb is pseudo-holomorphic.
(62.1.2) wb(z) ∈ L−≤1 for z ∈ [−1, 1] ⊂ R = @H \ {1}.
(62.1.3) wb(z) ∈ L0 for z ∈ R \ [−1, 1] ⊂ R = @H \ {1}.

By construction, wb is C0-close to wtri.

Theorem 62.2. If ≤1, ≤2 be sufficiently small positive numbers with ≤1 < ≤1002 , then,
for any w : H → M such that

(62.3.1) maxz∈H distgM (wtri(z), w(z)) < ≤2,
(62.3.2) w(z) ∈ L−≤1 for z ∈ [−1, 1] ⊂ R = @H \ {1},
(62.3.3) w(z) ∈ L0 for z ∈ R \ [−1, 1] ⊂ R = @H \ {1},
there exists a biholomorphic map √ : H → H with √(±1) = ±1 and b ∈ Sn−2 such
that

(62.4) w = wb ◦ √.
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Theorem 62.2 together Theorem 61.46 completes the proof of Theorem Z.
The strategy of the proof of Theorem 62.2 is similar to the one, which is originally

due to Donaldson [Don83] and §9 [FrUh84]. This proceeds as follows :

(62.5.1) By an index calculation we find that the Sn−2-parameterized family of
the pseudo-holomorphic curves in Theorem 61.46 is of ‘correct dimension’. In other
words, the virtual dimension of the pseudo-holomorphic maps w satisfying (62.3) is
n− 2 (modulo the action of Aut(H; {±1})).
(62.5.2) If ≤2 > 0 is sufficiently small, for any general solution w satisfying (62.3),
we find a path w(r) such that w(0) = w and w(1) = wb for some b ∈ Sn−2.
(62.5.3) Using the implicit function theorem and Fredholm regularity of wb’s,
we modify the path w(r) to w0(r) so that each element of the path w0(r) is pseudo-
holomorphic and satisfies (62.3) and w0(0) = w, w0(1) = wb.
(62.5.4) Now (62.5.1) and (62.5.3) imply that w = wb0 for some b0 (modulo the
action of Aut(H, {±1})). This completes the proof of Theorem 62.2.

To carry out the strategy laid out here, we need to employ several new ingredients
that are not needed in the works such as in [Don83] and [FrUh84]. We highlight a
few main points below. (The most essential one is (62.6.3) among them.)

(62.6.1) We need to consider the singular degeneration as ≤1 → 0 where the
Lagrangian submanifolds L−≤1 becomes singular in the limit. Therefore to carry
out (62.5.2) and (62.5.3), we first need to improve the estimate from (62.3.1) to a
much sharper one. (Note a similar situation appeared in [FuOh97].)
(62.6.2) To handle the singular degeneration problem mentioned in (62.6.1), we
need to use a carefully chosen weighted Sobolev norm described in §61.6.
(62.6.3) To obtain the uniform estimate for the weighted Sobolev norm men-
tioned in (62.6.2), we start with certain energy estimates. Such an energy estimate
at the ‘neck region’ is far from being standard. This is because we need to blow
up the metric of the domain and the target simultaneously. As a consequence the
boundedness of the usual symplectic area

R
w∗ω (which follows from (62.3.1)) does

not provide the energy estimate we need. To overcome this subtlety we use the idea
of ∏-energy due to Hofer [Hof93].
(62.6.4) We also need to carefully choose the domain coordinates and the target
metrics for the estimates.

We remark that points (62.6.3), (62.6.4) do not appear when we prove a similar
‘surjectivity’ results in the situation of §29.

62.2. Statements of the main estimates : Beginning of the proof.

Let ≤0 > 0 be the constant given in §61. Recall that this constant depends only
on the size of Darboux chart.
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Consider arbitrary sequences of ≤1,i, ≤2,i > 0 and wi such that

(62.7.1) limi→1 ≤1,i = limi→1 ≤2,i = 0,
(62.7.2) wi : H → M is a pseudo-holomorphic map,
(62.7.3) wi(z) ∈ L−≤1,i , for z ∈ [−1, 1] ⊂ R, wi(z) ∈ L0, for z ∈ R∪{1}\ [−1, 1],
(62.7.4) distgM (wtri(z), wi(z)) < ≤2,i,
(62.7.5) ≤1,i < ≤1002,i ,

In the rest of the section, we will prove that for any given such sequences, there
exists bi ∈ Sn−2 such that wi = wbi◦gi for some gi ∈ Aut(H; {±1}) for all sufficiently
large i’s, after choosing a subsequence of i if necessary.

Once we have proved this, the proof of Theorem 62.2 will be finished by con-
tradiction : If we assume the contrary to Theorem 62.2, we can select the above
sequences satisfying all the above conditions together with the additional condition

(62.7.6) wi 6= wb ◦ g for any b ∈ Sn−2 and g ∈ Aut(H; {±1}).
This obviously contradicts to the above statement and will finish the proof.
We start with the following standard lemma

Lemma 62.8. Let | · |gM be the norm in terms of the given metric gM on M . For
any given ≤ > 0 and k = 0, 1, 2, · · · , we have

lim
i→1

sup
z∈H,|z|≥≤

ØØ∇kwtri −∇kwi

ØØ
gM

(z) = 0.

Proof. This is a consequence of standard elliptic regularity estimate and (62.7.4). §

We like to mention that for this estimate we do not need to use rescaled metric
near the neighborhood of p12. However Lemma 62.8 is not strong enough to carry
out the details of the scheme laid out in (62.5). This is because we need to carefully
study the fine behavior of wi in a neighborhood of p12 = wtri(0). For this purpose,
we need to use a rescaled metric around p12.

We denote

ϕ = expI
p12
◦ϕ : (−1, log ≤0]× S2n−1 → M \ {p12}

which was defined at the beginning of §61.1 and

Σi = w−1
i (B(p12; ≤0)) ⊆ H.

We consider the sphere

Sn−1 = Sn−1
Rn = {z ∈ Rn | |z| = 1} ⊂ Rn ⊂ Cn.

For each a ∈ Sn−1, we have the Reeb chord between Sn−1
Rn and Sn−1

Λ in the contact
manifold S2n−1

∞a : [0, 1] → S2n−1, ∞a(t) = e
√
−1αta
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tangent to the vector J0a ⊥ TaSn−1
Rn ⊂ TaS2n−1. ∞a is nothing but a part of great

circle in S2n−1. We also consider the corresponding curve

∞out,a : [0, 1] → R× S2n−1, ∞out,a(t) = (log ≤0, ∞a(t))

in {log ≤0} × S2n−1 ⊂ R × S2n−1 regarded as lying on the sphere S2n−1(≤0) ⊂ Cn.
Here we regard S2n−1(≤0) as a subset of Cn.

Lemma 62.8 and Theorem 54.17 (for m = 1) now imply

Corollary 62.9. There exists a sequence of curves

b∞i,out : [0, 1] → H

with
b∞i,out(0) ∈ R+, b∞i,out(1) ∈ R−,

and a constant S1 ∈ R such that

@Σi = [b∞i,out(1), b∞i,out(0)] ∪ b∞i,out([0, 1]),(62.10.1)

lim
i→1

ØØ∇k(ϕ−1 ◦ wi ◦ b∞i,out − ∞out,a)
ØØ = 0,(62.10.2)

lim
i→1

ØØ∇k(b∞i,out − b∞S1)
ØØ = 0,(62.10.3)

where b∞S1(t) = eπ(S1+
√
−1t) ∈ H \ {0}, and we use the product metric on the target

R× S2n−1 to estimate the norm of tensors in (62.10.2).

From now on for the clarity of exposition, we will put a ‘hat’ for the curves in
the domain H or R× [0, 1] ∼= H \ {0} in order to distinguish them from the curves
in the target Cn, or R× S2n−1 ∼= Cn \ {0}.

We also omit ϕ and write wi ◦ b∞i,out etc. in place of ϕ−1 ◦wi ◦ b∞i,out regarding it
as a map to R× S2n−1, whenever there is no danger of confusion.

Figure 62.1.
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Now the main part of the proof of Theorem 62.2 is Theorem 62.13 below. We
use the identification

R× [0, 1] ∼= H \ {0}, (τ, t) 7→ eπ(τ+
√
−1t)

to regard wi as a map defined on R× [0, 1] and Σi \ {0} as a subset of R× [0, 1].
We recall from §61.3 that we defined a moduli space fM0(H, Cn; (Hα

−≤1,i
)0) to-

gether with the fiber bundle

(62.11) π : fM0(H, Cn; (Hα
−≤1,i

)0) → Sn−1

whose fiber is diffeomorphic to Sn−2. (In fact in §61.3 we mainly discussed the case
of (Hα

+≤1,i
)0. In that case (62.11) is a diffeomorphism. We can discuss the present

case in the same way.)
Note for w ∈ fM0(H, Cn; (Hα

−≤1,i
)0) with π(w) = a we have

Θ(w(eπ(τ+
√
−1t))) ∼ ∞a(t), eπ(τ+

√
−1t) ∈ H

where ∼ means that the left hand side will converge to the right hand side as
τ → +1. (Here Θ is as in (61.1.1).)

Denote a0 = (1, 0, · · · , 0) ∈ Sn−1 and fix a trivialization of (62.11) in a neigh-
borhood of a0. For each a ∈ Sn−1 close to a0 and b ∈ Sn−2 ∼= π−1(a) let

wa,b : H → Cn

be the element of fM0(H, Cn; (Hα
1 )0) corresponding to (a, b). We recall

e−ατ |wa,b(τ, t)− eα(τ+
√
−1t)a|Cn ≤ Ce−cτ

(for τ ≥ 0) by definition of fM0(H, Cn; (Hα
−1)0).

Like the definition T≤1 given in §61, we put

(62.12) Ti = −α−1

µ
1
2

log ≤1,i + log S0

∂
∈ R+.

Theorem 62.13. Let wi satisfy (62.7). There exist ai, b and δk,i > 0 (which
appears in (62.15.3.1) and (62.15.3.2)), such that limi→1 ai = a0, limi→1 δk,i = 0
and wi satisfies the following properties (62.14) and (62.15) :

(62.14) There exists an open subset Ui,out ⊂ H containing H \ Σi, a bounded
sequences of numbers C1,i, C2,i and a biholomorphic embedding

√i,neck : (−Ti + C1,i, S1 + C2,i)× [0, 1] → Ui,out
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(where S1 is as in (62.10.3)) such that

(62.14.1) the image Ui,neck of √i,neck contains Ui,out ∩ Σi and satisfies

(62.14.2) |∇k((wi ◦ √i,neck)− wflat
ai,0))|(τ, t) < Cke−ck min(|τ |,|τ+Ti|).

Here ck, Ck are independent of i and we put

wflat
ai,0(τ, t) = (ατ, ∞ai(t))

and use the product metrics for both the domain and the target in (62.14.2).

(62.14.3)
√i,neck(τ, 0) ∈ R = @H,

√i,neck(τ, 1) ∈ R = @H.

Figure 62.2.

(62.15) There exist a sequence Ri →1, open sets Ui,int ⊂ H and a biholomorphic
map

√i,int : [−1, Ri)× [0, 1] → Ui,int

with the following properties :

(62.15.1) Ui,int ∪ Ui,out = H.
(62.15.2) Ui,int ∩ Ui,out = Im(√i,int) ∩ Im(√i,neck).

(62.15.3) lim
i→1

distCk(wi, wai,b) = 0.

We now explain the precise meaning of (62.15.3). Divide

[−1, Ri]× [0, 1] = H|z|≤1 ∪ ([0, Ri]× [0, 1]),
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where (τ, t) is the coordinates R×[0, 1] and denote z = eπ(τ+
√
−1t) ∈ H. We collapse

{−1} × [0, 1] to {0} ∈ H by an abuse of notation in this decomposition.
We first describe the precise meaning of the convergence on H|z|≤1 in (62.15.3).

We define
]wi,int : H|z|≤1 → Cn

by

(62.16) ]wi,int(z) = ≤−1/2
1,i ((wi ◦ √i,int)(z)) .

Then (62.15.3) on H|z|≤1 means the following :

(62.15.3.1) sup
z∈H|z|≤1

ØØ∇k( ]wi,int − wai,b)
ØØ (z) ≤ δk,i

in the standard metrics of H and Cn.
Next we consider (62.15.3) on [0, Ri] × [0, 1]. Here the convergence means the

inequality

(62.15.3.2) |∇k(≤−1/2
1,i wi − wai,b)|(τ, t) ≤ min

≥
δk,i, Cke−ck|τ−Ri/2|

¥

in the product metrics on both the domain and the target.

Once Theorem 62.13 is established the rest of the proof of Theorem 62.2 proceeds
in the same way as in [Don83], [FrUh84] using the function spaces similar to those
introduced in §61.6. Namely the strategy of the proof (62.5) safely applies. We will
carry this out in §62.7. The proof of Theorem 62.13 will occupy §62.3 - 6.

62.3. Energies and their estimates.

In this subsection, following Hofer [Hof93], we introduce two different energies
and derive some basic estimates on them.

We denote by Mneck ⊂ M the image of the composition

(62.17)
∑
1
2

log ≤1,i + log S0, log ≤0

∏
× S2n−1 ϕ−→ Cn ∼= Tp12M

expI
p12

=I−1

−→ M

and identify

(62.18) Mneck =
∑
1
2

log ≤1,i + log S0, log ≤0

∏
× S2n−1.
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Under this identification, we have

(62.19) L−≤1,i ∩Mneck
∼=

∑
1
2

log ≤1,i + log S0, log ≤0

∏
× (Sn−1

Rn ∪ Sn−1
Λ ).

From now on, we put Assumption 54.20 on the almost complex structure J , i.e.,

(62.20) J = I∗J0 on a neighborhood of p12.

In particular, J is also assumed to be invariant under the translation of R-
direction on Mneck

∼= [ 12 log ≤1,i + log S0, log ≤0]×S2n−1 as ω, ∏, L1 and L2 are so in
a neighborhood of p12 in the Darboux chart I. We also remark that

(62.21) ∏|Sn−1
Rn

= ∏|Sn−1
Λ

= 0

i.e., both Sn−1
Rn and Sn−1

Λ are Legendrian submanifolds of the contact manifold
(S2n−1, ∏).

Remark 62.22. We remark that we did not use (62.20) or Assumption 54.20 in
§61. We put it to simplify the exposition of the analysis carried out in this section.
As we mentioned before, this assumption can be removed with some additional
analytic underpinning of the complications arising from non-integrability and lack
of translational invariance (in the cylindrical coordinates) of the almost complex
structure J on the chosen Darboux neighborhood.

Let Σ be a bordered Riemann surface. (We do not assume that Σ is compact.)
In our circumstance, Σ will be an open subset of H \ {0}.

We decompose @Σ into two parts

(62.23) @Σ = @0Σ ∪ @1Σ

and assume that
w : Σ → Mneck

satisfies the following properties :

(62.24.1) The set Σ0 := {z ∈ Σ | dist(w(z), @Mneck) ≥ 1} is compact.
(62.24.2) w(@0Σ) ⊂ [ 12 log ≤1,i + log S0, log ≤0]× S2n−1

Rn .
(62.24.3) w(@1Σ) ⊂ [ 12 log ≤1,i + log S0, log ≤0]× S2n−1

Λ .

For such w, we introduce the following

Definition 62.25. We define the d∏-energy, denoted by Ed∏ by

Ed∏(w) =
Z

Σ0

w∗d∏.
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Remark 62.26. Lemma 62.31 below implies that the integrand is a nonnegative
form for a J-holomorphic map w for J compatible to ω. Therefore Ed∏(w) ∈
R≥0 ∪ {1} is defined.

We also use another energy, the so called ∏-energy [Hof93] denoted by E∏. Let
C be the set of smooth functions

ρ :
µ

1
2

log ≤1,i + log S0, log ≤0

∂
→ R≥0

such that

(62.27.1) ρ is of compact support,
(62.27.2)

R
ρ(s)ds = 1.

Composing ρ with the projection to the R-direction, we regard ρ as a function
on Mneck.

Definition 62.28. We define E∏(w) and E(w) by :

E∏(w) = sup
ρ∈C

Z

Σ0

w∗(ρ ds ∧ ∏),

E(w) = E∏(w) + Ed∏(w).

Let wi be as in (62.7). We choose Σi,0,+ so that (Σi,0,+, wi|Σi,0,+) satisfies (62.24)
and

(62.29) Σi,0,+ ⊇ {z ∈ Σ | dist(wi(z), @Mneck) ≥ 1} =: Σi,0.

We now prove the following

Proposition 62.30. We still denote wi = wi|Σi,0 . Then E∏(wi), Ed∏(wi), E(wi)
are uniformly bounded from above.

The proof of Proposition 62.30 will be carried out by a sequence of lemmas.

Lemma 62.31. Let J0 and ω0 = d(r2∏) be the standard complex and symplectic
structures on Cn. If w : Σ → Mneck ⊂ Cn is J0-holomorphic, then we have

w∗d∏ ≥ 0,(62.32.1)
w∗(ds ∧ ∏ + d∏) > 0(62.32.2)

as two forms on Σ.

Note the inequalities (62.32) mean that the left hand sides are nonnegative (pos-
itive) functions times a given area form of the complex orientation on (Σ, j).

Proof. (62.32.1) is Lemma 60.60. The proof of (62.32.2) is similar. §
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Remark 62.33. If we consider a J-holomorphic map w for general J which is
sufficiently close to J0 but not equal to J0, then we will still have (62.32.2) but not
(62.32.1) in general : this is because ds ∧ ∏ + d∏ is strictly positive on J0-linear
planes while d∏ is only semi-positive.

This lack of positivity of (62.32.1) for J-holomorphic maps w for general J is the
reason why we assumed J = I∗J0 in Assumption 54.20 and in this section.

We recall that any contact hypersurface (N, ξ) of a symplectic manifold (M,ω)
has the canonical co-orientation [Wei79]. If a smooth map w : Σ → M from
an oriented surface Σ is transversal to a contact hypersurface N ⊂ M , then the
preimage w−1(N) has a natural orientation induced by the co-orientation of N ⊂ M .
Call this the induced orientation on w−1(N) and denote oind.

When Σ is given a complex structure j, it carries the complex orientation on it
and its boundary @Σ has the boundary orientation obdy defined by the convention

~n⊕ obdy = oΣ

where ~n is the unit normal outward to Σ on the boundary.
Now assume that Σ is oriented and @Σ =

`
j @jΣ where each @iΣ denotes a

connected component of @Σ. If w : Σ → M is transversal to a contact hypersurfaces
Nj ⊂ M and w−1(Nj) = @jΣ, then @jΣ carries two orientations oind and obdy.

Definition 62.34. Let (w,Σ) as above. We say that a component @iΣ is an outside
boundary if oind = obdy, and an inside boundary if oind = −obdy. We denote by @outΣ
the union of outside boundaries and by @inΣ the union of inside boundaries.

Now we go back to the proof of Proposition 62.30.

Definition 62.35. s0 ∈ [ 12 log ≤1,i + log S0, log ≤0] is said to be a regular level if wi

is transversal to {s0} × S2n−1. For a regular level s0, we put

b∞i,s0 = w−1
i ({s0} × S2n−1) ⊂ @H

and let ∞i,s0 be the restriction of wi to b∞i,s0 .

We remark that the set of all regular levels is of full measure by Sard’s theorem.
The proof of the following lemma follows immediately from Stokes’ theorem and
(62.32.1).

Lemma 62.36. Let w : Σ → R×S2n−1 be transversal to {s1}×S2n−1 and {s2}×
S2n−1. Consider the submanifold Σ0 := w−1([s1, s2]× S2n−1). We give the induced
orientation oind on w−1(si), i = 1, 2.

Suppose that the submanifold Σ0 ⊂ Σ has its boundary decomposed into

@Σ0 = (Σ0 ∩ @0Σ) ∪ (Σ0 ∩ @1Σ) ∪ @outΣ0 ∪ @inΣ0
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where @0L ⊂ Rn and @1L ⊂ Λ and w−1({s1} × S2n−1) ∪ w−1({s2} × S2n−1) =
@outΣ0 ∪ @inΣ0 is the decomposition according to Definition 62.34. Then we have

Z

@outΣ0
w∗∏−

Z

@inΣ0
w∗∏ =

Z

Σ0
w∗d∏.

The following lemma is the key lemma for the proof of Proposition 62.30.

Lemma 62.37. Z

Σi,0

w∗i d∏ ≤
Z

∞∗i,out∏ + C(S0),

where ∞i,out = wi|b∞i,out and b∞i,out is as in Corollary 62.9.

Here and afterwards C(S0) denotes a number depending only on S0, which may
vary during the proof.

Proof. Suppose s0 ∈ [ 12 log ≤1,i + log S0, log ≤0] is a regular level. We take a subdo-
main Σi,s0 ⊂ Σi,0 such that its boundary is decomposed into

@Σi,s0 = b∞i,s0 ∪ b∞i,out ∪ (Σi,s0 ∩ @H).

(See Figure 62.3.) Lemma 62.36 then implies

Z

Σi,s0

w∗i d∏ =
Z

∞∗i,out∏−
Z

∞∗i,s0
∏.

Therefore it remains to show that there exists a constant C(S0) depending only on
S0 such that the inequality

(62.38)
Z

∞∗i,s0
∏ ≥ −C(S0)

holds for s0 sufficiently close to 1
2 log ≤1,i + log S0.

To prove (62.38) we take a subdomain Σi,s0,int ⊂ H such that

@Σi,s0,int = (Σi,s0,int ∩ @H) ∪ b∞i,s0 , Σi,s0,int ∩ Σi,s0 = b∞i,s0 .

(See Figure 62.3.) We denote µi,s0 = wi|Σi,s0,int∩@H which defines a curve

µi,s0 : Σi,s0,int ∩ @H → (Hα
−≤1,i

)0 ⊂ R× S2n−1.
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Figure 62.3.

Consider the canonical symplectic form

ω0 = d(e2s∏)

on Cn regarded as a form on R×S2n−1 via the diffeomorphism (s,Θ) : Cn \ {0} →
R× S2n−1.

We recall that (Hα
−≤1,i

)0 is Lagrangian, i.e.,

(62.39) ω0|(Hα
−≤1,i

)0 = 0

by definition of (Hα
−≤1,i

)0. By Stokes’ theorem we derive

0 ≤
Z

Σi,s0,int

w∗i ω0 =
Z

@Σi,s0,int

w∗i (e2s∏)

=
Z

∞∗i,s0
(e2s∏)−

Z
µ∗i,s0

(e2s∏)

and hence

(62.40)
Z

∞∗i,s0
(e2s∏) ≥

Z
µ∗i,s0

(e2s∏).

We put
(Hα,s0

−≤1,i
)0 = (Hα

−≤1,i
)0 ∩

°
(−1, s0]× S2n−1

¢
.

(See Figure 62.4.) Consider the relative homology classes

(62.41) [µi,s0 , @µi,s0 ] ∈ H1((Hα,s0
−≤1,i

)0, @(Hα,s0
−≤1,i

)0)
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and

(62.42) [∞i,s0 , @∞i,s0 ] ∈ H1({s0} × S2n−1, @(Hα,s0
−≤1,i

)0) ∼= H1(S2n−1, Sn−1
Rn ∪ Sn−1

Λ ).

Here we note that there is a canonical isomorphism between H1({s0}×S2n−1, @(Hα,s0
−≤1,i

)0)
and H1(S2n−1, Sn−1

Rn ∪ Sn−1
Λ ).

Figure 62.4.

Sublemma 62.43. We regard (µi,s0 , @µi,s0) as a relative one-cycle for the pair

((Hα,s0
−≤1,i

)0, @(Hα,s0
−≤1,i

)0).

Then the integral Z
µ∗i,s0

(e2s∏)

depends only on the relative homology class [µi,s0 , @µi,s0 ] ∈ H1((Hα,s0
−≤1,i

)0, @(Hα,s0
−≤1,i

)0).

Proof. First (62.39) implies the Liouville one-form e2s∏ is closed on (Hα
−≤1,i

)0. On
the other hand, by definition of (Hα

−≤1,i
)0, we have

@(Hα,s0
−≤1,i

)0 = S2n−1(s0) ∩ (Rn ∪ Λ)

and so

(62.44) ∏
ØØØ
@(H

α,s0
−≤1,i

)0
= 0.

This implies the one-form e2s∏ vanishes on the boundary @(Hα,s0
−≤1,i

)0. (However we
remark that ∏ does not vanish everywhere on the Lagrangian submanifold (Hα,s0

−≤1,i
)0.)
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Now Stokes’ formula finishes the proof. §

We remark that ((Hα,s0
−≤1,i

)0, @(Hα,s0
−≤1,i

)0) is homeomorphic to (Sn−1× [0, 1], Sn−1×
{0, 1}) for all i and s0 given above and has the canonical isomorphism

H1((Hα,s0
−≤1,i

)0, @(Hα,s0
−≤1,i

)0) ∼= H1(Sn−1 × [0, 1], Sn−1 × {0, 1}) ∼= Z.

Therefore the boundary map

(62.45) @ : H1((Hα,s0
−≤1,i

)0, @(Hα,s0
−≤1,i

)0) → eH0(@(Hα,s0
−≤1,i

)0) ∼= Z

is an isomorphism. (Here eH0 is the reduced homology.) This is trivial for n 6= 2
since H1((Hα,s0

−≤1,i
)0, Z) = {0} for n 6= 2. On the other hand for n = 2, this follows

from the tautological exact sequence because the canonical homomorphism

H1((Hα,s0
−≤1,i

)0, Z) → H1((Hα,s0
−≤1,i

)0, @(Hα,s0
−≤1,i

)0)

is trivial for the pair
≥
(Hα,s0

−≤1,i
)0, @(Hα,s0

−≤1,i
)0

¥
.

Sublemma 62.46. Let s0 ∈ [ 12 log ≤1,i + log S0, log ≤0] be any regular level. Then
(62.41) is mapped to ±1 ∈ Z by the isomorphism (62.45).

Proof. We remark

(62.47) @ : H1(S2n−1, Sn−1
Rn ∪ Sn−1

Λ ) → eH0(Sn−1
Rn ∪ Sn−1

Λ ) ∼= Z

is an isomorphism and @µi,s0 = @∞i,s0 . Hence it suffices to calculate the homology
class [∞i,s0 , @∞i,s0 ] given in (62.42). Since

@
°
Σi,s00,int \ Σi,s0,int

¢
= [∞i,s00

, @∞i,s00
]− [∞i,s0 , @∞i,s0 ]

holds in the relative singular chain complex

C∗([s0, s
0
0]× S2n−1, [s0, s

0
0]× (Sn−1

Rn ∪ Sn−1
Λ ))

for s0 ≤ s00, it follows that the homology class (62.42) in H1(S2n−1, Sn−1
Rn ∪ Sn−1

Λ )
is independent of the choice of s0 for all sufficiently large i’s. Moreover when s0 is
sufficiently close to log ≤0, (62.42) goes to ±1 by the isomorphism (62.47). (This is
a consequence of (62.10.2).) Hence the sublemma. §
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Sublemma 62.48. Let 1
2 log ≤1,i + log S0 < s0 < 1

2 log ≤1,i + log 2S0. Then we have

Z
µ∗i,s0

(e2s∏) = ≤1,iC(S0)

where C(S0) is independent of i and depends only on S0.

Proof. We define a diffeomorphism

T 1
2 log ≤1,i

: R× S2n−1 → R× S2n−1

by

T 1
2 log ≤1,i

(s, x) = (s− 1
2

log ≤1,i, x).

Then T 1
2 log ≤1,i

maps [ 12 log ≤1,i + log S0,
1
2 log ≤1,i + log 2S0] to [log S0, log 2S0] and

satisfies
(T−1

1
2 log ≤1,i

)∗(e2s∏) = ≤1,i(e2s∏).

Moreover
T−1

1
2 log ≤1,i

((Hα
−≤1,i

)0) = (Hα
−1)

0

and so T−1
1
2 log ≤1,i

((Hα
−≤1,i

)0) is independent of i. Therefore we derive

Z
µ∗i,s0

(e2s∏) =
Z

(T 1
2 log ≤1,i

◦ µi,s0)
∗(T−1

1
2 log ≤1,i

)∗(e2s∏)

= ≤1,i

Z
(T 1

2 log ≤1,i
◦ µi,s0)

∗(e2s∏).

On the other hand, the family of curves

T 1
2 log ≤1,i

◦ µi,s0

lie on (Hα
−1)0 with their boundaries contained in the region with s ∈ [log S0, log 2S0]

for all i.
We now set

C(S0) = −(e2s∏)[β]

for β being a generator of H1((Hα
−1)0, @(Hα

−1)0). (We like to recall that the form
e2s∏ is the Liouville one-form on Cn.)

Then Sublemma 62.46 implies
Z

(T 1
2 log ≤1,i

µi,s0)
∗(e2s∏) = ±C(S0)
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for all i and for s0 ∈ [ 12 log ≤1,i + log S0,
1
2 log ≤1,i + log 2S0]. This finishes the

proof. §

Therefore, by choosing s0 sufficiently close to 1
2 log ≤1,i + log S0, Sublemma 62.48

and (62.40) imply

Z
∞∗i,s0

(∏) ≥ e−2s0

Z
µ∗i,s0

(e2s∏) ∼=
1

≤1,i · S2
0

(≤1,iC(S0)) = C(S0)/S2
0 .

(Note s = s0 on ∞i,s0 .) Redefining C(S0), we have proved
R

∞∗i,s0
(∏) ≥ −C(S0).

(Note the sign of C(S0) does not matter in Lemma 62.37.) This finishes the proof
of (62.38). The proof of Lemma 62.37 is now complete. §

Remark 62.49. We can also give a slightly different proof of Lemma 62.37 based
on a similar idea as in §60.5.

Lemma 62.37 and (62.10.3) prove the bound

(62.50) Ed∏(wi) ≤ C(S0).

We also use the following bound for the symplectic area of wi on Σi,s0,int : Recall

ω0 = d(e2s∏).

Proposition 62.51. Let s0 = 1
2 log ≤1,i + log 2S0. Then

Z

Σi,s0,int

w∗i ω0 ≤ ≤i,1C(S0).

Proof. By Stokes’ theorem, we have

(62.52)
Z

Σi,s0,int

w∗i (d(e2s∏)) ≤ 4S2
0≤1,i

Z
∞∗i,s0

(∏)−
Z

µ∗i,s0
(e2s∏).

On the other hand,

(62.53)
Z

∞∗i,s0
(∏) =

Z
∞∗i,out(∏)−

Z

Σi,s0

w∗i d∏ ≤
Z

∞∗i,out(∏) ≤ α + 1.

where the first identity is by Stokes’ and the second inequality by the positivity
(62.32.1), and the last by the convergence Θ(∞i,s0) → Θ(∞a) as i → 1. (See
(62.10.2).) Now Sublemma 62.48, (62.52) and (62.53) finish the proof. §
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Lemma 62.54. Denote wi = wi|Σi,0 be as before. There exists a constant C > 0
independent of i such that

E∏(wi) ≤ C.

Proof. Let ρ ∈ C. We put

eρ(s) =
Z s

−Ti

ρ(s)ds

We use Stokes’ theorem to show

(62.55)
Z

Σi,0

d(w∗i (eρ∏)) =
Z

∞∗i,out∏ ≤ α + 1.

On the other hand, we also have
Z

Σi,0

d(w∗i (eρ∏)) =
Z

Σi,0

w∗i (ρ ds ∧ ∏) +
Z

Σi,0

w∗i (eρ d∏).

Since the second term is non-negative by (62.32.1), it follows that
Z

Σi,0

w∗i (ρ ds ∧ ∏) ≤ α + 1.

Hence Lemma 62.54. §

Remark 62.56. We remark that the term
R
Σi,0

w∗i (eρ d∏) would be non-negative
upto an exponentially small error, if we consider J-holomorphic maps wi for J0-
holomorphic ones for non-integrable J . A precise control of this term would be
needed to study J-holomorphic maps for J not satisfying Assumption 54.20.

Now Proposition 62.30 follows by combining (62.50) and Lemma 62.55. §

62.4. C1 convergence on the neck region.

In this subsection and the next, using the energy estimates obtained in the last
subsection we prove that wi converges to the cylindrical map

(τ, t) 7→ (ατ + const, ∞a(t))

for a ∈ Sn−1 on Mneck. This will prove (62.14), which is the first half of Theorem
62.13.

One difficult point of the proof is a choice of parametrization of the maps. We
recall that there is no canonical coordinates on the domain for the maps that we
are considering. A general strategy laid out in §11 and the appendix of [FuOn99II]
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to handle this problem is to add auxiliary marked points to the domain so that the
corresponding sequence of the domain marked Riemann surfaces forms a sequence
of stable curves. The same strategy has been applied in Lemma 10.7 [BEHWZ03].

Our current circumstance is regarded as a sub-case of the relative version of
[BEHWZ03]. To work out the analytic details needed to carry out this proof for
general J in all details, we need do all the ingredients necessary to establish the
analytic foundation of symplectic field theory advocated in [EGH00]. This is too
much for the purpose of this section.

Instead, in this subsection, we will exploit various special features that are present
in the case of our study. We list those points here for the readers’ convenience :

(1) J satisfies Assumption 54.20 and in particular is integrable around p12 and
so in the neck region Mneck.

(2) The ends of the Lagrangian submanifolds (Hα
−≤1,i

)0 are cylindrical, not just
asymptotically cylindrical as Hα

−≤1,i
.

(3) The chord ∞out,i is C1-close to the Reeb chord ∞out,a and ∞out,a is the Reeb
chord of the minimal ∏-length.

(4) We study pseudo-holomorphic curves in an exact symplectic manifold with
exact Lagrangian submanifolds as boundary conditions.

The integrability of J and the exactness above remove various difficult points to
handle the general case. This enables us to exploit ideas coming from the study of
one dimensional complex analytic varieties and positive currents, and the Hausdorff
convergence of analytic varieties in some compactness arguments. We also note
that for analytic varieties Hausdorff topology is much weaker and easier to use than
the stable map topology introduced in [FuOn99II]. However the study of pseudo-
holomorphic maps for general J would require to use the stable map topology. Our
current argument here is somewhat similar to [Pan94] in spirit.

For given s0, we define the translation map

Ts0 : R× S2n−1 → R× S2n−1

by
Ts0(s, x) = (s− s0, x).

Let si ∈ R be a sequence satisfying

lim
i→1

si = −1(62.57.1)

lim
i→1

si −
1
2

log 2≤1,i = +1.(62.57.2)

In terms of the standard polar coordinates (r,Θ) of Cn with r = es, the condition
(62.57) corresponds to

lim
i→1

ri = 0, lim
i→1

rip
2≤1,i

= 1.
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Let X be a closed subset of R × S2n−1 ∼= Cn \ {0} and Ai be a sequence of closed
subsets thereof such that

Ai ⊂ (−1, log ≤0]× S2n−1.

Definition 62.58. We say Tsi(Ai) converges to X in compact Hausdorff topology
if for each R > 0 the sequence of sets

([−R,R]× S2n−1) ∩ Tsi(Ai)

converges to
([−R,R]× S2n−1) ∩X

in Hausdorff topology.

Definition 62.59. (1) Here the Hausdorff topology stands for the convergence with
respect to the Hausdorff distance on the set of all closed subsets of the metric space
[−R,R]× S2n−1. See, e.g., [Grom99] for the definition of the Hausdorff distance.

(2) We note that (62.57) implies

T−1
si

([−R,R]× S2n−1) ⊂ [
1
2

log ≤1,i + log S0, log ≤0]× S2n−1

for sufficiently large i for each given R.

Lemma 62.60. For each given sequence si satisfying (62.57) there exists a subse-
quence, still denoted by si, such that

Tsi(wi(Σi,0))

converges to a closed set X({si}) in compact Hausdorff topology.

See (62.24.1) for Σi,0.

Proof. This is immediate from the fact that the set of closed subsets of a given
compact metric space is compact in Hausdorff topology. §

We now use the energy estimate given in Proposition 62.30 and prove the follow-
ing :

Lemma 62.61. Consider R1, R2 with 1
2 log ≤1,i + log S0 < R1 < R2 < log ≤0 and

denote R2 −R1 = R. Assume R > 1. Then we have
Z

Tsi (wi(Σi,0))∩([R1,R2]×S2n−1)
(ds ∧ ∏ + d∏) ≤ CR

for some constant C > 0 independent of i and R.
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Proof. By the translational invariance of d∏, we have
Z

Tsi (wi(Σi,0))∩([R1,R2]×S2n−1)
d∏ =

Z

wi(Σi,0)∩([R1+si,R2+si]×S2n−1)
d∏.

Since (62.57) implies [R1 + si, R2 + si]×S2n−1 ⊂ [ 12 log ≤1,i + log S0, log ≤0]×S2n−1

for all sufficiently large i and w∗i d∏ ≥ 0, the inequality

(62.62)
Z

wi(Σi,0)∩([R1+si,R2+si]×S2n−1)
d∏ ≤ Ed∏(wi) ≤ C

follows from Proposition 62.30.
To estimate the integral of the first integrand above, we first note

(62.63) w∗i (ds ∧ ∏) ≥ 0.

We then take a function ρ ∈ C such that ρ ≡ 1/(2R) on [R1, R2]. By the transla-
tional invariance of ds ∧ ∏, we have

Z

Tsi (wi(Σi,0))∩([R1,R2]×S2n−1)
ds ∧ ∏ =

Z

wi(Σi,0)∩([R1+si,R2+si]×S2n−1)
ds ∧ ∏.

Now Proposition 62.30 and (62.63) imply
Z

Tsi (wi(Σi,0))∩([R1,R2]×S2n−1)
ds ∧ ∏ ≤ 2R

Z

Σi,0

w∗i (ρ ds ∧ ∏)

≤ 2RE∏(wi) ≤ CR.(62.64)

Adding (62.62) and (62.64) and redefining C, we have finished the proof. §

Now we quote the following well established facts in several complex variable
theory. (See Chapter 2 §11 [Chi89], for example.) For readers’ convenience, we
recall the main arguments of their proofs.

Proposition 62.65. Let U ⊂ Cn be an open set and Ai ⊂ Cn be a sequence of 1
dimensional complex subvarieties. We assume that

Z

Ai∩U
ω0

is uniformly bounded over i. Let

X = lim
i→1

(Ai ∩ U)
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be the limit with respect to the compact Hausdorff convergence. Then we have the
following :

(62.66.1) X is a one dimensional complex subvariety.
(62.66.2) There exists a positive integer valued function, called the multiplicity,
m : Xreg → Z>0 on the regular point set Xreg of X such that m is locally constant
and that Ai ∩U converges to mX as an integral current on any compact subsets of
U , after taking a subsequence if necessary.
(62.66.3) Suppose X is smooth and m ≡ 1 in addition. Then any compact subset
of U has its open neighborhood V for which Ai ∩ V is smooth for all sufficiently
large i and is diffeomorphic to X ∩ V . Moreover Ai ∩ V converges to X ∩ V in
C1-topology of complex submanifolds.

Proof. (62.66.1) is a theorem by Bishop [Bis64]. We prove (62.66.2), (62.66.3) below
for completeness.

Let p ∈ X be a regular point. We choose a neighborhood W of p and after
changing the coordinates on W we may assume

W ∩X = (C× {0}) ∩W.

Let ≤ be a small positive number. Then for z0 ∈ C sufficiently close to 0 and for
any sufficiently large i, we have

({z0} × @B≤(0, Cn−1)) ∩Ai = ∅.

Here B≤(0, Cn−1) ⊂ Cn−1 is the ball centered at 0 and of radius ≤. For such z0 and
i the local intersection number

[{z0} ×B≤(0, Cn−1)] ∩ [Ai] ∈ Z>0

is well-defined and independent of z0. This is the definition of multiplicity mi(p) of
the analytic variety Ai at p. (See [Chi89].) If follows from the uniform bound for
the area

R
Ai∩U ω0 that mi(p) is finite. (See Figure 62.5.)

Therefore by taking a subsequence if necessary, we may assume that mi(p) is
independent of i. In this way we obtain a locally constant function m. It is now
easy to see that A∩Ui converges to mX as integral currents on any compact subsets
of U . This finishes the proof of (62.66.2).

We next assume m = 1. Then by positivity of local intersection numbers, it fol-
lows that {z0}×B≤(0, Cn−1) intersects transversally with Ai at exactly one point for
any z0 ∈ C×{0}. We can use this fact to find a local holomorphic parametrization
of Ai that converge in C1-topology. This finishes the proof of (62.66.3). §
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Figure 62.5.

Lemma 62.67. The compact Hausdorff limit

X({si}) = lim
i→1

Tsi(wi(Σi,0))

obtained in Lemma 62.60 has the structure of one dimensional complex analytic set
with boundary lying in R× (Sn−1

Rn ∪ Sn−1
Λ ) in the following sense :

(62.68.1) If p ∈ R × (S2n−1 \ (Sn−1
Rn ∪ Sn−1

Λ )), then there exists a neighborhood
U of p such that U ∩X({si}) is a one dimensional complex analytic set.
(62.68.2) If p ∈ R × Sn−1

Rn , we can choose a neighborhood U of p and an anti-
holomorphic isometric involution Inv : U → U such that its fixed point set is (R ×
Sn−1

Rn )∩U and the double (X({si})∩U)∪ Inv(X({si})∩U) has the structure of one
dimensional complex analytic set. The case p ∈ R× Sn−1

Λ is similar.

Moreover, after a taking subsequence, Tsi(wi(Σi,0)) converges to mX({si}) on
compact subsets as currents. Here m : X({si})reg → Z>0 is the multiplicity function
defined on the set of regular points of X({si}).
Proof. (62.68.1) is a consequence of Lemma 62.61 and (62.66.1). We can use the
reflection principle to reduce (62.68.2) to (62.68.1). (Note Sn−1

Rn and Sn−1
Λ are the

intersections with S2n−1 of the fixed point sets of some involutions defined on Cn

that are isometric and anti-holomorphic.)
The last statement is a consequence of (62.66.2). §

For a one dimensional complex analytic subset X ⊂ R × S2n−1 ∼= Cn \ {0}, we
define the analogs to the energies given in Proposition 62.30 in a similar way : We
first define

Ed∏(X) :=
Z

X
d∏
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regarding X as a holomorphic 1-current on Cn.
We next let C be the set of all smooth functions ρ : R → R≥0 of compact support

such that
R

ρ = 1. We then set

E∏(X) = sup
ρ∈C

Z

X
ρ(s)(ds ∧ ∏).

We finally put
E(X) = Ed∏(X) + E∏(X).

We remark that the two forms d∏ and ds∧∏ are nonnegative on one dimensional
complex analytic set X. Then, by a version of Fatou’s lemma, we have the following

Lemma 62.69.
E∏(X({si})) ≤ lim inf

i→1
E∏(wi).

The same holds for Ed∏ and E.

Proof. The lemma follows easily from (62.66.2). §

An immediate corollary of this lemma and Proposition 62.30 is the following
finiteness of energies.

Corollary 62.70. E∏(X({si})), Ed∏(X({si})), E(X({si})) are all finite.

We next take a sequence t+j (resp. t−j ) converging +1 (resp. −1). We will just
write tj below for either of t+j or t−j .

Lemma 62.71. There exists a subsequence of tj, again denoted by tj, such that

lim
j→1

Ttj (X({si}))

converges both in compact Hausdorff topology and in the weak topology of integral
currents. Furthermore the limit has the structure of one dimensional complex ana-
lytic set with boundary contained R× (Sn−1

Rn ∪ Sn−1
Λ ), which has finite multiplicity.

Proof. Once we have the finiteness of energies in Corollary 62.70, the proof is the
same as that of Lemma 62.60 and of Lemma 62.67 and so omitted. §

Now translational invariance of d∏, finiteness of Ed∏(X({si})) and Lemma 62.71
immediately give rise to the following vanishing result for the energy Ed∏.

Lemma 62.72.

Ed∏

µ
lim

j→+1
Ttj (X({si}))

∂
= 0.

This then gives rise to
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Corollary 62.73. There exist a finitely many Reeb chords ∞1, . . . , ∞K with

∞i(0), ∞i(1) ∈ Sn−1
Rn ∪ Sn−1

Λ

such that

lim
j→+1

Ttj (X({si})) =
K[

k=1

mk(R× ∞k).

Here mk are the multiplicities of ∞k.

Proposition 62.74. K = 1 in Corollary 62.73. Moreover ∞1 is a minimal Reeb
chord joining Sn−1

Rn to Sn−1
Λ . Furthermore m1 = 1 and Ttj (X({si})) converges to

R× ∞1 in compact C1 topology.

Proof. First by taking a diagonal subsequence we can choose an increasing map
j 7→ i(j) such that

(62.75) lim
j→1

Ttj+si(j)(wi(j)(Σi(j),0)) = lim
j→+1

Ttj (X({si})).

And we may assume that tj + si(j) is a regular level. We consider the chord

∞tj+si(j),i(j) = wi(j)(Σi(j),0) ∩ ({tj + si(j)} × S2n−1)

connecting Sn−1
Rn ∪ Sn−1

Λ to Sn−1
Rn ∪ Sn−1

Λ . From (62.75) and Corollary 62.73 we
obtain

lim
j→1

Z

∞tj+si(j),i(j)

∏ =
X

k

mk

Z

∞k

∏.

We recall from the remark after (62.47) that

[∞tj+si(j),i(j), @∞tj+si(j),i(j)]

represents the same homology class as ∞i,out ∈ H1(S2n−1, (Sn−1
Rn ∪Sn−1

Λ )). Therefore
there exists at least one of its connected components joining Sn−1

Rn to Sn−1
Λ . Let ∞1

be the limit of that component. We remark that
R

∞k
∏ are nonnegative for the Reeb

chords ∞k. Combining all these, we obtain

(62.76.1) α ≤
Z

∞1

∏ ≤
X

k

mk

Z

∞k

∏ = lim
j→1

Z

∞tj+si(j),i(j)

∏.

On the other hand, Lemma 62.31 and (62.10.2) imply

(62.76.2) lim
j→1

Z

∞tj+si(j),i(j)

∏ ≤ lim
j→1

Z

∞i(j),out

∏ = α.
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Therefore all the inequalities in (62.76.1) and (62.76.2) become the equality. This
implies K = 1, m1 = 1 and ∞1 is a minimal Reeb chord. Now m1 = 1 and (62.66.3)
imply that Ttj (X({si})) converges to R×∞1 in compact C1 topology. This finishes
the proof. §

Let si be a sequence that consist of regular levels and that satisfy (62.57). We
put

Σi,≥si = {z ∈ Σi,0 | s(wi(z)) ∈ [si, log ≤0]}.
Here s : R × S2n−1 → R is the projection. Σi,≥si is a manifold with smooth
boundary and corner.

Lemma 62.77.
lim

i→1

Z

Σi,≥si

w∗i d∏ = 0.

Proof. Suppose that the lemma does not hold for si. Then by taking a subsequence,
we may assume Z

Σi,≥si

w∗i d∏ > c > 0.

Moreover we can take a subsequence and t−j so that (62.75) holds. Then the equality
holds in (62.76.2) in the same way as that of Lemma 62.74. On the other hand,
Stokes’ theorem and Lemma 62.31 give rise to

Z
∞∗i(j),out∏−

Z
∞∗

t−j +si(j),i(j)
∏ ≥

Z

Σi(j),s≥si

w∗i d∏ ≥ c > 0.

This is a contradiction to the equality for (62.75). §

Corollary 62.78. For each ≤ > 0 there exists S0 and I0 such that if i > I0 then
Z

Σ
i,≥ 1

2 log ≤1,i+S0

w∗i d∏ ≤ ≤.

Proof. If Corollary 62.78 is false there exists a sequence ik ≥ k such that
Z

Σ
i,≥ 1

2 log ≤1,ik
+k

w∗ik
d∏ ≥ ≤.

We may assume that

lim
k→1

sup
j≥k

µ
1
2

log ≤1,ij + k

∂
= −1

by taking a subsequence of ik if necessary. We then obtain a contradiction by
applying Lemma 62.77 to wik and sk = 1

2 log ≤1,ik + k. §

Now we are going to prove the main result of this subsection.
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Proposition 62.79. For each given k, there exist I0, R0 and constants o(i, R0 | k)
with

lim
i→1

lim
R0→1

o(i, R0 | k) = 0

for each k, such that for all i ≥ I0 and for all s > 1
2 log ≤1,i + log S0 + R0 the

followings hold :

(62.80.1) s is a regular level. The curve wi(Σi)∩ ({s}×S2n−1) is parameterized
by an arc ∞i,s : [0, 1] → {s} × S2n−1 for which there exists a ∈ Sn−1 such that

(62.81.1) |∇k(∞a − ∞i,s)| < o(i, R0 | k).

(62.80.2) Moreover, for s1 ∈ [ 12 log ≤1,i + log S0 + R0, log ≤0 −R0] the set

Σi,s1−1≤s≤s1+1 = wi(Σi) ∩ ([s1 − 1, s1 + 1]× S2n−1)

has a parametrization

wi,s1−1≤s≤s1+1 : [−1/α, 1/α]× [0, 1] → Σi,s1−1≤s≤s1+1

for which we have

(62.81.2) |∇k(wi,s1−1≤s≤s1+1 − wflat
a,s1

)| < o(i, R0 | k).

Here we put
wflat

a,s1
(τ, t) = (ατ + s1, ∞a(t)).

Proof. The proof will be given by contradiction. Suppose to the contrary. Then we
may assume, by taking a subsequence if necessary, that there exists a sequence si

with
si −

1
2

log 2≤1,i →1

such that one of the following must hold :

(62.82.1) si is not a regular level or w−1
i ({si} × S2n−1) is disconnected.

(62.82.2) si is a regular level. There exist k and c > 0 such that

|∇k(∞a − ∞i,si)| > c

for any a and parametrization ∞i,si of wi(Σi) ∩ ({si} × S2n−1).
(62.82.3) There exist k and c > 0 such that

|∇k(wi,si−1≤s≤si+1 − wflat
a,si

)| > c

for any parametrization wi,si−1≤s≤si+1 of wi(Σi) ∩ ([s1 − 1, s1 + 1]× S2n−1).
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Note by the choice si satisfies (62.57.2). Lemma 62.8 also allows us to assume
(62.57.1). By the uniform area bound for Tsi(wi(Σi,0)) we obtain in Lemma 62.61,
Proposition 62.65 (62.66.3) implies that limi→1 Tsi(wi(Σi,0)) converges to a one
dimensional complex analytic set X({si}). Lemma 62.77 then implies

Ed∏(X({si})) = 0

and so the conclusion of Corollary 62.73 holds for X({si}). By the same way as
Proposition 62.74 we prove

X({si}) = R× ∞a

for some a. In particular X({si}) is smooth and has multiplicity one. Therefore
(62.66.3) implies that Tsi(wi(Σi,0)) converges to R × ∞a as a smooth manifold in
compact C1 topology. It follows from this that none of (62.82.1) - (62.82.3) can
occur, a contradiction. The proof of Proposition 62.79 is now finished. §

62.5. Exponential decay in the neck region.

In this subsection, we prove (62.14), the exponential convergence to Reeb chords.
The main tool for such a convergence result is the characterization of the asymp-
totics of J0-holomorphic maps with small d∏-energy Ed∏, Theorem 60.85 below.
This is a minor variation of Theorem 1.3 [HWZ02] in our relative context.

Let R > 0 be given and

w : [−R,R]× [0, 1] → R× S2n−1

be a J0-holomorphic map satisfying the boundary condition

(62.83) w(τ, 0) ∈ R× Sn−1
Rn , w(τ, 1) ∈ R× Sn−1

Λ .

As before we consider the energies

Ed∏(w) =
Z

[−R,R]×[0,1]
w∗d∏,(62.84.1)

E∏(w) = sup
ρ∈C

Z

[−R,R]×[0,1]
w∗(ρ ds ∧ ∏),(62.84.2)

E(w) = Ed∏(w) + E∏(w),(62.84.3)

where C is as in (62.27).
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Theorem 62.85. For each E0 > 0 and k there exist positive constants e0, R0, ck,
and Ck with the following properties. Let w : [−R,R] × [0, 1] → R × S2n−1 be a
J0-holomorphic map that satisfy (62.83). We assume :

(62.86.0) E(w) ≤ E0,
(62.86.1) R ≥ R0,
(62.86.2) Ed∏(w) ≤ e0,
(62.86.3) the chord w0(t) := w(0, t) satisfies

Z
w∗0∏ ≤ 3α

2
.

Then, we can find a ∈ Sn−1 and s1 ∈ R for which we have

(62.87) |∇k(w − wflat
a,s1

)|(τ, t) ≤ Cke−ck(R−|τ |)

on (τ, t) ∈ [−R + 10, R − 10] × [0, 1] where wflat
a,s1

is the cylindrical strip defined by
wflat

a,s1
(τ, t) = (s1 + ατ, ∞a(t)) as before.

For the case of w without boundary, that is, for the case of pseudo-holomorphic
map w from the annulus [−R,R]× S1, the analog of Theorem 62.85 was proved in
[HWZ02] for the case of non-degenerate isolated Reeb orbits and for its Bott-Morse
version in [Bou02] and [BEHWZ03] respectively.

For the completeness’s sake, we give the proof of Theorem 62.85 below. The first
step is to prove the following version of the ε-regularity result.

Proposition 62.88. (≤-regularity) Let E0, R and k be given and consider J0-
holomorphic maps w : [−R,R]× [0, 1] → R× S2n−1 satisfying (62.83) and E(w) ≤
E0. Then there exists a sufficiently small e1 > 0 such that we have

|∇kw| < Ck

on [−R + 10, R − 10] × [0, 1] for all w satisfying Ed∏(w) ≤ e1. Here Ck > 0 is
independent of R and of such w’s.

Proof. As in the scheme of [Hof93], we start with the following lemma.

Lemma 62.89. There exists a constant C0 > 0 with the following properties : Let
w : [−R,R]× [0, 1] → R× S2n−1 be a C1 map and assume

(62.89.1) sup
(τ,t)∈[−R+10,R−10]×[0,1]

|∇w|(τ, t) ≥ C0.

Then there exists (τ0, t0) ∈ [−R + 5, R− 5] such that

|∇w|(τ0, t0) = C ≥ C0,(62.90.1)

|∇w|(τ 00, t00) ≤ 2C if dist((τ 00, t
0
0), (τ0, t0)) ≤ C−1/2.(62.90.2)
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Proof. We will prove that any choice of C0 > 0 satisfying
√

2C−1/2
0√

2− 1
< 1

will do our purpose. This choice of C0 will be justified in the course of the proof.
Let w satisfy (62.89.1). We will prove the lemma by contradiction. Suppose to

the contrary that for any choice of (τ, t) ∈ [−R + 5, R − 5], (62.90) fails to hold.
Take (τ1, t1) ∈ [−R + 10, R− 10]× [0, 1] for which we have

|∇w|(τ1, t1) = C1 ≥ C0.

We will inductively construct a sequence (τk, tk) satisfying

(62.91.1) |∇w|(τk, tk) = Ck ≥ 2k−1C1,
(62.91.2) dist((τk, tk), (τk−1, tk−1)) ≤ C−1/2

k−1 .

Suppose such a sequence (τi, ti) has been chosen for i < k. We obtain
(62.92)

dist((τ1, t1), (τk−1, tk−1)) ≤
k−2X

i=1

C−1/2
i ≤

√ 1X

i=1

2(1−i)/2

!

C−1/2
0 =

√
2C−1/2

0√
2− 1

Therefore by the choice of C0 in the beginning of the proof, we have

dist((τ1, t1), (τk−1, tk−1)) ≤
√

2C−1/2
0√

2− 1
< 1.

Then clearly (τk−1, tk−1) ∈ [−R + 5, R − 5] and (τk−1, tk−1) satisfies (62.90.1) by
the induction hypothesis (62.91.1). By the standing hypothesis in the beginning
of the proof, (60.90.2) must fail to hold for (τ0, t0) = (τk−1, tk−1). In other words,
there must exist (τ 00, t00) = (τk, tk) for which (62.91.2) and (62.91.1) hold.

Now since C−1
k ≤ 1

2k−1C0
by the choice of Ck in (62.91.1), (62.91.2) implies

lim
k0→1

X

k≥k0

dist((τk, tk), (τk−1, tk−1)) = 0

and hence (τk, tk) is a Cauchy sequence. Denote its limit by (τ1, t1).
Since w is assumed to be C1, we have

|∇w(τ1, t1)| := C < 1 and |∇w(τk, tk)−∇w(τ1, t1)| → 0

and in particular we have

|∇w(τk, tk)| ≤ C + 1 < 1
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for all sufficiently large k. On the other hand, (62.91.1) implies

lim
k→1

|∇w|(τk, tk) = 1,

a contradiction. This finishes the proof. §

Obviously the particular choice of the pair 5 < 10 in the lemma is nothing special
but can be replaced by any pair of positive numbers K1 < K2.

We continue the proof of Proposition 62.88. By the standard elliptic regularity
of pseudo-holomorphic maps, it suffices to show the derivative bound

(62.93) |∇w| < C on [−R + 7, R− 7]× [0, 1]

where (−R + 7, R− 7)× [0, 1] ⊃ [−R + 10, R− 10]× [0, 1].
We will prove (62.93) by contradiction. We determine e1 later in the proof. (This

e1 in fact can be chosen independently of E0.) Suppose that there exists no C such
that (62.93) holds for any w : [−R,R] × [0, 1] → R × S2n−1 satisfying (62.83) and
E(w) ≤ E0, Ed∏(w) ≤ e1. Then there exists wi : [−Ri, Ri] × [0, 1] → R × S2n−1,
(τi, ti) ∈ [−Ri + 7, Ri − 7]× [0, 1] such that

lim
i→1

|∇wi|(τi, ti) = 1.

We now apply Lemma 62.89 to find (τ 0i , t0i) ∈ [−Ri + 5, Ri− 5]× [0, 1] such that the
following holds.

(62.94.1) |∇wi|(τ 0i , t0i) = C1,i →1.
(62.94.2) If dist((τ, t), (τ 0i , t0i)) ≤ C−1/2

1,i then

|∇wi|(τ, t) ≤ 2C1,i.

We now deduce contradiction from (62.94) by a blowing argument. We put

Di =

(

x +
√
−1y ∈ C

ØØØØØ
dist((xC−1

1,i + τ 0i , yC−1
1,i + t0i), (τ

0
i , t

0
i)) ≤ C−1/2

1,i

(xC−1
1,i + τ 0i , yC−1

1,i + t0i) ∈ R× [0, 1]

)

and define
ewi : Di → R× S2n−1

by
ewi(x +

√
−1y) = wi(xC−1

1,i + τ 0i , yC−1
1,i + t0i).

By taking subsequence, we may assume one of (62.95.1)-(62.95.3) below hold :

(62.95.1) limi→1Di = D1 = C.
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(62.95.2) There exists c ≥ 0 such that

lim
i→1

Di = {z ∈ C | Imz ≥ −c} = D1 = H− c
√
−1.

(62.95.3) There exists c ≥ 0 such that

lim
i→1

Di = {z ∈ C | Imz ≤ c} = D1 = −H + c
√
−1.

(62.94.2) implies that

(62.96) |∇ ewi| ≤ 2.

Since ewi is holomorphic, we can use (62.96) to find a subsequence such that ewi

converges to
ew1 : D1 → R× S2n−1

in compact C1 topology.
For the case (62.95.2), we have

(62.97.1) ew1(@D1) ⊆ R× Sn−1
Rn .

For the case (62.95.3), we have

(62.97.2) ew1(@D1) ⊆ R× Sn−1
Λ .

(62.94.1) implies that

(62.98) |∇ ew1|(0) = 1.

Now consider the energies of ew1

Ed∏( ew1) =
Z

D1

ew∗1d∏,(62.99.1)

E∏( ew1) = sup
ρ∈C

Z

D1

ew∗1(ρ ds ∧ ∏),(62.99.2)

E( ew1) = Ed∏( ew1) + E∏( ew1),(62.99.3)

where C is as in (62.27). The following easily follows from the hypothesis E(wi) ≤
E0, Ed∏(wi) ≤ e1 and non-negativity of the forms d∏ and ds ∧ ∏ whose proof is
omitted.
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Lemma 62.100. E( ew1) ≤ E0, Ed∏( ew1) ≤ e1.

We next define a holomorphic map

(62.101) w1 : D1 → CPn−1

as the composition of ew1 and the projection

π : R× S2n−1 → S2n−1 → CPn−1.

Here S2n−1 → CPn−1 is the Hopf fibration whose fibers are the Reeb orbits of the
contact form ∏. We note that d∏ is a pull back of the Kähler form ωCP n−1 of CPn−1

under the projection. Hence Lemma 62.100 implies

(62.102)
Z

D1

w∗1ωCP n−1 ≤ e1 < 1.

We are now ready to wrap up the proof of Proposition 62.88. We discuss the two
cases (62.95.1), (62.95.2) separately. ((62.95.3) is obviously similar to (62.95.2).)

Case (62.95.1) : We use (62.102) and the removable singularity theorem to obtain

(62.103.1) w+
1 : S2 → CPn−1.

We finally fix e1 > 0 to be

(62.103.2) e1 =
1
3
wCP n [L]

where [L] is the homology class of the projective line in CPn. Then we have
Z

S2
w∗ωCP n−1 > e1

for any nonconstant holomorphic map w. Therefore we derive from (62.102) that
w1 must be constant.

What this means is that there exists a Reeb orbit ∞ : S1 → S2n−1 such that

ew1(C) ⊂ R× ∞(S1) ⊂ R× S2n−1.

Since R× ∞(S1) is a cylinder and the map

ew1 : C → R× ∞(S1)

is nonconstant, its image must be dense : This is because ew1 lifts to a nonconstant
holomorphic map C → C whose image is dense by Picard’s theorem. This implies

E( ew1) = 1
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which is a contradiction to Lemma 62.100. Therefore this case cannot occur.

Case (62.95.2) : We use (62.102) and the removable singularity theorem to obtain

w+
1 : (D2, @D2) → (CPn−1, RPn−1).

The choice e1 < 1
2ωCP n [L] made in (62.103.2) implies that w+

1 must be constant.
Similarly as in the case of (62.95.1), this implies that there exists a Reeb orbit
∞ : S1 → S2n−1 such that

ew1(H− c
√
−1) ⊂ R× ∞(S1).

Moreover there is a point p ∈ ∞(S1) such that

ew1(@H− c
√
−1) ⊂ R× {p}.

Applying the reflection principle to ew1 we obtain a nonconstant holomorphic map

bw1 : C → R× ∞(S1)

which has an infinite energy, a contradiction. Hence this case cannot occur either.
In conclusion, (62.93) must hold and hence the proof of Proposition 62.88. §

Remark 62.104. The argument in the last step of the proof of Proposition 62.88
is rather ad hoc since we exploit the fact that the set of Reeb orbits of the contact
structure on S2n−1 consists of the fibers of the Hopf fibration. (See also [LiRu01].)
Because of this, the above proof seems to be simpler than other proofs such as the
ones given in [HWZ02], [Bou2], [BEHWZ03]. Since study of this particular case
is enough for our purpose in this book, we refrain ourselves from taking the more
general route that works for arbitrary Bott-Morse case, including the case of non-
integrable J ’s and with possibly non-cylindrical but only asymptotically cylindrical
ends.

Now let us continue the proof of Theorem 62.85. For each given Reeb orbit ∞,
we denote wflat

∞,s1
by

wflat
∞,s1

(τ, t) = (α∞τ + s1, ∞(t)),

where α∞ is given by

α∞ =
Z

S1
∞∗∏.

We call α∞ the action of ∞. For the notational convenience, we will regard a constant
curve ∞ ≡ (s1,Θ1) as a ‘Reeb orbit’ with zero action and still denote by

wflat
Θ1,s1

≡ (s1,Θ1)

in Lemma 62.105 and Lemma 62.159 below.
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Lemma 62.105. Let ≤, E0 and k0 be given. Then there exist e2, R2 with the
following property : For any J0-holomorphic map w : [−R,R]× [0, 1] → R× S2n−1

with R ≥ R2, and Ed∏(w) < e2, and for any τ1 ∈ [−R + 3, R − 3], there exist s1

and a Reeb chord ∞ : [0, 1] → S2n−1 joining Sn−1
Rn to Sn−1

Λ such that

(62.106) |∇k(w − wflat
∞,s1

)|(τ, t) ≤ ≤

on [τ1 − 1, τ1 + 1]× [0, 1] for k ≤ k0.

We note that ∞ may vary depending on τ1 in this lemma.

Proof. Suppose to the contrary. Then, after taking a subsequence, we can find
constants ≤ > 0 and sequences of e2,i → 0, Ri →1, (τ1,i, ti) ∈ [−Ri+3, Ri−3]×[0, 1]
and pseudo-holomorphic maps

wi : [−Ri, Ri]× [0, 1] → R× S2n−1

such that they satisfy E(wi) ≤ E0, Ed∏(wi) < e2,i, and such that for some k ≤ k0

we have

(62.107) sup
(τ,t)∈[τi,1−1,τi,1+1]×[0,1]

|∇k(w − wflat
∞,s1

)|(τ, t) > ≤

for any Reeb chords ∞ or points Θ1 ∈ S2n−1 and for s1.
Applying Proposition 62.88 and the diagonal sequence argument, we may take a

sequence s2,i and then subsequences thereof, still denoted by the same i’s such that

(τ, t) 7→ Ts2,iwi(τ + τi,1, t)

converges to a J0-holomorphic map

w1 : R× [0, 1] → R× S2n−1

in compact C1 topology. As before, we derive

Ed∏(w1) = 0, E(w1) ≤ E0.

Then it follows either w1 is constant or

w1 = wflat
∞,s01

for some Reeb chord ∞ and s01. This contradicts to (62.107) and hence the proof. §
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Lemma 62.108. Under the same hypotheses as Lemma 62.105, assume (62.86.3)
in addition. Then for any given τ1 ∈ [−R+3, R−3] there exist s1 ∈ R and a ∈ Sn−1

such that

(62.109) |∇k(w − wflat
a,s1

)|(τ, t) ≤ ≤

on [τ1 − 1, τ1 + 1]× [0, 1] for k ≤ k0. Here we recall wflat
a,s1

= wflat
∞a,s1

in the notation
of Lemma 62.105.

Proof. It suffices to show that ∞ = ∞a for some a ∈ Sn−1 in the proof of Lemma
62.105. This is immediate from (62.86.3) if τ1 = 0.

To consider general τ1, we deform it from 0 to the given τ1 in [R− 3, R + 3]. As
we mentioned the Reeb strip ∞ may change accordingly. However by (62.106), it
can ‘jump’ only up to ≤. (Here we use the C0 distance between two Reeb strips to
measure the size of the jump.)

We now use the fact that the set of Reeb chords of the form ∞a, a ∈ Sn−1 is
minimal nondegenerate in the Bott-Morse sense and so positive C0-distance away
from all other possible Reeb chords, including constant orbits. Therefore if we take
≤ small enough then the Reeb chord ∞ must be of the form ∞a for some a. This
finishes the proof. §

Once Lemma 62.108 is established, one can prove Theorem 62.85 by the gen-
eral scheme of handling the Bott-Morse type Floer theory, which was developed in
[Fuk96II] §7, or in the proof of Lemma 11.2 of §14 [FuOn99II]. Here we again take
a short cut by exploiting our special circumstance.

Proof of Theorem 62.85. Let w be as in Theorem 62.85. Define

w : [−R,R]× [0, 1] → CPn−1

to be the composition of w with

π : R× S2n−1 → S2n−1 → CPn−1

as in the proof of Proposition 62.88. We note

π(R× (Sn−1
Rn ∪ Sn−1

Λ )) ⊆ RPn−1

and so w satisfies the real boundary condition

(62.110) w([−R,R]× {0, 1}) ⊂ RPn−1.

Moreover, since d∏ is a pull back of the Kähler form ωCP n−1 of CPn−1, it follows
that

(62.111)
Z

[−R,R]×[0,1]
w∗ωCP n−1 =

Z

[−R,R]×[0,1]
w∗d∏ ≤ e0.
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We use the boundary condition (62.110) to apply the reflection principle and obtain
a holomorphic cylinder

bw : [−R,R]× S1 → CPn−1

whose area has the bound

(62.112)
Z

[−R,R]×S1

bw
∗
ωCP n−1 ≤ 2e0.

Moreover Lemma 62.108 implies

sup
s∈[−R,R]

Diam(bw({s} × S1)) ≤ o(e0)

where o(e0) stands for any function of e0 satisfying lime0→0 o(e0) = 0.
Therefore, by the monotonicity formula (see Lemma 4.2.1 [Mul94], for example),

we obtain
(62.113) Diam(w([−R,R]× S1)) ≤ o(e0)

Here we use the following well-known fact on the harmonic function whose proof
we omit.

Lemma 62.114. If f : [−R,R]× S1 → R is a harmonic function satisfying

Diam(f([−R,R]× S1)) ≤ 1,

then there exists c ∈ R such that
(62.115) |∇k(f − c)|(τ, t) ≤ Cke−ck(R−|τ |).

Here Ck, ck depends only on k = 0, 1, 2, · · · .
We derive from (62.113) and Lemma 62.114 that there exists a point a ∈ CPn−1

such that
(62.116) |∇k(w − a)|(τ, t) ≤ Cke−ck(R−|τ |).

We may replace a with w(0, 0) ∈ RPn−1 without destroying the inequality (62.116).
We remark that

π−1(a) = Ca \ {0} ⊂ Cn \ {0} ∼= R× S2n−1

is a one dimensional complex vector space minus origin. Here a ∈ Sn−1 ⊂ Rn.
We define

w0 : [−R,R]× [0, 1] → C = Ca ⊂ Cn

as the composition of w and the unitary projection Πa : Cn → Cn with Image Πa =
Ca. There exists R3 depending only on C0, c0 in (62.116) such that

w0([−R + R3, R−R3]× [0, 1]) ∩ {0} = ∅.
Therefore (62.116), and (62.109) (combined with Lemma 62.114 again) imply

(62.117) |∇k(w − w0)|(τ, t) ≤ Cke−ck(R−|τ |).

Here we use the product metric of the target space Cn \ {0} ∼= R× S2n−1. Now the
following lemma will complete the proof of Theorem 62.85.
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Lemma 62.118. There exists τ0 such that

(62.119) |∇k(w0 − w0τ0
)|(τ, t) ≤ Cke−ck(R−|τ |).

Here
w0τ0

(τ, t) = exp(α(τ + τ0 +
√
−1t)).

We use the product metrics of C\{0} ∼= R×S1 both on the target and [−R+R3, R−
R3]× [0, 1] and on the domain.

Proof. We put
F (τ, t) = log w0(τ, t)− α(τ +

√
−1t).

Note Lemma 62.108 implies that the image of w0 is in the sector {z | −≤ < Arg z <
α + ≤}. So log above is well defined. We have

ImF (τ, 0) = ImF (τ, 1) = 0.

Hence we apply reflection principle to obtain a holomorphic function

bF : [−R + R3, R−R3]× S1 → C.

By Lemma 62.108 and (62.116), we have

|Im bF (τ, t)| < ≤.

Therefore we can use Lemma 62.114 to derive

|∇kImF |(τ, t) ≤ Cke−ck(R−|τ |).

(62.119) follows easily. This finishes the proof §

The proof of Theorem 62.85 is finally complete. §

Now we go back to the situation of Theorem 62.13. We will use Theorem 62.85
to prove (62.14), which establishes exponential convergence on the neck region.

Let
E0 = sup

i
E(wi) < 1.

We take e0 as in Theorem 62.85. By Corollary 62.78 there exists S0 and I0 such
that if i > I0 then

(62.120)
Z

Σ
i,≥ 1

2 log ≤1,i+S0

w∗i d∏ < e0.

We may assume S0 ≥ log S0 and 1
2 log ≤1,i + S0 ≤ log ≤0 for large i.
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We put

Ui,out = w−1
i

µ∑
1
2

log ≤1,i + S0,1
∏
× S2n−1

∂
.

The inclusion Ui,out ⊃ H \ Σi is obvious. The main step is to construct the
parametrization

√i,neck : (−Ti + C1,i, S1 + C2,i)× [0, 1] → Ui,out

satisfying (62.14). Recall the definition

Ti = −α−1

µ
1
2

log ≤1,i + log S0

∂

and S1 is the constant appearing in (62.10.3). We put

T 0i = −α−1

µ
1
2

log ≤1,i + S0
∂

.

One consequence of Proposition 62.79 is that the intersection Ui,neck is diffeo-
morphic to a disc with 4 corners. Namely, the boundary @(Ui,neck) is decomposed
into

@(Ui,neck) = b∞i,−αT 0i
∪ [b∞i,−αT 0i

(0), b∞i,out(0)]
∪ b∞i,out ∪ [b∞i,out(1), b∞i,−αT 0i

(1)].

Here we note

b∞i,−αT 0i
(0) = w−1

i (∞i,−αT 0i
(0))

b∞i,−αT 0i
(1) = w−1

i (∞i,−αT 0i
(1))

lie in R = @H and so regard them as real numbers. The intervals [b∞i,−αT 0i
(0), b∞i,out(0)]

and [b∞i,out(1), b∞i,−αT 0i
(1)] lie in R+ and R− respectively.

Figure 62.6.
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By the convergence in Corollary 62.9, it follows that b∞i,out is C1 approximates the
half circle {z ∈ H | |z| = ≤0}. On the other hand, at this stage we are unable to
exclude the possibility that the shape of arc b∞i,−αT 0i

could be wild in H and hence the
standard (cylindrical) coordinate might not be a good one to use to parameterize
the map wi. The role of √i,neck is to transform b∞i,−αT 0i

to a more tame curve (See
the argument of §62.6.)

Applying the Riemann mapping theorem, we obtain a sequence R1,i > 0 and a
conformal isomorphism

(62.121) √i : [−R1,i, 0]× [0, 1] → Ui,neck

such that (See Figure 62.6.)

(62.122.1) (wi ◦ √i)(−R1,i, 0) = ∞i,−αT 0i
(0),

(62.122.2) (wi ◦ √i)(−R1,i, 1) = ∞i,−αT 0i
(1),

(62.122.3) (wi ◦ √i)(0, 0) = ∞i,out(0),
(62.122.4) (wi ◦ √i)(0, 1) = ∞i,out(1).

The following lemma intuitively looks obvious. For the completeness’ sake, we
give its proof based on the method of extremal length. (See [AhBe50] §4.)

Lemma 62.123.
lim

i→1
R1,i = +1.

Proof. We consider the submanifold

wi(Ui,neck) ⊂ R× S2n−1

and denote by gind the Riemannian metric induced from the product metric on
R× S2n−1.

We also consider the product
∑
1
2

log ≤1,i + S0, log ≤0

∏
× [0, α]

equipped with standard product metric g0. Then it follows from Proposition 62.79
that there is a diffeomorphism

Φi : wi(Ui,neck) ∼=
∑
1
2

log ≤1,i + S0, log ≤0

∏
× [0, α]

that has the properties,

(62.124.1) Φi(Ui,neck ∩ ({s} × S2n−1)) = {s} × [0, α].
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(62.124.2) For each ≤ there exists C = R0 such that

|Φi∗(gind)− g0|C1 < ≤

on [ 12 log 2≤1,i + S0 + C, log ≤0 − C]× [0, α] for all sufficiently large i.

Next we denote g2 = Φi∗(gind) and by g1 to be the standard metric on [−R1,i, 0]×
[0, 1].

Figure 62.7.

Since there are several metrics that we consider, we enlist them here for the purpose
of referencing (See Figure 62.7.) :

(1) gind = the induced metric on the image wi(Ui,neck) ⊂ R× S2n−1,
(2) g0 = the standard metric on the product [ 12 log ≤1,i + S0, log ≤0]× [0, α],
(3) g1 = the standard metric on [−R1,i, 0]× [0, 1],
(4) g2 = Φ∗(gind).
Since wi ◦ √i is holomorphic and so g1-gind conformal, we have (wi ◦ √i)∗(g1) =

f2gind and so

(62.125) (Φi ◦ wi ◦ √i)∗(g1) = f2g2

for a positive function f on [ 12 log ≤1,i + S0, log ≤0]× [0, α].
Denote X = [log ≤1,i + S0 + C, log ≤0 − C] × [0, α] and its area form by dAg2 for

the metric g2. We compute

(62.126)

µZ

X
f dAg2

∂2

≤
µZ

X
f2dAg2

∂ µZ

X
dAg2

∂

≤ Vol([−R1,i, log ≤0]× [0, 1]; g1)× (1 + ≤)
µZ

X
dAg0

∂

≤ (1 + ≤)α(R1,i + log ≤0)(−
1
2

log ≤1,i − S0 + log ≤0 − 2C).
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On the other hand, we derive, from (62.124.2) and (62.125),

Z

X
f dAg2 ≥ (1 + ≤)−1

Z log ≤0−C

1
2 log ≤1,i+S0+C

lengthg0(w
−1
i ◦ ∞i,s) ds.

Since w−1
i ∞i,s(0) ∈ R × {0}, w−1

i ∞i,s(α) ∈ R × {1}, it follows that lengthg0(w
−1
i ◦

∞i,s) ≥ 1 and so

(62.127) (1 + ≤)
Z

X
f dAg2 ≥ −

1
2

log ≤1,i − S0 − 2C + log ≤0.

Substituting this into (62.126), we have obtained

(62.128) R1,i + log ≤0 ≥
1 + ≤

α

µ
−1

2
log ≤1,i − S0 − 2C + log ≤0

∂

The lemma now follows from the convergence ≤1,i → 0. §

We define
w0i : [−R1,i, 0]× [0, 1] → R× S2n−1

by
w0i = wi ◦ √i.

By our choice of Ui,out and (62.120), we have
Z

w0∗i d∏ < e0

for i > I0. Therefore, we can apply Theorem 62.85 to w0i for sufficiently large
i. It follows from (62.87) that |R1,i − Ti| is uniformly bounded. (Note Ti − T 0i is
independent of i.)

Now take C3,i such that

(s ◦ wi ◦ √i)
µ

S1 − Ti

2
+ C3,i,

1
2

∂
= α

µ
S1 − Ti

2

∂

and define
√i,neck(τ, t) = √i(τ + C3,i, t).

Again from (62.87), C3,i are uniformly bounded. By Theorem 62.85 for k = 1 and
integrating over [0, |τ |], we derive

ØØØØs ◦ wi ◦ √i,neck

µ
S1 − Ti

2
+ τ, t

∂
− α

µ
S1 − Ti

2
+ τ

∂ØØØØ ≤
Z |τ |

0
C1e

−c1

ØØØØ
R1,i−C0

2 −|x|
ØØØØdx.
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We put C1,i = Ti −R1,i − C3,i, C2,i = S1 − C3,i. Then

√i,neck : [−Ti + C1,i, S1 + C2,i]× [0, 1] → Ui,neck

is a biholomorphic map which satisfies

ØØ∇k(wi ◦ √i,neck − wflat
ai,0)

ØØ
µ

S1 − Ti

2
+ τ, t

∂
≤ Cke−ck|τ |

by Theorem 62.85 again. Then (62.14.2) follows. (62.14.3) is trivial. This finishes
the proof of (62.14).

We also remark that the convergence statement limi→1 ai = a0 in Theorem
62.13 follows from (62.14) and Lemma 62.8.

62.6. C1 convergence in a neighborhood of p12.

In this subsection, we prove (62.15) of Theorem 62.13 and completes the proof
thereof. We first prepare some notations. Let wi : H → M be as in Theorem 62.13.
It restricts to a map

wi : Σi → B(p12; ≤0)(= I(B2n(≤0)))

where Σi ⊂ H is as in §62.2. We identify B(p12; ≤0) with B2n(≤0) via the Darboux
chart I.

Lemma 62.129. wi(Σi) does not contain 0 ∈ Cn.

Proof. Using estimate (62.14) the proof is similar to the proof of Proposition 60.59
and hence is omitted. §

Applying an element of Aut(H; {±1}) to the domain H, may assume that wi

satisfies

(62.130.1) |wi(0)|Cn = inf{|wi(z)|Cn | z ∈ @H}.

We put

(62.130.2) ≤3,i = sup{|z| | z ∈ Σi, |wi(z)|Cn ≤ 2√≤1,iS0} > 0.

Conditions (62.7), Lemma 62.8 and (62.130.1) imply limi→1 ≤3,i = 0.
We define a rescaled map

ewi : ≤−1
3,i Σi → Cn

by
ewi(z) = ≤−1/2

1,i wi(≤3,iz).
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(62.10.3) shows that b∞i,out = @Σi ⊂ H is close to the image of the curve t 7→
eπ(S1+

√
−1t) ∈ H. This implies Σi ⊃ H|z|≤eπS1/2 and ≤−1

3,i Σi ⊃ H|z|≤≤−1
3,ieπS1/2. We

put
S1,i = ≤−1

3,i e
πS1/2

and consider the restriction

ewi : H|z|≤S1,i
→ Cn \ {0} ∼= R× S2n−1

of ewi. We remark limi→1 S1,i = 1.
We have

ewi(@H|z|<S1,i
) ⊂ ≤−1/2

1,i (Hα
−≤1,i

)0 = (Hα
−1)

0

where the right hand side is independent of i, and

(62.131)
(Hα

−1)
0 ∩ ([log S0, log ≤0 − log ≤1,i/2]× S2n−1)

= [log S0, log ≤0 − log ≤1,i/2]× (Sn−1
Rn ∪ Sn−1

Λ ).

We next consider the energies of ewi given by

(62.132.1) Eint( ewi) =
Z

{z∈H|z|≤S1,i
| | ewi(z)|Cn≤2S0}

ew∗i d(e2s∏)

and

(62.132.2) Ed∏( ewi;S) =
Z

{z∈H|z|≤S1,i
| | ewi(z)|Cn≥eS)}

ew∗i d∏.

Next let C be the set of all nonnegative smooth function ρ : R → R whose support
is compact and is contained in [log S0,1) and such that

R
ρ(s) = 1. Then we define

E∏( ewi) = sup
ρ∈C

Z
ew∗i (ρ ds ∧ ∏),(62.133.1)

Eneck( ewi) = Ed∏( ewi; log S0) + E∏( ewi).(62.133.2)

Lemma 62.134. Eneck( ewi) and Eint( ewi) are uniformly bounded above over i.

Proof. It is easy to see from the scaling property that

Eneck( ewi) ≤ E(wi)

and hence it is uniformly bounded by Proposition 62.30.
On the other hand, we have

Eint( ewi) ≤ ≤−1
1,i

Z

Σ
i, 1

2 log ≤1,i+log 2S0
,int

w∗i ω0

by definition which becomes uniformly bounded by Proposition 62.51. This finishes
the proof. §
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Lemma 62.135.

lim
S→1

lim sup
i→1

Ed∏( ewi;S) = 0.

Proof. This is a consequence of Corollary 62.78. §

We next describe the metrics on the domain H and the target Cn, with which
we evaluate the Ck norms of ewi’s.

For the target, we required the metric, denoted by g0Cn , to satisfy the following
properties :

(62.136.1) g0Cn is a flat Euclidean metric on the Euclidean ball B2n(S0).
(62.136.2) Outside the (Euclidean) ball B2n(2S0) of radius 2S0, it is the standard
product metric on [log 2S0,1) × S2n−1(3S0/2). (Here S2n−1(3S0/2) is the round
sphere of radius 3S0/2.
(62.136.3) g0Cn is of nonnegative curvature.

Figure 62.8.

For the domain, we require the metric, denoted by g0H, to have totally geodesic
boundary and to satisfy the following properties :

(62.137.1) g0H is a flat Euclidean metric on the Euclidean ball B1(0, H).
(62.137.2) Outside the (Euclidean) ball B2(0, H) of radius 2, g0H is the standard
product metric [0,1)× [0, 3π/2].
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(62.137.3) g0H is of nonnegative curvature.

Figure 62.9.

We divide our analysis into the following two cases :
Case A : For each R, |∇ ewi| are uniformly bounded on H|z|≤R.
Case B : There exists a bounded sequence of points zi ∈ H such that |∇ ewi|(zi)
goes to infinity.

We start with Case A. In this case, by the elliptic regularity, the Ck norm of ewi

is uniformly bounded on any bounded subset of H. (We here use the fact that ewi

satisfy the same Lagrangian boundary condition, independent of i.)
Therefore, by Ascoli-Arzela’s theorem, we can find a subsequence of ewi that

converges to a holomorphic map

ew1 : (H, @H) → (Cn, (Hα
−1)

0)

in compact C1 topology. The following energy bound is an immediate consequences
of Lemma 62.134.

Lemma 62.138. Eint( ew1) and Eneck( ew1) are finite.

Next we prove the following

Lemma 62.139. ew1 is unbounded.

Proof. The proof is by contradiction. Suppose that sup | ew1|Cn ≤ C < 1. Then
we can choose ρ ∈ C such that

supp ρ ⊂ {(s,Θ) ∈ R× S2n−1 | log 2S0 − 1 ≤ s ≤ log C + 1}

and
ρ(s) ≡ 1

log C + 1− log 2S0
for s ∈ [log 2S0, log C].
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Denote c = 1
log C−log 2S0

. Then we have

Z

H
ew∗1d(e2s∏) ≤ Eint( ew1) + C2

Z

{z| s( ew1(z))≥log 2S0}
w∗1(ds ∧ ∏ + d∏)

≤ Eint( ew1) + C2E∏( ew1)/c + C2Ed∏( ew1) < 1.

Recalling ω0 = d(e2s∏) is the standard symplectic structure on Cn, we have shown
that ew1 has finite area. Applying a conformal diffeomorphism (H, @H) ∼= (D2 \
{1}, @D2 \ {1}) and the removable singularity theorem, we can extend ew1 to a
holomorphic map

ew+
1 : (D2, @D2) → (Cn, (Hα

−1)
0).

Since (Hα
−1)0 is an exact Lagrangian submanifold, it follows that ew+

1 and so ew1
must be a constant map.

We will next prove that ew1 can not be a constant, which will finish the proof.
By (62.130.2) and by the definition of ewi there exists zi with zi ∈ H such that

(62.140.1) |zi| = 1, | ewi(zi)|Cn = 2S0

and

(62.140.2) inf{| ewi(z)|Cn | |z| ≥ 1} ≥ 2S0.

Recall (Hα
−1)0 ∩ ([log S0,1)× S2n−1) has two connected components

[log S0,1)× Sn−1
Rn , [log S0,1)× Sn−1

Λ .

And (62.140.2) implies

(60.140.3)
ewi([1,1)) ⊂ [log S0,1)× Sn−1

Rn

ewi((−1,−1]) ⊂ [log S0,1)× Sn−1
Λ

where [1,1), (−1,−1] ⊂ R = @H. Therefore there must exist a sequence z0i such
that

(62.140.4) | ewi(z0i)|Cn ≤ 2S0 and | ewi(zi)− ewi(z0i)|Cn ≥ 2S0 tan
≥α

2

¥
.
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Figure 62.10.

Then (62.140.2) and (62.140.4) imply that we may assume both z0i and zi converge
by taking subsequences. Denote

z01 = lim
i→1

z0i, z1 = lim
i→1

zi.

Then | ew1(z1) − ew1(z01)|Cn ≥ 2S0 tan
°

α
2

¢
and so ew1 cannot be constant. This

finishes the proof. §

Lemma 62.141. We have

ew1 ∈ fM(H, Cn; (Hα
−1)

0).

Proof. It remains to show that there exists a minimal Reeb chord ∞a1 for some
a1 ∈ Sn−1

Rn and a constant s1 ∈ R such that ew1 satisfies

| ew1(z)− wflat
a1,s1

(z)|Ck → 0

in exponential order as |z| → 1.
Let E0 = Eneck( ew1). We take e0 as in Theorem 62.85. Since E( ew1) < 1, we

can choose S such that
E( ew1;S) ≤ e0.

Then, we can apply Theorem 62.85 to the restriction of ew1 to [S, S + 2R]× [0, 1].
Note w̃1([S, S + 2R]× [0, 1]) ⊂ [log 2S0,1)× S2n−1 by (62.140.2) and (Hα

−1)0 ∩
([log 2S0,1) × S2n−1) = [log 2S0,1) × (Sn−1

Rn ∪ Sn−1
Λ ). Therefore, the boundary
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condition (62.83) follows from (62.140.3). Moreover (62.86.3) can be proved as
follows : Put

∞(t) = ew1(S + R, t), ∞i(t) = ewi(S + R, t).

Then, by Corollary 62.9 and (62.32.1), we have :

Z 1

t=0
∞∗∏ = lim

i→1

Z 1

t=0
∞∗i ∏ ≤ lim

i→1

Z 1

t=0
∞∗i,out∏ ≤

3α

2
,

as required.
Therefore we have constants R2,j , aj and s1,j such that R2,j →1 and

(62.142) |∇k( ew1 − wflat
aj ,s1,j

)|g0H,g0Cn
(τ, t) ≤ Cke−ck|τ−S−R2,j |

on (τ, t) ∈ [S + 10, S − 10 + 2R2,j ]× [0, 1].
We may assume aj → a1 by compactness of Sn−1. And since the intervals

[S + 10, S − 10 + 2R2,j ] are nested as R2,j % 1, we should also have s1,j → s1 as
j →1 for s1 appearing in Theorem 62.85. Then (62.142) implies

|∇k( ew1 − wflat
a1,s1

)|g0H,g0Cn
(τ, t) ≤ C 0ke−c0k|τ |,

on (τ, t) ∈ [S + 10,1)× [0, 1]. Lemma 62.141 follows. §

Now we are ready to complete the proof of (62.15) for Case A. We take an
isomorphism √ : H → H such that √(1) = 1 and

ew1 ◦ √ ∈ fM0(H, Cn; (Hα
−1)

0).

(See Definition 61.14.)
By definition (61.8) of fM(H, Cn; (Hα

−1)0) there exists a1 such that

(62.143) lim
τ→1

|∇k( ew1 − wflat
a1,S)|g0H,g0Cn

(τ, t) = 0

for some S. Therefore recalling the definition of wa,b given right above Theorem
62.13, we have

ew1 ◦ √ = wa1,b

for some b after re-choosing √ if necessary. We now define the map

√i,int : [−1, Ri)× [0, 1] → H.

by

(62.144) √i,int(τ, t) := ≤3,i√(τ, t).
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(We will determine Ri later in the proof.) Since we have

≤−1/2
1,i (wi ◦ √i,int) = ewi ◦ √

by definition of ewi, it follows that ≤−1/2
1,i (wi ◦ √i,int) converges to wa1,b on compact

C1 topology.
By the diagonal sequence argument, we can choose a sequence Ri →1 so that

(62.145) lim
i→1

sup
τ≤2Ri

|∇k(≤−1/2
1,i (wi ◦ √i,int)− wa1,b)|g0H,g0Cn

(τ, t) = 0.

Let e0, R0 be as in Theorem 62.85. It follows from (62.143) that there exist S3,
I0 such that the following holds for i ≥ I0 :

(62.146.1)
Z

[S3,2Ri)×[0,1]
(≤−1/2

1,i (wi ◦ √i,int))∗d∏ < e0

(62.146.2) 2Ri − S3 ≥ R0.

We can apply Theorem 62.85 to obtain a0i, s0i such that

(62.147) |∇k(≤−1/2
1,i (wi ◦ √i,int)− wflat

a0i,s
0
i
)|(τ, t) ≤ Cke−ck min{|2Ri−τ |,|τ−S3|}.

Comparing (62.147) with (62.145) we have s0i → 0. Perturbing √i,int slightly and
re-choosing si, we may assume s0i = 0.

(62.147) and (62.14) around τ = Ri imply

|ai − a0i| ≤ Ce−cRi .

Therefore we obtain

(62.148) |∇k(≤−1/2
1,i (wi ◦ √i,int)− wflat

ai,0)|(τ, t) ≤ Cke−ck min{|2Ri−τ |,|τ−S3|}.

Now (62.15.3.1) follows from (62.145) and (62.15.3.2) follows from (62.148) respec-
tively. The proof of (62.15) in Case A is complete.

Now we turn to Case B. Using the boundedness of zi, the following lemma can
be proved by the same way as that of Lemma 62.89 and so its proof is omitted.

Lemma 62.149. We can take a bounded sequence z0i ∈ H with the following prop-
erties.

(62.150.1) distg0H
(zi, z0i) ≤ 1 for large i.

(62.150.2) C 0i = |∇ ewi(z0i)|g0H,g0Cn
goes to infinity.

(62.150.3) If z0 satisfies distg0H
(z0, z0i) ≤ C 0−1/2

i , then |∇ ewi(z0)|g0H,g0Cn
≤ 2C 0i.

We can now use a similar argument as the proof of Proposition 62.88 and prove
the following C0-bound.
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Lemma 62.151. The sequence ewi(z0i) ∈ Cn is bounded.

Proof. The proof is by contradiction.
Suppose to the contrary that R3,i = | ewi(z0i)|Cn →1. We put

Di = {u ∈ C | distg0H
(C 0−1

i u+z0i, z
0
i) < min{C 0−1

i

p
R3,i/2, C 0−1/2

i }, C 0−1
i u+z0i ∈ H}.

We note that Di is a convex domain of its diameter with the order of

min{
p

R3,i/2, C 01/2
i }

which goes to 1 as i →1.
We define eewi : Di → Cn by

eewi(u) = ewi(C 0−1
i u + z0i).

We now prove

Sublemma 62.152.

inf
u∈Di

|eewi(u)| ≥
p

R3,i

≥p
R3,i − 1

¥
> 2S0

if i is sufficiently large.

Proof. We note

|eewi(u)| ≥ |eewi(0)| − |eewi(u)− eewi(0)|

= | ewi(z0i)| − |eewi(u)− eewi(0)|.(62.153)

We have | ewi(z0i)| = R3,i and

|eewi(u)− eewi(0)| ≤
Z 1

0
|u · ∇eewi(su)| ds

=
Z 1

0
|u · C 0−1

i ∇ ewi(C 0−1
i (su) + z0i)| ds

≤
Z 1

0
|C 0−1

i u||∇ ewi(C 0−1
i (su) + z0i)| ds.

But since su ∈ Di for all s ∈ [0, 1], we have

dist(C 0−1
i (su) + z0i, z

0
i) ≤ C 0−1/2

i .
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Then (62.150.3) implies

|∇ ewi(C 0−1
i (su) + z0i)| ≤ 2C 0i.

Therefore we have
|eewi(u)− eewi(0)| ≤ 2|u| ≤

p
R3,i.

Substituting these into (62.153), we derive

|eewi(u)| ≥ R3,i −
p

R3,i =
p

R3,i(
p

R3,i − 1).

This finishes the proof of Sublemma 62.152. §

Since (Hα
−1)0 ∩ (Cn \B2n(2S0)) ⊂ Rn ∪ Λ, Sublemma 62.152 allows us to regard

eewi as a sequence of maps

eewi : (Di, @Di) → (R× S2n−1, R× (Sn−1
Rn ∪ Sn−1

Λ )).

(Note @Di could be empty.) We have

(62.154.1) E(eewi) ≤ E0.
(62.154.2) Ed∏(eewi) → 0.

Here (62.154.2) follows from Lemma 62.135. We can find s0i → 1 and a subse-
quence such that Ts0i

◦ eewi converges to a map

eew1 : (D1, @D1) → (R× S2n−1, R× (Sn−1
Rn ∪ Sn−1

Λ ))

in compact C1 topology. We can now deduce contradiction in the same way as the
proof of Proposition 62.88 especially in the proof of (62.93). This finishes the proof
of Lemma 62.151. §

We put

D0
i = {u ∈ C | distg0H

(C 0−1
i u + z0i, z

0
i) < C 0−1/2

i , C 0−1
i u + z0i ∈ H}

and define
bwi : D0

i → Cn

by
bwi(u) = ewi(C 0−1

i u + z0i).

Then we derive the uniform bounds

(62.155) |∇ bwi(u)| ≤ C 0−1
i |∇ ewi(C 0−1

i u + z0i)| ≤ C 0−1
i (2C 0i) = 2
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from (62.150.3). Then Lemma 62.151 and this derivative bound enable us to apply
Ascoli-Arzela theorem to bwi and derive that bwi converges in C1 compact topology.

Now depending on whether C 0i dist(zi, @D0
i) →1 or C 0i dist(zi, @D0

i) < c for some
c > 0, one of the following alternatives occurs : (Note D0

i is a convex domain of C.)

(62.156.1) limi→1D0
i = D0

1 = C.
(62.156.2) There exists c ≥ 0 such that

lim
i→1

D0
i = D0

1 = {z ∈ C | Imz ≥ −c} = H− c
√
−1.

Moreover (62.155) enables us to assume that bwi converges to bw1 : D0
1 → Cn in

compact C1 topology by taking a subsequence if necessary.

Lemma 62.157. bw1 is unbounded.

Proof. Suppose contrary that bw1(D0
1) is bounded. Then in the same way as the

proof of Lemma 62.139, we can prove that bw1 is constant. On the other hand,
since |∇ bwi(0)| = 1 it follows that |∇ bw1(0)| = 1. This is a contradiction. §

Proposition 62.158. D0
1 6= C. Namely (62.156.1) does not occur.

Proof. The proof will be by contradiction. Assume D0
1 = C and identify C \ {0} ∼=

R×S1. By Lemma 62.157 and the derivative bound (62.155), we can find S(k) →1,
τk →1, such that

bw1([τk − 1, τk + 1]× S1) ⊂ (−10 + log S(k), 10 + log S(k))× S2n−1.

Then by the same way as the proof of Lemma 62.105 we have the following :

Lemma 62.159. By taking a subsequence if necessary we can find a closed Reeb
orbit ∞ : S1 → S2n−1 and S0k →1 such that

lim
k→1

sup
(τ,t)∈[τk−1,τk+1]×S1

|∇`( bw1 − wflat
∞,S0k

)|(τ, t) = 0

for ` ≤ `0. Here we define wflat
∞,S0k

by wflat
∞,S0k

(τ, t) = (α∞τ+S0k, ∞(t)), and α∞ =
R

S1 ∞∗∏.

We next prove :

Lemma 62.160. ∞ in Lemma 62.159 is not a constant loop.

Proof. (The argument below is a minor modification of one in [Hof93 p 538].) Sup-
pose to the contrary that ∞ is a constant loop. If bw1 does not pass the origin, then
Stokes’ formula and Lemma 62.159 imply

lim
k→1

Z

[−1,τk]×S1
bw∗1d∏ =

Z

S1
∞∗∏ = 0.
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Namely Z

C
bw∗1d∏ = 0.

This implies that the projectivization [ bw1] : C → CPn−1 of bw1 has zero area and
so must be constant, which implies that the image of bw1 must be contained in some
complex line C · a for some a ∈ Cn.

We remark that the restriction of the one form ∏ to Ca \ {0} is a closed form. It
follows that

Z

ŵ−1
1 ([S0k,S0k+1]×S2n−1)

ŵ∗1d(e2s∏) = 2e2S0k+1

Z
∞0∗k+1∏− 2e2S0k

Z
∞0∗k ∏,

where ∞0k is the restriction of ŵ1 to ŵ−1
1 ({S0k} × S2n−1).

Since ∞0k converges to a constant loop, it is homologous to zero for large k. It
follows from d∏ = 0 that Z

∞0∗k ∏ = 0

for large k. Therefore we have
Z

ŵ−1
1 ([S0k,S0k+1]×S2n−1)

ŵ∗1d(e2s∏) = 0

for large k. Hence, by unique continuation and holomorphicity, ŵ1 is a constant
map. This is a contradiction.

Now consider the case bw−1
1 (0) 6= ∅. It follows from the convergence in Lemma

62.159 as τ →1 that the set bw−1
1 (0) has finite order. We write the finite set bw−1

1 (0)
as

bw−1
1 (0) = {z1, · · · , zm}

for some m ∈ Z+. We denote by ni the order of vanishing as before in (60.61).
Then we have

lim
δ→0

Z

@Bzi (δ)
bw∗1∏ = 2πni ≥ 2π

for all i.
On the other hand, we recall that

Ed∏( bw1) ≤ lim inf
i→1

Ed∏( bwi)

the last of which is uniformly bounded by Lemma 62.134. In particular, the limit

lim
δ→0

Z

C\∪m
i=1Bzi (δ)

bw∗1d∏
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exists and hence we obtain

(62.161)
Z

C\∪m
i=1Bzi (δ)

bw∗1d∏ = −2π
mX

i=1

Z

@Bzi (δ)
bw∗1∏

by Stokes’ formula. We recall that bw∗1d∏ is a non-negative form and hence the left
hand side of (62.161) is non-negative for all δ > 0. But the right hand side thereof
converges to −2π

Pm
i=1 ni ≤ −2πm < 0 as δ → 0.

This gives rise to a contradiction and hence ∞ cannot be constant. §

Lemmas 62.159 and 62.160 imply that for all sufficiently large k, the ≤-neighborhood
of

bw1([τk − 1, τk + 1]× S1)

contains {S0k} × ∞ where ∞ is a nontrivial closed Reeb orbit.
Recall bwi was defined as

bwi(u) = ≤−1/2
1,i wi(≤3,i(C 0−1

i u + z0i)).

Namely in cylindrical coordinates (s,Θ) of Cn \ {0} ∼= R× S2n−1 → R, we have

s(wi(≤3,i(C 0−1
i u + z0i)) =

1
2

log ≤1,i + s( bwi(u)).

Therefore, by the choice of τk we have :

(62.162) wi(≤3,i(C 0−1
i u + z0i)) ∈

∑
1
2

log ≤1,i + log S0 + R0,1
∂
× S2n−1

if u ∈ [τk − 1, τk + 1] × S1, k is large and i ≥ C(k). Here R0 is the constant as in
Proposition 62.79.

It follows from Proposition 62.79 that the Θ-component of bw1([τk−1, τk+1]×S1)
must be contained in a small neighborhood of a minimal Reeb chord joining Sn−1

Rn

to Sn−1
Λ .

This is impossible since it contains the whole closed Reeb orbit ∞ of S2n−1. The
proof of Proposition 62.158 is now complete. §

We now continue the proof of Theorem 62.13. We have proved D0
1 = H−c

√
−1.

Replacing z0i to a point ∈ @H closest to z0i + cC 0i
√
−1 , we may assume z0i ∈ @H and

D0
1 = H.
We identify H \ {0} ∼= R× [0, 1] as before. It follows from Lemma 62.157 and the

derivative bound (62.155), we can find a S(k) →1, τk →1 such that

bw1([τk − 1, τk + 1]× [0, 1]) ⊂ [−10 + log S(k), 10 + log S(k)]× S2n−1

and

bw1([τk − 1, τk + 1]× {0, 1}) ⊂ [−10 + log S(k), 10 + log S(k)]× (Sn−1
Rn ∪ Sn−1

Λ ).

Then by the same way as the proof of Lemma 62.105 we prove the following :



159

Lemma 62.163. By taking a subsequence if necessary we can find a Reeb chord
∞ : ([0, 1], @[0, 1]) → (S2n−1, Sn−1

Rn ∪ Sn−1
Λ ) and S0k →1 such that

(62.164) lim
k→1

sup
(τ,t)∈[τk−1,τk+1]×[0,1]

|∇`( bw1 − wflat
∞,S0k

)|(τ, t) = 0

for ` ≤ `0. Here we define wflat
∞,S0k

by wflat
∞,S0k

(τ, t) = (α∞τ + S0k, ∞(t)), and α∞ =R
[0,1] ∞

∗∏.

We next prove the following :

Lemma 62.165. ∞ is equal to ∞a, a minimal Reeb chord joining Sn−1
Rn to Sn−1

Λ .

Proof. We first prove by contradiction that ∞ is not a constant path. Let us assume
If ∞ ≡ p0 ∈ Sn−1

R . We regard (τk, 0) = eπτk , (τk, 1) = −eπτk ∈ @H = R and let

bµk = [−eπτk , eπτk ] ⊂ R.

By Stokes’ formula

lim
k→1

Z

[−1,τk]×[0,1]
bw∗1d∏ =

Z

[0,1]
∞∗∏− lim

k→1

Z

bµk

bw∗1∏− 2πm

where m is the sum of multiplicities of ŵ−1
1 (0). We remark that the integral

R
bµk

bw∗1∏
depends only on the relative homology class

bw1∗([bµk; @bµk]) ∈ H1(Hα
−≤1,k

; ({a0
k} × Sn−1

Rn ) ∪ ({a1
k} × Sn−1

Rn )).

(Here bµk(j) ∈ {aj
k} × Sn−1

Rn .) This fact can be proved in the same way as (60.63).
Therefore, we have

R
bµk

bw∗1∏ = 0 for large k. It follows from the similar argument
as the proof of Lemma 62.160 that ŵ1 is a constant map. This is a contradiction.

We can then prove that ∞ must coincide with ∞a for some a in the same way as
the last step of the proof of Proposition 62.158. §

By Lemmata 62.163, 62.165, Proposition 62.79 and the convergence bwi → bw1,
we find that

Lemma 62.166.

(62.167) bw−1
1 ({S0k} × S2n−1) ⊂ [τk − 1, τk + 1]× [0, 1]

for all sufficiently large k.

Now we prove the following lemma. Let R0 be as in Proposition 62.79.
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Lemma 62.168. There exists R4 ≥ log S0 + R0 with the following properties :

(62.169.1) bwi is transversal to {R4}×S2n−1 for large i. The preimage bw−1
i ({R4}×

S2n−1) is an arc, which we denote by b∞i.
(62.169.2) If we put

b∞0i = {≤3,i(C 0−1
i b∞i(t) + z0i) | t ∈ [0, 1]},

Σi \ b∞0i is a disjoint union of Dint
i and Dext

i such that

wi(Dext
i ) ⊂

∑
1
2

log ≤1,i + R4, ≤0

∂
× S2n−1.

(62.169.3) b∞i ⊂ H is uniformly bounded.

Proof. We put R4 = S0k for large k. (62.169.1) is a consequence of (62.162) and Lem-
mas 62.163, 62.166. (62.169.3) is a consequence of Lemma 62.166. Then recalling
the definition of bwi

bwi(u) = ≤−1/2
1,i wi(≤3,i(C 0−1

i u + z0i))

we derive (62.169.2) from (62.169.1) and Lemma 62.166. §

Lemma 62.168 and Proposition 62.79 imply that for large i

(62.171) w−1
i ([−1, log S0 + R0]× S2n−1) ⊂ Dint

i .

(62.130.1) implies that

wi(0) ∈ [−1,
1
2

log ≤1,i + log 2S0]× S2n−1.

Therefore

(62.172) 0 ∈ Dint
i .

We can take z00i ∈ H such that |z00i | = ≤3,i, |wi(z00i )| = 2√≤1,iS0 by (62.130.2). Then
we obtain

(62.173) z00i ∈ Dint
i

from (62.171). And (62.172), (62.173) imply that both −C 0iz
0
i and C 0i(≤

−1
3,i z

00
i − z0i)

lie in the convex hull of b∞i.
Therefore it follows from (62.169.3) that |C 0i≤−1

3,i z
00
i | = C 0i is bounded, which con-

tradicts to the standing hypothesis C 0i = |∇ ewi(z0i)| → 1 in Case B. This implies
that Case B does not occur.

The proof of Theorem 62.13 is finally completed. §
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62.7. Wrap up of the proof of Theorem 62.2.

In this subsection, we use Theorem 62.13 to complete the proof of Theorem 62.2.
Let wi, ≤1,i, ≤2,i be the sequences chosen in (62.7). Subsequently we obtain ai, b,

δk,i, Ui,int, Ui,out, Ui,neck, √i,int, √i,neck, Ri, C1,i, C2,i that appear in Theorem 62.13.
If i is enough large we can apply Theorem 61.46 (2) to ≤1 = −≤1,i, ≤2 = ≤2,i, b ∈

Sn−2 and obtain another pseudo-holomorphic map
w0i : H → M

satisfying the same Lagrangian boundary condition as wi, which is
w0i(z) ∈ L−≤1,i , z ∈ [−1, 1] ⊂ R,

w0i(z) ∈ L0, z ∈ R \ [−1, 1].
We next apply Theorem 62.13 to this new sequence w0i. We put primes on the
objects corresponding to w0i to tell them from those associated to wi. Without loss
of any generality, we may assume

≤02,k = ≤2,k, δ02,k = δ2,k, Ri = R0i, C1,i = C 01,i, C2,i = C 02,i.

(In fact we may replace them by max(≤2,k, ≤02,k), min(R0i, Ri) and etc.)

Lemma 62.174. We have b = b0.

Proof. It follows from the gluing construction that there exist gi ∈ Aut(H∪1;±1)
such that ≤−1

1,i (w
0
i ◦ gi) converges to wa0,b in compact C1 topology around 0 ∈ H.

Here a0 = (1, 0, · · · , 0).
On the other hand, (62.15.3.1) and limi→1 ai = a0 (which is proved at the end

of §62.5) say that the sequence of rescaled maps ≤−1
1,i (w

0
i ◦ e√i,int) converges to wa0,b0

in compact C1 topology. The lemma follows easily. §

Our next task is to find a path r 7→ wr
i joining wi to w0i. This is Step (62.5.2).

We start with constructing a coordinated chart of the domain by interpolating the
ones for wi and w0i.

Let Ri be the sequence that appears in Theorem 62.13. We will fix the constants
Rout and Rint later, which are sufficiently large and independent of i. We take i’s
so large that Ri > 10Rint. We define the coordinate transformations
(62.175.1) Φi;neck,int : (Rint, Rint + 1)× [0, 1] → (−Ti + C1,i, S1 + C2,i)× [0, 1]

(62.175.2) Φ0i;neck,int : (Rint, Rint + 1)× [0, 1] → (−Ti + C1,i, S1 + C2,i)× [0, 1]
by the formula

wi ◦ √i,neck ◦ Φi;neck,int = wi ◦ √i,int,(62.176.1)

w0i ◦ √0i,neck ◦ Φ0i;neck,int = w0i ◦ √0i,int.(62.176.2)
Hereafter we denote by o(n | a, b, c, · · · ) a sequence of constants depending only on
n, a, b, c, · · · and satisfying limn→1 o(n | a, b, c, · · · ) = 0 for each fixed a, b, c, · · · .
(In particular o(n) is a sequence of constants such that limn→1 o(n) = 0.) We may
replace them several times in the proof with the same symbols.
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Lemma 62.177. (1) If i is sufficiently large, Φi;neck,int, Φ0i;neck,int are uniquely
determined.
(2) Both Φi;neck,int and Φ0i;neck,int are biholomorphic onto their images respectively.
(3)

(62.178.1) |∇k(Φi;neck,int − Φ0i;neck,int)|(τ, t) ≤ o(i | k,Rint) + Cke−ckRint .

(4)

|Φi;neck,int(τ, t)− (τ + (2α)−1 log ≤1,i, t)| ≤ o(i | Rint) + o(Rint),(62.178.2)

|Φ0i;neck,int(τ, t)− (τ + (2α)−1 log ≤1,i, t)| ≤ o(i | Rint) + o(Rint).(62.178.3)

Proof. (1) is obvious from (62.14.2) and (62.15.3.2). (2) follows from (62.176).
Lemma 62.174 and ai, a0i → a0 imply

(62.179.1) |∇k(wi ◦ √i,neck − w0i ◦ √0i,neck)| ≤ o(i | k)

on
[(2α)−1 log ≤1,i + Rint − 10, (2α)−1 log ≤1,i + Rint + 10]× [0, 1],

and

(62.179.2) |∇k(wi ◦ √i,int − w0i ◦ √0i,int)| ≤ o(i | k)

on
[Rint, Rint + 1]× [0, 1].

We remark that the images of Φi;neck,int, Φ0i;neck,int is in [(2α)−1 log ≤1,i + Rint −
10, (2α)−1 log ≤1,i+Rint+10]×[0, 1] by (62.15.3.2) and (62.14.2). Therefore (16.179),
(62.15.3.2) and (62.14.2) imply (62.178.1).

(62.178.2)-(62.178.3) also follow from (62.14.2), (62.15.3.2). §

We next define coordinate transformations

Φi;neck,out : (S1 −Rout − 1, S1 −Rout)× [0, 1] → H \ {0}(62.180.1)

Φ0i;neck,out : (S1 −Rout − 1, S1 −Rout)× [0, 1] → H \ {0}(62.180.2)

to be the restrictions of (√i,neck)−1, (√0i,neck)
−1, respectively.
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Lemma 62.181. (1) Φi;neck,out, Φ0i;neck,out are biholomorphic onto its images.
(2) They satisfy

(62.182) |∇k(Φi;neck,out − Φ0i;neck,out)| ≤ o(i | k,Rout) + Cke−ckRout .

(3) They also satisfy

|Φi;neck,out(τ, t)− (τ, t)| ≤ o(i | Rout) + o(Rout),(62.183.1)

|Φ0i;neck,out(τ, t)− (τ, t)| ≤ o(i | Rout) + o(Rout).(62.183.2)

Proof. By construction and from Lemma 62.8, we obtain

|∇k(wi ◦ Φi;neck,out − wtri ◦ Φi;neck,out)|(τ, t) ≤ o(i | k,Rout),(62.184.1)

|∇k(w0i ◦ Φ0i;neck,out − wtri ◦ Φ0i;neck,out)|(τ, t) ≤ o(i | k,Rout).(62.184.2)

By Theorem 54.17 and wtri ∈ fM0(H, Cn; (Hα
−≤1,i

)0), we have

(62.185) |∇k(wtri − wflat
0,a0

)|(τ, t) ≤ Cke−ckRout ,

on (S1 −Rout − 1, S1 −Rout)× [0, 1].
From (62.14), we also obtain

|∇k(wi ◦ Φi;neck,out − wflat
0,ai

)|(τ, t) ≤ Cke−ckRout ,(62.186.1)

|∇k(w0i ◦ Φ0i;neck,out − wflat
0,a0i

)|(τ, t) ≤ Cke−ckRout(62.186.2)

on (S1 −Rout − 1, S1 −Rout)× [0, 1].
Combining (62.184), (62.186) and the convergence ai, a0i → a0, we obtain

|∇k(wtri ◦ Φi;neck,out − wtri ◦ Φ0i;neck,out)| ≤ o(i | k,Rout) + Cke−ckRout .

Therefore (62.185) implies (62.182) and (62.183) follows from (62.186) and Lemma
62.8. §

Now fix an identification H \ {0} with R× [0, 1] by the unique conformal isomor-
phism satisfying

0 ↔ −1, 1↔ +1, 0 +
√
−1 ↔ (0, 1/2)

as before. Then for each r ∈ [0, 1] we define the maps Φr
i;neck,int : [Rint, Rint + 1]×

[0, 1] → R× [0, 1], and Φr
i;neck,out : [S1 −Rout − 1, S1 −Rout]× [0, 1] → R× [0, 1] by

Φr
i;neck,int = (1− r)Φi;neck,int+rΦ0i;neck,int,(62.187.1)

Φr
i;neck,out = (1− r)Φi;neck,out+rΦ0i;neck,out.(62.187.2)
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If we choose sufficiently large constants Rout, Rint and then i’s with i ≥ I(Rout, Rint)
for the constant I(Rout, Rint) depending only on Rout, Rint, it follows from (62.183)
that these are well-defined and become diffeomorphisms onto their images respec-
tively.

Next we put

Ur
i,int = [−1, Rint + 1)× [0, 1],(62.188.1)

Ur
i,out = (S1 −Rout − 1,1]× [0, 1].(62.188.2)

We define Ur
i,neck to be the smallest connected open subset of R × [0, 1] which

contains both the images of Φr
i;neck,int and Φr

i;neck,out. It again follows from (62.183)
that there exists o(Rint), o(Rout) such that

(62.188.3)
[(2α)−1 log ≤1,i + Rint + o(Rint), S1 −Rout − o(Rout)]

⊆ Ur
i,neck ⊆ [(2α)−1 log ≤1,i + Rint − o(Rint), S1 −Rout + o(Rout)].

Figure 62.11.

Gluing Ur
i,int, Ur

i,neck, Ur
i,out by the transition maps Φr

i;neck,int, Φr
i;neck,out between

the nearby domains, we obtain a real 2 dimensional compact manifold Σr with
boundary : Here we regard Ur

i,int as an open neighborhood of 0 ∈ H.
From now on, we equip Σr with a metric which we describe on each of the three

domains separately.
First we decompose Ur

i,int into

Ur
i,int = H|z|≤1 ∪ ([0, Rint + 1]× [0, 1]).

On H|z|≤1 we use standard Euclidean metric and on [0, Rint + 1]× [0, 1] we use the
product metric.
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We use the product metric on

Ur
i,neck ⊂ R× [0, 1].

Finally we decompose

Ur
i,out = ([S1 −Rout − 1, S1 −Rout]× [0, 1]) ∪H|z|≥eS1−Rout .

We use the product metric on [S1−Rout− 1, S1−Rout]× [0, 1]. On the other hand
on the outside region H|z|≥eS1−Rout , we take the isomorphism

H|z|≥eS1−Rout
∼= H|z|≤1 ; z 7→ eS1−Rout/z

and pushforward the standard Euclidean metric on H|z|≤1 onto H|z|≥eS1−Rout . See
Figure 62.12.

Figure 62.12.

Note the metrics above do not match on the overlapped parts. So we need to
modify them appropriately to get a smooth metric g0Σr

on Σr. We do this so that
the ratio g0Σr

/g is uniformly bounded, where g is one of the above metrics. This
process is not essential since we use the metric only to define Ck or Sobolev norms
for the tensors or the maps defined on Σr. The norms obtained for different choices
are all equivalent independent of the choice of smoothing as long as the ratio g0Σr

/g
is uniformly bounded.

We next define a complex structure on Σr. Since Φr
i;neck,out, Φr

i;neck,int for r = 0, 1
are biholomorphic onto their images, it follows that Σ0, Σ1 has the canonical glued
complex structures denoted by j(0), j(1). Clearly (Σ0, j(0)) ∼= (H, j0) ∼= (Σ1, j(1)).

For the cases r 6= 0, 1, we remark that since the transition maps Φr
i;neck,out,

Φr
i;neck,int are not j0-holomorphic in general, the standard complex structure j0 on
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the three coordinate domains are not compatible with the transition maps and
so do not glue globally. Therefore we manually put an almost complex structure
interpolating them on the transition regions. By the two dimensionality of Σr, the
constructed almost complex structure will be indeed integrable.

Consider the set

J(R2) = {j : R2 → R2 | j2 = −1} ⊂ GL(2; R).

We take its neighborhood U(J(R2)) in GL(2; R) and a smooth retraction

Π : U(J(R2)) → J(R2).

Consider a smooth cut-off function χA : R → [0, 1] such that

χA(τ) =
Ω 0 τ < A + 1

10 ,

1 τ > A + 9
10 .

It follows from (62.178) and its C1-analog that

(62.189) |(Φr
i;neck,int)∗j0 − j0| ≤ o(i | Rint) + Ce−cRint .

Similar inequality also holds for (Φr
i;neck,out)∗j0 by (62.184) and its C1-version.

Therefore we can define complex structures on Ur
i,int and Ur

i,out by

jr
i,int = Π((1− χRint(τ))j0 + χRint(τ)(Φr

i;neck,int)
−1
∗ j0),

jr
i,out = Π(χS1−Rout−1(τ)j0 + (1− χS1−Rout−1(τ))(Φr

i;neck,out)
−1
∗ j0),

respectively. Here j0 is the standard complex structure of R× [0, 1] ∼= H \ {0} and
the summation is just the matrix sum in M2×2(R). (62.189) makes the sums lie in
the neighborhood U(J(R2)) if Rint is sufficiently large and i ≥ I(Rint). Therefore
the almost complex structures jr

i,int are well defined. Similarly for Rout large and
i ≥ I(Rout), the almost complex structures jr

i,out are well defined.
We define an almost complex structure jr

i,neck on Ur
i,neck by the formula

jr
i,neck =






(Φr
i;neck,int)∗(j

r
i,int) on the image of Φr

i;neck,int,

(Φr
i;neck,out)∗(j

r
i,out) on the image of Φr

i;neck,out,

j0 elsewhere.

It is easy to check that jr
i,neck is well defined when jr

i,int, jr
i,out are well defined.

They are glued to give an almost complex structure jr
(i) on Σr. This indeed defines

a complex structure on Σr since Σr is two dimensional for which every almost
complex structure is a complex structure.
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Lemma 62.190. (1) jr
(i) = j0 on Ur

i,int \ [Rint, Rint + 1] × [0, 1], on Ur
i,out \ [S1 −

Rout − 1, S1 −Rout]× [0, 1] and on Ur
i,neck \ (Im(Φr

i,neck,int) ∪ Im(Φr
i,neck,out)).

(2) |∇k(jr
(i)−j0)|(τ, t) ≤ o(i | k,Rint)+Ce−cRint on [Rint, Rint +1]× [0, 1] ⊂ Ur

i,int.
(3) |∇k(jr

(i)−j0)| ≤ o(i | k,Rout)+Ce−cRout on [S1−Rout−1, S1−Rout]× [0, 1] ⊂
Ur

i,out.

We remark that j0 in (1) and (2) means the standard complex structure j0 on
any open subset of R× [0, 1] ⊂ C.

Proof. (1) is immediate from definition. (2) follows from (62.189) and its Ck ana-
logues. The proof of (3) is similar. §

Now we are ready to interpolate wi and w0i to define a family of approximate
holomorphic maps

wr
i : Σr → M.

We recall the decomposition

M = B(p12; ≤0) ∪ (M \B(p12; ≤0))

and the identification or cylindrical coordinates

(s,Θ) : B(p12; ≤0) \ {p12} ∼= B2n(≤0) \ {0} → R× S2n−1.

Denote by exp the exponential map of the product metric on R× S2n−1 and

E(q, q0) := (expq)
−1(q0) ∈ Tq(R× S2n−1).

Note that E is well-defined as long as Θ0 6= −Θ on S2n−1, where q = (s,Θ) and
q0 = (s0,Θ0).

For the notational convenience, we make the following abuse of notations.

Definition 62.191. Let q = (s,Θ), q0 = (s0,Θ0) ∈ R × S2n−1, with Θ0 6= −Θ, we
define

r(s,Θ) + (1− r)(s0,Θ0) =: expq(rE(q, q0))

Definition 62.192. (1) For (τ, t) ∈ Ur
i,int, we put Φi;neck,int(τ, t) =: (τ 0, t0) and

define the maps

(62.193.1)
wr

i (τ, t) = (1− χRint(τ))
°
(1− r)wi(√i,int(τ, t)) + rw0i(√

0
i,int(τ, t))

¢

+ χRint(τ)
°
((1− r)wi(√i,neck(τ 0, t0)) + rw0i(√

0
i,neck(τ

0, t0))
¢
.

In case (τ, t) is not in the domain of Φi;neck,int, we have χRint(τ) = 0. Hence the
above formula makes sense. We remark that in (62.193.1) we use the notation in
Definition 62.191 three times.
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(2) For (τ, t) ∈ Ur
i,out, we put Φi;neck,out(τ, t) = (τ 0, t0) and define :

(62.193.2)
wr

i (τ, t) =χS1−Rout−1(τ)
°
(1− r)wi(√i,out(τ, t)) + rw0i(√

0
i,out(τ, t))

¢

+ (1− χS1−Rout−1(τ))
°
((1− r)wi(√i,neck(τ 0, t0)) + rw0i(√

0
i,neck(τ

0, t0))
¢
.

(3) We define wr
i on Ur

i,neck as follows.

(62.193.3)

wr
i (τ, t) =






(wr
i ◦ Φ−1

i;neck,int)(τ, t) on Im(Φi;neck,int),

(wr
i ◦ Φ−1

i;neck,out)(τ, t) on Im(Φi;neck,out),
(1− r)wi(√i,neck(τ, t)) + rw0i(√0i,neck(τ, t)) eleswhere.

In the next lemma and thereafter we equip a metric g0M adapted to the above
decomposition of M ,

M = Bp12(≤0) ∪ (M \Bp12(≤0)).

On M \Bp12(≤0) the metric g0M is ≤−1
0 gM . We further divide Bp12(≤0) into

Bp12(≤0) = B0(S0
√

≤1,i, Cn) ∪ ([
1
2

log ≤1,i + log S0, log ≤0]× S2n−1).

Then we define the metric g0M by

g0M =






(≤0)−2gM on M \B(p12; ≤0)
ϕ∗gR×S2n−1 on (B(p12; ≤0) \B(p12;S0

√
≤1,i))

S−2
0 ≤−1

1,i I
∗gCn on B(p12;S0

√
≤1,i)

with a suitable smoothing along the gluing hypersurfaces. See Figure 62.13.

Figure 62.13.
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Lemma 62.194. (1) wr
i is well defined and smooth.

(2) w0
i = wi, w1

i = w0i.
(3) limi→1 sup |∇k(wr

i − wi)| = 0. Here we identify Ur
i,int, Ur

i,out, Ur
i,neck with

Ui,int, Ui,out, Ui,neck and then the difference wr
i − wi makes sense on each of those

charts.
(4) limi→1 sup |∇k(@jr

i
wr

i )| = 0.
In (5),(6),(7),(8),(9) below, Ck, ck are positive numbers independent of i and

Rint, Rout.
(5) For (τ, t) ∈ [0, Rint]× [0, 1] ⊂ Ur

i,int, we have

|∇k(@jr
i
wr

i )|(τ, t) ≤ Cke−ck|τ |.

(6) For (τ, t) ∈ [S1 −Rout, S1]× [0, 1] ⊂ Ur
i,out, we have

|∇k(@jr
i
wr

i )|(τ, t) ≤ Cke−ck|τ |.

(7) For (τ, t) ∈ Ur
i,neck \ (Im(Φi;neck,out) ∪ Im(Φi;neck,int)), we have

|∇k(@jr
i
wr

i )|(τ, t) ≤ Cke−ck min{|τ |,|τ+Ti|}.

(8) For (τ, t) ∈ [Rint, Rint + 1]× [0, 1] ⊂ Ur
i,int, we have

|∇k(@jr
i
wr

i )|(τ, t) ≤ o(i | k,Rint) + Cke−ckRint .

(9) For (τ, t) ∈ [S1 −Rout − 1, S1 −Rout]× [0, 1] ⊂ Ur
i,out, we have

|∇k(@jr
i
wr

i )|(τ, t) ≤ o(i | k,Rout) + Cke−ckRout .

Proof. (1),(2) and (3) are easy to see from the definition of wr
i . (4) then follows.

Next we prove (7). We recall

|∇k(wi ◦ √i,neck − wflat
ai,0)|(τ, t) ≤ Cke−ck min{|τ |,|τ+Ti|},

|∇k(w0i ◦ √0i,neck − wflat
a0i,0

)|(τ, t) ≤ Cke−ck min{|τ |,|τ+Ti|}.

Note ai 6= a0i in general. This is the reason we do not have exponential decay
estimate for wr

i − wi. Nevertheless we have

(62.195) |∇k(wr
i ◦ √r

i,neck − wflat
ar

i ,0)|(τ, t) ≤ Cke−ck min{|τ |,|τ+Ti|},

where
ar

i = ra0i + (1− r)ai.
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(Here we use a similar notation as Definition 62.191.)
(7) follows immediately from (62.195). The proofs of (5) and (6) are similar.
The proof of (8) and (9) is also similar to the proof of (7). The term o(i | k,Rint)

and o(i | k,Rout) appear on the right hand side, since they appeared in Lemma
62.190 (2)(3) and (62.178),(62.182). §

We have thus constructed approximate solutions wr
i and established their basic

estimates. This finishes Step (62.5.2).
We next proceed to Step (62.5.3). Namely we deform wr

i to a family of pseudo-
holomorphic maps. We use the implicit function theorem for this purpose. For this
we need the weighted Sobolev space similar to the one used in §61.6.

We begin with defining a weight function ρ : Σr → R. Let δ > 0.

Definition 62.196. (1) If (τ, t) ∈ Ui,int we put

(62.197.1) ρδ,i,int(τ, t) =
Ω

1 τ ≤ 0,

eδ|τ | 0 ≤ τ ≤ Rint + 1.

(2) (τ, t) ∈ Ui,neck we put

(62.197.2) ρδ,i,neck(τ, t) =

(
exp(δ|τ − (2α)−1 log ≤1,i|) τ ≤ (2α)−1 log ≤1,i+S1

2 − 1,

exp(δ|τ − S1|) (2α)−1 log ≤1,i+S1
2 + 1 ≤ τ ,

and

(62.197.3) ρδ,i,neck(τ, t) = exp
µ

δ
((2α)−1 log ≤1,i + S1)

2
− δ

∂

if (2α)−1 log ≤1,i+S1
2 − 1 ≤ τ ≤ (2α)−1 log ≤1,i+S1

2 + 1. (See Figure 62.14.)

(3) (τ, t) ∈ Ui,out we put

(62.197.4) ρδ,i,neck(τ, t) =
Ω

eδ|τ−S1| S1 −Rout ≤ τ ≤ S1,

1 S1 ≤ τ ,
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Figure 62.14.

Lemma 62.198. There exists ρδ,i,r such that the ratios ρδ,i,r/ρδ,i,neck, ρδ,i,r/ρδ,i,int,
ρδ,i,r/ρδ,i,out, are all bounded from above and from below by positive constants inde-
pendent of i and Rint, Rout.

Proof. Lemma 62.177 (4), Lemma 62.181 (3) and (62.188.3) imply that the ratio
ρδ,i,int/ρδ,i,neck and ρδ,i,out/ρδ,i,neck are uniformly bounded on the overlapped parts.
The lemma then can be proved by using partitions of unity in an obvious way. §

Definition 62.199. (1) Let V be a smooth section of wr∗
i TM over Σr such that

V (z) ∈ wr∗
i T (L−≤1,i) or V (z) ∈ wr∗

i T (L0) for z ∈ @Σr.
We take V ( (2α)−1 log ≤1,i+S1

2 , 1/2) where ( (2α)−1 log ≤1,i+S1
2 , 1/2) ∈ Ui,neck. We ex-

tend V to a section V0 defined on the union U+
i,neck of

Ui,neck

[0, Rint]× [0, 1] ⊂ Ui,int

[S1 −Rout, S1]× [0, 1] ⊂ Ui,out

in the same way as (61.39). Now we put

(62.200)

kV kp
1,p,ρδ,i,r

=
ØØØØV

µ
(2α)−1 log ≤1,i + S1

2
, 1/2

∂ØØØØ
p

+
Z

Σr\U+
i,neck

°
|∇V |pg + |V |pg

¢
≠g0Σr

+
Z

U+
i,neck

ρδ,i,r

≥
|∇(V − V0)|pg0M + |(V − V0)|pg0M

¥
dAg0Σr

.

We denote by W 1,p
ρδ,i,r

(Σr : wr∗
i TM ;wr∗

i T (L−≤1,i)) the completion of the set of such
V ’s with respect to the norm k · k1,p,ρδ,i,r .
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(2) Let V be a section of wr∗
i T (L0)⊗ Λ0,1(Σr, jr). We define

(62.201) kV kp
p,ρδ,i,r

=
Z

Σr

ρδ,i,r|V |pg0M dAg0Σr
.

We denote by Lp
ρδ,i,r

(Σr : wr∗
i TM ;wr∗

i T (L−≤1,i) ⊗ Λ0,1(Σr, jr)) the completion of
the set of all such V by the norm k · kp,ρδ,i,r .

Now we have

Lemma 62.202. If Rout, Rint are sufficiently large and if i > I(Rout, Rint), then
the following holds.
(1) The operator :

Dwr
i
@jr :W 1,p

ρδ,i,r
(Σr : wr∗

i TM ;wr∗
i T (L−≤1,i))

→ Lp
ρδ,i,r

(Σr : wr∗
i TM ;wr∗

i T (L−≤1,i)⊗ Λ0,1(Σr, jr))

is a Fredholm operator.
(2) There exists

Qi,r : Lp
ρδ,i,r

(Σr : wr∗
i TM ;wr∗

i T (L−≤1,i)⊗ Λ0,1(Σr, jr))

→ W 1,p
ρδ,i,r

(Σr : wr∗
i TM ;wr∗

i T (L−≤1,i))

such that
Dwr

i
@jr ◦Qi,r = identity.

The operator norm of Qi,r is bounded by a number independent of i, r, Rout, Rint

as far as i > I(Rout, Rint).
The same holds if we replace wr

i by a map which is sufficiently close to wr
i with

respect to the W 1,p
ρδ,i,r

norm.

The proof is the same as the proof of Lemma 61.44 and hence is omitted.

Lemma 62.203. If δ > 0 is sufficiently small then we have

k@jr
i
wr

i kp,ρδ,i,r ≤ o(i | Rint, Rout) + o(Rint) + o(Rout).

Proof. We may choose δ smaller than the constant c0 in (5),(6),(7),(8),(9) of Lemma
62.194. For S ≤ min(Rint, Rout), we consider the union Ur

S of the following three
sets :

Ur
i,neck

[S,Rint + 1]× [0, 1] ⊂ Ur
i,int

[S1 −Rout − 1, S1 − S]× [0, 1] ⊂ Ur
i,out.
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We put
Ur

glue,int = [Rint, Rint + 1]× [0, 1] ⊂ Ur
i,int,

Ur
glue,out = [S1 −Rout − 1, S1 −Rout]× [0, 1] ⊂ Ur

i,int.

Then by (5),(6),(7) of Lemma 62.194 we have

(62.204.1) (ρδ,i,r|@jr
i
wr

i |
p
g0M

)(τ, t) ≤ Ce−(c0−δ)Se−(c0−δ) dist((τ,t),@Ur
S)

on
US \ (Ur

glue,int ∪ Ur
glue,out).

Using (8),(9) of Lemma 62.194 we have

(62.204.2) (ρδ,i,r|@jr
i
wr

i |
p
g0M

)(τ, t) ≤ eδRinto(i | Rint) + Ce−(c0−δ)Rint

on Ur
glue,int and

(62.204.3) (ρδ,i,r|@jr
i
wr

i |
p
g0M

)(τ, t) ≤ eδRouto(i | Rout) + Ce−(c0−δ)Rout

on Ur
glue,out.

Moreover, by (4) of Lemma 62.194, we have
Z

H\Ur
S

ρδ,i,r|@jr
i
wr

i |
p
g0M

dAg0Σr
≤ o(i | S).

Therefore we have
Z

US

ρδ,i,r|@jr
i
wr

i |
p
g0M

dAg0Σr
≤ Ce−(c0−δ)S + o(i | Rint, Rout) + o(Rint) + o(Rout).

The lemma follows. §

Using Lemmas 62.202 and 62.203 we can apply the implicit function theorem in
a standard way and obtain the following.

Proposition 62.205. For a sufficiently large i, there exists a continuous family of
wr0

i such that

(62.206.1) w00
i = wi, w10

i = w0i.
(62.206.1) wr0

i is jr-JM holomorphic.

We have thus worked out Step (62.5.3).
Now we are to wrap up the proof of Theorem 62.2. We remark that (Σr, jr)

is biholomorphic to H. By our choice w10
i = w0i is in the family constructed in

Theorem 61.46. So using Proposition 62.205, an index calculation and a continuity
argument, we prove that wr

i lies in the family constructed in Theorem 61.46. In
particular so is w00

i = wi. The proof of Theorem 62.2 is now complete. §
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62.8. Proof of Theorem 60.50.

In this subsection, we prove Theorem 60.50. We first prove the following result
which is slightly easier to prove than Theorem 60.50.

Proposition 62.207. For each fixed ≤, The map

(62.208)
[

α∈(0,π)

M(H, Cn; (Hα
≤ )0) → (0, π)

is proper. Here (62.208) maps elements in M(H, Cn; (Hα
≤ )0) to α.

Since we have a natural diffeomorphism betweenM(H, Cn; (Hα
≤ )0) andM(H, Cn; (Hα

sign ≤)0),
we may assume ≤ = ±1 without loss of generality. We will consider the case ≤ = −1
only since the case ≤ = 1 is easier.

Before proving Proposition 62.207, we define a topology of the total space of the
projection [

α∈(0,π)

W 1,p
δ (H, Cn; (Hα

≤ )0) → (0, π)

which forms a locally trivial fibration. This topology is used in the statement of
Proposition 62.207. It will suffice to prove local triviality of this projection which
will in turn induce a topology in an obvious way from the model fiber of the above
fibration.

For this purpose, we will construct a trivialization of
S

α1<α<α2
W 1,p

δ (H, Cn; (Hα
≤ )0)

over the interval (α1, α2) explicitly, when the difference α2−α1 is sufficiently small.
We first construct a smooth family of diffeomorphisms

eΦα : (Cn, (Hα1
≤ )0) → (Cn, (Hα

≤ )0)

parameterized by α’s with α1 < α < α2 in several steps.
We start with defining a family of diffeomorphisms

Φα : S2n−1 → S2n−1.

Let p ∈ S2n−1 be a point in a neighborhood of
S

c∈[0,α] S
n−1
c . (Sn−1

c is defined in
(60.55).) We take a minimal geodesic

∞p : [0,dist(Sn−1
0 , p)] → S2n−1

parameterized by arc length and with ∞p(0) ∈ Sn−1
0 , ∞p(dist(Sn−1

0 , p)) = p. We
extend it to a geodesic (parameterized by the arc length) up to the cut locus and
denote it by the same symbol. We put

Φα(p) = ∞p(dist(Sn−1
0 , p)α/α1).
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In this way we define an diffeomorphism Φα on a neighborhood of
S

c∈[0,α] S
n−1
c

such that
Φα(Sn−1

c ) = Sn−1
αc/α1

for c ∈ [0, α1 + ≤]. We extend it to a diffeomorphism Φα : S2n−1 → S2n−1 so that
it is close to identity. We next identify Cn \ {0} ∼= R× S2n−1 and define

eΦα : R× S2n−1 → R× S2n−1

such that
eΦα(s, x) = (s,Φα(x))

if s is large,
eΦα(s, x) = (s, x)

if s is small, and
eΦα(Hα1

−1)
0 = (Hα

−1)
0.

We thus obtain :
eΦα : (Cn, (Hα1

≤ )0) → (Cn, (Hα
≤ )0).

We use it to identify

[

α1<α<α2

W 1,p
δ (H, Cn; (Hα

≤ )0) ∼= (α1, α2)×W 1,p
δ (H, Cn; (Hα1

≤ )0).

The right hand side has a direct product topology. So we define a topology on the
left hand side by this identification.

The topology on
S

α W 1,p
δ (H, Cn; (Hα

≤ )) which is used in Theorem 60.50 can be
defined in the same way.

Proof of Proposition 62.207. Let αi ∈ (0, π) be a sequence converging to α ∈ (0, π),
and ai ∈ Sn−1 converging to a1. Consider any sequence wi ∈ fM(H, Cn; (Hαi

−1)0)
and denote the corresponding class by

[wi] ∈M(H, Cn; (Hαi
−1)

0, ai) = fM(H, Cn; (Hαi
−1)

0)/ Aut(H).

We will find a sequence gi ∈ Aut(H) such that a subsequence of wi ◦ gi converges
in

S
α W 1,p

δ (H, Cn; (Hα
−1)0).

We first prove the following.

Lemma 62.209. There exists a sequence of holomorphic diffeomorphisms

√i : [0,1)× [0, 1] → H
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onto its image and constants ck, Ck, S2 independent of i such that

(62.210) |∇k((wi ◦ √i)− wflat
ai,0))|(τ, t) < Cke−ckτ

and

(62.211) √i([0,1)× [0, 1]) ⊃ w−1
i (Cn \B2n(S2)),

for large i.

Proof. The proof is similar to that of Theorem 62.13. So the discussion below is
rather brief.

We identify
Cn \ {0} ∼= R× S2n−1

as before, and denote

Σi,≥s = w−1
i ([s,1)× S2n−1)) ⊂ H.

We consider
Σi,≥log 2S0 = w−1

i ([log 2S0,1)× S2n−1)) ⊂ H

and define energies as follows :

Ed∏(wi) =
Z

Σi,≥log 2S0

w∗i d∏,

E∏,neck(wi) = sup
ρ∈C

Z

Σi,≥log 2S0

w∗i (ρds ∧ ∏),

Eneck(wi) = Ed∏(wi) + E∏,neck(wi),

where C is the set of all smooth nonnegative functions on [log 2S0,1) with compact
support such that

R
ρds = 1.

The following sublemma can be proved in the same way as Proposition 62.30 in
§62.4 whose proof is omitted.

Sublemma 62.212. Eneck(wi) is uniformly bounded.

Moreover by the argument of §62.4 (especially Proposition 62.79) we can prove
that there exist S3 > 0 and I2 such the following holds for i > I3 and s3 > S3.

(62.213.1) s3 is a regular level. The curve wi(Σi)∩({s3}×S2n−1) is parameterized
by an arc ∞i,s3 : [0, 1] → {s3} × S2n−1 for which there exists a ∈ Sn−1 such that

(62.214.1) |∇k(∞a − ∞i,s)| < o(i, S3 | k).
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(62.213.2) Moreover, the set

Σi,s3−1≤s≤s3+1 = wi(H) ∩ ([s3 − 1, s3 + 1]× S2n−1)

has a parametrization

wi,s3−1≤s≤s3+1 : [−1/α, 1/α]× [0, 1] → Σi,s3−1≤s≤s3+1

for which we have

(62.214.2) |∇k(wi,s3−1≤s≤s3+1 − wflat
a,s3

)| < o(i, S3 | k).

Here we put wflat
a,s3

(τ, t) = (ατ + s3, ∞a(t)).

Denote E0 = supEneck(wi) and let e0 be as in Theorem 62.85. We remark that
we can take e0 independent of αi since the set {αi | i = 1, 2, · · · } is relatively
compact in (0, π) by the choice.

We may also choose S3 and I3 so that if s > S3 and i > I3, then we have

(62.215)
Z

Σi,≥s

w∗i d∏ < e0.

Using (62.213)-(62.215) we can apply Theorem 62.85. The rest of the proof is
similar to the argument presented in §62.5 and omitted. §

Composing wi with an element v ∈ R ⊂ Aut(H) (the group consisting of trans-
lations z 7→ z + v), we may assume

(62.216) |wi(0)|Cn = inf{|wi(z)|Cn | z ∈ @H}.

We recall that wi(H) does not contain 0 ∈ Cn by Proposition 60.54. Therefore com-
posing wi with an element ∏ ∈ R+ ⊂ Aut(H) (the group consisting of homotheties
z 7→ ∏z), we may also assume

(62.217) sup{|z| | z ∈ H, |wi(z)|Cn = 2S2} = 1.

Lemma 62.218. wi has a convergent subsequence in compact C1 topology.

Proof. The proof is similar to that of (62.15) given in §62.6.
By elliptic regularity and Ascoli-Arzela’s theorem, it suffices to show that

sup{|∇wi|(z) | |z| < R}

is bounded for each R. (We use the standard metric for H and the product metric
on Cn \ {0} ∼= R × S2n−1.) We will prove this by contradiction. Supposing to the
contrary and taking a subsequence if necessary, we may assume the following :
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There exists a bounded sequence zi ∈ H such that

(62.219) lim
i→1

|∇wi|(zi) = 1.

We apply Lemma 62.89 to find z0i such that

(62.220.1) |∇wi|(z0i) := Ci →1 as i →1.
(62.220.2) If |z − z0i| ≤ C−1/2

i then |∇wi|(z) ≤ 2Ci.
(62.220.3) |z0i| is bounded.

Using Lemma 62.209 and the proof of Lemma 62.151, we can show that |wi(z0i)|
is bounded.

We put

(62.221) Di = {u ∈ C | |Ciu| ≤ C−1/2
i , C−1

i u + z0i ∈ H}

and define ewi : Di → Cn by

(62.222) ewi(u) = wi(C−1
i u + z0i).

Let D1 = lim Di. By taking a subsequence we may assume that one of the following
occurs.

(62.223.1) D1 = C.
(62.223.2) D1 = H− c

√
−1.

We use boundedness of |wi(z0i)| and (62.220.2) to show that ewi has a subsequence
(still denoted by ewi) which converges to

(62.224) ew1 : D1 → Cn

in compact C1 topology. Since |∇ ewi|(0) = 1 and hence |∇ ew1|(0) = 1 it follows
that ew1 is nontrivial. We can then prove that ew1 must be unbounded in the same
way as Lemma 62.157.

Using Lemma 62.209 and the proof of Propositoin 62.158, we prove that (62.223.1)
can not occur.

Now assume (62.223.2). Slightly perturbing z0i, we may assume that z0i ∈ @H,
D1 = H. We use Lemma 62.209 and the fact that ew1 is unbounded to show that
there exists R > 10S1 with the following properties (Compare this with Lemma
62.168.) :

(62.225.1) ewi is transversal to {R}×S2n−1 for large i. The preimage bw−1
i ({R}×

S2n−1) is an arc, which we denote by b∞i.
(62.225.2) If we put

b∞0i = {C−1
i b∞i(t) + z0i | t ∈ [0, 1]},
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then Σi \ b∞0i is a disjoint union of Dint
i and Dext

i such that
wi(Dext

i ) ⊂ [R,1)× S2n−1.

(62.225.3) b∞i ⊂ Di ⊂ H is uniformly bounded.

It follows that
lim

i→1
Diam{z ∈ H | |wi(z)| ≤ eR} = 0.

On the other hand (62.216) and (62.217) imply
(62.226) Diam{z ∈ H | |wi(z)| ≤ 2S2} ≥ 1.

This is a contradiction. The proof of Lemma 62.218 is complete. §

Taking a subsequence if necessary, we may assume that
lim

i→1
wi = w1

in compact C1 topology. Then (62.216) and (62.217) imply w1 must be noncon-
stant. We also derive from the conformal invariance of the energy and from the
convergence that its energies are all finite. Then in the same way as the proof
of Lemma 62.141, we use Lemma 62.209 to prove that w1 satisfies the correct
asymptotic condition and hence

(62.227) w1 ∈ fM(H, Cn; (Hα
−1)

0).
This implies there exists a constant S such that
(62.228) w−1

1 ((−1, log 2S2]× S2n−1) ⊂ B2n(S) ∩H.

Since w−1
i ({log 2S2}×S2n−1) is connected by Lemma 62.209, it follows from (62.228)

that
(62.229) w−1

i ((−1, log 2S2]× S2n−1) ⊂ B2n(S + 1) ∩H,

for all sufficiently large i’s. (We remark that the convergence in Lemma 62.218 is
compact C1 convergence. Therefore (62.228) does not directly imply (62.229) but
we can use Lemma 62.209 to obtain (62.229).)

It follows from (62.229) and (62.215) that

(62.230)
Z

[log S+10,1)×[0,1]
w∗i (d∏) < e0.

Here we regard [log S + 10,1) × [0, 1] as a subset of H as before. Note S is inde-
pendent of i.

By (62.230) we can apply Theorem 62.85 to show that

(62.231) |∇k(wi − wflat
ai,si

)|(τ, t) ≤ Cke−ck(τ−S)

here ck, Ck is independent of i. Using compact C1 convergence we derive that si

converges to s1.
Now using compact C1 convergence and exponential decay (62.231) we can

prove that wi converges to w1 in
S

α W 1,p
δ (H, Cn; (Hα

−1)0). The proof of Proposition
62.207 is now complete §
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Remark 62.232. The proof of the last step of Proposition 62.207 is simpler than
that of the proof of Theorem 62.2 given in §62.7. This is because we are proving
compactness here which is easier to prove than the surjectivity in general.

Now we are ready to wrap up the proof of Theorem 60.50. Let 0 < α1 < α2 < π.
We use Proposition 62.207 and Theorem 60.26 (Remark 60.28) in the same way as
in §60.4 and show that there exists a constant S0,1 such that for any S0 > S0,1 we
have a diffeomorphism

(62.233)
[

α∈[α1,α2]

M(H, Cn; (Hα
−1)

0, a) ∼= [α1, α2]× Sn−2.

Here the map (62.208) is the projection to the [α1, α2] factor. (Note S0 appears in
the definition of (Hα

−1)0.) Now we use (the proof of) Proposition 61.9 to obtain

(62.234) [α1, α2]× Sn−2 ⊆
[

α∈[α1,α2]

M(H, Cn; (Hα
−1), a).

If (62.234) were not an equality, there would exist an element [w] in
[

α∈[α1,α2]

M(H, Cn; (Hα
−1), a) \ ([α1, α2]× Sn−2).

Then we could take S0 large enough (which may depend on w) so that [w] produce
an element of M(H, Cn; (Hα

−1)0) by Proposition 61.9. This would contradict to
(62.233). This implies Theorem 60.50 in case ≤ = −1. The proof for the other ≤ is
similar. The proof of Theorem 60.50 is now complete. §

Remark 62.235. We here remark one rather delicate point in the above proof.
Namely to deduce Theorem 62.2 from Proposition 62.207 we use (the proof of)
Proposition 62.207 which claims that the moduli space M(H, Cn; (Hα

−1)0, a) is dif-
feomorphic to M(H, Cn; (Hα

−1), a) if S0 (which appears in the definition of (Hα
−1)0)

is sufficiently large. Actually we use the compactness of these moduli spaces to
obtain a global diffeomorpism betwee them.

The argument however is not circular as we explain below.
First by the argument of §59.3, the moduli space M(H, Cn; (Hπ/2

−1 )0, a) is diffeo-
morphic to Sn−2 and is in particular compact.

On the other hand, by Propositio 62.207, the moduli space M(H, Cn; (Hα
−1)0, a)

is compact for any α.
So we can use (the proof of) Proposition 61.9 to show that M(H, Cn; (Hπ/2

−1 )0, a)
is diffeomorphic to Sn−2 for sufficiently large S0. We next use the argument of §60.4
to show that M(H, Cn; (Hα

−1)0, a) is diffeomorphic to Sn−2 for any α ∈ (0, π).
We next use (the proof of) Proposition 61.9 to find an open embedding :

Sn−2 ∼= M(H, Cn; (Hα
−1)

0, a) →M(H, Cn; (Hα
−1), a).
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We suppose that this is not surjective. We take an element w inM(H, Cn; (Hα
−1), a)\

Sn−2. We remark that M(H, Cn; (Hα
−1), a) is independent of S0, since S0 is used

only to define (Hα
−1)0.

Therefore using the compactness of Sn−2 ∪ {w} and (the proof of) Proposition
61.9 we can find S00 (which may depend on w) such that there exists an injective
map

Sn−2 ∪ {w} →M(H, Cn; (Hα
−1)

0, a).

(Here we use S00 in place of S0 to define (Hα
−1)0.) This is a contradiction since

M(H, Cn; (Hα
−1)0, a) is diffeomorphic to Sn−2 for any sufficiently large S0.

Remark 62.236. The proof of Proposition 62.207 given in this subsection itself
does not work if we replace (Hα

−1)0 by Hα
−1. This is because Hα

−1 is only asymptot-
ically flat and we took several short cut in this section using the fact that (Hα

−1)0
is flat outside a compact set.

Indeed, we can avoid using Proposition 62.207 and directly prove Theorem 60.50,
if we develop analysis of pseudo-holomorphic curves with asymptotically cylindrical
ends. This is certainly possible but will be carried out elsewhere since we do not
need such general analysis in this book.
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