Chapter 10. Lagrangian Surgery and holomorphic discs.!

The purpose of this chapter is to prove Theorem Z and to study several examples
arising from the study of affine Lagrangian tori and their Lagrangian surgery in the
flat symplectic tori. This chapter provides explicit examples of various constructions
that have been carried out in the previous chapters. Theorem Z describes how
the moduli space of pseudo-holomorphic (k + 1)-gons with Lagrangian boundary
condition is related to that of the pseudo-holomorphic k-gons under the Lagrangian
surgery. In the case of affine Lagrangian tori in the flat symplectic tori, the moduli
space of pseudo-holomorphic polygons are discussed in [Fuk02III]. However our
study of the moduli space of pseudo-holomorphic polygons for the purpose of this
chapter does not depend on [Fuk02III].

A brief outline of the contents of each of the sections of this chapter is in order.

In §54, we recall the construction of Lagrangian surgery with a precise descrip-
tion of the way we do the surgery. This will be used for the later study of the
metamorphosis of the moduli spaces of holomorphic polygons under the surgery. In
this section, we also clarify the multiplicity one condition that appears in Theorem
Z. In §55 we restate Theorem Z in a more precise and detailed way and state some of
its generalizations. In §56 - 57 we use these to discuss various examples arising from
Lagrangian surgery of affine Lagrangian tori. In §58 we review some basic properties
of the moduli space of pseudo-holomorphic polygons. The proof of Theorem 7 is
then carried out in §59 - 62 using a gluing argument. As in [FuOh97], we first need
to construct a local model of pseudo-holomorphic discs to be implanted into a small
neighborhood of the point at which we perform the surgery. We describe the moduli
space of such pseudo-holomorphic discs in §59 - 60. In §61, we use the local model
constructed in §59-60 to smooth-off a corner of the pseudo-holomorphic triangle. In
862, we show that the pseudo-holomorphic discs constructed in §61 exhaust all such
pseudo-holomorphic discs near the given pseudo-holomorphic triangle and complete
the proof of Theorem Z.

The analytic details of §61-62 are closely related to those discussed in the context
of ‘symplectic field theory’ in the literature. (See [ BEHWZ03] for example.) Partly
because the rigorous foundation of ‘symplectic field theory’ is not yet established at
the time of writing this book and also because we are unable to find the literature
containing a rigorous proof of what we need, we give detailed and self-contained
proofs without relying on the literature : Especially the details of the surjectivity
result like the one proven in §62 are rarely given in the literature, while this is the
most delicate and difficult part of the corresponding matters. In this regard, we
like to mention that the idea of separately estimating the ‘horizontal’ and ‘vertical’
energies of the holomorphic maps in the setting of the symplectization is essential
for this purpose. Such an idea is originally due to Hofer [Hof93].
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In the earlier part of this book, we have been trying to prove the results as general
as possible. On the other hand in this chapter, we sometimes put some inessential
restrictions on the almost complex structure J in order to simplify the argument.
Such restrictions, for example Assumption 54.20, could be certainly removed from
Theorem Z but with paying the price of making the volume of the current book even
bigger. Because the main purpose of this chapter is to illustrate the constructions
of this book, we do not attempt to deal with such analytic details but to restrict
ourselves to the cases that we need for the purpose of providing rigorous explanation
of our examples given in §56 - 57.

§54. Lagrangian surgery and local
structure of pseudo-holomorphic polygons.

The main purpose of this section is to review Lagrangian surgery and fix no-
tations. We also give the precise statement on the multiplicity one condition in
Theorem 7Z and review the structure of tangent cones at the vertices of pseudo-
holomorphic polygons. The materials in this section are largely a review of known
results in the literature. We organize them in the way suitable for our study of the
metamorphosis of the moduli space of pseudo-holomorphic (k + 1)-gons to k-gons
under the Lagrangian surgery.

54.1. Lagrangian surgery in symplectic geometry.

In §54.1 and §54.2 we review Lagrangian surgery. In §54.1 we discuss the stan-
dard Lagrangian surgery studied in the symplectic geometry. In §54.2 we include the
effect of the presence of almost complex structure. We refer to [LaSi91], [Pol91I] for
some applications of Lagrangian surgery to the study of topology of Lagrangian sub-
manifolds. We will be interested in the analytical aspects related to the Lagrangian
surgery and pseudo-holomorphic discs. Because of this, we need to describe the La-
grangian surgery in relation to the presence of almost complex structures compatible
with the symplectic form.

Let L; and Ly be a pair of oriented Lagrangian submanifolds in (M,w) that
intersect transversely at pjo. We fix an ordering of the pair as (L1, Ly). We can
always choose a Darboux chart in a neighborhood U of pi1o, I : U — V C C™ so
that I(plg) = 0,

I(LinU)=R*"NV, I(LyNU)=+V—-1R"NV.

The proof follows from a version of Darboux theorem (see [Theorem 7.1, Wei71])
but strongly relies on the following well-known fact in symplectic linear algebra
whose proof we omit.
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Lemma 54.1. The linear symplectic group Sp(2n) acts transitively on the set of
transversal pairs of Lagrangian subspaces.

We would like to point out that U(n) C Sp(2n) does not act transitively on the
set of such pairs. (See Lemma 54.10.)

Let € be a real number sufficiently close to 0. We choose the function f. :
R™\ {0} — R defined by

(54.2) fe(z) = elog |z|,
and denote by H. C C" the graph of df(x).

This is a Lagrangian submanifold in 77*(R™\{0}) = C™\v/—1R"™ which is asymp-
totic to vV—1R"™ as |z| — 0, and to R™ as |z| — oo. Noting that we have

T -dx € —
we can write
(54.4) Hﬁ:{(’Zl;"‘;zn) ‘yj:W7j:1,-..7n}

in coordinates. Here we denote the complex coordinates of C" as z; = z; + v —1y;
forj=1,---,n.
Let 7: C™ — C™ be the reflection along the diagonal

A= {(217227' o 7Zn) "TZ = y2}7
i.e., be the map

<x1+ V_1y17"' ,fl:n+ V_]-yn) = (y1+ V_]-xlu"' 7yn+ V_l'rn)'

We remark that (54.4) implies |z|?|y|? = |¢|?, hence we also have

€Y; .
HGZ{(ZI7"';Z77,> 'xj:ﬁ)j:l))n}

In other words 7(H.) = H.. Note inf{|Z] | Z € H.} = \/2]€|.
Next we consider a function p : Ry — R such that

logr — |e] if r < +/]€]So
p:
log v/ |€]So if r > 21/|€|So

p'(r) =0, p'(r)<0,
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here Sy is a sufficiently large number, which will be fixed at the begining of §61.5.
€ is chosen so that \/|e|Sy is sufficiently small. We then define the function f. :
R™\ {0} — R by

(54.5) fe(@) = ep(|]).

Consider the graph Graph dﬁ and define a Lagrangian submanifold H! so that
the following holds :
(54.6.1) T(H.) = H..
(54.6.2)
{@r+V-1y1, - ,2n +V—=1yn) | Vi z; > y;} N H]
={(z1+vV-1y1, - ,zn+V—1y,) | Viz;, >y} N Graph df..

Figure 54.1

By construction, H! is invariant under 7 and H! = R™ U /—1R" outside the ball
B?"(2/]€|Sp) around 0 in I(U) C R?". Therefore for a given ordered pair (L1, Lo),
we can construct a Lagrangian submanifold L. C M such that

Le—U=LiUL,—U, I(L.NU)=H.NV.

Definition 54.7. For a given ordered pair (L1, L), we call L. the Lagrangian
submanifold obtained from L1 and Lo by Lagrangian surgery at p1o € L1 N Ly and
write Ll#ELQ = Le.

Note that, if we change the ordering of the pair Lq, Ly at p € Ly N Ly and
change the sign of € at the same time, then the resulting Lagrangian submanifolds
are isomorphic. In fact, we have

R"#.v/—1R" = V/_1R"#__R™.



We call the pre-image
(Li# L) NU =17 H! NV)

a Lagrangian handle and its meridian sphere S™~! a wvanishing cycle of the La-
grangian surgery L.

We say that the pair Li, Ly or its associated Lagrangian surgery Li# Lo with
€ > 0 is positive at ppo if

TP12L1 D Tp12L2 = (_1)n(n_1)/2+1Tp12M

as an oriented vector space and negative otherwise. (Here we equip 7,,,M with
the symplectic orientation.) For example, for Ly = R, Ly = y/—1R C C with
the standard orientation on R,+/—1R, the Lagrangian surgery Li#cLs, € > 0, is
negative. (This example is directly extended to the case of L; = R, Ly = v/—1R" C
C™.) It is easy to check that only the positive surgery allows to glue the orientations
on Ly and Ly to have the surgery Li#.Ly carry a compatible orientation. (In the
case of Ly =R, Ly = v/—1R C C, it is easy to see that it is impossible to give an
orientation of Lq#.Ls, which is compatible with both standard orienatations of L;.
Similar remark also holds for L; = R", Ly = v/—1R" C C™)

We remark that Lq#.Ls is not even isotopic to Lo#.Ly (or L1#_.L2) in general
even when both are orientable. On the other hand, it is easy to check that L #.Lo
are Lagrangian isotopic to one another for different €’s with the same signs. However
they are not Hamiltonian isotopic to one another in general.

Remark 54.8. If Ly, Ly are spin manifolds, the surgered manifold Li#.Ls is
also a spin manifold. However, there is a slightly delicate issue about the choice of
spin structures. We explain the way to obtain the spin structure. (The argument
can be extended to relative spin pair or tuples of Lagrangian submanifolds.)

Let X be a spin manifold, which is not necessarily connected. Let p;, € X and
D; small discs around p;, i = 1,2. Consider the operation of attaching a 1-handle

Z =X x1[0,1]Up D" x [1, 2],

where h : D" x {i} — D; x {1} is the attaching map. After smoothing the corner of
7, we obtain a cobordism between X and a new manifold X’. For a spin structure
on X, the spin structure on X’ is described as follows.

Give the orientation on D™ x {i} as open subsets of the boundary of D™ x [1, 2],
i =1,2. Denote by Pspin(X), Pspin (D™ x [1,2]) the principal spin bundles, i.e., the
spin structures of X and D™ x [1,2], respectively. Pick a lift ¢, : Pspin(X)|p, —
Pspin(Dn X [1, 2]>|(0,i) of h*_l : TpiX — T(O,i)Dn C T(()’i)Dn X [1, 2]. Clearly (Lpl , Lp2)
and (—tp,, —tp,) derive the same spin structure. Here —1 denotes the non-trivial
element in (ker : Spin(n) — SO(n)). Then h and (tp,, tp,)/{£1} determines a spin
structure on Z, hence a spin structure on X’ in its boundary.



If p1, p2 belong to different connected components X; and X5, the spin structure
is independent of the choice of (ip,,tp,). Since there is an automorphism of the
principal spin bundle, which is identity except on the component X; and is given
by the right multiplication by —1 € (ker : Spin(n) — SO(n)) on X;. This action
changes ¢, to —t,, with keeping ¢,,, invariant. Hence the spin structure is uniquely
determined by the spin structure on X and the attaching map h.

However, when p; and ps belong to the same connected component, (tp,, ¢p,) and
(tpy> —tp,) derive different spin structures. This point is important, for example,
when we consider singular Lagrangian fibrations with nodal singular fibers. Suppose
that there is an irreducible nodal singular fiber, which is spin. Regular fibers around
it are obtained as Lagrangian surgery. In the 2-dimensional case, the monodromy
is given by the Dehn twist along the vanishing cycle. Thus we find that the spin
structure obtained in the above construction is not perserved under the monodromy.

Remark 54.9. The discussion on the surgery of this chapter is related to homo-
logical mirror symmetry in the following way. Let Lq, Lo be a pair of Lagrangian
submanifolds in a symplectic manifold M. Consider, for example, that M is Calabi-
Yau 3 fold for which we have a mirror complex manifold MT. We then consider
Lagrangian submanifolds L; whose Maslov classes vanish. Suppose that L; are
unobstructed and have mirror objects £(L;) on MT which are objects of the de-
rived category of coherent sheaves. Let L be another Lagrangian submanifold of M
with vanishing Maslov class whose mirror is £(L). We furthermore assume that L;
intersects with Lo at one point pio transversely.

We assume that L1 N Ly N L = () and L is transversal to L; and Ly. We assume
also that there exists no pseudo-holomorphic triangle as in Figure 54.2 below. We
have

(LNL1)U(LNLy) = LN (L1#Lo)
if € > 0 is sufficiently small. Since there is no pseudoholomorphic discs as in

Figure 54.2, we can show (by an easier analogy of Theorem Z) that CF(L; L;) is a
subcomplex of C'F'(L; L1#.Ly). Moreover we have the following long exact sequence

(*) — HF(L;Ly) — HF(L; Li#.Ly) — HF(L; Ly) —
where the connecting homomorphism
HF(L;Ls) — HF(L; Ly)

is induced by
[z] = ma([p12], [z]).

Here my is the composition of the A..-category, which is defined by counting holo-



morphic triangles [Fuk02III].

Figure 54.2

The exact sequence (*) can be interpreted in the mirror side by the distinguished
triangle

This observation was made in [FOOO00] and [Fuk02III]. A similar observation was
made independently by R. Thomas in [ThoO1]. See also §38.4 of [HoVa03].

We remark that in case L1 = S™ and L, intersects with Lo at one point trans-
versely, Li#..L- is the image of the Lo by the Dehn twist centered at L;. In this
case the above exact sequence coincides with one by Seidel [Sei03I].

54.2. Lagrangian surgery in almost Kahler geometry.

When we study pseudo-holomorphic maps together with the Lagrangian surgery,
we need to describe the Lagrangian surgery in the almost Kéhler setting (M, w, J).
In this section, we relate the model handle H. C C" implanted in the surgery to
a particular Lagrangian submanifold used in [HaLa82], [Law89], [ThYa02]. This
particular model is useful for our later analysis of metamorphosis of the moduli
space of pseudo-holomorphic polygons under the Lagrangian surgery.

Let C™ be the standard complex vector space with standard complex structure
Jo and standard symplectic structure wg. Namely

0 0
Jo <8x1> = o, Y0 > " da; Ady;,

where z; = x; + /—1y; (i =1,--- ,n) is the standard coordinate of C™.




Let V1,V C C™ be a transversal ordered pair of oriented Lagrangian linear
subspaces. Recall Corollary 2.6 which reads that there exists a unique symmetric
unitary matrix A; € U(n) such that

A, -R*"=V;, fori=1,2.

The following lemma is an easy consequence of this whose proof is omitted.

Lemma 54.10. There exists a unique collection of angles
O<aon < <a, <7

and a matriz A € U(n) such that A(Vy) =R"™ and
A(‘/2) = { <€a1\/__11]1, T 7ean\/__17)n> ‘ VU1, " ,Un € R} )

as an oriented vector space. Here we define an orientation of the right hand side by
the tsomorphism

a1/ —1 anv—1
(v17"'7vn)'_)<€1 U]_,"',en Un)-

We call aq,- -+, a,, the Kdhler angles between Vi and V5.

Definition 54.11. For a transversal pair L;, Lo of oriented Lagrangian submani-
folds, we define their Kdhler angles at p12 € L1 N Lo to be the Kéhler angles between
the tangent spaces T}, L1, Tp,, La.

Referring to [ThYa02] for the description of the Lagrangian surgery for general
Kahler angles, we restrict ourselves to the case where all Kahler angles of A are the
same, i.e.,

ar==a,=a I<a<m.

We closely follow the presentation of Thomas and Yau [ThYa02] below with some
notational changes.

To any given embedded curve v : I — C and I C R a connected interval, we
associate a Lagrangian submanifold

Ly ={(v(t)a1, -+ ,7t)an) |t €I, a=(a;)}_, € S" ' CR" CC"}.

Under this notation, R™ is represented by the curve 1 (r) = (r,0), r € [0,00) and
A by

Yo (1) = e\/__lo‘r, r € [0, 00).
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The Lagrangian surgery R"#.A for ¢ > 0 is represented by any smoothing off the
cone at the origin of v; U 72 which stays inside the cone

{reV=1|r>0,0¢€0,a]}

and coincides with v; U 72 outside a compact set.
For the case € < 0, the Lagrangian surgery R"#.A is represented by a similar
smoothing of 41 U 72 which stays inside the cone

{reV=1 | r>0,0¢ o]}

instead.

Figure 54.3

For the later purpose, we will use the model for the neck in the transition region by
the following curve

s us 0
(54.12.1) 4* = {re‘/_—w € C( |2¢|75 = r& sin (%) 0e (O,a)} e >0,
(54.12.2)
vE = {re\/__w € C‘ |2¢|26 = ra sin (M) , 0 € (a,w)} e < 0.

T—
These give rise to the Lagrangian submanifolds H by

(54.12.3) HY =~2.Sptccm.

H¢ becomes special Lagrangian submanifolds when o = 7 which are precisely
the local model constructed by Harvey-Lawson [HaLa82] and also used by Lawler

[Law89]. When o = 7, this coincides with the local model given in (54.4), i.e.,
H.=HZE.
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We can modify HY and construct (H®)" in the same way as §54.1 as follows. Let
us consider the case € > 0. (The case € < 0 is similar.) We consider a function

0(r) : [v2]el, 00) — [0, /2]

such that

(54.13.1)  6(r) =0 for r > 2S5/ €.
(54.13.2)  If r < Sp\/|el, then

|2¢|2a = ra sin <7r9(7‘)> :

(0%

In particular 0(4/2le]) = a/2.

do
54.13.3 — <0.
( ) dr —
And we put
(54.14.1)

() = {reV=10

re dey,oo)} U {mV—_l(a—@W ‘ re zyey,oo)}.
We then define

(54.14.2) (H*) = () - Sgt ccm.

Figure 54.4.
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54.3. The tangent cones of a pseudo-holomorphic polygon at its corners.

In this subsection, we consider pseudo-holomorphic polygons that appear in the
definition of A, category of a symplectic manifold [Fuk93,Fuk02II]. Especially we
state a result on the structure of the image of general pseudo-holomorphic polygons
near the corner. This then will be used to study some singular perturbation problem
in relation to the Floer cohomology of the Lagrangian surgery later in this chapter.

Let J be an almost complex structure compatible with w on M. The triple
(M,w, J) then defines an almost Kéhler structure. Let £ = (Lo, L1, La,- -+, Ly) be
a (k+1)-tuple of compact Lagrangian submanifolds in (M, w) that intersect pairwise
transversely. Let (3, #) denote an element in MZ’flain (see Definition 2.20) (@ =
(uo1, "+, Uk—1)k, Uko)) and denote by u;_1);u;;11) the segment of 0¥ between
U(j—1)5 and Uj(5+1) for j = 0, ce ,k

Let w: ¥ — M be a map that satisfies the boundary condition

(54152) w(uj(j+1)) S Lj N Lj+1.

We denote by M(£, 4, J) the set of J-holomorphic maps that satisfy (54.15). (See
§58 for further discussion on this moduli space.)

Let p12 € L1N Lo and assume that the Kéhler angles cv; (i = 1, -+ ,n) between Lq
and Lo at pio are all the same. We denote the common angle by « = a1 = -+ = «,.

Using Lemma 54.10, we can always choose a Darboux chart in a neighborhood U
of p1o, I : U — V C C" so that I(p12) =0,

(54.16.1) I(LiNU)=R"NV, I(LyNnU)=e""1*R"NV = A,
and J(p12) = (I*Jo)(p12), i-e.,
(54.16.2) D, ,loJ=JyoD,,I onT,,M
where
D,,I:T,,M — T,C" =C"

is the differential of I at pio.

Let w : (3¥,%) — M be an element of M(L,u;J) with w(ui2) = p12. We
conformally identify (3, u12) with (HU {oo},0) and consider the composition I o w
in a neighborhood of 0 in H. We put @ = /.

Theorem 54.17. There exists m € Z>o, 6 > 0 and a vector a = (a1, -+ ,a,) €
R™\ {0} such that B B
(I ow)(2) — 2™ %] < C’]z|m+o‘+‘s
in a neighborhood of 0.
Here the branch of 2™t is taken as

(54.18) SmAe _ mAd (mAa)fy/ =1
if z=re?v=1, 0 € 0,7]. (Note z € H.)
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Definition 54.19. In the case where Theorem 54.17 holds, we call m + 1 the
multiplicity of w at 0 and call the map

the tangent cone of w at 0.

The multiplicity one condition in Theorem Z just means that w is asymptotic to
z 2% at 0.

Theorem 54.17 is not new and can be extracted, for example, from the main
result in [RoSa01]. For reader’s convenience, we give a simple proof thereof under
the following additional assumption which will be satisfied for the main examples
we consider in this chapter.

Assumption 54.20. Let I : U — V C C™ be a Darboux chart satisfying (54.16)
at p1o € L1 N Ly. We assume in addition that J = I*Jy on a neighborhood U of

P12, i-e'7
DyloJ=JyoDyl on T, M

for every p € U.

We remark that, compared to (54.16), Assumption 54.20 is much more restrictive.
(For example, it implies that .J is integrable in a neighborhood of p15.) We put this
additional assumption because the analysis of scaled gluing problems entering in
our study of metamorphosis of the moduli space under the Lagrangian surgery is
much simpler than otherwise and also because this will be enough for the analysis
of our main examples in §56 - 57.

Proof of Theorem 54.17 under Assumption 54.20. Consider the map
u(z) = 27 (T ow)(2),

on a neighborhood W of 0 in H. (Here the branch of z* is taken as in (54.18).) By
(54.16.1), we have

(54.21) u(W N oH) C R™.
We consider the double
W=Wu{z|zeW}cCC.

The real boundary condition (54.21) enables us to apply the reflexion principle and
extend u to a smooth holomorphic map

a:W —C".

We then obtain the conclusion by taking Taylor expansion of u at 0. [
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§55. Theorem Z and its generalizations.

We first make the statement of Theorem Z more precise.

Fix a compatible almost complex structure J on M. Let £ = (Lg, L1, L2) be a
triple of Lagrangian submanifolds of a symplectic manifold M such that they are
mutually transversal. Let p;; € L; N L; and assume that

(55.1) The Kéahler angles between L and Lo at pio are all equal to «.

For given three points ug1, u12, u2g € 0D?, we consider the moduli space M (£, @, J)
of J-holomorphic maps introduced in §54.3. (Here @ = (ug1, 12, u20)-)
Denote by wy; € M(L, @, J) a J-holomorphic triangle that satisfies the following

(55.2.1)  The multiplicity of wyy; at uq2 is one. (See Definition 54.19.)

(55.2.2) Wiy 18 Fredholm regular. Namely the linearization of the Cauchy-
Riemann equation at wy is surjective. (See §58 for the Fredholm theory of the
moduli space M(£, 4, J).)

(55.2.3)  wyy is isolated in M (L, 4, J).

We then perform Lagrangian surgery at pio € L1 N Lo and get Le, = Li#¢, Lo
as defined in §54.1, §54.2 and consider the set of J-holomorphic 2-gons

w:D?>— M

with the following properties :

(5531) w(U01U20) C Lel, w<UQ()UQ1) C Lo.
(55.3.2) w(u01) = Po1i, w(uzo) = P20-

We denote the set of such w’s by M((Lel,Lo), (up1,u20),J) and its quotient
under the action of Aut(D?, (ug1,uz20)) = R by M((Le,, Lo), (uo1,u20),J). And we
denote by M((Le,, Lo), (w01, u20), J; Wi, €2) the subset of M((Le,, Lo), (uo1u20), J)

consisting of the elements represented by w € M((L,,, Lo), (uo1,u20), J) satisfying

(55.4) max dist(w(2), wi(2)) < €.
z€D?

Theorem 55.5. Let J and wyi satisfy (55.1) and (55.2) respectively. We also
suppose Assumption 54.20. Then for each sufficiently small e3 and €1 with |e1| < €3%°

we have the following :

(655.6.1)  Ifer <0, then M((Le,, Lo), (uo1, u20), J; weri, €2) consists of one point
which is Fredholm reqular.

(55.6.2) If e1 > 0, then M((Le,, Lo), (uo1,u20), J; Wi, €2) is diffeomorphic to
S"=2. Each element of it is Fredholm regular.
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Figure 55.1.

Theorem 55.5 is the precise form of Theorem Z whose proof will be given in §59 -
62.

For some of our applications, we also need to consider the case where wy,; appears
as a continuous family i.e., where the condition (55.2.3) fails to satisfy. We can
generalize Theorem 55.5 to such a situation as Theorem 55.7 below.

Let K be a compact subset of M(£, 4, J) and U be its relatively compact open
neighborhood. Let M((Le,, Lo), (uo1,u20), J; K, €2) be the set of the elements in
M((Le,, Lo), (up1,us20), J) represented by w € Mv((Lel,Lo), (up1,u20), J) satisfying
(55.4) for some wy,; € K.

Theorem 55.7. Let J and wyy satisfy (55.1) and (55.2) respectively. We also
suppose Assumption 54.20. We assume in addition that any element wyy of U
satisfies (55.2.1) and (55.2.2).

Then, for each sufficiently small ea and |e1| < 1%, there exists an open neigh-
borhood M((Le, , Lo), (uo1, u20), J, K, €2)" of M((Le,, Lo), (uo1,u20), J, K, €2) and a
map

- M((L617L0)7 (u017 u20); J; K7 62)+ - U
with the following properties :

(55.8.1)  Ewery element of M((Le,, Lo), (uo1,u20), J, K, €2)T is Fredholm regular.
(55.8.2)  If [w] € M((Le,, Lo), (uo1,u20), J, K,€2)" and w([w]) = [wi] then we
have

dist(w(z), wii(2)) < Ceg

by re-choosing the representative w in the class [w] if necessary.

(55.8.3) If €1 < 0 then the restriction 7= (K) — K of w is a diffeomorphism.
(55.8.4)  If e > 0 then the restriction 1= (K) — K of 7 is a fiber bundle whose
fiber is diffeomorphic to S™"2.
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The proof is a straightforward generalization of that of Theorem 55.5.

We can generalize Theorems 55.5 and 55.7 in a straightforward way to the case
where more than three Lagrangian submanifolds are involved. We do not state this
generalization here since we do not use it in this book.

We next discuss the Lagrangian surgery of immersed Lagrangian submanifolds.
Let ¢ : L — M be a Lagrangian immersion. Assume that p € M is the unique
double point of i(L) with i~ (p) = {p1,p2} C L and 50 i|f\ (, p,} is an embedding.

We give an ordering for the tangent spaces of the two branches of L at p. It
seems that the following terminology of Polterovich [Pol911] is useful for the further
discussion of Lagrangian surgeries.

Definition 55.9. Let i : L — M be a Lagrangian immersion and p € i(L) C M
be a transversal self-intersetion point. We call an equipment at p an ordering of the
tangent spaces of the two branches of L at the self-intersection p.

With this terminology, one can say that Lagrangian surgery at a self-intersection
point depends on the equipment at p.

Again we assume that the Kahler angles between the two branches at p are all
the same « and let I be a Darboux chart on a neighborhood of p such that

(55.10)  I(i(L)) = R*Ue*Y~IR™ and J(p) = (I*Jo)(p).

Let Mv((L, i),1,J;p) be the set of J-holomorphic maps w : D? — M satisfying

w(0D?) c i(L), w(l)=np.

We denote its quotient by the action of Aut(D?,1) by M((L,i),1,.J;p).

Given an equipment of L at p, we perform Lagrangian surgery on L at p and
obtain L. for ¢ with sufficiently small |e|. (The discussion of §54.1, 54.2 can be
generalized to the case of self intersection in an obvious way.)

Denote the set of J-holomorphic discs w : (D?,dD?) — (M, L) by M(Le, J) and
its quotient by the action of PSL(2;R) = Aut(D?) by M(Le,J).

Let K be a compact subset of M((L,%),1,J;p) and U be its relatively compact
open neighborhood. Define M(L,,, J; K, €2) to be the set of elements of M(L,,, J)
represented by w € M(Lel, J) for which there exists wg € M((L,i),1,p,J) such
that

max dist(w(z),wp(2)) < €s.
z€D?
Now the following is the analog to Theorem 55.7 for this case.

Theorem 55.11. Leti: L — M be a Lagrangian immersion and let p € i(L) C M
the unique double point as above. Suppose J = I*.Jy in a neighborhood of p € M,
Condition (55.10) and that every element of U C M((L,7),1,J;p) is Fredholm
reqular and of multiplicity 1 at 1 € 0D?.
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Then for each sufficiently small €3 and €1 with |e1| < €3%9, there exists an open
neighborhood M(Le,,J, K,e3)t of M(L.,,J, K, €2) and a map

7 M(Le,, J,K,e2)" = U

with the following properties :

(55.12.1)  Ewvery element of M(Le,,J, K,e2)" is Fredholm regular.
(65.12.2)  If [w] € M(Le,, J, K, e2)" and m([w]) = [wo] we have

dist(w(z),wo(z)) < Ceg

by changing the representative w if necessary.

(55.12.3)  If €1 < 0 then the restriction 1~ 1(K) — K of 7 is a diffeomorphism.
(55.12.4)  Ife; > 0 then the restriction 7= 1(K) — K of 7 is a fiber bundle whose
fiber is diffeomorphic to S™"2.

Figure 55.2.

The proof is entirely similar to that of Theorem 55.7.

We also consider the case of a pair of Lagrangian submanifolds I.; and Lo in-
tersecting at two points, say pi, ps. In this case, after performing Lagrangian
surgery at po, we obtain an immersed Lagrangian submanifolds L. which has a self-
intersection p;. Under the assumption similar to those in Theorems 55.7 and 55.11,
the moduli space of 2-gones with boundary on L; U L, is related to the moduli space
M((Le,i),1,J;,p1) above. Since we can treat this case in the same way as above
we omit its discussion.

We next discuss some homological property of the moduli chain induced by the
family of pseudo-holomorphic 2-gons in the fiber of the fiber bundle that appears
in (55.6.2) and (55.8.4).

Consider the moduli space M((Le,, Lo), (uo1, us0), J). Denote by ugruzg the
(open) arc segment of D? containing u12 among the two connected components
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of D%\ {uo1,us0}. We have the natural action of Aut(D?;{ug1,u20}) = R on the
product

M(<L617L0)7 (uo1,u20), J) X Uortizn; (w,u) — (wo g™t g(u)).

We have the canonical evaluation map

M((Le Ly), (uo1,u20),J) X Tortzo
55.13 ev : L 4 d — Le,; ev(w, u) = w(u).
( ) Aut(D2; {uOl,UQo}) ( ) ( )

Now we assume €; > 0 and use the notation from Theorem 55.7. For given
[wo] € K, we parameterize its fiber =1 ([wg]) by the sphere S"~2. We denote by
[w,] an element corresponding to z € S™"~2. Identifying Aut(D?; {ug1,u20}) and
Upruzo with R respectively, the above evaluation map (55.13) restricted to this fiber,
which we denote by

EV[uyo] - S"2 xR — L,

can be written as
Vo] (T,1) = we(1).

We represent the Lagrangian handle of L., by
S™1 % (0,1) C L.

(See §54.1.)
The following theorem can be derived from the proof of Theorem Z.

Theorem 55.14. Let e = 27100,

(1) There exist an interval (a,b) C R and points z,y € S~ ! such that

dist(ev[w(ﬂ(sn_2 x {a}), (z,0))
dist (g, (5"~ x (b)), (1,1)) < ¢

IN

€

where (x,0), (y,1) are regarded as boundary points of Lagrangian handle S™~1 x
(0,1) C L.,, and the image

€V (S™ 2 X [a, b))

is contained in the Lagrangian handle S*=1 x (0,1).

(2) Consider the cycle obtained by filling the holes of the image ey, (S™*x[a, b]) C
S™=1 % (0,1) around the points (x,0) and (y,1) in S*~1 x (0,1) respectively and
its homology class in H,_1((S™™ 1 x (0,1)),Z) = Z. Then this homology class is a
generator of Hy,_1((S"! x (0,1)),Z).
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Figure 55.3.

Finally a few remarks about Assumption 54.20 are in order, which we put on
(L1, Ls) and J in Theorems 55.5, 55.7, 55.11, 55.14. This is a rather restrictive
assumption since it requires the pair (Ly, Ls) is locally isomorphic to the standard
pair of linear Lagrangian submanifolds in C™ upto a symplectic and biholomorphic
isomorphism. This assumption is indeed superfluous and can be removed as we
mentioned before.

On the other hand a standard cobordism argument enable us to derive from The-
orems 55.5, 55.7, 55.11, 55.14 a similar conclusion in the homology level for general
transversal pair (Lj, Ls) and for a general compatible almost complex structure.
Namely we have the following Corollary 55.15 in general. We only consider the case
of Theorem 55.5 and only give a sketch of the proof of Corollary 55.15 since we do
not use this in our analysis of the main examples in this chapter.

Corollary 55.15. Under the same assumption as Theorem 55.5 except Assumption
54.20. For each sufficiently small €3 and |e1| < €3°°, the followings hold :

(55.16.1) M((Le,, Lo), (uo1, u20), J; Weyi, €2) is compact and has an oriented Ku-
ranishi structure without boundary. Let (U, E,s) be its Kuranishi neighborhood.
(The automorphism group I' is trivial in this case.) There is a compact neighbor-
hood 34 of M((Le,, Lo), (uo1,u20), J, Wri, €2) in U such that s~1(0) is contained in
.
(55.16.2) If €1 <0, then we may perturb s away from U \ i so that the order of
s71(0) counted with sign is 1.
(55.16.3) If €1 > 0, then we may perturb s away from U\ U so that the following
holds : s71(0) is a compact oriented n — 2 dimensional manifold without boundary.
If we define

ev:s 10) xR — L,

in the same way as in the situation of Theorem 55.14, then :



19

55.16.3.1 There exist an interval (a,b) € R and points z,y € S™1 such that
( ) , p Y

dist(ev(s~1(0) x {a}), (x,0))
dist(ev(s71(0) x {b}), (y,1))

IN

€

IN

€

where (,0), (y,1) is regarded as boundary points of Lagrangian handle S™"~* x (0,1)
and

ev(s~1(0) x [a, b])

is contained in the Lagrangian handle S"~1 x (0,1).

(55.16.3.2) The homology class of the cycle obtained by respectively filling the
holes of evp,,1(s~1(0) x [a,b]) € S"~1 x (0,1) around (x,0) and (y,1) in the handle
(8" x (0,1) is a generator of H,_1((S™1 x (0,1))) = Z.

Sketch of the proof. We sketch how to deduce (55.16.2) from Theorem 55.5. (55.16.1)
is easy to show. Consider a smooth path of almost complex structures connecting
the given almost complex structure J and Js that satisfies Assumption 54.20, i.e.,
Js = I*Jy where Jy = J(p) is the constant almost complex structure on 7, M.

Theorem 55.5 implies M((Le,, Lo), (wo1, u20), Js5; Wi, €2) is Fredholm regular and
consists of one point. It is cobordant to M((Le,, Lo), (uo1,u20), J, Wi, €2) as the
space with Kuranishi structure. (See §A1.) Therefore (55.16.2) follows.

(55.16.3) can be deduced by a similar cobordism argument using Theorem 55.14.
We omit the detail. [J

An inspection shows that the conclusions of Corollary 55.15 (and other similar
conclusions in the above theorems) are enough for the applications we present in
§56-57. This is roughly because we only need to study the virtual fundamental
chains in the ‘homology level’ for these applications.

§56. Affine Lagrangian tori in flat symplectic tori

In this section, we will also use the result on the number of holomorphic polygons
in the flat symplectic tori. In [Fuk02III], the first named author formulated some
axioms that the numbers of holomorphic polygons should satisfy for the case of flat
Lagrangian subspacs = R" in the complex vector space C", and did some calculation
of the numbers based on the axioms. However, the proof of the axioms was not
given in [Fuk02III] at that time. The properties that were assumed as an axiom
in [Fuk02III] are now proved in this book, at least for 2 Lagrangians. We did not
provide the details of the proof for the cases where there are more than 2 Lagrangian
submanifolds. However it would be a minor modification of the argument presented
in this book and so omitted. As far as the cases we are interested in, we will provide
a self-contained proof in Proposition 56.3. In this and next sections, we use Maslov
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type indices associated to pseudo-holomorphic polygons. See §58 for the definition

and discussion about them.
We will discuss the 4 and 6 dimensional flat tori separately.

56.1. The case of 4 dimensional flat tori.

We represent the flat 4-torus as C2?/(Z[v/—1])? and let z; = 2; +v/—1y;, i = 1,2
be its coordinate. Let A = (a;;) be a symmetric real-valued 2 x 2 matrix and put

wa = Zaijda;i A dy;.

w4 is nondegenerate and so becomes a symplectic structure on C?/(Z[/—1])?, if A
is invertible. The standard complex structure of C2/(Z[y/—1])? is compatible with
w4 if A is positive definite. Hereafter we assume that A is positive definite. We
consider three Lagrangian submanifolds defined by

Lo = {[z1,22] € C*/(Z[V-1])* | yr = y2 = 0},
L1 = {[z1, 20] € C?/(Z[V—1])? | 21 = x5 = 0},
Ly = {[z1, 2] € C*/(Z[V-1])* | w1 = y1, 22 = 1o}

These are Lagrangian sub-tori of T4.
Let v = (vy,v2) € T? = R?/Z? and put

Li(v) = {(z1,22) | x1 = v1, 72 = v2}.
We assume (v1,v3) # (0,0). Then we have the pairwise intersections

Ly(v) N Ly = {(v1(1 4+ v—1),v2(1 + vV-1))},
Ly N Lo = {(0,0)},
LoN Ly(v) = {(vy,v2)}.

We denote
p12(v) = (v1(1 +V=1),v2(1 + vV=1)), p20 = (0,0), po1(v) = (v1,v2).

We now perform Lagrangian surgery of Li(v) and Ly at p12(v) and obtain a one-
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parameter family L, = L(v).

Figure 56.1

Figure 56.2

Note that 7 (T4, L;) = 0 in our case. In particular the Maslov class defined on this
group vanishes.

One can also easily see that the class in w2 (T, L.) associated to the vanishing
cycle of L, with the obvious bounding disc has Maslov index zero. Therefore (using
the fact n = 2) the virtual dimensions of the moduli spaces of the holomorphic
discs bounding Ly or L. are all 0+ 2 — 3 = —1 < 0. It follows from Definition
10.6 (or Theorem C) that all the obstruction classes thereof vanish automatically.
Hence the Floer cohomology HF'(Lg, L:(v)) is well defined. We remark that in the
present case of the pair (Lo, L), it follows that my = my, for Ly and L. and b = 0
is a bounding cochain for both Ly and L.. We will omit b = 0 from the notation of
Floer cohomology in the discussion followed hereafter.

Since the first Chern class of (T#,w4) and the Maslov classes of L; are trivial, it
follows from the index formula that the virtual dimension of the moduli space

M(Lg, L¢; p20, po1(v)) = M(Lo, Le; p20, po1(v)) /R
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consisting of w : R x [0,1] — M satisfying (55.3) does not vary componentwise
for given fixed pp1(v), pap. A simple Maslov index calculation shows that this is
zero for both € > 0 and ¢ < 0. Similarly the virtual dimension of components of
M(Lg, L¢; po1(v), p2g) are —2. Furthermore it is not difficult to check that the only
nontrivial matrix element of the boundary operator is (§[p2o], [po1(v)]), which we
now compute below.

We first consider the set of maps w : D? — T* satisfying

56.1.1
( ) ’lU(U01U12> C Ll(’l)), w(ulquo) C LQ, U)(’MQ()U(H) C L().

{w(um) = po1(v), w(uiz) = p12(v), w(uzo) = pao,

Lemma 56.2. The set of homotopy classes of the maps w : D? — T satisfying
(56.1.1) has one-one correspondence with m=1(v) = Z2. And for each v € 7~ 1(v),
the map w corresponding to v has the symplectic area

1 -
/w*wA = QWAU.

Proof. Let v = (01,02) € R? be a lift of v. We put

z0 = {(z1,22) € c? | y1 = y2 = 0},

Li(0) = {(21,22) € C* | 21 =71, x2 = U2},

Ly = {(z1,20) €C* | 21 = 91, 2 = o}

We denote their pairwise intersections by po1(v), p12(v) and pag respectively. Con-
sider the maps w : D? — C? that satisfy

{@(Uoﬁ = po1(v), W(ui2) = Pi2(v), wW(uo) = P20,
(56.1.2)

I’U(UOlulg) C Zl(v), w(ulﬂmo) C Zg, '{D(UQQU()l) C z().

For each map w : D? — T4 satisfying (56.1.1), there exists a unique ¥ and a unique
lift w of w satisfying (56.1.2). And the maps satisfying (56.1.2) are homotopic to
one another. Therefore the set of homotopy classes of w corresponds one to one
to that of the lifts of v. The statement on the area is evident. Hence follows the
lemma. [

Now we prove the following result which we will use in the later discussion. A
weaker version of this proposition was proved in [Fuk02II,0211I] using a cobordism
argument that is based on the adiabatic degeneration result from [FuOh97].

Here we give a more direct proof by an explicit construction and in fact also
prove the uniqueness result, which will be used in our gluing construction for the
surgery Le.



23

Proposition 56.3. For any given v € w1 (v), there exists a unique element w

in the moduli space of M(Lo,L1(?), La; Po1(?), p12(V), Da0). The element w is of
multiplicity one at p1o in the sense of Definition 54.19 and is Fredholm reqular.

Proof. Consider the triangle A formed by the vertices
P20 = (0,0), po1(v) = (v1,v2), pi2(v) = (1+ vV —1)(v1,02)

in C2. It follows that this is contained in the complex linear subspace C-p12(7). Then
Riemann mapping theorem gives a unique, modulo holomorphic re-parametrization,
holomorphic map w from the disc whose image becomes this triangle and has mul-
tiplicity one. This proves that M (Lo, L1(?), La; Do (D), pr2(D), P20) is nonempty.

Now we prove the uniqueness of such a holomorphic triangle. Let w' : D? — C?
be any element in ./\/l(Lo,Ll( 0), La; Do (D), pr2(D), pao). Since it lies in the same
homotopy class as w and holomorphic, it has the same area as w. Furthermore
both maps are area minimizing in their homotopy class. On the other hand, we
consider the complex projection

T(%q,02) C*—C- (’6171’72>

along the plane C - (—v3,v1). The composition T(51,72) © w’ is another holomorphic

disc satisfying (56.1.2), i.e., also lies in M(Lo,Ll( v), Lz,pm( v),p12(V), p2o) and so
have the same area as w.
Because the vector (v1,03) is a real vector, the complex direct sum

¢ = (C-@.m) e (T (-5,0))

is also Hermitian orthogonal. Therefore the projection 73, 3,) is a unitary projec-
tion. L B

Furthermore it is easy to check that all three Lagrangian planes Lg, L1 (v), Lo
are parallel along the projection 7, 3,) in that the three direct sums

Lo=(LoNC-(01,02)) @ (Lo N C - (=T, 71))

and so on of Lo, Li(?) and Ly are orthogonal. This implies that the image of
T(5,,5,) © W covers the whole triangle A. Writing the image of m, 3,) o w as
a, possibly multi-valued, graph over the plane C - (v1,vs), this also implies the
inequality

(56.4) Area(w') > Area(my, 5,) o W') > Area(A) = Area(w).

It follows from these inequalities that the first and the last areas are the same if
and only if the images of w and of w’ coincide with A with the same multiplicity
1. In other words, w and w’ coincide upto the re-parametrization. We can check
the Fredholm regularity by the explicit description given above. This finishes the
proof. [
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Remark 56.5. The proof of Proposition 56.3 implies that all the holomorphic tri-
angles whose edges lie in Lo, Li(v) and Lo respectively are flat. This is rather
exceptional and is a consequence of our special choice of Lo, Ly(v), Lo. If we re-
place them by other more general affine Lagrangian submanifolds, the corresponding
holomorphic triangles are not necessarily flat in general.

For a generic choice of v, holomorphic triangles in class v will intersect p2 only
at the point u1o € dD?. Furthermore, the image of the triangle in the universal
covering C? is uniformly away from the inverse image of the surgery point p over
all (14 +/—=1)v = (k,¢) + vy with |k| + |¢| < K for given constant K > 0 except the
unique surgery point w(uy2). By Proposition 56.3 we can apply Theorem 55.3.

In each of the cases € > 0 or ¢ < 0, the difference between symplectic area of
the pseudo-holomorphic triangle and that of peudoholomorphic disc obtained by
Theorem 55.5 in this way is proportional to |e|. Namely we have :

Lemma 56.6. Let w. be the unique element near w corresponding to the class v.
Then we have

1 ~
Area(wg) — §~tAU = Csign 6(807 Oé)’d

for any v € 771 (v). Here a is the Kihler angle between Ly and Lo.

We omit the proof. Here the number Cy(Sy, ) € R is the area of the domain
described in the Figure 56.3 below.

Figure 56.3

We now consider the cases L. for € > 0, and € < 0, separately. We first consider
the case e < 0.

By choosing e sufficiently small, the error appearing in Lemma 56.6 can be made
as small as we want for each given class v € Z2 + v. In fact this error can be made
small uniformly over all v with |k| 4 |¢| < K for any given constant K > 0.

Thus combining Theorems 55.5, Proposition 56.3 and Lemma 56.6, we have
proved the following theorem.
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Theorem 56.7. Let m: C?> — T be the projection. For any given R > 0, we can
choose € < 0 with |e| sufficiently small so that we have

(56.8) (Olp2o), por(w)]) = D T2V AT Eom/Dlel - mod TR,
v (V)=v

In particular, the Floer cohomology HF (Lo, Lc(v); A%, ) vanishes for e < 0.

nov

The last statement follows because the right hand side of (56.8) is invertible in

the universal Novikov ring AZ_ or AQ .

Remark 56.9. We may put 7' = e~! to (56.8) and also consider the “convergent
power series version” of the Floer cohomology. The identity (56.8) then will become
a theta-type function ¥ 4 (v). This relation of the theta function to Floer cohomology
was discovered by M. Kontsevich in [Kon93] in the case of elliptic curve. It was
further studied by Polishchuk-Zaslow [PoZa98], and was partially generalized by
the first named author [Fuk02II, Fuk02III] to the higher dimension.

Remark 56.10. Remark 56.9 implies that the “convergent power series version of
Floer cohomology” is nonzero if and only if ¥ 4(v) = 0. Note that it is not known in
general whether the power series expression of (dx,y) converges or not after we put
T = e~ L. In our case of flat Lagrangian tori Lo, L.(v), the convergence follows from
Theorem 56.7. However some of the properties of Floer cohomology, especially its
invariance under Hamiltonian isotopies, do not hold for the convergent power series
version of Floer cohomology. In fact, in our example, one can find a Hamiltonian
diffeomorphism ¢, : T — T* for each v, such that L.(v) N ¢,(Lo) = 0, provided
€ < 0. Namely HF(Lc(v), ¢,(Lo)) =0 but HF(L(v), Lo) # 0 in case ¥4(v) =0 in
the convergent version. (The case A = I is illustrated below.)

Figure 56.4

To obtain something invariant under the Hamiltonian isotopy out of the convergent
power series version of Floer cohomology, we need to include the 1-loop effect.
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Namely we need to include the order of zero and/or infinity of the Floer cohomology
analog of Reidemeister torsion (or more precisely the invariant that Hutchings and
Lee [HuLe99] constructed in the finite dimensional situation.)

Remark 56.11. The Floer cohomology HF(Lg, L.(v); AY, ) is a torsion. Namely

0,nov

0 AG
HF(LOJLE(U);AO nov) = o
TEGA((%TLOU

Here E. = Ey — C_(Sp, 7/4)|e| with

1 ~
FEy = min {ﬁfﬁAv

(®) :v}.

Note, we can apply Theorem J in this situation.

Next we consider the case when L., e > 0. Since we did not check the orientation
of the elements in Theorem 55.5, we work over the Zs coefficient. (By the argument
of Chapter 8, we can work over Zs in case the dimension is 2, which implies that all
Lagrangian submanifolds are semi-positive.) Then Theorem 55.5 and Proposition
56.3 imply the following.

Theorem 56.12. Let ¢ > 0 be sufficiently small. For the Floer complex for
(Lo, L¢), we have :

(0[p20], [Po1(v)]) =0 mod 2.

In particular, we have

HF(Lg,L.(v); A2 ) = AZ2 @ \Z2

nov nov nov

Using the invariance of Floer cohomology under the Hamiltonian deformation,
we immediately obtain

Corollary 56.13. For e > 0, L.(v) N¢(Lg) # O for any Hamiltonian diffeomor-
phism ¢.

We remark that there exists a Hamiltonian diffeomorphism ¢ such that L¢(v) N
¢(Lo) = 0 with € < 0. Therefore it follows from Corollary 56.13 that L.(v) and
L_.(v) are not Hamiltonian isotopic. It is an interesting problem to check whether
they are Lagrangian isotopic.

We will return to the study of the case of 4 dimensional tori in §57.

56.2. The case of 6 dimensional flat tori
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We now consider 6 dimensional torus 7% = C3/(Z[/—1])3. We take a symmetric
and positive definite real-valued 3 x 3 matrix A = (a;;) and define wa =) a;jdz; A
dy;. We define Lo, L(v) and Lo in the same way as before, i.e.,

Lo = {[21, 22, 23] € C*/(Z[V-1])* | y1 = y2 = y3 = 0},
Ll(U) = {[21,22,2’3] € C3/<Z[\/?1])3 ’ Tr1 = V1,Ty = V2,T3 = Ug},
Ly = {[z1, 22, 23] € C*/(Z[V-1))® | 21 = y1, 20 = o, 3 = y3}.

(Here v = (v1,v2,v3).)
We perform Lagrangian surgery at all of the pairwise intersection points of the
three,
plg(v) € Ll(v) N Lo, pag € Lo N Lo,p01(1}) € LgN Ll(U).

We then obtain a Lagrangian submanifold which we denote by L = Le,, e50.¢0, (V)-
Here €12, €99, €91 are the parameters entering in the Lagrangian surgery at these
three points, respectively.

In a way similar to the proof of Lemma 56.2, we observe that the set of homotopy
classes of maps from D? — T° satisfying (56.1.1) one-one corresponds to Z3. We
can also identify this with the set

7 (v) = { € R (¥) = v},

where 7w : R® — R3/Z3 is the projection. Similarly as in the proof of Proposition
56.3, we can show that there exists a unique holomorphic triangle in each homotopy
class. We denote this unique holomorphic triangle by w; : D? — T° for each
v € m1(v). We can also prove that wy is of multiplicity one at po1,pi2,p20 in
the sense of Definition 54.19 and is Fredholm regular. Using these observations and
Theorem 55.5, we will study the obstruction classes for the well-definedness of Floer
cohomology of Le,, ey0.¢0, (V). We denote by

5’17 € Ho (T67 Le127620,601 (U); Z)
the relative homology class represented by amap w% : (D?,0D?) — (T, Le,, 0,01 (V)

close to the triangle wy.

We first consider the case €12, €29, €01 < 0. Let g be the element of 7~1(v) for
which

| 1~
/w%‘ow = 5%147}0 = Fp = min {ﬁﬂAv

(@) :v}.

We put l5, = w%o*(aDz) € Hqi(L). Using the assumption €19, €39, €91 < 0, we find
that the Maslov index of #3, is 0 and L is oriented. Since all oriented 3-manifolds
are spin, we can use the rational coefficient in our construction. In fact, we can
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even use the Z-coefficients noting that all 3 dimensional Lagrangian submanifolds
are semi-positive.

Now in the same way as the proof of Theorem 56.7, we can prove the zero di-
mensional moduli space M(3;) consists of one point which contributes as +1. Note
that Le,, ey0.e0, (V) is spin. Although the spin structure is not uniquely determined
(Remark 54.8), the moduli space M () consists of a unique element, hence we can
compute its contribution to the obstruction cycle up to sign. Combining all these,
we have proved the following theorem

Theorem 56.14. If €15, €20,€01 < 0, then the first obstruction o1 to the well de-
finedness of the Floer cohomology of Le,, cyo.co. (V) 18 2P D[l5,] € H*(Leyy.cr0.c0. (V); Z).

We remark that the cohomology class PD[{3,] does not lie in the image of
H?(T%) — H?(L). This implies that Mge(L) is empty. Moreover since the ob-
struction lies in H2(L), it follows that Mgefweax (L) is also empty.

We remark that Theorem 56.14 provides an example mentioned in (1.16.4) (a).

In the same way, we prove that the algebraic order of M(Le,, e,0,e0:(V); B) 18
one for any ¥ € R3 if €1, €29, €91 < 0 are sufficiently small. Unfortunately we do not
know a correct way of counting the order of the moduli space M(Le,, eso.e013 K5%)
for k > 2.

The naive definition of the order, which would be obtained just by counting the
number of elements of M(Le,, e00.¢0, (V); Bz, J) for a regular J, will depend on the
choice of J’s and others unlike the case of closed holomorphic curves. It turns out
that to obtain a really symplectic invariant of the pair (M, L) one has to look at
the whole system of numbers that are matrix coefficients of the operations. This
definition will depend on how we deform the intersection product to an A, algebra.
We recall how we deform the cup product into an A, algebra in §30.2 : We choose
diffeomorphisms g, 1 : L — L and modify the cup product z Ny of two cochains
z, y to @o(x) Ne1(y).

For example, we consider the case £ = 2 and a simple pseudo-holomorphic disc
u: (D% 0D?) — (M, L) with [u] = 3. To study the contribution of the double cover
of u, we need to take g, 1 so that ¢o(u(0D?)) is transverse to ¢1(u(dD?)). Such a
choice, however, is not unique up to homotopy : Let ¢j be another diffeomorphism.
We connect this to ¢ by an isotopy ¢}, such that

Yo =0, Po= P

Then we note that ¢§(u(0D?)) N1 (u(0D?)) = ) for generic ¢ except in a codimen-
sion one set of t € [0,1] such that ¢f(u(0D?)) N1 (u(dD?)) is a one point. Thus if
we make two different choices of ¢ the number of the pseudo-holomorphic discs of
homology class 2 could be different.

Of course, the Ay, algebra (C(L), m) as a whole is independent of such choices
up to homotopy equivalence.
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Modulo the problem of counting multiple covered discs mentioned above, we can
calculate the filtered Lo, structure on H(Le,, e50.c0. (V); Aonov). Especially we can
determine the structure up to the order of T%0+¢ for some ¢ > 0, which is small,
but independent of e. We would like to point out that this structure is indeed
independent of the choices of perturbations of J or of abstract perturbations and so
defines an invariant of the pair (M, L).

Let S%,, S3, and S, be the vanishing cycles of p12(v), pao and po1 (v) respectively.
By definition, the supports of these spheres are contained in the neighborhoods
p12(v), P20 and ppi(v) which are the central cross section of the corresponding
Lagrangian handles of the Lagrangian surgery.

Figure 56.5.

We now remark that we have the identity
[sz] = [530] = [S(Q)l]
in homology. We denote
a; = the Poincaré dual to this common homology class
ag = PD[l3,].
Theorem 56.14 bis. In the situation of Theorem 56.14 we have

1
(a1, lk(ag, -+ ,a1)) = :EHTEOJFO(E) mod TFote

all other operations l;, vanishes modulo TFo+e,

Here and hereafter o(e) are real numbers such that lim. .go(e) = 0. In fact,

o(e) = le| (2C_(mw/4) + C_(7/2)).

Proof. Theorem 56.14 bis is a consequence of Proposition 37.38 and its proof. This
is because we know that the algebraic order of M(G;,) is £1. O
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To describe the contributions of other v’s we use the superpotential

v Hl (L7 Aa:nov) - Aé):nov
introduced in §11.4 (11.49). We remark that T° is a Calabi-Yau 3 fold and the
Maslov class of Le,, ey.¢0, (V) 18 zero if €19, €20,€01 < 0. Therefore we are in the
situation of §11.4.
For each R > 0, we can choose €;; < 0 so small that, for b € H'(L¢,, c50.c01 (V); Mo .now)s
we have

\I}(b) =+ Z ebﬂ[aﬁ]T%ﬂtAﬁ—‘,—o(e)
v (V)=v

+ (contribution of multiple covered discs) mod T%.

Here and hereafter, o(e€) is a real number depending on ¢;; such that lim o(e) = 0.

€;;—0

We now consider the case where one of the €;;, say €2 is positive. In this
case the Maslov index of /3, is 1. In particular L is not oriented. So we use
Zo coefficient. Theorems 55.5 and 3 dimensional analogue of Proposition 56.3 in
this case implies that the moduli space of holomorphic discs (D?,dD?) — (TS, L) of
homology class 35 is diffeomorphic to S'. By Theorem 55.14, the fundamental cycle
of the evaluation map : M1 (3;) = S xS! — L is homologous to the vanishing cycle,
the 2 sphere S%,, which is supported in a neighborhood of Ly (v) N L. (Recall that
€12 > 0 is the parameter corresponding to the surgery at Li(v) N Ly.) Furthermore,
the homology class of the vanishing cycles is independent of the choice of the vertices
v with 7(v) = v. By a dimension counting, we can prove that all obstruction
classes are trivial, possibly except the class 2(;. For the class 235, it defines a top
dimensional class, which, however, cannot be surjective from the above description
of the fundamental cycle and hence again gives null contribution. Hence we have :

Theorem 56.15. We consider the case that e€xg,e01 < 0 < €12. Then for each
R > 0, we may choose |€;;| small such that

mp(l) = Y (TEVATez) g mod TR
v (v)=v
in HY (L (v); A2 ).

€12,€20,€01 0,nov

Next we consider the case when €y; < 0 < €19,€99. Then the Maslov index
of [¢3] is 2. Hence L = L, 59,0, (v) is oriented. The moduli space M(35) of
holomorphic discs (D?,0D?) — (T, L) of the homology class 3 is diffeomorphic
to St x S by Theorem 55.7. (In fact, Theorem 55.7 only asserts the existence

of fiber bundle S — M(3;) — S'. We can show that this bundle is trivial by
inspecting its proof. We omit the detail since this point is not necessary for our
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purpose to prove Theorem 56.17.) The image of the evaluation map S* x S! x St —
L (namely ev : My(B;) — L) can be deformed to a subset of {3 U S%, U S3,.
Hence it is homologous to zero. Namely the corresponding obstruction class in
H3 o4y, ) (L) = H?*7 1) (L) = HO(L) vanishes. We can also show that the
other obstruction classes also vanish in this case.

Theorem 56.16. If ¢g; < 0 < €12,€20 0or 0 < €12, €20, €01, then Le , eng.c0, (V) s
unobstructed. (We use Z coefficients in the first case and Zs coefficients in the
second case.)

Proof. We already discussed the case €51 < 0 < €12, €29.

In the case 0 < €12, €20, €01, the Maslov index of ¢; is 3. Hence L¢,, ey0.¢0, (V)
is unoriented. So we use Zg coefficient. We then find that obstruction is in
H3—2+HL(55)(L512,€207€01 (U); ZQ) = HQiluL(gZ)(LQmGQo,ém (’U); ZQ) = H_l(L€12,620,601 (U);ZQ> =
0 and hence vanishes automatically. [

Theorem 56.16 gives an example where the obstruction vanishes while the moduli
space of pseudo-holomorphic discs is nonempty.

Let us continue and calculate partially the operators m;, ms and mg in the
canonical model. We work over Zs coefficient in order to avoid the discussion on
sign, which is rather delicate.

Theorem 56.17. In the situation of Theorem 56.16 we have

(56'18) HF(L€12,520,601(U);AZQ ) = H(qu,ezo,sm (U)'AZQ ).

0,mov » £20,nov

In case €g1 < 0 < €719, €29, we have
(56.19.1) my(as, ap) = (TETe)ay mod TFo+e,
In case 0 < €13, €99, €91, we have

(56.19.2) my(ag, ap) = (TEFT9e3/2)q; mod TFo+e,

(56.19.3) ms(ag, ag, az) = (TF+9e3/2) gy mod TFo+e,

Note (56.19.1), (56.19.2), (56.19.3) are equalities in the group (56.18).

Remark 56.20. Contrary to the situation of Theorems 37.30, 37.32 we can not
symmetrize m to [ in order to obtain nontrivial product structure, in the situation
of Theorem 56.17. This is not only because we work over Zs coefficients but also
because the product [5(az, as) is automatically zero since as has an odd degree after
the degree shifting.

We remark that Theorems 56.16 and 56.17 show that L, c,,.c0, (v) provides an
example we mentioned in (1.16.4) (c). We also remark that (56.19.1) - (56.19.3)
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imply an existence theorem of J-holomorphic discs bordered on Le,, ¢y ¢, (v) for
any compatible almost complex structure .J.

Proof of Theorem 56.17. We first prove (56.18). We prove the case €1 < 0 < €12, €29
in detail and leave the other case to the interested readers. We recall M (3;) =
St x St x S'. The evaluation map ev : M1(35) — Leyy.en0.c0,(v) = L can be
deformed so that its image becomes contained in ¢z U S3, U S3,. More precisely we
can deform the image to that of the map h : S' x S x S' — L described as follows.
Take a disjoint union of arcs [ag, a1] U [bg,b1] C S!. Here and hereafter we put, for
s, t €S,
[s,t] = {u | s,u,t respects the cyclic order.}

Recall 035 = [¢3] in Hy(L). We decompose the loop 5 into ¢ = ¢1 Ul3 Uy so that
Ly N by = £z N S2 (= single point)

for pairs of (a,b) = (1,2) or (2,0) or (0,1). (Note ¢; almost lies in L;.) We require
h to satisfy the following properties (see Figure 56.6) :

(56.21.1)  Ift € [a1,bo] U [b1,ao] then h(S! x St x {t}) is one point. We write the
common image point as h(t).

(56.21.2) {h(t) | te [al,bo]} ={5. {h(t) | t e [bl,ao]} =fyU/l;.

(56.21.3)  Ift € [ag,a;] and = € S then h({z} x S x {t}) is one point. We write
it as hy(z,t).

(56.21.4)  hy(z,t) € S%,. Moreover hy : S* X [ag,a1] — S%, is of degree one. (We
remark that hq(S' x {a;}) are one points. So the degree makes sense.)

(56.21.5)  If t € [by,b1] and y € St then h(S! x {y} x {t}) is one point. We write
it as ha(y,t).

(56.21.6)  ha(y,t) € S3,. Moreover hy : S x [b, b1] — S5, is of degree one.

Figure 56.6
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Figure 56.7

The fact that the image of ev : M1(85) — Leys.en0.¢0, (V) can be deformed to that
of such a map h follows from Theorem 55.14.

Now we calculate the boundary operator my,g.. We will mainly study my,5- (PD[(3]).
(It is easy to see that other contributions are zero. For example the contribution of
multiple covered discs vanishes by the degree reason.) We perturb ¢ to £% in the
same homology class so that £- N¢; = () and ¢4 intersects transversely to S7,, S%, at
hi(xo,t1), ha(yo,ta), respectively. We consider the image of the fiber product chain

(56.22) €l : Ml—l—l(ﬁ'ﬁ) evy X f% - L612,620,€01 (U)

We may identify Mq,1(85) = M1(8;) x ST = (S1)%. So the image of the map
(56.22) consists of two copies of S! x S1. Namely we decompose

Mi41(B5) vy X s =2 {(z0,y,t1,8) |y € S',s € STYU{(w,y0,t2,5) | v € St s € 5}

U,

See Figure 56.7. It is easy to see that evg(T}) ~ S35, evo(Ts) ~ S3,. (Here ~ means
homologous.) Thus

(56.23) my g (PD[lz]) = PD (evo(Mu141(85) ev, X ) = PD[ST,]+PD[S5] = 0.

This implies that m; = 0 and hence (56.18) holds for €y; < 0 < €12, €29.

Remark 56.24. To prove a result similar to (56.18) for Q (or Z) coefficient in
case €91 < 0 < €12, €29, we need to check the sign in the above discussion carefully.
Especially we need to find whether (56.23) gives +2a; or 0. We are almost sure
that it is 0. We can prove it in case v = vy as follows. We consider

(5o (a2), ag) = (my 5, (az2), az).
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Since the proof of Proposition 37.38 works at least for the leading term (namely in
case v = vp) it follows from cyclic symmetry that

<[1,50(a2)7 Clz) = _<[1,50 (Ctz), 02> =0.

This implies that the sum (56.23) is 0 over Q coefficient in case of v = .
The above argument implies that m; vanishes over Q if cyclic symmetry

(56.25) (my(z),y) = (—1)ldes=tDAE D m, (y), 2)

holds. (56.25) follows from the argument of §§37.2, 37.3 as far as the term my g
vo

concerns. To prove it in general we need some more arguments which will appear
elsewhere. This is the reason why we state (56.18) over Zs coefficients.

We next prove (56.19.1). It is easy to see that because we are interested in
finding the lowest order term we only need to study my g- (a2, az). We use the map
vo

h again for this purpose. Hereafter we write ¢ = {3, and v = vy. Take perturbations
(), 02 of ¢ so that they becomes disjoint from each other and that ¢(9) intersect
transversely with S%,, S5, at hl(x(()j), tgj)), ho (y(()j),tgj)), respectively. (tgj) € [ag, a1],
tgj) € [bo, b1].) We may assume a:(()l) + 33(()2), y(()l) + y(()Q). See Figure 56.8.

We regard M3%"(5;) as a submanifold of Msq(8;) which is a resolution of
M (B5) x S* x ST =2 (51)5 along the diagonal. So in particular M5 (85) C (S1)5.
Then the image of the fiber product chain

(56'26) €V : Ménflln(ﬁi) (evi,eva) X (E(l) X 6(2)) - L612,€207€01 (U)
consists of two copies of arcs in Le,, ¢, ¢, (V). Namely we have

main ~ 1 2 1 2 2 1
20 (55) (evrevn) X (V) x 0Py = {(28D 4 #0452 ) | s € 157, ¢7]
2 1 2 1 2 1
U {0, e 65 s) | s € [t 650}
def.

=1 Ul.
It is easy to see that evg(l1) = o U 4y, evg(lz) = 5. Thus

m2’f350 (Clg, 62) = 61}0( gl—flln(ﬁ'ﬁ) (evy,evy) X (6(1) X 6(2)))
= PD[KO Uy UZQ] = PD[g] = ay.
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(56.19.1) is proved.

Figure 56.8

We next prove (56.19.2). Namely we consider the case 0 < €12, €29, €p1. In this
case M1(B5) = St x S x S! x S and the evaluation map ev : M;(8;) — L can
be deformed to h with the following properties. (This fact follows from Theorems
55.11 and 55.13.) Let ag, ay, bo, b1, co, c; € S* which respect counter clockwise cyclic
order of S'. See Figure 56.9.

(56.27.1)  If t € [a1,bo] U [b1,co] UJc1,ap] then h(ST x S x {t}) is one point. We
write it as h(t).

E5627]§) {h(t) | t € [al,bo]} = /5. {h(t) | t € [bl,CO]} = 60. {h(t) | t e
C1, Q0 :El.

(56.27.3)  Ift € [ag,a1] and z € S* then h({z} x St x St x {t}) is one point. We
write it as hq(z,t). If t € [bg,b1] and y € ST then h(S* x {y} x St x {t}) is one
point. We write it as ho(y,t). If t € [co,c1] and z € ST then h(S* x St x {2z} x {t})
is one point. We write it as hs(z,t).

(56274) hz (Z =1,2, 3) define maps hy: St x [ao,al] — S%Q, ho : St x [bo,bl] —
S35, hs : St x [co, 1] — S&;, of degree one.
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Figure 56.9

Figure 56.10
We take perturbations, £(1), ¢(2) of ¢ such that

(™ =0 =W 0@ =g
and that V) intersect with S, S%O, S2, at one point (z(7), tgj)), (y(j),téj)), (z(j),téj)),

respectively. We remark that tgj) € [ap, a1}, tgj) € [bo, b1], téj) € [co, c1].
We now consider the fiber product

(56.28) glflln(ﬁﬂ) (evi,eva) X (6(1) X 6(2))'

It consists of 6 copies of S!x interval. Namely

(56.29.1) {20} x {yP} x §* x 157, 11],
(56.29.2)  {z} x 8" x (=) <[5, 11",
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(56.29.3) ]
(56.29.4)  {z®} x S x {zM} x [tV V],
(56.29.5) S x {yM} x {z@} x [¢{? ]
(56.29.6) S x {y@} x {z(V} x [t§2>,tg1)]

The evy image of (56.29.1) is homologous to S3; since [co,c1] C [t§2>,t§1)]. We
find that evy image of (56.29.2) is 0 since [bg, b1] N [téQ),tgl)] = (). In a similar way,
we find that evg images of (56.29.3), (56.29.4), (56.29.5), (56.29.6) are 0, S3,, Si,,
0, respectively.

Therefore

Y

(2@} 5 {yM} x S x [t 1V
[

Y

. (82,82) = €000 (MEER(35) (e (V) x 1)
= [S51] + [STa] + [930] = au.

(56.19.2) is proved. The proof of (56.19.3) is similar and is left to interested read-
ers. [J

Remark 56.30. If we were able to lift (56.19.3) to Z then the cyclic symmetry
would imply

<a2,m3,ﬁ;(a2, a2, dz2)) = _<a27m3,ﬁ;(a27 az,az)) =0,

and would be inconsistent with (56.19.3). We remark however that Le,, e,q.c0, (V)
is not oriented and hence Poincaré duality ( ) in the above formula is defined only
over Zs.

We next construct an example mentioned in (1.16.3) (b), that is, an example
where obstruction vanishes but m; # m;. We recall that the cancellation (56.23)

occurs because [S3;] = [S%]. So we need to modify the Lagrangian torus so that
this equality fails to hold.
We put

TY = C*/((2Z + 3V —1Z) @ (Z + /—1Z)?).

We take affine Lagrangian subspaces Lo, Zl(ﬂ), Lo of C3 and let L{, L (v), L, be
the Lagrangian subtorus of 7% induced by them.
We note L N LY, consists of 2 points, which we denote by

Lyn Ly = {phy | j = 1,2}.
And L) (v) N L§ consists of 3 points, denoted by
Ly(v) N Ly = {p3(v) [ m =1,2,3}.
Finally L{ N L) (v) consists of a single point

Lo N L (v) = {po1(v)}.
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Figure 56.11

We perform surgery to Ly U Ly (v) U Ly at those 6 points. More precisely, we
perform the surgery for € > 0 at the 5 points pl,, pis(v) respectively, and the
surgery for € < 0 at po1(v). (In other words, we consider €y; < 0 < €12, €29.) We

denote by L¢ , ., .. (v) = L' the Lagrangian submanifolds obtained in this way.
In a way similar to the proof of Theorem 56.16 we can prove that L; , ., .. (v) is

unobstructed. .

There are 6 = 2 x 3 x 1 choices of the triple (p}y,po1(v), pis(v)). By taking a
vector v appropriately, among the triangles whose vertices are pl,, po1 (v), pis(v) and
whose edges are in L{, L) (v), L}, we may assume that there exists a unique choice
of (pdy,po1(v),pis(v)) and then that of the homotopy class vy with the smallest
possible area, respectively. Let Ey be this area of 3;,. We put [0vg] = af. Let

Séo, Sz%ig(v) be the 2 spheres, i.e. vanishing cycles, in L; , ., . (v) which lie in a

neighborhood of pi, pl,(v) respectively. Now the proof of Theorem 56.17 (especially
Formula (56.23)) implies

(56.31) 5y (a5) = £PD((S2, ]) + PD(8%, ,))):

12

The right hand side of (56.31) is nonzero since [S;1 | # :I:[S;1 (U)].
20 12

We remark that the fundamental cycle [L. . . (v)] is nonzero in Floer coho-

mology. This follows from the spectral sequence in Theorem D by using the fact

that the union of ev(M(B5)) for various v does not cover L , ., ... (v). Thus we

have :
Theorem 56.32. L., . . (v) is unobstructed. Moreover we have :
0 # HF(L/€12,€20,601 (/U); A(])Dtnov) # H(L,612,€20,601 (U), Agnov)

for any field R.
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Thus L, , ,, c,, (v) provides an example we mentioned in (1.16.4) (b).

We next construct an example mentioned in (1.16.4) (d), that is a pair of La-
grangian submanifolds such that the boundary operator of the Floer cohomology
is trivial but the bimodule structure is nontrivial. Consider T° and Lg, L;(v), Lo
as before. We choose another L;(v') by taking different v' € T3. Let Le,, en.c0, (V)
be a Lagrangian submanifold obtained by Lagrangian surgery as before. We note
LoN Ly(v'") and Ly N Lq(v") consist of a single point respectively. We denote them
by

r = (vi,vh,v5) € LoN Li(v'),

y = (v}(1 4+ v=1), 051 +vV/=1),05(1 +V—1)) € Lo N Ly (v').

Then it follows that x, y give rise to the intersection points of L, e, (v) and
Ly (v"). We denote them by the same letter

T,y € L1<Ul> N Lelg,ezo,em (U)

By suitably choosing ¥, we may assume that

| I 1.
(56.33) 51/ AV = Ey < Ey = 50 Av.

where Ej is the minimal area of pseudo-holomorphic triangle whose edges lie on Ly,
Ly (v), Lo, which is close to the minimal area of pseudo-holomorphic discs bordered
on L, es.60, (V), and Ey is the minimal area of pseudo-holomorphic triangle whose
edges lie on Lg, L1(v"), Lo, respectively.

Figure 56.12

By Theorem F we have a filtered Ao, (H(LEIZ’EQO’601 (0); AL ), H(L,(V); AY ))

0,n0v » £20,nov

bimodule structure ng, x, on AL, [z] ® A2, [y]. The following theorem provides

0,no0v 0,no0v
some partial information on this bimodule structure.
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Theorem 56.34. If eop < 0 < €19, €01, then
(56.35) noo([z]) = £(TF+°) . [y] mod TF <.

If €1 < 0< €12, €20 then

(56.36.1) ngo([z]) =0,
and
(56.36.2) ny o(ag, [2]) = £(TFHEe) . [y] mod TEFe,

Proof. By Proposition 56.3, the order, counted with sign, of the moduli space
M(Lg, L1 (v"), La; pao, x,y) is £1. (Note that the orientation of the moduli space of
holomorphic discs depends on the spin structure. The spin structure is not uniquely
determined, cf. Remark 54.8.) For the case €39 < 0 < €19, €01, the element of the
moduli space M(Lg, L (v"), La; p20, z,y) gives a unique pseudo-holomorphic 2-gon,
which contributes to the boundary operator (my,g-([z]), [y]). This implies (56.35).

For the case €y;1 < 0 < €12, €99, the index difference between z and y is 2
and hence we have (56.36.1). To show (56.36.2), we remark that each element
of M(Lg, L} (?"), La; p20, z,y) defines an S* parameterized family of holomorphic
2-gons. Namely M (Le,, cp0.c0, (v), L1(v"); 2, y; 8) is diffeomorphic to S* where £ is
an appropriate homotopy class.

Consider the moduli space M o(Le,y 00,01 (V); L1(V); 2, y; B), consisting of the
elements of M(Le,, es0.c0, (V), L1(v'); x, y; B) together with one marked point on the
boundary R x {0}. We may assume that it is S' x R, although we do not specify
its orientation here (cf. Remark 54.8) and the evaluation map

ev . Ml,O(L€12,€20,€01 (U)7 Ll (U/); ﬂ) - L€12,€207€01 (’U)

represents the class £[S%,]. (Theorem 55.14.) (56.36.2) follows. [J

It seems to be interesting to study the collection of the Lagrangian submanifolds
obtained by Lagrangian surgeries, starting from the flat Lagrangian tori and carried
out at more complicated configurations of intersections in a similar way. (We refer
to the last section of [Fuk02III] for some related study.) This is a subject of the
future research.

Remark 56.37. In this section we have used suitable chains representing given
cohomology classes in our calculations of various operations.

The discussion presented in §30 proves that we can use any choice of chains,
as long as the transversality condition is satisfied, for the calculation up to the
level (n, K) we want to calculate. Then the whole discussion in §30 is designed to
verify that the A,, i structure we compute using the chosen particular choice can
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be extended to an A, structure and the resulting A, structure is independent of
such choices up to homotopy equivalence.

In this section we illustrated analysis of contributions of the moduli spaces of
the lowest energy level. Therefore we can safely work with homology classes rather
than cycles because the relevant moduli spaces have no boundary.

We like to compare the machinery developed in §30 with that of usual singular
homology theory : This plays a role similar to the way how the general theory of
the standard singular homology theory works in the homology theory. Recall, for
example, that when we compute an intersection pairing of two homology classes in
the usual singular homology theory, we take appropriate representatives satisfying
some relevant transversality conditions for the computation. The general algebraic
and geometric machinery of the singular homology theory ensures that such cal-
culation is independent of the choice of representatives used. We recall that while
actual calculations using the transversal representatives look rather ad hoc and sim-
ple, this general singular (or any kind of) homology theory needed for justification
is rather heavy and not simple at all. By the same token, we emphasize that our
rather ad-hoc looking calculations carried out in this section are completely rigorous
which are justified by the general heavy machinery developed in §30.

More specifically speaking, in actual calculation of the A, (or A, g) structures,
the general theory established in §30 and others makes it unnecessary to go back
to the details of proofs carried out in §30 : To obtain the structure constants
of the Ay (or A, g) structures, we have only to analyze the moduli spaces of
pseudo-holomorphic discs up to the order that we want to know. They can then
be calculated by taking appropriate chains that satisfy the relevant transversality
conditions, and then taking the fiber products among them and etc.

§57. Wall crossing and monodromy.

In this section we consider the case n = 2 and w = > dz; A dy;. (In this
section we only consider the case when the Kahler angle a between two Lagrangian
submanifolds we consider is 7/2.) Then, C? has a family of automorphisms realising
hyper-Kéhler rotation : for each § € (—m, 7|, we define a diffeomorphism Roty :
C? — C? by

Rotg(xl +v—=1ly, 20 +v—1 yg)

o7.1
(57.1) = (z1 4+ V—1(y1 cosO + y2sin @), x5 + v —1 (—y;1 sin @ + y, cos 9)).

Although it is not a symplectic diffeomorphism (with respect to standard symplec-
tic structure), a straightforward calculation shows that this rotation preserves the
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Lagrangian property of the particular Lagrangian submanifold H,, defined in (54.4).
Namely all of
H|e|e\/je = ROtg(HM)

stay Lagrangian and so we have S!-family of Lagrangian submanifolds each of which
is asymptotic to R? U v/—1R2. We would like to use this S'-family to define an
Sl-family of Lagrangian surgery at each double point of an immersed Lagrangian
surface. However this rotation does not preserve the Liouville class. (See below.) In
particular, H, is not exact unless € is real. This makes it impossible to interpolate
it, by a Lagrangian surface, to R? U v/—1R? which is exact. So unlike the case
where € is real and so H. is exact, we cannot localize the other surgery for 6 # 0, 7,
but need to use a more global construction for them.

We first analyze how the Liouville class of H, changes over e = |eleV~1¢ with
0 € (—m,m]. When € is positive real (i.e., when § = 0), we consider the circle
vp : St — C? =2 T*R? defined by

vo(¢) = dfr(v/|e|(cos ¢, sin )
For € = |eleV™1, 0 € (—m, 7], we put
ve = vg := Rotg oy : S — H.,

where Rotg : C? — C? is the diffeomorphism defined in (57.1). We denote by [v]
the homotopy classs Ho(C2, H,) through the natural isomorphism H,(C?, H,.) =
Hi(H.) = 7Z. This generates Hy(C?, H.). Then a simple computation shows that

v (—(y1dz1 + yadz2)) = —|e| sin Odg
where —(y1dx1 + yodxs) is the Liouvile form. It follows from this that
=0 for § =0,m,
(57.2) wlve] = —27le[sinf] <0 for 6 € (0,7),
>0 for 0 € (—m,0).
This in particular shows that H. is not exact, unless € is real, i.e, 8 = 0, 7.

Before proceeding further, we study the moduli space M(C2, H,; [v]), € = |e|eV 17
for each 6 € (—m,7].

Proposition 57.3. M(C?, H,;[v.]) consists of one point if 0 = —m/2 and is empty
otherwise. Similarly M(C?, H; [—v.]) consists of one point if = 7/2 and is empty
otherwise.

Proof. We first note that all H. are congruent because they are the images of H)
under the map Rotg which are all isometries. Furthermore, for the case of H||, the
flat disc with boundary wy| : (D%, 8D?) — (C?, H)) defined by

wie|(2) = V]el(z, )
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is not only a minimal disc (in the Riemannian geometric sense) but also area
minimizing among the maps representing the homotopy class [Jw|] = [w] €
m9(C? H))) = m(H)). In fact if w : (D?,8D*) — (C?, H) is any map homo-
topic to w)¢ then

Area(w(D?)) > /w*w = /wi‘ew = Area(w|.|(D?)).

Obviously the image of this disc under the rotations which lies in H, is again
area-minimizing in the corresponding class [vy] € 71 (H,) = m2(C?, H,). Denote this
disc by w, : (D% 0D?) — (C? H.). Therefore if there exists a holomorphic map
representing the class v, the map w. must be holomorphic. However it is easy to
see that we can be holomorphic only if § = —7/2 and is anti-holomorphic only if
0 = /2. The proof of Proposition 57.3 follows. [

Now we want to implant the S'-family of local models H, into a given compact
symplectic manifold at each double point of a Lagrangian immersion.

Let ¥ : ¥ — M be a Lagrangian immersion into a symplectic 4-manifold. We
assume that ¥ is an embedding on ¥\{p, ¢} and has an ordinary double point at
x = VU(p) = ¥(q). As in §54, we choose a small neighborhood U of x and take a
symplectic diffeomorphism I : U — D* C C? where D* is the unit ball in C2. I maps
the two branches of the immersion to (R* U+/—1R?) N D*. We put A = D*\1D*.
Here %D‘l is the four ball of radius % centered at the origin. Let A, = AN R2?,
A; = ANy/—1R2. (Here 7 and i stand for ‘real’ and ‘imaginary’, respectively.) We
may identify the neighborhoods U,,U; of A,, A; in C? with neighborhoods of the
zero section of the cotangent bundle of A,., A; respectively.

We consider the Lagrangian submanifolds H, in C? for € = |e|e‘/__1‘9 defined in
(54.4) for 0 € (—m,m|. Since H. N A converge to (R2Uv/—1R?)N A as |e] — 0
and so are contained as a Lagrangian graph in the above Darboux neighborhood
of A, U A;, there exist closed one forms u,,u; on A,, A; such that H. N A can be
identified with the graphs of u,.,u; respectively on the cotangent bundle. In fact,
with respect to the polar coordinates (¢, ¢,) of A, = [3,1] x S C R2 we have

xT1,Tr2)
: dt,
(57.4.1) u, = —|€| sin 0d¢,. + || cos Ht—.
Similarly due to the symmetry of H. along the diagonal A, we also have

dt;
(57.4.2) u; = —|e| sin Od¢; + |e| cos H?

(2

on A; = [1,1] x S* C R?

2oy, - Here (i, ¢;) is the polar coordinates on the (y2,y1)-
plane.
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We denote ) )
Sout = S\ <§D4> = ¥()\; D’

It is easy to see that we can implant the local model H, N D* at the double point to
produce the required Lagrangian surgery L., if we can find a closed one form u on
Yout such that the restrictions of v to A,, A; are u,., u; respectively. By considering
the exact sequence

s H' (Sout;R) — H' (0%0ut; R) - H2(Sout, 080us; R) —

we can find such a closed one form if §([u,] ® [u;]) = 0.
Recall that, if ¥, is orientable,

HQ(Eoutv azout; ]R) = (HO(Eout; R))*

by the Lefschetz duality. Therefore if we assume in addition that ¥ is connected,
we have H2(Xout, 03out; R) = R and so in this case, §([u,] @ [u;]) is characterized
by the real number

6([ur] ® [wi]) [Zout] = ([ur] @ [wi])(0Zout)-

This number vanishes by (57.4), provided ¥ is oriented and the self-intersection
point is positive in the sense of §54.1. Therefore [u,] ® [u;] € H'(A, U A;;R) is
always in the image of H*(X;R). This proves the following proposition.

Proposition 57.5. Suppose that ¥ is connected and oriented so that the self-
intersection point is positive in the sense of §54.1. Then for each ¢ = |e|eV~1?
with |e| sufficiently small there exists a Lagrangian submanifold . C M such that :

(57.6.1) X N (M\U) will converge to ¥(X) N (M\U) in C* topology as € goes
to zero.

(57.6.2) I(%.NV)=(3D*NH) wherex €V CV CU.

Remark 57.7. (1) IfY is connected and X,y is non-orientable, H?(Xout, 0¥ out; R)
vanishes. Hence there is no obstruction to extending u,., u; to closed one-forms on
Yout- If X is connected and oriented such that the self-intersection point is negative
in the sense of §54.1, we cannot perform the Lagrangian surgery unless € is real.
(Note that to make the parametrization of 0¥, consistent with the induced bound-
ary orientation of 9¥,., we should parameterize the two components 0¥, N A,
and 0¥yt N A; in the opposite directions.)

(2)  When p belongs to a component different from that of ¢ in X, the above
argument shows that [u,| @ [u;] does not lie in the image

Im(H'(X,R) — H' (A, UA;R)) € HY(A, U A;R)
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unless e is real. Therefore in this case, we cannot find L. satisfying (57.6) in Propo-
sition 57.5. This is the case, for example, when M = T*, ¥(X) = T? U T? where
the two tori intersect transversely at one point.

(3) By generalizing the above argument to a configuration of several Lagrangian
submanifolds, one can derive a sufficient condition for a simultaneous surgery at
several intersections points in terms of the data at the intersection points and of
the topology of the configuration. Since we do not need such a study in this paper,
we do not discuss this point further here.

Example 57.8. Let us consider the case of T* studied in §56.1 and consider the
symplectic form dz1 A dy; + dza Adys. We take Lo, Li(v) C T* as in §56.1. We put

5 ={(21,22) | x1 = y1, 22 = —y2}.

We first perform a surgery of their union LoU L1 (v)U L) at two of their intersection
points, say ph, and pi,(v). (Here phy € Lo N LY, pis(v) € Li(v) N L) We then

obtain L;zo’m for sufficiently small real numbers €gg, €15.

We remark that L. is an immersed Lagrangian submanifold with self inter-

section at po1(v). (See Figure 57.1 below.) It follows from the two dimensionality
of the Lagrangian immersions that the surgery L'Ezm612 gives rise to an oriented
submanifold with either equipment at pp1(v) in the sense of Definition 55.9. This in
particular implies that the self-intersection point pgi(v) is positive in the sense of
§54.1.

We remark that Kahler angle of our Lagrangian submanifolds at po1(v) is 7/2.

Therefore ¥ = L, ., satisfies the assumption of Proposition 57.5 and hence we
can construct a Lagrangian submanifold ¥, = (L{, ., ,) for each compler number

¢ (which is sufficiently close to 0).

Figure 57.1

We remark that we can not use Lo = {(z1,22) | 1 = y1,22 = y2} in place of
5 in the above construction. In fact then the self intersection at poi(v) will be
negative.
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Example 57.9. We also have the following example where the assumption of
Proposition 57.5 is satisfied. Let M be an elliptic K3 surface and 7 : M — B
be the associated fibration. Recall that K3 surface is hyper-Kéahler and carries a
S2-parameterized family of symplectic structures, which are all Kiahler with respect
to the given complex structure J on M. We take the one, among those symplectic
structures, with respect to which the fibers of m become (special) Lagrangian sub-
manifolds. If M has a type-I singular fiber F' = 7= 1(bg) in the sense of Kodaira
classification, F is the image of a Lagrangian immersion of S2. In this case, the La-
grangian submanifold Y. appearing in Proposition 57.5 can be taken as the smooth
fiber 7=1(b) where b is a base point near the critical value by.

Now we continue our discussion from §54, §56.1. Consider the Lagrangian sub-
manifold ¥, given as in Proposition 57.5 and the second Lagrangian submanifold
L. More specifically, we consider the following pair : Let ¥, = (L. )e be as in

€20,€12
Example 57.8. Here we assume ey = €15 < 0 We put € = —eg;. Take v € T?

different from but close to v and consider

Ly(0) = {(21,22) | y1 = 21 + V1,92 = 22 + V2 }
and put

x=(01,02), y=(0,0)+((1+vV=1)(v1 =), 1+ vV=1)(va —T2)).

Figure 57.2

We assume 07 # v;. We then have Lo(0) N X, = {x,y} since L, N Ly(0) = 0. We
will now study Floer cohomology

HF (3, L2(v)).

We use Z coefficients. For this purpose, we study the moduli space M (X, Ly (v); x, y)
used to define the boundary operator of the Floer cohomology. We assume €’ is suf-
ficiently small compared to |e]|.
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We put

and .

We remark that %q(ﬂ) is the symplectic area of the triangle whose vertices are ph,
Po1(0), Pio(v). (Here pag, pyy (), P1o(v) are appropriate lifts of phy, po; (v), pia(v),
respectively.)

By taking v € Q?, for example, we may ~assume that Ey > 0.

We then assume that there exists a lift © € R? of © such that
l1,. = ,. =
i(v—v)~(v—v):E1 < Ey.

We remark that 3. and Ly (v) are unobstructed with 0 as a bounding chain by the
degree reason. In the following theorem, we work with Z,-coefficients.

Theorem 57.10. If Ree < 0 then we have
(57.11) (8[z], [y]) = TFrHm()+ha()  oq TE e,

Here lim._,g hq1(€) = 0. limg g ho(€') = 0 and ¢ > 0 is independent of € and €.
If Ree > 0 then we have

(57.12) <(5[$], [y]> = TEi+h (e)+ha(€) 4 TE1+h1(e)+27r| Im e|+ha(e") mod TE+e.

Here lim._,g hq(€) = 0. lime g ho(€') = 0 and ¢ > 0 is independent of € and €.

Proof. By Proposition 56.3, the moduli space M(Lg, L2(v), L1(v);po1(v),x,y; 3)
consists of a single point wy whose symplectic area is E;. (Here 3 is the homotopy
class of ‘small’ holomorphic triangle as drawn in Figure 57.3 below.) Moreover wy
is of multiplicity one at po1(v) and is Fredholm regular.

Figure 57.3
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Then we can apply Theorems 55.5 to characterize M(3, L2 (v); z,y) when € is
real. In this way, we obtain (57.11), (57.12) in that case.

Precisely speaking, we provide an equipment (see Definition 55.9) at the self-
intersection point poi(v) of ¥ = L[, .. and obtain the associated surgery X..
With respect to one of the two possible equipments at pp1 (v), we will have a unique
pseudo-holomorphic 2-gon for the case € € Ry and two distinct holomorphic 2-gons
for the case € € Ry in a given Hausdorff neighborhood of wg. For the latter case
€ € R., if we denote the homology class of one of the J-holomorphic discs by, say
&p, then the other’s homology class will be &y + [v]. Here [v ] is as in Proposition
57.3.

If we choose the other equipment at pg;(v), the sign of € will be reversed in the
above discussion.

We now turn to the case when € = |e|e\/__19 is not necessarily real. We may
choose |e| arbitrarily small. Then we only need to study pseudo-holomorphic 2-
gons sufficiently close to the pseudo-holomorphic triangle wy.

We start from € € R, i.e, # = 0 and vary 6 towards 2w. A standard cobor-
dism argument proves that the order, counted with sign, of the moduli space
M (X, Ly(v); x,y) does not change as long as there occurs no bubbling. Observe
that the bubbling is possible only when there exists a pseudo-holomorphic disc bor-
dered on X, with its symplectic area < Fy. Using E; < Ey, it is easy to see that
the image of such a disc is necessarily supported in a small neighborhood of pg; (v).
Proposition 57.3 then implies that such a disc exists if and only if = +7/2.

Therefore if Ree < 0, there is a unique pseudo-holomorphic 2-gon from which
(57.11) follows.

If Ree > 0, there are two pseudo-holomorphic 2-gons (in a neighborhood of wy)
with one in homology class, say £y, the other £y + [v.]. We then obtain (57.12) from
(57.2). O

We immediately obtain the following non-vanishing result (Corollary 57.13) of
the Floer cohomology. Recall the decomposition

b AZZ
HF(E&LQ( ) A02nov> - (A%2n0v> D @ TAi (;\ZOZU

0,no0v

from (28.32). We note that

TEHF(Z., Ly(0); A%

0,nov

) =0

if and only if
a=0 and E > \; (all 7).
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Corollary 57.13. There exists ¢ > 0 such that if |e|,|€'| are sufficiently small
compared with ¢, then the following are equivalent :

(1) TEHeHF(S., Ly(0); ARz, ) #0

0,nov
(2) € is a real number and positive.

Proof. The part of non-vanishing follows from Theorem 57.10 and the ‘only if’ part
of the second statement follows immediately from Theorem 57.10. On the other
hand, the ‘if’ part of the latter can be proved in the same way as the proof of
Theorem 56.7. [J

If we continuously trace the homotopy class &y as 6 varies from —m to m, the
class &, will become &y + [vg] because of the presence of non-trivial monodromy.
Note that € = |eleV=1? = |e|eV=1(*+27)  From these observations, we find that
M(L¢, Ly(V); z,y) pictorially looks like Figure 57.4 below.

Figure 57.4

Theorem 57.10 and Figure 57.4 show how a wall crossing phenomenon of Floer
cohomology occurs at 6 = +7/2.

We remark that Theorem 57.10 does not apply to the cases § = +7/2 : This
is because the moduli space M(X., L(0);x,y) is not transversal for the cases, as
can be seen from Figure 57.4. For these cases, the moduli space M(%;[v.]) has
its virtual dimension —1 but is nonempty. To make the relevant moduli spaces
transversal and to define Floer cohomology, we need to perturb the moduli space
by a suitable perturbation. Depending on the way how we perturb it, the moduli
space M (X, L2(v); z,y; ) may consist of either two points or of a single point.

Let n((fé and n((fg be the operations obtained by the two different perturbations,
respectively. They will have the expression

(57.14.1) nilo([]) = TErHm©OFha() ) od TE1+e
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(57.14.2) n$)([z]) = (TBr(@+ha() p pBrthi (@t 2nlImeltha()yfy) poq TE e,
We can also easily see that

(57.14.3) n{(0lv] @ [z]) = TE M O+h(D ] moq TE e,

The discrepancy between the two operations is measured by a filtered A, ho-
momorphism

f* : (H(Eea AO,?’LO”L))? m(2)) - (H<Zea AO,nov)a m(l))
Here we observe
(57.15) fo(1) = 7>l pD(A[v]) mod T*.

The isomorphism between the Floer cohomologies stated in Theorem 14.5 is given
by the identity

(57.16) (e, [2], %) = nfZ)(e”, [a], )

for the current example. (We remark that w(v.) = 27 Ime by (57.2).) This formula
is consistent with the ones given in (57.14) and (57.15).

We also remark that the conclusion of Theorem 57.10 is based on our specific
choice of J. The wall crossing line itself is not well-defined in that it depends on
the choices of almost complex structures J and of multi-sections of the Kuranishi
structure. However “the homology class” of the wall crossing line will have some
invariant meaning. For example, the number of the times at which bifurcations of
the moduli space occur will be at least two for any choice of J as we move along
from 6 = 0 to = 27. (A similar phenomenon was exploited in [Fuk02III] for some
calculation.)

Here in Theorem 57.10 we restrict ourselves to the case of Lagrangian subman-
ifold of the special type provided in Example 57.8. However the same kind of the
bifurcation picture as in Figure 57.4 can be shown to occur for the more general
case where the Lagrangian submanifold . is the one as in Proposition 57.5. Espe-
cially it holds for the example of type-I singular fiber in K3 surface. (See Example
57.9.) This case seems to have an important implication in relation to the mirror
symmetry as we remark below.

Remark 57.17. In the paper [KoSo04] of the year 2004, Kontsevich-Soibelman
discussed a complex structure of the K3 surface MT appearing as the mirror of
another K3 surface M which forms a fibration over B = S? whose singular fibers are
of type I. They stated an axiom which the quantum effect on the complex structure
of the K3 surface MT are supposed to satisfy. This quantum effect conjecturally
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occurs along the locus consisting of the points € B at which the Lagrangian fiber
71 (x) admits some nontrivial pseudo-holomorphic discs. (Such a phenomenon had
been observed in some physics literature before, and also by the first-named author
in [Fuk05I].) One of the axioms, Axiom 1 in §9.2, stated in [KoSo04] reads that
at a point zg where 7~ !(xg) is of type I singular fiber, the locus of non-trivial
quantum effect consist of two lines flowing out. This axiom exactly coincides with
the discussion in this section (Proposition 57.3) and that of §29 of 2000 version of
this book ([FOOO00]).

§58. Fredholm theory of pseudo-holomorphic polygons

In this section, we review the Fredholm theory of the moduli space M(L,w; J)
of pseudo-holomorphic polygons w : D? — M satisfying (54.15), where £ is the La-
grangian chain intersecting pairwise transversely without triple intersections. (See
the beginning of §54.3.) We have already used this Fredholm theory in the previous
sections in order to define an appropriate notion of Fredholm regularity of pseudo-
holomorphic polygons, for example. The discussion of this section is not new and
has been known among the experts.

We can generalize the story to the case where Lagrangian submanifolds are of
clean intersections. Then for the case where £ = (L,---, L) of ‘total collapse’ the
discussion here goes back to the one provided in §29.

We fix a sufficiently small closed neighborhood U; C D? of Uj(i41) for i =
0, 1,---, k so that they are disjoint and fix a conformal isomorphism

@i Ui \ {ui+1)} — (—00,0] x [0,1] for i =0,--- k-1

and
(Vo) Uk \ {uko} — [0, OO) X [0, 1].

In other words, we regard the punctures uo1, -+, ux—1)r as incoming ends and ukg
as the outgoing end.

We denote by 7+ v/—1t the standard complex coordinate of R x [0, 1], and fix a
metric h on each Int D? such that

h = 7(dt? 4 dr?)

on U; near the puncture w;(;41)-

Note in §29 we used a parametrization of the moduli space of marked disc over
the moduli space of metric ribbon trees. Based on this parametrization we gave a
canonical way to find such a coordinate in a neighborhood of each wu;(;41) together
with a metric given as above. When we do not move but fix the point u;;11),
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making such a canonical choice is not an essential matter. In this chapter we are
mainly interested in the case of three marked points for which we can fix w;(;y1)
after reparametrization.

We fix a Riemannian metric g on M so that L; are totally geodesic near the the
intersections L; N L; for all i # j, and exp,, : T, M — M the associated exponential
map at p € L; N L;. Then we can choose a neighborhood V), of the zero of T),M
such that

exp,(Tp,L; NVy) C L,  exp,(0) =p

at each intersection p € L; N L. We also fix such neighborhoods V), for each
Now for given p;; € L; N L;, we define

ap,, = min{a € (0,7) | a are Kahler angles between L; and L; at p;;}.

By the hypothesis that L;’s are pairwise transversal, we have a,,; > 0. Now we fix
a constant J so that
0<d<ay,-

For the simplicity of notation, we denote
D? = D%\ {ugy, - s U(k—1)k } -
For a given positive constant p > 2, we consider the maps
w:D?* > M

satisfying (54.15), (54.16) and
(58.1.1)  we WLP
(58.1.2)

/65|T| (}(w o 1)(r, t)}p + |(Vwo ©; H)(T, t)}p> drdt < oo

for each i. Here integration is taken on (—oo, 0] %0, 1] for ¢ # 0 and on [0, +00) %[0, 1]
for ¢+ = 0.

The condition (58.1.1) implies that w is continuous thanks to the choice p > 2.
The condition (58.1.2) then implies that the map w converges to a point in L; N L; 11
as u — u;;4+1) because it provides an exponential decay as u — wu;(;41) in the
coordinates 7 + v/—1t on U;. Therefore we can impose the following asymptotic
condition

(68.1.3)  w(ui(it1)) € Pigi+1) € Li N L1 for such maps w.
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Now we define the set

W(Sl,p(D27£;m7 ﬁ:{p017p127"' 7pk0}

to be the set of all w : D? — M satisfying (54.15) and (58.1). Any such map defines
a continuous map w : D? — M satisfying the condition (54.15) and

(58.2) w(ui(z’Jrl)) = Pi(i+1)-

We denote by
T2(L; P)

the set of homotopy classes of such continuous maps and by B an element from
mo(L; p). Finally we define the set

(58.3) W5 (D?, L; . B) = {w € Wy (D? L; ) | [w] = B}.

By the exponential decay property of w € M(L;p; B) with its decay rate being

7|

at least e~ “7i7'"! at p;; and by the choice of § satisfying 0 < § < a,,,, we have

M(L; 7, B) © Wy (%, L; 7 B).

We write _
C%(w) = T, W, *(D?, L; p, B)

and
Cl(w) = LE(AOD (w*TM)).

Then the formal linearization of the Cauchy-Riemann operator 0 defines a linear
Fredholm operator B
D0 : C°(w) — C*(w)

in a standard way.

Remark 58.4. Since L; and L; are transversal, the operator
D0 : T,W'P(D? L;p) — LP(AOV (w*TM))

is actually Fredholm. In other words, we do not need to use weighted Sobolev space
for Fredholm theory here. We put weight e®l” here in order only for the boundary
value w(u;(;11)) to be well defined for w which may not be pseudo-holomorphic.

On the othe hand, when we use the cylindrical metric on the target space M
also (as we do in §60 - 62), we do need to use weighted Sobolev space. This is
because if we use cylindrical metric on the target space M, the linearization of
Cauchy-Riemann equation is degenerate at the end.
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§59. Local model of holomorphic discs
in C” I: construction of local models

59.1. Statement of the result of §59 and §60.

In this section, we consider the pair
R", eV *R"=AcCC"

of Lagrangian subspaces with the common Kahler angle a.
In terms of the labelling

L =R", Ly=¢eV 1oR" = A

we denote the relevant surgery by L. = R"#.A. We divide our discussion into two
different cases : one is the case for € > 0 and the other for € < 0. We assume

O<a<m.

We will obtain all the proper holomorphic curves bordered on H® with appropriate
asymptotic conditions : the solutions will be explicit or algebraic for the case

e >0, or e<0,a:g.
For the remaining cases, € < 0, € # % the solutions will be more transcendental and
so not be given explicitly.
In this section we study the case € > 0 or « = /2. The other case will be studied
in the next section.
Consider a holomorphic map w : Int H — C” such that :

(59.1.1) w extends continuously to H — C".
(59.1.2) w(0H) C HZ.
(59.1.3)  There exist 79 and ¢, C' > 0 such that

—QaT

e

w(@ﬂ(,r_i_\/__lt)) . (ea(T—TO+\/__1t), 0, ce 70)‘ < Ce T

for 7 > 0.

We remark that Condition (59.1.3) implies that w(z) is asymptotic to
E* = {(Z,O, 70) eC” Z:TG\/__lg, 0<9<0[} .

and corresponds to the requirement of multiplicity 1 in Theorem 55.5.

Denote by Aut(H) (or Aut(H, {co})) the group of affine transformations z +—
az+b, (a,b € R, a > 0). We remark that Aut(H) is the group of biholomorphic
automorphism of H which fix oo.

The following is the main result of this section and the next.
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Theorem 59.2. Let 0 < o < 7 and consider the holomorphic maps
w=(wy, -+ ,wy): H—-C"

satisfying (59.1).

(59.3.1) If € > 0, such w is unique modulo the action of Aut(H). Moreover
wy = -+ = w, = 0.

(59.3.2) If € < 0, then the set of such w’s, modulo the action of Aut(H), is
parameterized by S™ 2.

We remark that the sign of € in (59.3) appears in a different way from Theorem
55.3. See Remark 61.23 about this point.

59.2. The case € > 0.

In this subsection, we consider the case € > 0 and prove (59.3.1).
The proof will be carried out in a series of lemmata. We define the (double)
cones as follows :
WC(a)={z€eC|0<argz<a or 7 <argz <7+ a}U{0},
Ci(a) ={z€C|0<argz < a}U{0},
C_(a)={z€C|nm<argz<m+a}U{0}.

Note that the projection of H® to each factor is contained in WC'(a).

Lemma 59.4. Let w = (wy, -+ ,wy) : H — C™ be a holomorphic map satisfying
(59.1) for H*. Then the followings hold :

(59.5.1) The image of wy is contained in Cy(a). Moreover 0 ¢ w1 (Int H).
(59.5.2) Fori =2 ---n, if w; is not constant then the image of w; is contained

in either C(a) or C_(«). Moreover 0 ¢ w;(Int H) if w; is not constant.
(59.5.3)  w=1(0,---,0) = 0.

Proof. Denote by m; : C* — C the coordinate projection to the i-th coordinate
plane fori =1,--- ,n.

Recall that H? is defined by H® = v - S™~! (see (54.12.3)) and hence it follows
that the image m;(HS) is contained in the double cone WC'(a). By the boundary
condition (59.1.2), we have w;(0H) C WC(«). And (59.1.3) implies that

(59.6.1) wy (OH) N O () # 0.
We will now prove

(59.6.2) w;(H) c WC(«) for all i.
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Suppose to the contrary that (59.6.2) does not hold for some i. Then it follows
from (59.1.3) that there exists an interior point z € H such that w;(z) ¢ WC(«)
and that w;(z) is in the boundary of w;(H). Since z is an interior point of H this
contradicts to the maximum principle and hence follows (59.6.2).

Now if w; is non-constant and 0 € w;(Int H), w;(Int H) must contain a neigh-
borhood of 0 which will contradict to (59.6.2). This and (59.6.2) imply (59.5.2).
(59.5.1) can be proved similarly using (59.6.1), and (59.6.2).

Finally for the proof of (59.5.3), we note that (59.5.1) implies that w(u) can be
(0,--+,0) only at a point u € OH. However this is impossible by the boundary
condition (59.1.2) which is w(u) € HY for v € OH. This finishes the proof. [

Motivated by (59.5.3), we consider the holomorphic map
g:H—Cpr!
defined by
g(u) = [wi(u) : - s wp(uw)].

Lemma 59.8. The boundary condition (59.1.2) implies

(59.9) g(OH) c RP" .

Proof. Let (21, ,2n) = (1 + V—=1y1, - ,xn + V—1y,) € HY. By the definition
of HY (see (54.12)), we have
2 = reﬁeai,

where
x x 70
2¢)2a = rasin [ — 2 _ 1.
(2¢) 7o sin ( - ) ) E a;
Then it follows that we have

[re\/_—wal : V=16

(211 12y = ceeire an] =[ay:---:a,] € RP"!

which proves (59.9). O

The condition (59.1.3) enables us to extend g to a continuous map g : HU{oco} —
CP"~! by setting

(59.10) g(oo) =1[1:0---:0].

We now prove the following :
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Lemma 59.11. In the above situation, g must be the constant map having the value
[1:---:0] € CP" 1. In particular, we have

(59.12) wy =+ =w, =0.

Proof. Using Lemma 59.8, we apply the reflection principle to g : H — CP"~! and
obtain a real holomorphic map g : CP! — CP"! as follows :

N g(u) ifueH
g(u) = { — .
g(u) ifueC\H.
To finish the proof, it is enough to prove that g is a constant mapg=[1:0:---:0].
Suppose to the contrary that g is non-constant and so has non-zero degree. Then
the image of g must intersect the hyperplane {[z; : -+ : z,] € CP""1 | z; =0} at a

finite number of points. Considering A -w for a matrix contained the isotropy group
SO(n — 1) € SO(n) of (1,0,---,0) if necessary, we may assume that wy(u) # 0
whenever wi(u) = 0.

We then can define g, : H — CP! by go(u) = [w1(u) : wa(u)]. Then gy con-
tinuously extends to H U {co} in the same way as above. We denote its double
by g» : CP! — CP!. Tt follows from (59.5.2) that either we(H) C C.(a) or
we(H) C C_(«).

We first consider the case wy(H) C C4(«). We obtain

(59.13.1) —a < arg <%) <a and —a<arg (?) < a.
w1

This implies that the image of g» does not contain [1 : —1]. This is a contradiction.
In the case we(H) C C_(«a) we obtain

(59.13.2) W—agarg<%)§7r+a and W—agarg<?>§7r+a.
w1 w1
This implies that the image of go does not contain [1 : 1]. This is a contradiction.
Therefore g must be the constant map g = [1 : 0 : --- : 0]. Hence we derive
wo = w3 = -+ - = w, = 0 which proves the lemma [

Now Theorem 59.2 for € > 0 immediately follows from Lemma 59.11. [

59.3. The case ¢ <0, a = /2.

In this subsection, we consider the case ¢ < 0, @ = 7/2 and prove (59.3.2) in case
a = 7/2. We recall in case € < 0, our Lagrangian submanifold H. /2

HZ/QZ'Ye'Sgrjl
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where the curve 4. C C is defined by

ve = {reV=1? | 2¢ = 1% sin 26, g <0<}

This case is much more subtle to deal with than the previous case of € > 0.
It turns out that an explicit description of the solution of Cauchy-Riemann equa-

tion with boundary condition (59.1) for € < 0, does not seem to be easy, except the

case of a = 7. In this subsection, we provide an explicit description of the case

with a = 7. In the next section, we will study the case o # § in a more indirect
and transcendental way.

Proposition 59.14. Let € < 0 and a = 5. Consider the holomorphic maps w =
(wi, - ,wy) : H — C™ satisfying (59.1). Then the set of such w’s, modulo the
action of Aut(H), is parameterized by S™~2.

Proof. We define
(59.15) Flu) = wi(u)?
i=1

In case a = 7/2, the condition z = reV=T € HY is equivalent to 72 sin 20 = 2e. It
follows that Im 22 = 2¢. Therefore the boundary condition of w implies that

(59.16) f(OH) C R + 2ey/—1.

Lemma 59.17. f is a biholomorphic map between H and
H+2ev/—1 = {z € C | Imz > 2¢}.

Namely, by composing with an element of Aut(H), we may assume :

f(u) = u+ 2ev/—1.

Proof. We define f: CP! — CP! by

_ f(z) if ze H

(59.16) implies that f is continuous and holomorphic. (59.1.3) implies that

CEHESES
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and the multiplicity is 1. Therefore f is biholomorphic. (59.1.3) implies

. lim Im f(u) = oc.

Hence the lemma. O

Lemma 59.17 implies that f has a unique zero ug = —2ey/—1 and f’(ug) # 0.
In particular we have w(u) # (0,---,0) unless u # ug. On the other hand, since
f'(ug) # 0, it also follows that w(ug) # (0,---,0). Therefore w=1(0,---,0) = 0
and we can define the projectivization of w denoted by

(59.18) g(u) = [wi(u) : - : wy(u)] € CP L,

We can smoothly extend g to g : CP! — CP"~! by putting

9(@) = g(u).

for u e CP!\ H.
Lemma 59.19. §: CP! — CP"! is of degree one.
Proof. We put

(59.20) X:{[21:~~~:zn]ECP"_1 ’szzo}.

X is a hypersurface of degree 2. Since ug is a unique zero of f on H and f/(ug) # 0 it
follows that g(H) intersects with X at one (interior) point transversally. Since g on
H is obtained by reflection and X is invariant of reflection (complex conjugation),
it follows that the intersection number between g(CP!') and X is 2. Therefore g is
of degree one as required. [

Now we are in the position to prove Proposition 59.14. Note that ug = —2ev/—1
is the unique point with f(ug) = 0.

Lemma 59.21. Let e <0, a = 7/2, f(u) = u+ 2e/—1, ug = —2e/—1. Let X be
as in (59.20).

Then there exists a one-one correspondence via the equation (55.18) of w and g
between the following two sets of w and g :

(59.22.1)  w= (wy, - ,wy,): H— C" satisfies (59.1) and (59.15).
(59.22.2) The double g : CP* — CP"~! of g is of degree one, and satisfies the
formulas g(oo) =[1:0:---:0], g(ug) € X.

Proof. Construction of g out of w has been already carried out in Lemma 59.19 and
the discussions above. Therefore we will focus on the other direction of the lemma.
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Let f and g be given as in the hypothesis. We would like to construct the lifting
of g = g|m to a map w = (wy,wa, -+ ,wy) : HH — C™ so that it satisfies (59.22.1).
Since g has degree one, there is exactly one u = u; € CP! such that

g(u) S {[zl : "'3Zn] | ZQZU}CCPn_l

whose intersection multiplicity is 1. (59.22.2) implies that u; = oo. In other words,
there exists g; : H — C, (j # 2) such that

g(u) =[g1(u): 1:g3(u):---: gn(u).
We define wy by the equation

f(w)

(59.23) wo(u)? = (1 S g?(U)) :

By assumption, we have
f(u):0<:>u:uo<:>1+Zg§(u):O
J#2
and ug is a simple zero of both equations. Hence (59.23) defines

wy : IntH — C\ {0}.

(59.23) determines wo uniquely in terms of g and f upto the multiple of +1. We
take one of the two choices of wy uniquely so that

wy(u) = g1(u)wa(u)

satisfies (59.1.3).
We then put

w;(u) = g;(w)ws(u)
for j # 1,2. (59.16) and (59.22) then immediately follow. The proof of Lemma
59.21 is complete. [

We recall that the set of degree one rational curve ¥ on CP"~! that is defined
over Rand [1:0:---:0] € ¥ is parameterized by RP"2.

For each such ¥ and given ug, there exist two choices of g : CP! — ¥ c CP"!
such that

(59.24) g(oo)=1[1:0:---:0], g(uo) € X,

since > N X consists of two points.
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Therefore, by Lemma 59.21, the set of w has one-one correspondence with the
non-trivial double cover of RP"~2 which is precisely diffeomorphic with S?~2. The
proof of Proposition 59.14 is now complete. [

For the case n = 2, we have X = {(++/—1,1)} C CP!. Tt follows that g(u) =
[+45: :1]. So
5 U+ 2ey/—1 (2¢)?
wQ(U,) = D) 5 = .
1+ u?/(2e¢) u— 2€ey/—1

Therefore we have

(59.25)

wi (u) = u(u — 2ey/—1) 712,
wy(u) = £2e(u — 2ev/—1) /2,

Similarly for the dimension n > 3, we can find an explicit solution for each given
degree one curve g : CP! — CP" | i.e., complex line satisfying (59.24) in a similar
way.

From this explicit expression of the model solution for a = 7, we obtain the
following corollary.

Corollary 59.26. Let a = 5. Then all the model solution satisfy

1 i =4/2
(1) min |w(z)] el

and the minimum is realized at the unique point z = (0,0) € OH. We have

(2) 0 < min jw(z)| < V2]el.

Proof. (1) follows from a straightforward calculation. One can also easily see (2)
by computing the normal derivative

0w
a—y(0,0) < 0.

We omit the detail since we do not use this in the rest of this book. O

Remark 59.27. The readers might find that our analysis of the model solutions
using the coordinate transformation C™ \ {0} — C x CP"~! given by

(z1, 0y zn) = (5 4+ 22, [z izt 2)
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looks rather ad hoc. This coordinate transformation can be shed some light on in
terms of the standard Lefschetz fibration

q:C”—>(C;q(zl,---,zn):z%+~--+z721.

In terms of this singular fibration, we have just shown that
q(HY) CH+v—1-[2¢,00) C C.

As e — 01i.e., when the base of the fiber approaches the branch point of ¢, the corre-
sponding Lagrangian submanifold degenerates to the union of two affine Lagrangian
planes R™ U +/—1R".

§60. Local model of holomorphic discs in C"
II : Fredholm regularity of the local models

The purpose of this section is to study the case ¢ < 0, @ # /2 and complete
the proof of Theorem 59.2 by proving (59.3.2). The discussion of §59 is rather
elementary and we obtain explicit description of the local models there. Since we
do not know such explicit description of the local model in the case € < 0, a # 7/2
our proof in this section is rather indirect. Namely we start with the case o = 7/2
and will prove that the moduli space of local model does not change when we vary
ain (0, 7).

We will prove this by showing the smoothness of the moduli space of local model
for any a € (0, 7). (See Theorem 60.26.) For this purpose, we set up an appropriate
Fredholm theory and study the linearized operator of the Cauchy-Riemann equation
defined on an appropriate function spaces.

In §60 - §62, we use the Fredholm theory of the moduli space of pseudo-holomorphic
discs in a symplectic manifold with cylindrical ends. We study Fredholm theory and
gluing argument in the Bott-Morse situation and so follows the line of ideas which
works in general for various similar cases, and in particular those we gave in §29.
The main difference is that in §60 - §62, we use cylindrical coordinates not only for
the domain but also for the target, while in §29 we used cylindrical coordinate for
the domain but not for the target.

In the current setting the target becomes noncompact and so we need to use an
idea going back to Hofer [Hof93] for the relevant analysis. We will adapt various
arguments used in the existing literature to our current relative setting and provide
full details of the proofs for completeness’ sake. In the case of 3 dimensions, the
basic references are a series of papers [HWZ961], [HWZ95|, [HWZ96II], [HWZ99]
by Hofer-Wysocki-Zehnder. Hereafter, in the rest of this chapter, we will just quote
them as [HWZ] unless we need to specify a particular one to quote. There is
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also a paper [Abb04] by Abbas which deals with the case of pseudo-holomorphic
strip in the symplectization of 3 dimensional contact manifold and the Legendrian
boundary condition. Some of those results are generalized to higher dimensions in
[BEHWZ03], [HWZ02]. (See also Remark 61.48 for [Bou02].)

The main novelty of this section is the proof of transversality of the model so-
lutions stated in Theorem 60.26, where we use the O(n)-invariance of the relevant
boundary value problem in the Bott-Morse setting in an essential way.

60.1. Cylindrical coordinates of the end of the target C".

We first review the description of symplectic structure on the target space C™
in the cylindrical coordinate and the relevant Lagrangian submanifold H®. We
identify

C™\ {0} =R x $?"1(1)

via its cylindrical coordinates (s,©) where r = e® and the standard symplectic form
on C™\ {0}

wo = d(e**O*)\).
We always equip the end of C™ \ {0} with the cylindrical metric ds* + gg2n—1 on

R x S2"~1 where gg2n—1 is the standard metric on the unit sphere $?7~! = §2n=1(1),
In the standard polar coordinates (r, ©), this metric is translated to

dr? 1
2 + ggen—1 = sz dcn

where gcn is the standard Euclidean metric on C”.
We note that the unit sphere S$?"~! has the standard contact form given by

n

1

A= B Z(l‘zdyz — y;dz;)

i=1
and the associated Reeb vector field by
0 0
Xy = i —Yi— .
’ ; (x oy, Y 3%‘)

Let H® (¢ # 0, o € (0,7)) be the Lagrangian submanifold H®. As s — oo the
spherical part O(H) thereof is asymptotic to the union of

Spti=8" 1) NRY, SYhi=8"T 1) NA
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where A = ¢®V~IR"™ C C". These are Legendrian submanifolds of the contact
manifold (S?"~1(1), \).
Let
w:Rx[0,1] - R x §*~!

be a Jp-holomorphic strip with the boundary condition
w(r,0) €e R"  w(r,1) € A.

It is well-known (see [HWZ]) that the spherical projection
Qow:Rx[0,1] — §*" 1

can be regarded (at least intuitively) as a gradient line of the action functional

(60.1) ’Y'—>/)\

defined on the path space :
{v:10,1] = S*"7H(1) | 4(0) € 8" H(1),~(1) € ST (D)}

The critical point of (60.1) is known to be an integral curve of the Reeb vector
field. An integral curve of Reeb vector field connecting two (possibly the same)
Legendrian submanifolds is called a Reeb chord. We will call a chord any curve, not
necessarily an integral curve, in the above path space.

It follows from the expression of the Reeb vector field X that the minimal Reeb
chords (that is the Reeb chord for which the value of (60.1) is minimal) of the pair
(Sgat, Sty are given by the curves 72 = 7, : [0,1] — C™ satisfying

(60.2) V(1) = Ya(t) = eV 1%, ae STt

We note that, for the pair (R™,A), all such Reeb chords have the same periods
and are nondegenerate in the Bott-Morse sense. (Namely the set of Reeb chords of
the form (60.2) is a nondegenerate critical submanifold of the Bott-Morse function

(60.1).)

60.2. Fredholm formulation in symplectization.

In this subsection, we set up an appropriate Fredholm theory for moduli space
of pseudo-holomorphic maps satisfying (59.1). The weighted Sobolov space we will
use for this purpose is similar to one we used in §29.
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We take a cylindrical coordinate (7,¢) € R x [0,1] = H \ {0} of H. Namely we
put
(60.3) z=x+ 1y = TV,
We identify H \ {0} = R x [0,1] by this isomorphism. We define a (cylindrical)
metric hy that has the form
hy = 7(dr? 4 dt?)

for T large. Our metric hy is conformal to the standard Euclidean metric |dz|? on
H such that
ha = (|2]") 7% |dz/*

where |z|" : H — R is a positive radial function (namely |z|" depends only on |z|)
such that

(60.4) 12| = |z
when |z| sufficiently large. We also equip a metric

(60.5.1) gen = p(r)gen, >0

on C" such that p : C* — R is a positive radial function and gg. becomes the
cylindrical metric

1
d82 + gSQn—l = 7«_29@”

when r = Y7 | |2|? is sufficiently large, i.e.,
(60.5.2) pulr) = =.

Lemma 60.6. Let w : H — C™ be a holomorphic map satisfying (59.1). Then there
exists ¢k, Ck, Ro, so such that

(60.7) IVE (w — wi® )|(7,t) < Cpre 7

aop,S0

for T > Ry. Here

wilat (1,t) = (a1 + so, e‘/__lo‘tao), ap = (1,0,---,0).

ao,50
We use the metrics hg and g¢. in (60.7).

Proof. By rewriting (59.1.3) with cylindrical coordinates, we obtain (60.7) for & = 0.
Lemma 60.6 then follows from elliptic regularity. [

Lemma 60.6 dictates the adequate function space for the proper Fredholm theory
of the pseudo-holomorphic curves in our problem, which we now explain. Let § < «
be a positive number and p > 2.

With respect to these metrics on the domain and the target, we now define the
space Wél’p(H, C"; H%, a,7p) for each fixed a € S"~1 and 79 € R as follows.
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Definition 60.8. Wél’p(H, C™ H®, a, 7o) is the set of all w such that
(60.9.1) we W, P

loc

(60.9.2)  Using the coordinates (7,t) as in (60.3), w satisfies

|

e 7 [[w(r, 1) — eI (g)|| € WHP(([0, 00) x [0, 1], R)

a

where we use the metrics hy to define W'? and the metric gf. of C" to define || |-
(v%) is as in (60.2).)

We like to remind the readers that the metrics hy and gg. are of product type
on the ends of H C C and on C” respectively.

Lemma 60.6 implies that any holomorphic map w : H — C” satisfying (59.1) is
contained in

WP (H, C"; H, ag, o)

for some 7. Define

WyP(H,CH HEG) = () | WP (H,CY HE e, 7).

aeS™—1 To€ER

Definition 60.10. Using the metric g¢. and kg on C”, H respectively, we define :
(60.11.1) M(H,C" H®) = {w € W, P(H,C"; H*) | w is holomorphic}.
(60.11.2) M(H,C"; H® a) = M(H,C"; H*) N WP (H,C"; H, a).
(60.11.3) M(H,C"; H®, a,70) = M(H,C"; H*) N W} ** (H,C"; HY, a, 9).

Aut(H) acts on //\/lv(H, C™, H®,a) and ./W(]HI, C™; H*,a). Its subgroup R C Aut(H)
consisting of translation z — z 4+ v acts on M(H,C"; H®, a, 19). We put

—~

M(H,C"; HY)

(60.12.1) M(H,C" H*) = At )

—

M(H,C™; H®, a)
Aut(H)
MGHL (Cn; Hg; CL,T())
R

M(H,C";HZ,a) =

(60.12.2)

o~

We remark that the moduli spaces appeared in Theorem 59.2 is M(H, C™; H®, ay).
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Lemma 60.13. W(;l’p(H, C™ HY) has structure of Banach manifold such that the
obvious projection

(60.14) WP (H,C" H®) — R x 8"~

s a locally trivial fiber bundle.

Proof. The tangent space of this Banach manifold is constructed in a similar way
to Lemma 29.5 as follows. We take a function x : [0,00) — [0, 1] such that x(7) =1
for 7 larg and x(7) = 0 for 7 < 1.

Let w € W;’p(H, C"; H*, a,19).

We consider the set of all triple (W, Vgn—1, Vi) such that

(60.15.1)  Vgn1 € T,S" 1, Vg e R= T, R.

(60.15.2) W € WLP(H; w*TC").
(60.15.3)

¢ T |IW(r,t) — x(T)aVaw(r,t) — x(1)e* VIOV e WP(H,R)

Here we regard Vgn.—1 as a vector normal to a in R™ and then as an element of C”.
gen s asin (60.5.1). |7|" =|7| for 7 > 2 and |7|' =1 for 7 < 1.
Let C%(w) be the set of all such triples. It becomes a Banach space with norm

(W, Vgn—1, V&)

[kl

e p

p

W(r,t) — x(1)aVgw(r,t) — X(T)ea((T_TO)+\/__1t)VSn—1

’
gcn WwWlp

+ [[Vana [P + [IVe*.

We remark that Vgn-1, Vg are determined from W in case ||(W, Vgn-1, V)| is finite.
It is standard to check that I/V51 P(H,C™; HY) is a Banach manifold and

C°(w) = T, W5 P(H,C"; HY).

To show that (60.14) is a locally trivial fiber bundle we use the O(n) action as a
biholomorphic isometry on C™ which preserves H®. It induces an O(n) action on
Wél’p(]HI, C™; H®). Then the map (60.14) is O(n)-equivariant. (Here the O(n) action
on S"~1 is an obvious one.)

On the other hand the group R = Aut(H, {0}) = Aut(D?;{£1}) acts on our
space W;’p(H, C™; HY) as the automorphism of the domain. Then (60.11) is R-
equivariant. (Here the R-action on R is the one given by translations.)

The local triviality (60.14) follows from this equivariance and the fact that R x
S™=1is a homogeneous of R x O(n) action. [
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We next put
CH(w) = LE(H, ALY (w*TC™)),

where we use the metri hy on H and gi. on C". Then there exists an infinite
dimensional vector bundle over I/V(;1 P(H,C"; H*) whose fiber at w is C*(w).

The formal linearization of the Cauchy-Riemann operator 0 defines an operator
(60.16) D0 : C%(w) — C*(w).
We apply D,,0 only the first component W. Using the fact that

(D,0) (aVRw(T, t) — e"‘((T*TO)Jr‘/*_lt)VSn—l)

goes to zero in the exponential order as 7 — oo, we can show that (D,,0)(W) is
contained in C!(w).

Lemma 60.17. ([HWZ],[Bou92|) The operator (60.16) is Fredholm.

Proof. Using the Bott-Morse property of the Reeb chords & in our interest, the
proof of Lemma 60.17 is standard by now. We recall the proof for completeness.

We first rewrite the equation Ow = 0 near oo € HU {oo} = D? with respect to
the cylindrical coordinates (7,t) on H and the polar coordinates

(5,0): C"\ {0} = R x 8?71 2 =¢*0 € C"\ {0}.

Denote by Ker A the standard CR-structure (or contact structure) on S?*~! and
then we have
TS* 1 =R- X, ®Ker.

Here X is the Reeb vector field. Then we have the decomposition
0
T(T’@)(Cn =R- 8_ @R-X)\ @ Ker \
r

Let IT be the projection to the third factor. We note 0/9s = rd/0r. (r = e*.) Now
we have the formula

dw:d(sow)®%+d(@ow)
0

:d(sow)®&#—)\(d(@ow))X)\—l—Hod(@ow)

where d(© o w) : TH — T:S?"~! is the derivative of the composition © o w : H —
S2n=1 and A(d(©ow)) : TH — R is the one-form on H that measures the coefficient
of X\-component of the derivative d(© o w). It follows

_— <d(sow)—)\od(@ow)oj) 0

ow 2 0s
N ()\od(@ow)—i—d(sow)oj

2

) Xy + (I1d(© o w))OD),
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where (I1d(0 o w))(®Y) is the (0, 1)-component of I1d(© o w) which is given by

[MdOow+ Jo (IIdO ow) o j

(T1d(© o w))Y) = :

Therefore the equation Ow = 0 can be written into

(60.18.1) d(sow)—(@ow)* Noj=0,
(60.18.2) IIdO o w + J o (I1dO o w) o j = 0.

In the cylindrical coordinates (7,t) near oo € HU {oo}, (60.18) can be also written
as

00 00
(60191) S = A <§) , St = —A (E)

(60.19.2) Il (%) + (J oII) (%) =0

with respect to the coordinates (s,0) : C™\ {0} — R x S?"~! and the cylindrical
coordinates (7,t) near co € HU {oc} .

Now the Fredholm property of the operator (60.16) is a consequence of the general
theory of elliptic operators on the spaces with cylindrical ends (see [LoMc85] for
example). The index is independent of the choice of the constant § as long as

O<5<)\mm:a

where \,,;, is the smallest eigenvalue of the asymptotic operator
7 (2~ (px)()
ot A\ Va :

acting on the space of W1 sections b on [0, 1] of (v)*T'S?"~1 with b(0) € ng(O)S{é;l,
b(l) € Tvg(l)Sxfl. The number \,,;, can be explicitly calculated, which is precisely
« in the current case of our interest. [J

We next review the computation of the index of D,,0, in terms of another Maslov-
type index that is assigned to each map w € W, P (H, C*; H®). (This calculation is
not used in the other part of this book.)

Let w : H — C" lying in W;’p(H, C™ H® 4%, 19). To each such map w, we can
assign a loop A, in the Lagrangian Grassmannian A(n) (see beginning of §2.1) in
the following way : First, we consider the Gauss map

(60.20) OH — A(n); 6 — Ty H.
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We compactify OH = R to S' = RU {co}. The map (60.20) is not continuous at
o0o. But using the asymptotic condition

w(oo,t) = 74 (1),

we can connect limg 4 oo Thy() HE = R™ to limg oo Toy2) HE = A by a path

(60.21) 0 e’ . R"; 0€|0,al

This is the kind of path described in Proposition 2.3. Then the concatenation of
(60.20) and (60.21) provides a loop of Lagrangian subspaces to which we can assign
the Maslov index given in [Arn67].

Definition 60.22. Let w : H — C™ be a map lying in Wg’p(H, C™, H®) with
its asymptotic Reeb chord given by ~&. We consider the loop A, of Lagrangian
subspace obtained by concatenating (60.20) and (60.21). We denote its Maslov
index p(Ay) by

pu(w; HY).

Because in both cases of HY C C™ of our current interest, all the disc maps w
with the given asymptotic Reeb chord are homotopic to each other, this index in
fact depends only on the pair (v,, HY).

Proposition 60.23. We have

u(w;HS‘):{ ! Z.f€>0’
n—1 if € <O.
Proof. For the case € > 0, this immediately follows by an explicit calculation of the
Maslov index considering the unique solution w obtained in §59 and using the fact
that its image is contained in the coordinate plane C - a : Consider the model w on
the plane C - ap = C and the Lagrangian loop au,,,, which is the Gauss map of w

0 — Tyo)HS = Tuo)ye ®w(8) -R* " c C"

followed by the path 6 € [0,a] — € - R”. From this expression, we obtain
((va; H*) = 1 : the normal contribution to p(cwy,,) from the {0} @ C"~'-
component is zero while the contribution from C & {0}"~ ! is 1.

On the other hand, for the case ¢ < 0, one can prove this either by direct
calculation or by analyzing the change of Maslov index under the Lagrangian surgery
from H®. We refer readers to [Proposition 8, Pol91] for this latter study. O

The next theorem is a consequence of the standard result of the index theory of
elliptic operators with product type end. (See [EGHO00].)

We can also derive it from the explicit calculation of the index in the next sub-
section. (See the end of §60.3.)
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Theorem 60.24. Let w € Wg’p(H, C™ HE) with its asymptotic Reeb chord given
by v&. Then we have

(60.25) Index D,,0 = p(w; HY) + n.

60.3. Surjectivity of the linearization.

The main result of this section is the following surjectivity of the linearization
operator
D0 : C%(w) — C*(w).

We note that since the almost complex structure on C" is integrable, we have
D,,0 = the standard Dolbeault operator.

Theorem 60.26. Let w be a pseudo-holomorphic disc in M(H,C"; HY) with the
asymptotic data (a, 7). Then the operator

(60.27) D,0® D7 : C°(w) — CH(w) & (T,,R® T,5™ 1)

18 surjective.
(We remark that 7 : W3 P(H,C"; H®) — R x S"~! is as in (60.14).)

Remark 60.28. We remark that Theorem 60.26 still holds when we replace H
by (H&). (The proof given below equally works without change.)

Proof. By the O(n)-invariance of the equation, it suffices to consider the case when
ap = (1,0,---,0) in (60.27). We first recall that we have a splitting :

(60.29) C%(w) = T, W, P(H,C"; H®) = R™(w) @ W, P (w*TC"; w*TH?).

In fact O(n) acts on C™ with O(n — 1) as the isotropy subgroup of the vector
ag = (1,0,---,0). We identify o(n)/o(n — 1) with R""! and find an embedding
R"~! < o(n) such that

R"™ ' @ o(n —1) = o(n).

We also take a generator X of R 2 aut(H, {0}), which corresponds to X = %% in

the standard coordinates z = x + +/—1y on H with r = |z|. Then the assignments

Aco(n)/on—1)—A-w, X Lxw
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defines an embedding
(60.30) R" =R R" — C%w) = T, Wy P(H,C"; HY)
whose composition with the projection
D Ty WP (H,C™ HY) — Tiry .y (R x S™71)

is an isomorphism : See the proof of Lemma 60.13. Here 7 is the projection defined
in (60.14). Since Wél’p(w*TCn;w*THg) is the kernel of D7 from definition, we
obtain the decomposition (60.29) if we set R"(w) as the image of the embedding
(60.30). More explicitly, we can write

R"(w) =R-Lxw & (o(n)/o(n —1)) -w

where (o(n)/o(n — 1)) - w is realized as the span of the variations given by

d
e N (expeA; - w(z))

for a set of basis A; € o(n) that induces a basis of o(n)/o(n — 1).

Because each element of O(n) and of Aut(H) acts as a biholomorphic map, pre-
serves the boundary condition and moves each minimal Reeb chord to another, we
have

(60.31) R™(w) C Ker D,,0.

We derive from this that B
dim Ker D,,0 > n.

Thanks to (60.31), to prove Theorem 60.26, it suffices to prove the surjectivity
of the map

E(w) := D,  WEP(w*TC™ , w*TH®) — CH(w).
(w) L (w w'THY) — C (w)

By the integrability of the standard complex structure of C”, the operator F(w)
becomes the standard Dolbeaut operator

9 Wi P(w*TC", w*TH?) — LE(AODw*TC").

-+(2)

We denote
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Then the one-form 3 = ndz has its norm given by the canonical norm ||5|| induced
by the metric hy on H and g, on C™. More explicitly, we have

181 = I2['lInll = 12"/ p(w)[nlcn

where the norm ||| is the norm associated to the metric g¢. and |n|cn to the
standard Euclidean norm on C". Asymptotically at the infinity of C”, we have

|2l Imlcn

lwlen

(60.32) 131 ~ 12l lInll ~

Now we consider the adjoint operator
E(w)* : (LAY w*TC™))* — (WP (w*TC", w*THL))*.

Note we use the metric hy = ||/~ *|dz|? on the domain and the metric gen on the
target to define the weighted Sobolev space above.
We define hermitian metric hg, on C™ by

hen = p(r)hen

where hcn is the standard Herminitan metric on C”. Then h¢., induces Riemannian
metric g by complex structure Jo. (We remark that (h¢., Jo) is not Kéhler.)
By the nondegenerate pairing

() = Re(:,-) : LE(AODw*TC") x LI 5(ATOw*TC™) — R,

(here we use hy and h{., to define the pairing ( , )), we identify (L§(A(®-Dw*TC"))*
with L7 s(AL9w*TC™) for g satisfying

and E(w)* with the adjoint
E(w)t: LT y(ATOw* TC™) — (WP (w*TC", w*TH))*.

(We remark that we take 2 < p < oo and hence 1 < ¢ < 2.) Then an element
B € Ker E(w)' is characterized by the equation

(60.33) /H Re(B,0¢) = Re /H (3,06) =0 forall & € COw).

By the standard elliptic regularity of the Cauchy-Riemann operator with totally
real boundary condition, any solution n = $(9/90z) of (60.33) is smooth up to the
boundary and satisfies the conjugate boundary condition. (See [McSa04] P548,
Theorem C2.3 (ii).) We now use this fact and integration by parts to prove the
following lemma
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Lemma 60.34. Let (3 is a solution of (60.33) and 3 = ndz for n € coker D,,0 C
L? ;(w*TC™). Then 3 is characterized by the equation

{5"‘5:0

(60.35) X
77(:1}, 0) < Tw(x,O)He

where O is the formal adjoint of © defined in (60.37).

Proof. We use the standard complex coordinates z of H and (w1, ,w,) of C",
and denote the metrics hy on H and g;. on C™ with cylindrical ends chosen before
by

hy = h.zdzdz

gen =Y g=dw;dw
1,5

in coordinates. Then we have

b= 27 gl = gt ~
We denote
ﬁ=ndz=2i:ma - ©dz
and o, o )
¢ = ZJ: 5 Ou ® dz
We obtain

6.9 = s (52) oglerutw) = X (52 ) 1)

and hence

(6,36 dAy, = (5,06 Y20 T

an <<2;> o )\/—_1d2z Ndz
Z”z ((2{2) )\/——1d2z/\d3

_d<zm > Zf \/_d2z/\dz
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(Here dAp, is the volume form of the metric hg.) By Stokes’ formula, we have
derived

5 _ - p(w)yv/=1 _
/H (5.3€) dAn, = /8 N
—Aggz%(u(w)nz)w

Therefore if 3 = 1 dz satisfies E(w)T(3) = 0, then we derive the equation
(60.36)

for all £ satisfying £(z) € Toy(z)HE for x € OH. Noting that

Re <Z m&%) = —Im (Z 771@@)

e (Z ma) o) _ ptw)ootn.e)

we derive that the second equality of (60.36) becomes

77(90) € Tw(m)Hea

and the interior equation is nothing but a9 B = 0 in coordinates since we have

. 0 0
(60.37) 86 = Z 2% 5 (u(w)m:) T

This finishes the proof. [

Formula (60.37) also provides the coordinate expression of the operator 9" whose
symbol coincides with 9 and so (60.35) is an elliptic first order boundary value
problem with scalar symbol. In particular, we can apply Aronzjasin’s unique con-
tinuation theorem [Aro57] to the system (60.35).

Now we would like to show that the only solution of (60.35) is § = 0. For this
purpose, we use the O(n)-invariance of the problem. More precisely, we consider a
vector field £ along w give by

E=A-w or Lxw
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for any Lie algebra element A € o(n)/o(n — 1) and A - w is the vector field along w
generated by the infinitesimal action of A and X = rd/0r.

To analyze a solution 1 of (60.35), we will use the fact that Lxw and A - w
provide elements Ker D,,0 and their asymptotic values span the tangent space
T(00,)C™ point-wise at each w(oo,t) = ,, along the asymptotic chord vq,. (ap =
(1,0,---,0).)

Let £ be any of w’ or A -w. Then we compute

O e = 2 @mn(w)) = &2 (u(w)m) + ()

0 96
= & () + S Tw) = 0

using the equation 9¢ = 0 and (60.37). This shows that the natural Hermitian inner
product

(& m)

associated to the given metrics hy and hg, is a holomorphic function that satisfies
the boundary condition

Im((¢,n)(z)) =0, for x € OH.

The latter boundary condition follows from the fact that both n(x) and () lie in the
same Lagrangian subspace Ty, 0)H¢. Therefore the reflection principle produces
an entire function on C.

Next we will prove that (£, n) converges to zero when Im z — oo so must vanish
by Liouville’s theorem. We recall

B =ndz € L ;(ATOw*TC")

with respect to the metric h and gg. which is equivalent to saying that |z|||n|| ~ ||3]|
lies in L? ;(w*TC™). We regard n as a C" valued function on H. And we have

(60.38) Lxw~ z7ag, A-w~ z7Aayg.

On the other hand (60.37) implies that p(w)n =: ¢ is an anti-holomorphic vector
function on H, and ( satisfies the boundary conditions

(60.39) C(7,t) € Toy(ey HE

for t = 0,1. We also remark that w is asymptotic to z .

Since we denote by || || and by [|n|| the norms of 8 = ndz and of n with respect
to the metric hy = ||’ ?|dz|? and gn = p(w)gen, and by |g]ce the standard norm
of n as a vector in C", we have

n|cn ||

|w

1811 = llnlll=] =
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on
H|z\>R = {Z cH ‘ ’Z‘ > R}7

for some sufficiently large R > 0. We put

f(2) = (u(w)n(z))z'te/m=0le.

We remark
(60.40) af = 0.
Since 5 € LY ; implies that ||5]| ]z]_g lies in L? with respect to the metric hy = ||iT,|22 :

lw(2)| ~ |2|*/™ and hence

| ~ 77(2> El+o¢/7r—6/q

nlen 2l -2 s
o () g

it follows that f(z) is of LY class associated to the metric hy on H and the metric
ghn on C". We also write f(7,t) = f(e™™tV=19)). Then f lies in L9 in the standard
metric d7? + dt? on [0, 00) x [0, 1], and

. f(7,0) 2n—1 : f(r,1) V=16/ 2n—1
lim eR"NS“" ", lim =——=% €e” IR™ N S
T—oo | f(7,0)] T—oo | f(7,1)|

Here to show the second equality we calculate
lim arg fi(r,1) =n+a—a+nd/q=m+7/q.
Here f = (f1,---, fi, -+, fn) and we use (60.39).

More precisely there exists 70(7) = (70.1(7),*+ ,70.(7)) € R™ and (1) =
(71,1(7), -+ ,7,n(7)) € R™ such that

(60.41.1) arg fi(7,0) = 70,:(7),
(60.41.2) arg fi(7,1) = y1.:(7),
dlc
(60413) W(')/Q’i - O)) < Cyk;e_C}cT7 k= O, 1, 27 cee
dk
(60414) ’W(’YLZ - (51/Q)’ < Cke_CkT, k = 0, 1, 2, e,

Moreover f was shown to be in L? and anti-holomorphic.
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Lemma 60.42. Let f be as above. Then f € L, i.e., there exists C' > 0
[fllL= <C

where || - ||~ is taken in the standard norm on C™.

Proof. This lemma seems to be well-known. We will however give a proof below for
completeness, since elliptic estimate of boundary valued problem in terms of W14
norm with 2 > ¢ > 1 is not so standard.

We use the cylindrical coordinates H \ {0} = R x [0, 1]. Since the interior bound
will be easier to prove, we will focus on the bound at points in the boundary Rx {0}.
The boundary points on R x {1} can be handled similarly.

Let 3, = (J;1, -+ ,Jrn) : C* — C", be a linear anti-holomorphic involution
such that

jTﬂ'le‘/*—”Ovi(ﬂ = id, 1= 1, e, .

Denote by Jy : C* — C™ the complex conjugation. It follows from (60.41.3) that
we have

dk
A (j‘r - 30)

o <ok(mn), k=0,1,2,---
-

(60.43) ‘
Ck

Consider the open disc
Dy(1,0) = {(r.1) € B | (r —70)> + £ < )
and the semi-disc

D> %(7o,t0) = {(7,t) € Dy(10,t0) | t > 0}.

For a given function F = (Fy,---, F,) : D3%(10,t9) — C" satisfying

arg Fi(7,0) = 70,i(7)
we define its double Ref F' : D,(79,tp) — C" by the formula

F(r,1) ift>0

Ref F'(7,t) = { 3 (F(r,—t)) ift<0

By construction, we have
Ref(OF) = O(Ref(F)) + P(Ref(F))

for a differential operator P of first order whose coefficients are continuous and
smaller than o(7y) pointwise. (Here the function o(7y) denotes any function satisfy-
ing lim, . 0(79) = 0.) Now we choose a cut function x : D=°(7g,%0) — 1 which is
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1 on Df/OQ(TO,tO) and is zero on D=%(7o,t0) \ DQZPO/S(T(),to). By applying the above
equality we have

(60.44) I(Ref(xf)) = Ref(9(x[f)) — P(Ref(x[))-

Using 0f = 0 and (60.44) we have

(6045)  [OREE N 20 < CUFllpa( 3o ) + 00) | ReFGL) o
Since Ref(x f) is of compact support in D, 5(7o,%9) we have

(60.46) [Ref(xf)lwra < C(IRef(xf)llza + 10Ref (x.f))lLa) -

This inequality follows from the fact ﬁ\l/__l is the fundamental solution of 0 on

R? =~ C.
Combining (60.45), (60.46) we obtain

|| Ref(Xf)HWLq < CHfHL‘Z(D;O(’TO,tO)),

as long as g is sufficiently large, say |79| > R;. It follows that
HfHWLq(DE/OQ(To,to)) = CHfHLq(D;?O(TO,toD'
Therefore from the Sobolev embedding W4 < L29/2=49 we obtain
HfHL?fl/(?—q)(Di%(m,to)) = CHf“Lq(DEO(TO,tO))‘

By repeating the same argument twice (namely using Moser’s iteration) and using
Sobolev inequality again, we obtain

I f!lco(Dzzg4p(To,t0)) < CHfHWLZ(D;gBP(TO,tO))

< C4||f||L‘1(DPZO(TO,tO)) < C4||f”Lq(H) < 00

for all (9,tp) with to = 0 and |79| > R;. We note that the constant C' appearing
above can be chosen independent of 7p. Easier argument gives rise to the same
pointwise bound at an interior point of H. Redefining C' to be C*| f|| () we have
finished the proof. [

Let £ = A - w. Then we have

(=3 o 1 o
(60.47) 1€l = 1[A - wl ~ [lw]l ~ [[z=aol = [2]* o]~ |27
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Therefore it follows from the definition of f (see right above (60.40)) and Lemma
60.42 that the holomorphic function (£, n) satisfies

t
Tim [(€,n)(r.0)] < lim ’Z)((TT »’ 2)’ < lm CJop/s =0,

Here the last identity follows if we choose d so small that 0 < < gq.
From this, we derive

(&;m =0,

everywhere in H, as the double of (£,7) is an entire function on C that converges
to zero as |z| — oc.

Using the property Lxw ~ z
computation gives

o
T

, whose order is the same as that of A - w, similar

<£Xw7 77) = 07

everywhere in H. By considering the asymptotic values of n and £ at infinity,

(&) = (Lxw,n) =0

for all A € o(n)/o(n —1) in a neighborhood of 1 € D? where w is embedded. Since
the set
{Lxw}U{A-w|A€oln)}

complex linearly spans w*T'C™ near ,, at each point of z in a neighborhood of the
infinity, we have derived that n must vanish on the neighborhood and so everywhere
by the unique continuation. This finishes the proof of Theorem 60.26. [

Since we have established surjectivity of the linearization operator D,,0, the
moduli space M(H,C"; HY) becomes a smooth manifold whose tangent space can
be identified with the kernel of the operator D,,d : C°(w) — C1(w).

Therefore Theorem 59.2 which was already proved in §59 for the case € > 0
or € < 0, @ = m/2 immediately proves the following theorem. This in particular
computes the index of D,,0, when combined with the surjectivity proven in the
previous subsection.

Theorem 60.48. Assume 0 < 61 < Apmin. Let w be the pseudo-holomorphic disc
constructed in §57 associated to the Reeb chord v& for a given a € S]g;l. Then we
have

n+1 for e >0

dim Ker D,,0 = {
2n —1 for e <0
Proof. We remark that it suffices to consider the case when ao = 7/2, since index is
invariant under the continuous deformation of Fredholm operators.
Theorem 59.2 implies that in case € < 0 the set of holomorphic map w satisfying
(59.1) is n—2 dimensional modulo Aut(H). We note Aut(H) is two dimensional and
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one of them corresponds to the R factor of S"7? x R in (60.14). Hence Theorem
60.26 implies B
KerD,0=n—-24+2+n—-1=2n—1.

The case € > 0 is similar. O

We would like to separately state the following obvious corollary of Theorem
60.28 and 60.48.

Corollary 60.49. We have

n+1 for e >0

Index D,,0 = {
2n — 1 for e < 0.

Proof of Theorem 60.24. This is an immediate consequence of Corollary 60.49 and
Proposition 60.23.

60.4. Proof of Theorem 59.2.

In this subsection we complete the proof of Theorem 59.2 assuming the following
theorem whose proof will be postponed until §62.8.

Theorem 60.50. The map

(60.51.1) J Mm@ crHY) - (0,7)
a€e(0,m)

is proper. Here (60.51.1) maps elements in M(H,C"; HY) to «.

The topology on UaG(O,ﬂ') M(H, C™; H) is the induced topology from the topol-

ogy of Une(o,m) W;’p(H, C™; HY), which will be defined in §62.8.
Theorem 60.26 implies that

(60.51.2) U M@, CH ag) — (0,7)

a€e(0,m)

is proper, where € < 0 and ag = (1,0,---,0). Theorem 60.26 implies that (60.51.2)
is a submersion. Therefore (60.51.2) is a locally trivial fiber bundle. In particular
the diffeomorphism classes of the fibers M(H, C™; H®, ag) are independent of . We
already proved in §59.3 that

M(H,C™; H™/? ag) = S"2
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Thus we have proved (59.3.2). The proof of Theorem 59.2 is complete. [

We also have the following symmetry statement for our moduli space. For this
we need some notations.
Let Refg : C — C is the reflection about the line argz = 5. We denote

(Refa,--- Refs): C" — C"
by Refg also. We can check easily that
Refa (H) = HZ.
We also define an action of O(n — 1) on C™ by
(21, y2n) = (21, 2" 1) = (21, A2" 7).

We first note that the Lagrangian submanifold H& and the Reeb chord ,, of HS are
invariant under the reflection and the action of O(n—1). We note that the action of
O(n—1) is holomorphic and the reflection is anti-holomorphic. Therefore the O(n—
1)-action on C™ naturally induces an action on the moduli space M(H, C"; HY, ag)
and Refa induces an involution (Refs ). on M(H,C"; HZ, ag) by

(Refa )« ([w]) = [Refa ow o #]
where * : H — H is defined by %z = —Z.

Proposition 60.52.

(60.53.1) The action of O(n — 1) on M(H,C™; H, ag) is transitive.

(60.53.2)  The action of (Refs ). on M(H,C"; HY, ag) is trivial : For any element
of M(H,C™; HY, ag) we have a representative w such that

(60.54) w(—%) = Refa (w(2))

Proof. We can prove that the action of O(n — 1) is transitive and the action of
(Refa ), is trivial for a = 7/2 by its explicit description given in (59.25). Since the
transitivity and triviality of the action of compact groups are preserved under the
deformation of the actions, it follows from the proof of Theorem 60.50 that both
hold for all a € (0, ).

Now we prove existence of a representative w € M(H, C™ H®, ag) satisfying
(60.54). It follows from the triviality of the action of (Refq ). on M(H, C"; HY, ao)
that any representative w satisfies

Refa (w(-72)) = w(az +b)

for some a > 0 and b € R. Since Refa (w(—7%)) satisfies (59.1.3) for the same 79 as

w, it follows that a = 1. Replacing now w by z — w(z — b/2), we find w satisfying
(60.54) which finishes the proof. [
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60.5. Local models do not hit the origin.

In this subsection, we will prove that the local models do not hit the origin. This
property will be used later in our gluing arguments in section §61 and §62.
We first examine HY for € < 0 more closely. We put

(60.55) S7l = VIR g2

for ¢ € R. By definition, for s > log +/2|e|, we have

(60.56) HY N ({s} x ") = {5} x (Ssl_(i) U S;&i)),
where

hi(s) < 0 < a < ha(s)

and
lim fy(s) = 0 im  hi(s)=> T Ri(s)>0
S§— 00 1 ’ s—lo 2|€| ! 2 2’ 1 ’
60.57 oy
(60.57) _ , a« T,
lim hs(s) = «, lim  ho(s) = 5 + —, h5(s) <O.

700 s—log \/2|€| 2
These follow from the definition of 7, for € < 0 and from (54.12.3).

Figure 60.1
We have : . X
_dhy n—
(60.58.1) Ao = { dd: ds on J,({s} x Sl::_(i))
+52ds  on |J,({s} x ShQ(S))
It implies
(60.58.2) d\|ge =0,
(60583) A Hon({s}xS82n—1) = 0 for all s.

With this preparation, we prove
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Proposition 60.59. Let w : H — C" be a holomorphic map satisfying (59.1).
Then 0 = (0,---,0) € C™ is not in the image of w.

Proof. In case € > 0, this was proved in Lemma 59.4. We consider the case ¢ < 0
now. Recall that we write both the contact form on S?"~!

1
A=3 <Z ridy; — yidﬂ%)

and its pull-back to R x S?"~! by the same letter A\. Via the diffeomorphism
(5,0) : C*\ {0} 2 R x S?"~! we also regard X as a form on C™ \ {0}. We alert
readers that A\ is not the Liouville one-form which is given by

% (Z ridy; — yid$i>

Y

SQn—l

on C".
Lemma 60.60. IfC C T,,(C™\ {0}) is a one dimensional complex linear subspace,
then d\|c = cdz A dy with ¢ > 0.

Proof. We recall that Ker\ = ¢ is a Jy-invariant linear subspace of T.5?"~! c TC™.
(In fact it gives the standard CR structure on S?"~1.)

Considering the translational invariant distribution, also denoted by &, on R X
S§2n—1 = C" we have the decomposition

0 0
T(R x $*"~1) = spang {%, Jo (@)} @&

(Here Jy is the standard complex structure of C™ and s is a coordinate of R. See
§60.1.) Moreover

defines a positive definite symmetric bilinear form on £ and vanish on spang { %, Jo (%) }
The lemma immediately follows from these facts. [

Let
w(0) = {21, , 2z, C IntH

(We would like to show this set is empty.) Writing
wi(z) = (2 — 2;)"gi(2), n;>1
with g;(2;) # 0, we easily obtain

(60.61) lim / wA =21 ) n; >2wm.
DY . 2

=1

Here B,,(0) ={z € C | |z — z;| < ¢}. We next prove
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Lema 60.62.

/ w A+ lim w*\ = T.
OH R—o0 JaBo(R)NH

Proof. 1t follows from (59.1.3) that the set
{r € OH =R | w(z) € {s} x $**~1}

consists of two points z1(s) < 0 < za(s) for s sufficiently large. Then (60.58) implies

that
z2(s)
/ w* A
z1(s)

depends only on the homology class

wi([71(5), 22(s)],0[x1(s), 22(s)])
€ Hi(H* N ([~o0,s] x S*" 1), H* N ({s} x $*"71)).

We use this fact and (60.57) to find
z2(s)
(60.63) / w A = hi(s) — ha(s) + 7.
z1(s)

In fact we can deform the arc w([z1(s), z2(s)]) to the union of the following three
paths (here we put ag = (1,0---,0)) :

1)t (s—teVIh=Dg0) for t € [0, s — log \/2]€]].
(1)  t— (log+/2e],eV=1(E+3) (cost,sint,0,--- ,0)), for t € [0,7] :
(IID) ¢+ (¢ + log \/2[e], eV~ tHloe V2l 40 for t € [0, 5 — log 1/2[e[]

Figure 60.2.
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Since ha(log \/2]e[) = 4 + Z, it follows from (60.58.1) that the integral on the part
(I) is § 4+ 5 — ha(s).

By (60.58.3), the integral on the part (II) is 0.

Since hy(log \/2e]) = § — 5, it follows from (60.58.1) that the integral on the
part (III) is hi(s) — § + 5. (60.63) then follows.

By (60.63) and (60.57) we have

z2(s)
(60.64) / w'w = lim w A = lim (h1(s) — ha(s)) + T =7 — .
aH S— 00 Il(S) S— OO
On the other hand, by (59.1.3) we have
lim Wi\ = a.

R—o0 JoBy(R)NH
This finishes the proof of Lemma 60.62. [
(60.61) and Lemma 60.62 imply

/ wrd\ < 7 —2mm.
H

But Lemma 60.60 implies that the left hand side is nonnegative. Hence m = 0, as
required. This finishes the proof. [

§61. Proof of Theorem Z, I : Gluing

In this section and the next we will complete the proof of Theorem Z which is
Theorem 55.5. We associate a pseudo-holomorphic strip (resp. a family of pseudo-
holomorphic strips parameterized by S™~2) between Lo and L_., (resp. Lo and
L.,) to each pseudo-holomorphic triangle w. In the next section, we will show
that the family we will construct in this section are all the pseudo-holomorphic
strips near the given pseudo-holomorphic triangle w. We assume w is isolated and
Fredholm regular.

61.1. Cylindrical models.

We start with studying symplectic and almost complex structures in the cylin-
drical coordinate. Let (C", wy, Jy) be the standard linear complex space endowed
with the standard Kéhler structure. We denote by (7, ©) the polar coordinates

C"\ {0} — (0,00) x §*"7(1)
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of C™\ {0}. By putting r = 2%, where s € R, we have a diffeomorphism
(61.1.1) (5,0): C™\ {0} — R x $*"~1(1).
We denote by
(61.1.2) 0 :Rx S?"71(1) - C"\ {0}
the inverse of (61.1.1).

We denote also by wy and Jy the induced sympletic and complex structures on
(0,00) x S?"71(1) or on R x S$?"~1(1). We denote by A the canonical contact form

given by
1
3 ( E x;dy; _yidxi>

on the unit sphere 2"~ or the corresponding scale invariant one form on C™\{0} =
R x $2"~1. (We like to alert the readers that this form is not the Liouville one form

% (Z zidy; — yidxi>

SQn—l

on C".) Then we have
wo = 2rdr A X+ 1r2d\ = €*5(2ds A X+ d)\) = d(e**)).

Here r = e®. We denote by X, = JO% the Reeb vector field on $27~1.
We fix a positive number €5 > 0 such that the Darboux chart

expé12 =171 B(¢g) = M
chosen as in (54.16) induces a diffeomorphism onto its image. Here B2"(eq) C C™ =
(Tp,, M, J,,,) is the ball of radius €) centered at origin. We denote the corresponding
image by B(pi12;€0) C M. (54.16.1) implies
epoI)u(R” N B*"(ey)) C Ly, exp;;u(A N B*"(eg)) C Lo.
Recall that ¢y depends only on the size of the Darboux chart at p;2, which can be

chosen depending only on (M,w).
We compose exp/  with the diffeomorphism (61.1.2) and obtain

eXpém o : (—oo,logeg) x S*" ! — B(pia; €o).
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By our choice we have

(61.2) SD_l(Ll \ (L1 N L)) = (—o0,logeg) X Sﬁ_l,
¥

1(L2 \ (Ll N LQ)) = (—OO,IOg 60) X SX_l.

The next proposition states that the pull back of the complex structures of M to
T,,,M is asymptotic to the standard one as s — —oo. In the next lemma and
hereafter we use the product metric grygn-1 on R x S™~1 to define the norms of
tensors on it.

We may also choose the Darboux chart I so that the differential of d,,,I :
(Tp,, M, Jy,,) — C™ becomes a unitary transformation. Using these facts we easily
obtain the following :

Lemma 61.3. There exists ci,Cy independent of e1,€y such that the following
holds for k=0,1,---, s <logeg :

(61.4.1) ](Vk((expé12 0p)'w—wo)(s,T)|g,, con1 < Cre™?,
(61.4.2) |Vk((exp]f;12 o) J — Jo)(s,x) < Crers.

|gR>< s2n—1

Proof. (61.4.1) follows by standard exponential estimates starting from
lexp}, op(s,t)], [dexpl , od (s, t)| ~ const e*

One can then easily derive (61.4.2) from this. We omit the details of these deriva-
tions. [

61.2. Description of L., in cylindrical coordinates.

In this subsection, we review the construction of the Lagrangian surgery and
rewrite it in terms of the cylindrical coordinate. Recall we have

(61.5) H® =R"#, A =72 - Sp.!

where & is given by (54.12).
In (54.14), we modified H® in the domain B(2Sp+/|e1|) \ B(So+/|€1]) and glue
it with (R™ U A)\ B(2S0+/|€1]) to obtain (H)". Namely we have :

(61.6.1)  (H)' N B(So/|e1]) = HE N B(Sov/Je1])-
(61.6.2)  (H2)"\ B(2So+/|e1]) = (R UA) \ B(2Sp+/[e1]).
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By construction of Li#., Lo we have

(L1#¢,L2) N B(pi2;€0) = expl, ((HE)") N B(pi2; €o)

where I is the Darboux chart defined on a neighborhood U of pi2 so that I(U) =
B?™(2¢p) € C™ and so

exp,,, : B"(2¢0) — U, B(pi2;€0) CU
and satisfies (54.16.1) i.e.,

(61.7) (expf)lz)(R” N B*"(2¢)) C Ly, (expll,m)*l(/\ N B*"(2¢y)) C Lo.

61.3. Implanting the local model.

We next implant the local model of §59 - 60 into a neighborhood of p;o and
smooth off the corner at pio of the given pseudo-holomorphic triangle.
Consider the set of holomorphic maps w : H — C" satisfying (59.1.1),

(59.1.2")  w(9H) C (H2)'

and

(59.1.3".a) e~ Jw(e™THVEIN) _ paTomot V=T, . <Ce™ 7

for some a € S""! C R® Cc C*, 79 € R and ¢,C > 0. (Here the norm in the left
hand side is the standard Euclidean norm.)

We denote the set of such w’s by //\/lv(H, C™ (HZ)',a) and denote

([ MH,C(H)) = | MHE,CY(HE), a),
acSn—1

M@, C*(HE)) = ) MH,C(HE) , a),
(61.8) a€8n=1

—~

M(H, C™; (HE,)', a) = M(H,C"; (Hg)', a)/Aut(H, {oo}),

( M(HE,C™; (H)") = M(H,C"; (HE,)")/Aut(H, {oo}).
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Proposition 61.9. There exists a constant So(a) independent of €1 with the fol-
lowing properties : Let 0 < a < m and Sy > So(a). Then M(H,C";(HZ) ,a) is
diffeomorphic to M(H,C™; HY  a).

€17

Proof. We prove the case €; > 0. The case ¢; < 0 is similar. Consider
o P(HE) = {2 |z € (HE)).

By definition of (H ), we have
er P(H®) N B(S) = H{ N B(S).

In particular the left hand side is independent of €;.

Moreover the difference between efl/ 2(H &) and H{ is estimated by a number
depending only on Sy and converging to zero as Sy — co. More precisely we have
a family of diffeomorphisms

’LDSO :C" = C"
such that the following holds for £ =0,1,---, e* = |z|.
(61.10.1) (V¥ (1hg, — id)| < min{Cje 50 e~cxlsl}
(61.10.2) b (HY) = € 2 (H2 Y.

For each w € M(Ha C™; H{',ap), (61.10.1) implies
|5(¢SO ow)|(r,t) < min{Ce_CSO,Ce—dTl} :

Here the constants C, ¢ are not uniform over w but may depend on w.

Using (61.10) and the Fredholm transversality, we can apply the implicit function
theorem to ¥ g, ow to obtain an element of M(H, C"; 61_1/2(H31 )', a) for a sufficiently
large Sy.

Conversely for each element w' € M (H,C™; 61_1/ *(H &), a) we find an element of
M(H,C™; H® ay) in a neighborhood of 1/1§01 ow'.

1/

. . ~-1/2 . .
Since the rescaling €; /“x : C" — C" induces a obvious one-one correspondence

(61.11) MH,C"; e ?(HE)Y a) = M(ELC"; (HS)' 0)
which is equivariant under the action of Aut(H, {co}). Proposition 61.9 follows. [

We next determine a good slice of M (H, C"; (H2)', a) for the action Aut(H, {oo})
so that we have some uniform decay estimates for the representatives in the slice
over the elements in the quotient M(H,C"; (HZ)', a).

Since Ref, /2((H2)') = (HZ)' and Ref, /5(C-a) = C-afor a € Sg. ', it follows
that Ref,/, acts on M(H,C";(HZ)’,a). Moreover, since the action of Ref, /5 on
C™ commutes with SO(n) action, it follows from Proposition 60.52 the following
lemma :
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Lemma 61.12. On each Aut(H, {oo0})-orbit of M(H, C™ (HZ) ,a), there exists
exactly one element w that satisfies
(61.13.1) Ref, /2(w(z2)) = w(z"),

(61.13.2) e~ lw(e"TTVTIN) — (V=T - < Ce .
for 7 > 0. (Note the norm in (61.13.2) is the standard Euclidean norm.)

We remark (61.13.2) means that (59.1.3".a) holds with 79 = 0.

Proof. By Proposition 60.52, we can find a representative that satisfies (61.13.1).
Such a representative is unique up to the action of Ry C Aut(H, {oc}). Here R,
acts by v -z = vz. Then the condition (61.13.2) fixes the unique representative. [

Definition 61.14. We denote by /\70(]}]1, C"; (HZ) ,a) the set of elements w €
M(H,C™; (H2 ), a) satisfying (61.13). We denote any element therein by wima.
(Here ‘lmd’ stands for ‘local model’.) Then we form the union
Mo(H,C™ (H2)) = | ) Mo(H,C"; (H2), a)
aeSn—1
and call any element therein a normalized local model.

We remark that MVO(H, C(H2)) =2 M(H,C" (H2)) and SO(n) acts on
Mo(H,C"; (H)') via the standard action of U(n) D SO(n) on the target C".
The projection

(m1,m9) : Wy P (H,C™ (HE)) — S" xR
is defined in an obvious way and induces a projection
T MO(H, C (H2)) — gt
which is equivariant under this SO(n)-action.
Lemma 61.15. Let a € S"~! C R™ C C" and consider the action of the isotropy
group
SO(n)* :={g € S0O(n) | ga=a} =250(n—1)
on the fiber m1(a).
(1) If €1 > 0, this action is trivial.
(2) If 1 < 0, the action has the isotropy group isomorphic to SO(n — 2) at each
w € w1 (a) and so induces a diffeomorphism

7 (a) =2 SO(n—1)/SO(n —2) = §" 2,

Proof. (1) is obvious from construction and from #(MVO(H, C(H2)) = 1. (2)
follows from Theorem 59.2, Propositions 61.9 and 60.52. (We remark that the
process to go from HZ to (H )" does not change the symmetry at all.) [

Denote

1 1 /1
Te, = =~ log(vle]So) = —— (5 log [e1] + lOgSO) :
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Lemma 61.16. Let w € 7 (a) C Mo (H, C"; (HE)'). Then we have the following
inequality (61.17) for k =0,1,---, and for T > 0.

(61.17) VE(w = wft g, )| (1) < Crem x0T,

where
wit o (7,t) = (a(r — Te,), eV Ma)

a,—aTe,
and Cy, ci is independent of w,a,€;.

Proof. This is a restatement of Lemma 60.6 except the uniformity of the constants.
The uniformity of the estimate (that is independence of Cy, ¢x of w,a,€1) can be
proved as follows.

We consider w € MO(H, C™ (HZ)'). Then
(61.18) (7,8) = |ex| " 2w(r,t) = w(,1)
is an element of MO(H, C™; (H{)). (61.17) is equivalent to
(i~ wl )| (7,1) < Creon =0,

(Note T1 = —a~tlog Sy and the scaling 61_1/2>< :C"\ {0} — C™\ {0} corresponds
to the translations (7,z) — (7 — 1 log|e1 |, ) in cylindrical coordinate.)

We use Fredholm theory to show that the constant C, ¢k can be taken uniformly
as far as w lies in a small open set of our moduli space MVO(H, C™; (H{)"). Then,
since w, a run on compact space, the uniformity of the estimate follows. [

Let 0 be the 0 operator on R x S§?"~! with respect to the pull back almost
complex structure (o exp,r )*J =: J', where ¢ is as in (61.1.2).

Lemma 61.19. We have

(61.20.1) wima (OH) C (HZ)',

€1
(61.20.2) B ma(r ), < Ce™ forr 0.

/
Rx S2n—1

Proof. (61.20.1) is an immediate consequence of the construction. By definition
0 JoWima = 0. (61.20.2) then follows from (61.8.2). O
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61.4. Pseudo-holomorphic triangle in cylindrical coordinate.
We identify Int D? = Int H and put
ugo = ug2 = —1, w21 =u12 =0, wup=1uer = +1.

Let
Wi = w : D* = HU {oo} — M

be an element of
M((Lo, L2, L1); (uo2, u21, u10); J),

defined in §54.3. (Here ‘tri’ stands for ‘triangle’.) In other words

(61.21) wiri(0) = p12,  wui(l) = po1,  Wei(—1) = pao.
and wy, is a pseudo-holomorphic map

Wi HU {o0} — M

such that

(61.22.1) wii([~1,0]) C Ly

(61.22.2) wi([0,41]) C Ly

(61.22.3) Wiy ((—00, —1] U [+1,00)) C Ly.

Remark 61.23. We here remark one rather confusing point of our notation. In
Theorem 55.3 we start with an element of

M((L()?LlaLZ); (u01au127u20); J)a

and then Theorem 55.3 asserts that we can find an element of (resp. S”~2 parametrized
family of elements of)

M((L1#¢, Lo, Lo), (w01, u20), J; Wi, €2)

for e; < 0 (resp. €1 > 0).
In this section, we start with an element of

M((Lo, L2, L1); (uo2, u21, u10); J).

So to prove Theorem 55.3 it suffices to find an element of (resp. S™~2 parametrized
family of element of)

M((L1#¢, Lo, Lo), (w12, u20), J; Weri, €2),
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for €, > 0 (resp. €1 < 0). In §61 and §62, we prove this statement. In fact, we have
L1#61L2 = L2#—61L1-

In other words, the signs of €; appear in an opposite way in §61, §62 and in §55.
See Figures 61.1 and 61.2.

Figure 61.1.

Figure 61.2.

We put
Hi.j<o = {2 €H | |2 < o}.

We may choose a positive number o so that

wtri(H|z\<o) - B(p127 60)'
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We may choose Darboux chart ¢ at pio such that the tangent cone (Definition
54.19) of wyy; at us =0 is

ZHZO(/W@O» aO:(LOa"' 70)

Furthermore the multiplicity one condition at 0 € H on wy,; implies that w is
embedded on H, ., for a sufficiently small 0 > 0. In particular, we have

wiri(Ho<|21<0) € B(pi2i€o) \ {p12}

which enables us to define
~ . 2n—1
Weri : H0<|z\<o —RxS

by

~ -1
Weri = @ O Wrri-

Lemma 61.24. There exist 1ii, Cr, > 0,c > 0 such that

(61.25) |Vk(@m — qfiat )| (1,t) < Cre™T,

ag,—OTgri

for 7 < 0. Here
wg?ﬁami (1,t) = (a7 — T4ri), eo‘\/_—ltao).

We remark that the sign ci7 is opposite to those appearing in Lemma 61.16
etc. This is because we study the asymptotic behavior as 7 — —oo here but we do
as 7 — +oo in Lemma 61.16. Lemma 61.24 follows from Theorem 54.17 and the
multiplicity one assumption we put on wy,;.

61.5. Pregluing.

Note that, in §61.1, we took a constant €y that is the size of the Darboux neigh-
borhood of p15 in M. €y depends only on M. We take the constant Sy appeared in
§54.1 so that Sy > Sp(a) where Sy(«) is as in Proposition 61.9. It is large and can
be taken independent of €;. The positive number €; parametrizes the way how we
perform the Lagrangian surgery to obtain L.,. The number €¢; may depend on ¢
and Sp.

We define R, > 0 so that

(61.26) ~T., + R, +1 =Ty + (2a) ! log €.

We remark that by taking e; small compared to €y and e~°° we may assume R, > 0.
Note that R., — oc as e; — 0 by the definition and T,, = —a~'(3 log €; +log Sp) >
0. From now one we take ¢; sufficiently small. (We do not change €, Sp.)
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We consider a normalized local model
wina € Mo(HLC"; (HZ)').

We denote the right hand side of (61.26)
7l = T + (2a) "' log €.

We recall from Proposition 60.59, that the image of wy} , is away from the origin
0 € C". Therefore we can define

~e1  __ ,—1 €1 . 2n—1
wra=¢ owpy:H—-RxS .

We denote the annuli domain

(61.27) A(e)) = {z=e UtV | _T. 4R, /2 <7 < —T.,+R., /2+1,t € [0,1]}.
It follows from Lemmata 61.19 and 61.24 that we can write

Wi (T,1) = eXPge1

(r) (X(7:1))

on A(e;) for
X(T, t) c T@fld(Tvt) (R X S2n_1)

if €; is sufficiently small. Here exp is the exponential map of the Riemannian
manifold R x $?"~1. We also have

(61.28) (VFX)(1,t)] < Cre=klta
on A(er). We take a cut-off function
XTelyRel : R - [0’ 1]

such that

0 7<-T. +Re,/2

61.29 _
(61.29) Xt R, (7) { 1 7>-T., +R,/2+1.
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Using the cylindrical coordinates C™\ {0} = R x S$?"~1  we now glue wit 4 and Wiy
on the annuli domain A(e;). See Figure 61.3.

Figure 61.3.
Definition 61.30. We define

Wapp = Wi FWeri : H— M
as follows (Here ‘app’ stands for approximate solution.) :

o o (xr, e, (X (1,1), 2 =e™THI0 € A(e),
Wapp(2) = Wi (2), 2] > e~ et Ry /241

wita2). 2] < e Ta*Ra 2,

0 eXPget

Lemma 61.31. wap, has the following properties.
(1) wapp([—1,1]) C Le,.

(2) wapp((_oov _1] U [17OO>) - LO-

(3)  On (—oo,atlogeg] x [0,1] we have

(61.32) (0 wWapp ) (T, )| < Ce™“Fer,

(4)  wapp s J-holomorphic outside the domain (—oo, a1 log €p] x [0, 1].

Proof. (1),(2),(4) are obvious from construction. (Note that R, is sufficiently
large.) Let us prove (61.32). By construction wapyp is equal to wy,; outside (—oo, =T, +
R, /24 1) x[0,1] and hence is J holomorphic there. On (—oo, =T, + R, /2+ 1) x
[0, 1], we note

disten (P12, Wapp (7, 1)) < Ce(~Ter TRe /241)
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which in turn implies
|J — I*Jy| < Ce e

since =T, + R, /2+ 1 < —Re¢, /2 + Tiyi. (Here C' may depend on 7i,.) Therefore it
does not matter whether we use J or I*Jy to prove (61.32). The inequality (61.32)
then follows from (61.20.2) and (61.28). [

Lemma 61.31 implies that wa.pp, provides a good approximate solution of the
equation we want to solve.

61.6. Weighted Sobolev norm and a right inverse.

Let o be a sequence of positive numbers such that limg_.o o = 0. We denote
by C} a sequence of positive numbers which are independent of €;. We consider the
set of maps of the form

w: (H,0H; —1,1) — (M, L, U Lo; p20, Po1)
such that

w(r,t) = exp,, (Y(7,t))

with pointwise bounds
(61.33) (VFY)(7,1)| < op.
Here in (61.33) we use the following metric gj, on M. We decompose

M = B(pi2;€0) U (M \ B(p12;€0))

and

B(p12; €0) = B(p12; Sov/le1]) U (B(p12; €0) \ B(p12; Sov/|e1l))-

Let gar, grx g2n—1, gon be the metric on M, standard metrics on R x $2"~! and on
C™, respectively. We equip a metric g}, adapted to this decomposition by

(e0) ™Y 2gum on M\ B(piz2;€o0)
!
Iu = PrIrxS2n—1 on (B(pi2;€0) \ B(piz2; Sov/l€1]))
(Sov/ler])~Y/2I*gcn on B(pi2; Sov/|e1])

with a suitable smoothing along the gluing hypersurfaces : Here we note that the
restrictions of the metrics (¢9) ~'/?I.gas and (So+/|e1])™*/2gcn on their boundaries
provide a family of metrics uniformly quasi-isometric to S?"~! with the standard
metric over all ¢g > 0 smaller than a constant depending only on M, and €; satisfying
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0 < Sov/|e1| < €. Therefore we will use the metric g}, in our derivation of the
required uniform estimates for w independent of ;.

Figure 61.4.

We take a smooth function p : (—oo, 7{,;] — Rs such that

1 T < -1,
(61.3) =TT ST ST S T R 2
' PAV= edBal2 T 4 R./2<rt<-T. +R./2+1,
eIl =T, + Rel/Q +1<7r< Ttlri.

See Figure 61.5. (Note 7/.; = Tiri + (2a) "tlogeg = —T¢, + Re, + 1.)

Figure 61.5.
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We use this metric g), and weight function p to define a weighted Sobolev space
WP (w*TM;w*(Le,)) in the following way.

Let V be a section of w*T'M (defined on H) of locally WP class. We define its
Wf}m norm by

VIR

1,p,p

V(=T + R., /2 +1/2,1/2)" + / e, (TVE+ V) a2
zEe >e trl

.

trl

where Vj will be defined by (61.39) below. Here dAy,, is the volume element of the
metric hy = (|z|")~2|dz|?>. We consider the decomposition

(61.35)

e (V0 =Wl + 1OV =), ) dAn

(6136) Tw(T,t) (Rl X SQn_l) = TS(T,t)Rl SY) T@(T’t)SQn_l.
(Here we write w(r,t) = (s(7,t),0(r,t)) € R x $?"~1.) We decompose
(61.37) V(=T + Re,/2+1/2,1/2) = Vi s & Vo,

according to (61.36).
We next consider so(n) = so(n —1) ®R"~! where so(n — 1) is the isotropy group

of a = (1,0,---,0). We fix complement R"~! of this direct sum decomposition, and
let Ay,---,A,_1 be a basis of it. We then take the orthonormal decomposition
(61.38) To@nS> ' =R"'a R" )"

where the first component R”~! is spanned by
A;(O(T,t)), i=1,2,---

(Note element of so(n) C u(n) C so(2n) induces a vector field on S?"~1. In the
above formula, we denote by A; the vector field induced by A;.) Let

Vo,o(=Te, + Re, /2+1/2,1/2) = niaiAi(@(—Tel + R, /24 1/2,1/2))

be the projection of Vg e to the first component of (61.38).
Next take a smooth function x : R — [0, 1] such that

) 1 7<7;—1,
7' =

X 0 7>7,

and define

(61.39) Vo(r,t) = X(7)Vo,s @ X(7) Y _ a; Ai(

Here we identify T, nR = TS(_TE1 +R., /2+1/2,1/2)R in an obvious way. This finishes
the description of the norm ||V

1,p,p-
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Definition 61.40. We define W, ?(w*TM;w*T (L, )) as the set of all sections V
of w*T'M which satisfy the following conditions.

(61.41.1)  V is locally of WP class.
(61.41.2)  ||[V]l1p., < 0.
(61.41.3)  V(2) € Ty(z)(Le,) if 2 € OHL

Note that Vj(7,t) satisfies the boundary condition (61.41.3) and so the boundary
condition is consistent with the norm ||V||1 ,, ,. And since W' section is continuous,
it makes sense to put boundary condition (61.41.3).

We remark that the definition here is similar to that of the norm ||(V,7)|1,p.«
appearing right before (29.26) in §29.

The space WP (w*TM;w*T(Le,)) is a Banach space with norm ||V

We next define LE (A% (w*TM®)).

1,p,p-

Definition 61.42. LE(A%(w*TM®)) is the set of all sections V' of A% (w*TM®)
on H locally of LP class such that

V1P :/ VIP dz
H Hp,p Z€H7|Z|>eﬂ‘r€ri| |g§vth

—|—/( p(T)|V G g2m—1 FARg < 00,

—o00,7/,]%[0,1]

where dAp,, is as in (61.35).
Lemma 61.43. If the constant § in (61.34) is smaller than a positive constant
(which is independent of €1 ) then the operator

D0y : WP (w*TM;w*TLe,) — LE(AY (w*TM®))

18 Fredholm and is bounded by a constant independent of small constants €.

Proof. By choosing ¢ sufficiently small in the definition of the weight function p, we
obtain _
1D (Vo)llp,p < Ce™"

V(=T + R, /2+1/2,1/2)].

Uniform bound of D,,0; follows from this fact. The rest of the proof is by now
standard and omitted. [J

Proposition 61.44. If the constant ¢ in (61.34) is smaller than a positive constant
(which is independent of €1) then there exists

Qu : LE(AY (w* TM®)) — WP (w*TM;w*T(Le,))

such that B
D,0j 0 Q,, = identity
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and that the operator norm of Q. is bounded by a constant independent of small
constants €;.

Proof. This proposition is a consequence of Theorem 60.26 and the same argument
as the proof of Proposition 29.27. In fact Theorem 60.26 implies that the operator

(61.45) Co(wlmd) — ! (wlmd) D T(To’a)(R X Sn_l)

is surjective. On the other hand, we assumed that the solution wy,; of 0 equation is
Fredholm transversal i.e., its linearized operator is surjective. Our operator D0
is obtained by gluing these two operators in the same way as in §29. Hence the
construction of its right inverse ), is the same as the proof of Proposition 29.27.
We remark that including the second factor T(,, o)(R x S™~!) to the surjectivity
of (61.45) is crucial here for the surjectivity of the glued operator D,0; : This
corresponds to the transversality of the evaluation maps which appeared in §29 and
played a crucial role in the proof of Lemma 29.20 there. [J

Now we are in the position to complete the first half of the proof of Theorem Z.
Let ¢ be the constant in (61.32). Taking a § smaller than ¢/3, we derive the error
bound

| (ngapp) ”p,p < Ce al?

from (61.32). Combining Proposition 61.44 and (61.32), we can perturb wapp to
find a J-holomorphic curve w of the form

w(r,t) = exp,, (Y(7,1))

with ||Y|| < Ce~¢%e1/2, The argument of this step is by now standard and omitted :
it has been carried out in many literature in various contexts starting from Taubes’
celebrated work on the existence of anti-self-dual connections on 4 manifolds. For
the case of the pseudo-holomorphic curve, a similar argument can be found, for
example, in [MaSa94].

So far we have discussed the case of €¢; > 0. The case of ¢; < 0 can be treated
by the same way, except that we start with the S "=2_family of wimg’s in place of a
single wima. (Note Mo (H, C™; (H®,,)’,a0) = S"~2. This provides representative of
cach element of M(H,C™; (H®, ), ap) = S"2.)

Now we summarize the result of this section as follows (see also Remark 61.23) :
Theorem 61.46. Let J and wyyi satisfy (55.1) and (61.21), (61.22), (55.2) re-
spectively. Then for each sufficiently small €5 and e, with |e1] < €3°° we have the

following :

(1)  Ifer >0, then M((Le,, Lo), (uo1, u20), J; Wiri, €2) contains an element which

15 Fredholm regular.

(2) Ife; <0, then M((Le,, Lo), (o1, u20), J; Weri, €2) contains an S™~2 parametrized
family of elements. Fach element of it is Fredholm regular.
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Remark 61.47. Bourgeois [Bou02] previously studied a gluing problem similar to
that of this section in the context without Lagrangian boundary condition. More
precisely speaking, he looked at the case of pseudo-holomorphic annuli in the sym-
plectization of a contact manifold where the moduli space of closed Reeb orbits is
not isolated but forms a Bott-Morse family. Both the gluing analysis in [Bou02]
(that is, §5.3.3 thereof) and the one in this section are somewhat similar to the one
given in [FOOOO00] §18 or in [Fuk96II]. This kind of gluing analysis in the context
that is degenerate at infinity, has its origin in Mrowka’s thesis [Mrow89]. However
the decay estimate carried out in §62 (or in [Bou02]), which is crucial for the proof
of compactness etc. in the study of proper pseudo-holomorphic curves in the sym-
plectization of a contact manifold, uses ideas different from those needed in §18
[FOOOO00] or in [Fuk961I]. This, especially the idea of using the A-energy, is due to
Hofer [Hof93]. (See the next section.) We also like to mention that there are other
references such as [Abb04] closely related to the content of this section.

Remark 61.48. We take this opportunity to point out that it is safe to say that
only the parts of gluing analysis and decay estimate from [Bou02] are salient enough.
This is because there are some essential drawbacks in other parts of [Bou02]. It
seems to us that many points that we carefully discussed in this book or in [FOOO00)]
should appear in a similar way in the context of [Bou02].

More specific concerns of ours lie in the following points (1),(2),(3) concerning
the reference [Bou02] :

(1) The statements of Propositions 6.4 and 6.5 [Bou02] do not make much sense
as they are :

(1.a) The notion of relative virtual cycles is not defined.
(1.b) The isotopy class of virtual fundamental chain (or cycle) will depend on
the choice of perturbations in general.

As far as we see, there seems to be no reasonable way to make sense out of
the statements of Propositions 6.4 and 6.5 [Bou02]. This is because there is no
natural way of stating the well-definedness of virtual fundamental chains/cycles
in terms of a single moduli space, e.g., if we fix a homology class of the relevant
pseudo-holomorphic maps. In general Floer theory in which bubbling phenomena
are present, the matrix coefficients of the boundary operator do depend on the
choice of perturbations even in the simplest case. What is well-defined is the chain
homotopy class of a chain complex. This invariant encodes characteristics of the
virtual fundamental chains/cycles of many moduli spaces. (This point has been
mentioned many times throughout this book.) It turns out that a relevant homo-
logical algebra should be developed in order to formulate a correct statement on
this kind of well-definedness. In relation to this, we have developed full details of
this homological algebra in many parts of Chapters 3-5 of this book.

(2) In order to be able to apply virtual fundamental chain techniques to the prob-
lem of studying the adiabatic limit ¢ — 0 as in the context of §11 of [BEHWZ03],
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one needs to construct a Kuranishi neighborhood (or ‘virtual neighborhood’) which
contains both the limiting moduli space and the one near to the limit. Here the limit-
ing moduli space involves both Morse gradient trajectories and pseudo-holomorphic
maps. Defining such a Kuranishi neighborhood is a highly non-trivial problem,
which has not been carried out in the existing literature yet.

In [Bou02], there is some discussion on the compactness statement on this limiting
problem in the context where one perturbs the moduli space of proper pseudo-
holomorphic curves with cylindrical ends, by a Morse function defined on the Morse-
Bott critical manifold consisting of Reeb orbits. However [Bou02] lacks the relevant
Fredholm theory which is crucial for construction of a Kuranishi neighborhood.

(3) In page 80 [Bou02], it is casually stated that one uses an induction on en-
ergy and etc. to construct a coherent system of multi-sections. However as we
demonstrated in §30.2 of this book, this induction does not seem possible with the
induction over the energy alone, when one needs to use fiber products of various
moduli spaces.

As a consequence it is very difficult to achieve transversality via perturbations of
the critical submanifold with a single Morse function, if possible at all : This makes
hardly convincing the author’s claim in [Bou02] that this can be done.

On the the other hand, several calculations involving the contact homology car-
ried out in [Bou02] are very interesting. One needs to resolve this transversality
matter in order to justify his calculation. Various techniques laid out in §30 are
developed to achieve this kind of transversality via the framework of singular ho-
mology instead of the analytically much harder framework of taking the adiabatic
degeneration of perturbations of small Morse functions. Alternatively we can ap-
ply the method of continuous family of perturbations (see §33) using the de Rham
theory.

§62. Proof of Theorem Z, II : No other solutions

62.1. Statement of the results and outline of its proofs.

In this section we prove that the pseudo-holomorphic strips between Ly and L.
we produced in Theorem 61.46 exhausts all the solutions nearby the given pseudo-
holomorphic triangle, and complete the proof of Theorem Z. A more detailed de-
scription on what is achieved in this section is in order.

The proof of similar ‘surjectivity’ is one of the essential components of the study
of moduli spaces of pseudo-holomorphic curves in non-compact symplectic mani-
folds with cylindrical ends. There are many announced results related to various
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gluing formulae in the literature based on some degeneration and compactness ar-
guments but without treating this surjectivity problem in detail. (See [EGHO00] and
others, for example.) The proof of ‘surjectivity’ is closely related to but is harder
to study than that of ‘compactness’. However we hardly find a proof of this kind of
‘surjectivity’ in the literature that is applicable to the case we study in this book.
Because of this we will give a complete self-contained proof of this surjectivity in
our context.

Many of the methods we use in this section can be used in a more general
situation. Since it is not our main purpose in this book to study pseudo-holomorphic
curve in noncompact symplectic manifold, we will restrict ourselves to the case
directly relevant to prove Theorem Z. We do not attempt to discuss the general
case of pseudo-holomorphic maps from a bordered Riemann surface to non-compact
symplectic manifold with Lagrangian boundary conditions with cylindrical ends.
Instead we take short cuts in several places exploiting the special feature of our
situation.

We state our result of this section only for the harder case of L_., (e; > 0). The
case of L, is similar and easier to deal with. Let w,; be the pseudo-holomorphic
triangle regarded it as a map wy, : H — M satisfying the boundary condition

’lUtri([—l,O]) C LQ, wm([(), 1]) - Ll, wtri(R\ [—1, 1]) C Lo.

(See Remark 61.23.) We assume (55.2). For the notational convenience, we will
just denote H for HU {oo} from now on, as long as there is no danger of confusion.
Consider the family of solutions

wp : H— M

constructed by Theorem 61.46, which is parameterized by b € S”~2. These have
the following properties :

(62.1.1)  wy is pseudo-holomorphic.
(62.1.2)  wp(z) € L_, for z € [-1,1] C R = 0H \ {o0}.
(62.1.3)  wp(z) € Lo for z e R\ [-1,1] CR=0H \ {o0}.

By construction, wy is C%-close to wiy.

Theorem 62.2. If ey, €5 be sufficiently small positive numbers with e; < e3°9, then,

for any w :H — M such that

(62.3.1)  max,cpdistg,, (wui(2), w(2)) < €2,

(62.3.2)  w(z) € L, forze[-1,1] CR=0H\ {0},

(62.3.3)  w(z) € Ly for ze R\ [-1,1] CR =0H \ {00},

there erists a biholomorphic map ) : H — H with ¢(£1) = +1 and b € S"~2 such
that

(62.4) w = wp 0 Y.
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Theorem 62.2 together Theorem 61.46 completes the proof of Theorem Z.
The strategy of the proof of Theorem 62.2 is similar to the one, which is originally
due to Donaldson [Don83] and §9 [FrUh84]. This proceeds as follows :

(62.5.1) By an index calculation we find that the S™"~2-parameterized family of
the pseudo-holomorphic curves in Theorem 61.46 is of ‘correct dimension’. In other
words, the virtual dimension of the pseudo-holomorphic maps w satisfying (62.3) is
n — 2 (modulo the action of Aut(H;{£1})).

(62.5.2)  If e > 0 is sufficiently small, for any general solution w satisfying (62.3),
we find a path w(r) such that w(0) = w and w(1) = w; for some b € S"~2.
(62.5.3) Using the implicit function theorem and Fredholm regularity of wy’s,
we modify the path w(r) to w’(r) so that each element of the path w’(r) is pseudo-
holomorphic and satisfies (62.3) and w'(0) = w, w'(1) = wy.

(62.5.4)  Now (62.5.1) and (62.5.3) imply that w = wy for some b’ (modulo the
action of Aut(H, {£1})). This completes the proof of Theorem 62.2.

To carry out the strategy laid out here, we need to employ several new ingredients
that are not needed in the works such as in [Don83] and [FrUh84]. We highlight a
few main points below. (The most essential one is (62.6.3) among them.)

(62.6.1) We need to consider the singular degeneration as €; — 0 where the
Lagrangian submanifolds L_., becomes singular in the limit. Therefore to carry
out (62.5.2) and (62.5.3), we first need to improve the estimate from (62.3.1) to a
much sharper one. (Note a similar situation appeared in [FuOh97].)

(62.6.2)  To handle the singular degeneration problem mentioned in (62.6.1), we
need to use a carefully chosen weighted Sobolev norm described in §61.6.

(62.6.3) To obtain the uniform estimate for the weighted Sobolev norm men-
tioned in (62.6.2), we start with certain energy estimates. Such an energy estimate
at the ‘neck region’ is far from being standard. This is because we need to blow
up the metric of the domain and the target simultaneously. As a consequence the
boundedness of the usual symplectic area [ w*w (which follows from (62.3.1)) does
not provide the energy estimate we need. To overcome this subtlety we use the idea
of A-energy due to Hofer [Hof93].

(62.6.4)  We also need to carefully choose the domain coordinates and the target
metrics for the estimates.

We remark that points (62.6.3), (62.6.4) do not appear when we prove a similar
‘surjectivity’ results in the situation of §29.

62.2. Statements of the main estimates : Beginning of the proof.

Let €9 > 0 be the constant given in §61. Recall that this constant depends only
on the size of Darboux chart.
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Consider arbitrary sequences of €1 ;, €2 ; > 0 and w; such that

(6271) hmzﬂoo €1 = hmzﬂoo €2 = 0,

(62.7.2)  w; : H — M is a pseudo-holomorphic map,

(62.7.3)  wi(z) € L_, ,, for z € [-1,1] C R, w;(2) € Lo, for z € RU{oo}\[-1,1],
(62.7.4)  distg,, (wei(2), wi(z)) < €24,

(6275) €1, < E%?io,

In the rest of the section, we will prove that for any given such sequences, there
exists b; € S"2 such that w; = wy,og; for some g; € Aut(H; {£1}) for all sufficiently
large i’s, after choosing a subsequence of ¢ if necessary.

Once we have proved this, the proof of Theorem 62.2 will be finished by con-
tradiction : If we assume the contrary to Theorem 62.2, we can select the above
sequences satisfying all the above conditions together with the additional condition

(62.7.6) w; # wp o g for any b € S""2 and g € Aut(H; {+1}).

This obviously contradicts to the above statement and will finish the proof.
We start with the following standard lemma

Lemma 62.8. Let |- |,,, be the norm in terms of the given metric gy on M. For
any given € >0 and k=0,1,2,---, we have

lim  sup |Vk"wtri - ka,-‘ (z) =0.

100 2 e H [2]>e oM

Proof. This is a consequence of standard elliptic regularity estimate and (62.7.4). O

We like to mention that for this estimate we do not need to use rescaled metric
near the neighborhood of p15. However Lemma 62.8 is not strong enough to carry
out the details of the scheme laid out in (62.5). This is because we need to carefully
study the fine behavior of w; in a neighborhood of p12 = wy;(0). For this purpose,
we need to use a rescaled metric around p1s.

We denote

P = expzl)12 op : (—o00,log €] x S2n=t M \ {p12}
which was defined at the beginning of §61.1 and
2 = w; (B(pi2; €)) C H.
We consider the sphere
Srl=grt = {2 eR" ||z =1} CR" C C".

For each a € S, we have the Reeb chord between S%, ! and SX_I in the contact
manifold $27~1
Va : [O, 1] N SQn—l) ,ya(t) — e\/—_lata
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tangent to the vector Jya L 1,52, ' C T,5%*~1. ~, is nothing but a part of great
circle in S?"~1. We also consider the corresponding curve

70ut,a : [07 1] - R X SQn_17 ’Yout,a(t) - (log EOa’)/a(t))

in {logeg} x S?"~1 C R x S?"~1 regarded as lying on the sphere S?"~1(¢y) C C™.
Here we regard S?"~1(¢) as a subset of C".
Lemma 62.8 and Theorem 54.17 (for m = 1) now imply

Corollary 62.9. There exists a sequence of curves
:y\i,out : [0, 1] — H
with
:V\i,out(o) S R+7 :Y\i,out(l) S R_,
and a constant S1 € R such that

(62.10.1) 9% = [iout(1); Fi,out(0)] U Fiout ([0, 1]),
(62.10.2) lim [V*(@™" o w; © Fiout = Yout.a)| = 0,
(62.10.3) lim [V*Fi0ut — Fs,)| =0,

where Jg, (t) = e™ &1 HV=1) ¢ H\ {0}, and we use the product metric on the target
R x 82"~ to estimate the norm of tensors in (62.10.2).

From now on for the clarity of exposition, we will put a ‘hat’ for the curves in
the domain H or R x [0,1] 2 H \ {0} in order to distinguish them from the curves
in the target C", or R x §?"~t = C"\ {0}.

We also omit ¥ and write w; 0 7; out etc. in place of @fl 0 W; 07 out regarding it
as a map to R x $?"~1 whenever there is no danger of confusion.

Figure 62.1.
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Now the main part of the proof of Theorem 62.2 is Theorem 62.13 below. We
use the identification

R x [0,1] 2 H\ {0}, (r,t)— e THV=T0

to regard w; as a map defined on R x [0, 1] and 3; \ {0} as a subset of R x [0, 1].
We recall from §61.3 that we defined a moduli space Mo(H,C";(H<, .)’) to-
gether with the fiber bundle

(62.11) ™ Mo(H,C"; (H?,, )) — S"!

whose fiber is diffeomorphic to S"~2. (In fact in §61.3 we mainly discussed the case
of (Hf,,,)". In that case (62.11) is a diffeomorphism. We can discuss the present
case in the same way.)

Note for w € Mo (H, C"; (H®, )') with m(w) = a we have

—€1,;

@(w(ew(r+ﬁt))) -~ ’Ya(t)7 6#(7+let) cH

where ~ means that the left hand side will converge to the right hand side as
T — 400. (Here © is as in (61.1.1).)

Denote ag = (1,0,---,0) € S*~! and fix a trivialization of (62.11) in a neigh-
borhood of ag. For each a € S"~! close to agp and b € S"~2 = 7= 1(a) let

Wqp : H— C"
be the element of M (H, C™; (H{)") corresponding to (a,b). We recall
e Mwgp(T,t) — ea(7+ﬁt)a|cn <Ce "

(for 7 > 0) by definition of /\A/l/o(H, C™ (H*))).
Like the definition T, given in §61, we put

1
(62.12) T, = —a* (5 log €1,; + log SO) eR,.

Theorem 62.13. Let w; satisfy (62.7). There exist a;,b and 6, > 0 (which
appears in (62.15.3.1) and (62.15.3.2)), such that im;_.o a; = ag, lim; .o 9, = 0
and w; satisfies the following properties (62.14) and (62.15) :

(62.14) There exists an open subset U; ouy C H containing H \ 3;, a bounded
sequences of numbers Cy ;, Ca; and a btholomorphic embedding

¢i,neck : (_T'z + Cl,i7 Sl + 02,1') X [07 1] — Ui out
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(where Sy is as in (62.10.3)) such that
(62.14.1) the image U; neck 0f Vi neck contains Ui oue N X; and satisfies

(62.14.2) V5 (i © Vs.neck) — w))|(7,) < Chre=k min(rhIT+Ti)

ai,O
Here ¢y, Cy are independent of i and we put

wao(7,t) = (a7, 7a, (1))

and use the product metrics for both the domain and the target in (62.14.2).
7701',neck(7_7 0) ceR= 8H,

62.14.3
( ) ¢i,neck(7—7 1) € R = 0oH.
Figure 62.2.
(62.15) There exist a sequence R; — oo, open setsU; iny C H and a biholomorphic
map

Yiint : [—00, Ri) X [0,1] — U; int
with the following properties :

(62.15.1) Ui it Ul our = H.
(62152) Z/{i,int mz/{z',out - Im(wi,int) N Im(wi,neck)-

(62.15.3) lim distor (w;, wa, ) = 0.

1—00
We now explain the precise meaning of (62.15.3). Divide

[—o0, R;] x [0,1] = H,j<; U ([0, R;] x [0,1]),
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where (7, t) is the coordinates R x [0, 1] and denote z = e™("+V=1) ¢ H. We collapse
{—o0} x [0,1] to {0} € H by an abuse of notation in this decomposition.

We first describe the precise meaning of the convergence on H,<; in (62.15.3).
We define

—_~—

. n
Wi ing * Hjz <1 — C

by

(62.16) o (2) = €1, ((wi 0 Piin ) (2)) -
Then (62.15.3) on H,|<; means the following :

(62.15.3.1) sup | VF (Wit — Way )| (2) < Ok
z€H|21<1

in the standard metrics of H and C”.
Next we consider (62.15.3) on [0, R;] x [0,1]. Here the convergence means the
inequality

(62.15.3.2) yvk(i}/?wi — wa. y)|(7,t) < min (5,“.7 Cke—cm—m/m)

in the product metrics on both the domain and the target.

Once Theorem 62.13 is established the rest of the proof of Theorem 62.2 proceeds
in the same way as in [Don83], [FrUh84] using the function spaces similar to those
introduced in §61.6. Namely the strategy of the proof (62.5) safely applies. We will
carry this out in §62.7. The proof of Theorem 62.13 will occupy §62.3 - 6.

62.3. Energies and their estimates.

In this subsection, following Hofer [Hof93|, we introduce two different energies
and derive some basic estimates on them.
We denote by Myecx C M the image of the composition

1 1 P oo expp, ST
(62.17) 5 log ey ; +1og Sp,logep| x S —Cc"=T,,M — M

and identify

1
(62.18) Mpeck = [5 log €1 ; + log So, log eo} x §2n—1,
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Under this identification, we have
1
(62.19) L_c, ;N Mpeek = 5 log e1.; + log Sp, log eg | x (Sgn ' U SE™H).

From now on, we put Assumption 54.20 on the almost complex structure J, i.e.,
(62.20) J = I*Jy on a neighborhood of p1s.

In particular, J is also assumed to be invariant under the translation of R-
direction on Mpyecx = [% log €1 ; +1og S, log €0] x S?"~! as w, A, Ly and Ly are so in
a neighborhood of pi5 in the Darboux chart I. We also remark that

(62.21) Mgrt = Algg1 =0

i.e., both Sp. 1 and SX_l are Legendrian submanifolds of the contact manifold

<Sr2n—17 )\)

Remark 62.22. We remark that we did not use (62.20) or Assumption 54.20 in
§61. We put it to simplify the exposition of the analysis carried out in this section.
As we mentioned before, this assumption can be removed with some additional
analytic underpinning of the complications arising from non-integrability and lack
of translational invariance (in the cylindrical coordinates) of the almost complex
structure J on the chosen Darboux neighborhood.

Let ¥ be a bordered Riemann surface. (We do not assume that ¥ is compact.)
In our circumstance, ¥ will be an open subset of H \ {0}.
We decompose 0¥ into two parts

(62.23) 0¥ = 02X U X
and assume that
w:X— Mneck

satisfies the following properties :
(62.24.1)  The set ¥ := {z € ¥ | dist(w(z), OMpeck) > 1} is compact.
(62.24.2)  w(8pX) C [Lloger,; + log So, log o] x Spn .
(62.24.3)  w(01X) C [$loger,; + log So,logeg] x S3* .
For such w, we introduce the following

Definition 62.25. We define the dA-energy, denoted by E4\ by

EdA(w):/ w*dA.
Yo
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Remark 62.26. Lemma 62.31 below implies that the integrand is a nonnegative
form for a J-holomorphic map w for J compatible to w. Therefore Eg4y(w) €
R>o U {oo} is defined.

We also use another energy, the so called \-energy [Hof93] denoted by E). Let
C be the set of smooth functions

1
p: (5 log ey ; + log So, log 60) — R>o

such that

(62.27.1)  pis of compact support,
(62.27.2) [ p(s)ds =1.

Composing p with the projection to the R-direction, we regard p as a function
on Mneck'

Definition 62.28. We define F)(w) and E(w) by :

Ey\(w) = sup/ w*(p ds N\ N),
pEC Yo

E(w) = E,\(w) —+ Ed,\(w).

Let w; be as in (62.7). We choose ¥; o 4 so that (X;0,+,wils, , , ) satisfies (62.24)
and

(6229) Ei,O,—l— D) {Z ex ‘ dist(wi(z),ﬁMneCk) > 1} = Ei,O-

We now prove the following

Proposition 62.30. We still denote w; = wils, ,. Then Ex(w;), Eq\(w;), E(w;)
are uniformly bounded from abowve.

The proof of Proposition 62.30 will be carried out by a sequence of lemmas.

Lemma 62.31. Let Jy and wy = d(r?)\) be the standard complex and symplectic
structures on C™. If w: ¥ — Myeck C C™ is Jo-holomorphic, then we have

(62.32.1) w*dA > 0,
(62.32.2) w*(ds A X+ d)\) > 0

as two forms on 3.

Note the inequalities (62.32) mean that the left hand sides are nonnegative (pos-
itive) functions times a given area form of the complex orientation on (%, j).

Proof. (62.32.1) is Lemma 60.60. The proof of (62.32.2) is similar. [
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Remark 62.33. If we consider a J-holomorphic map w for general J which is
sufficiently close to Jy but not equal to Jy, then we will still have (62.32.2) but not
(62.32.1) in general : this is because ds A A + d\ is strictly positive on Jy-linear
planes while d\ is only semi-positive.

This lack of positivity of (62.32.1) for J-holomorphic maps w for general J is the
reason why we assumed J = I*Jy in Assumption 54.20 and in this section.

We recall that any contact hypersurface (N, &) of a symplectic manifold (M, w)
has the canonical co-orientation [Wei79]. If a smooth map w : ¥ — M from
an oriented surface ¥ is transversal to a contact hypersurface N C M, then the
preimage w1 (V) has a natural orientation induced by the co-orientation of N C M.
Call this the induced orientation on w™!(N) and denote 0,4

When ¥ is given a complex structure j, it carries the complex orientation on it
and its boundary 0% has the boundary orientation 044, defined by the convention

1D Opdy = 0%

where 77 is the unit normal outward to ¥ on the boundary.

Now assume that X is oriented and 0¥ = ][; 9;5 where each 9;% denotes a
connected component of 9%, If w : ¥ — M is transversal to a contact hypersurfaces
N; € M and w™(N;) = 8;%, then 9;3 carries two orientations 0;,,4 and opg.

Definition 62.34. Let (w,X) as above. We say that a component 0;% is an outside
boundary if 0;nq = Opay, and an inside boundary if 0nq = —0pdy. We denote by Oy
the union of outside boundaries and by 0;,% the union of inside boundaries.

Now we go back to the proof of Proposition 62.30.
Definition 62.35. sy € [% log €1,; + log So, log €¢] is said to be a regular level if w;
is transversal to {so} x S?"~!. For a regular level sq, we put

%780 = ’UJZ-_1<{80} X Szn_l) C OH

and let v; s, be the restriction of w; to 7 s,-

We remark that the set of all regular levels is of full measure by Sard’s theorem.
The proof of the following lemma follows immediately from Stokes’ theorem and
(62.32.1).

Lemma 62.36. Let w: Y — R x S?"~1 be transversal to {s1} x S?"~1 and {so} x
S2n=1. Consider the submanifold X' := w='([s1, s2] x S?"~1). We give the induced
orientation 0i,q on w(s;), i =1,2.

Suppose that the submanifold ¥’ C X has its boundary decomposed into

Y = (X' NdHL)U (X NHE) U oY U dyY
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where gL C R™ and L C A and w({s1} x ST HUw 1 ({sy} x 827 1) =
Oour 2’ U 05,2 is the decomposition according to Definition 62.34. Then we have

/ w*)\—/ w*)\:/ wrd.
60ut2’ 81n2’ 4

The following lemma is the key lemma for the proof of Proposition 62.30.
Lemma 62.37.
/ widA < /’y;:out)\ + C(50),
Y0

where Vi out = WilViout nd Yiout 15 as in Corollary 62.9.

Here and afterwards C'(Sp) denotes a number depending only on Sy, which may
vary during the proof.

Proof. Suppose sg € [% log €1 ; + log So, log €p] is a regular level. We take a subdo-
main >; ¢, C X; o such that its boundary is decomposed into

%50 = Viyso UTiout U (Ziso N OH).

(See Figure 62.3.) Lemma 62.36 then implies

/ w;d)‘:/fygk,outA_/ﬁY;:so)"
by

1,80

Therefore it remains to show that there exists a constant C'(Sy) depending only on
Sy such that the inequality

(62.38) / Vi A > —C(So)

holds for sg sufficiently close to %log €1,; + log So.
To prove (62.38) we take a subdomain 3; 5, iny C H such that

82'L',so,int = (Ei,so,int N 8H) U ;)71,307 Ei,so,int N Ei,so = ;Y\i,so-

(See Figure 62.3.) We denote p; s, = w;

Si,50.menoH Which defines a curve

Wiso : Sisoint NOH — (H*_ ) C R x §2" 1.

—€1,;
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Figure 62.3.
Consider the canonical symplectic form
wo = d(e**))

on C" regarded as a form on R x $?"~1 via the diffeomorphism (s,0) : C*\ {0} —
R x §2n—1

We recall that (HZ,, )" is Lagrangian, i.e.,
(6239) wO’(HO‘ )= 0

—€1,4

by definition of (H*, )’. By Stokes’ theorem we derive

0 S/ w; wo :/ wi(e* )
b 8Ei,so,int
=/ﬁ¢&»—/@g&m

i,8(,int

and hence

(62.40) / 7 (€2N) > / it (€).

We put
(Ha,so )/ — (Ha )/ N ((—OO,S()] % SQn—l) )

—€1,4 —€1,4

(See Figure 62.4.) Consider the relative homology classes

(62.41) [:u’i,sm 6/%',30] c Hl((Ha,so )/7 8<Ha,so )/)

—€1,5 —€1,;
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and

(62.42)  [Vi.sos OViso) € Hi({s0} x S~ a(H*?0 )) = Hy(S*" 1 Sptu sy ).

—€1,4

Here we note that there is a canonical isomorphism between Hy ({so}xS** 1, d(HZ°)')
and H(S?"1, SptusSyh).

Figure 62.4.

Sublemma 62.43. We regard (p; s,,O0ti s,) aS a relative one-cycle for the pair

((H'CX,SO )/76(H'OZ,S() )/)

—€1,5 —€1,4

/u;‘,s()(e?w

depends only on the relative homology class [p; s, , Opii o) € Hi((H220 ) O(HE 0 Y).

—€1,i —€1,i

Then the integral

Proof. First (62.39) implies the Liouville one-form e?*) is closed on (HZ,, ,)". On
the other hand, by definition of (H®, .)’, we have

D(H™ ) = S (s5) N1 (R" U A)

—€1,i

and so

(62.44) A =0
a(Havéo _ )/

—€1,4

This implies the one-form e**X vanishes on the boundary d(H%° ). (However we

remark that A does not vanish everywhere on the Lagrangian submanifold (H®°° )'.)

—€1,5
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Now Stokes’ formula finishes the proof. [J

We remark that (H2°,)",0(HZ2°,)") is homeomorphic to (S™~* x [0,1], $" " x
{0,1}) for all ¢ and sg given above and has the canonical isomorphism

Hy((H*° ), 0(H*° )y =2 H (™1 x [0,1], 5" x {0,1}) 2 Z.

—€1,4 —€1,4

Therefore the boundary map

(62.45) 0+ Hy((H22,), 0(H )Y — Ho(@(H™2)) = 7

—€1,4 —€1,4 —€1,4

is an isomorphism. (Here Hy is the reduced homology.) This is trivial for n # 2
since Hy((H2°)',Z) = {0} for n # 2. On the other hand for n = 2, this follows

—€1,;

from the tautological exact sequence because the canonical homomorphism

Hy(H2, ) 2) — Hy(H25, ) O, ))

—€1,; —€1,4 —€1,4

is trivial for the pair ((Hf’so

€1,

)V OHT) ).

—€1,4

Sublemma 62.46. Let s € [35loger; + log So,logeg] be any regular level. Then
(62.41) is mapped to £1 € Z by the isomorphism (62.45).

Proof. We remark
(62.47) 91 Hy(S* 1, St uSy ™) — Ho(Sp. U Sh ) =2z

is an isomorphism and Op; s, = 07i,s,. Hence it suffices to calculate the homology
class [V 505 07i,s,] given in (62.42). Since

0 (Ei,sé,int \ Ei,so,in‘c) - [77:,567 872',56] - [’Yi,soaa'%',so]
holds in the relative singular chain complex
C.([s0, 5] x S, [s0, s0) x (Spn P USR™)

for so < s}, it follows that the homology class (62.42) in H;(S**~', Sg. ' u S
is independent of the choice of sg for all sufficiently large i’s. Moreover when sq is
sufficiently close to log e, (62.42) goes to +1 by the isomorphism (62.47). (This is
a consequence of (62.10.2).) Hence the sublemma. [
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Sublemma 62.48. Let %log €1,i +log Sy < s9 < %log €1,; +10g2Sy. Then we have
[ uileon) =aicsy)

where C(Sy) is independent of i and depends only on Sy.
Proof. We define a diffeomorphism

Tiloger, ' RX ST R x 52071
by

T% logeLi(S?x) =(s— 9 log ey i, x).
Then Ty g, , maps [3 log €1, + log So, 5 log e1,; + log 25p] to [log So, log 25,] and
satisfies

—1 * 0 2 _ (.2
(‘3:% logfl’1_) (e*°X) = e1.4(e”*N).

Moreover

T loger, (20, )') = (H2,Y

«

“.,..)") is independent of i. Therefore we derive

and so ‘Z;Og o ((H

/N?,so (e2s>\) - /(‘I% logex,i ONiaso)*(‘zgtgq,i)*(628)\)
- /((3:% loger,; © IU“Z}SO)*(B%)\)-

On the other hand, the family of curves
I% log ey, O Ui, sq

lie on (H%,)" with their boundaries contained in the region with s € [log Sy, log 2.So]
for all 4.
We now set

C(So) = —(e**N)[A]

for 5 being a generator of Hy((H%;)’,0(H%;)"). (We like to recall that the form
e?* ) is the Liouville one-form on C™.)
Then Sublemma 62.46 implies

/(S% 103261,1'“1'780)*(625)\) = +C(Sp)
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for all ¢ and for sy € [3loger; + log Sy, 3loger; + log2Sp]. This finishes the
proof. [J

Therefore, by choosing sq sufficiently close to % log €1, +log Sp, Sublemma 62.48
and (62.40) imply

1
/ Vi sy () = €72 / 17 5 (€2°X) = —— 52 (€1iC(50)) = C(S0) /82,
72 O

(Note s = sp on 7;,s,-) Redefining C(Sp), we have proved [~/, () > —C(So).
(Note the sign of C'(Sp) does not matter in Lemma 62.37.) This finishes the proof
of (62.38). The proof of Lemma 62.37 is now complete. []

Remark 62.49. We can also give a slightly different proof of Lemma 62.37 based
on a similar idea as in §60.5.

Lemma 62.37 and (62.10.3) prove the bound
(62.50) Egx(w;) < C(Sp).
We also use the following bound for the symplectic area of w; on ¥; 4, int : Recall
wo = d(e**)).

Proposition 62.51. Let so = %log €1,; +1og2Sy. Then

/ w;ka S 6i,10(50)~
P

i,8(,int

Proof. By Stokes’ theorem, we have

(62.52) / w (A N)) < 4S3er / 7 () — / o (€3°0).
Z:'L,so,int
On the other hand,
025 [, 0= [ - [ wiors [hi <ast
Ei,so

where the first identity is by Stokes’ and the second inequality by the positivity
(62.32.1), and the last by the convergence O(v;s,) — ©O(7,) as i — oo. (See
(62.10.2).) Now Sublemma 62.48, (62.52) and (62.53) finish the proof. [
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Lemma 62.54. Denote w; = w;|s, , be as before. There exists a constant C' > 0

independent of i such that
E)\ (wz) S C.

Proof. Let p € C. We put

We use Stokes’ theorem to show
(62.55) [ dwi@) = [ <ast
DIF

On the other hand, we also have

/ d(w? (FN)) = / wi(p ds A ) + / Wi (7 V).
0 30 X0

Since the second term is non-negative by (62.32.1), it follows that

/ wi(pds A <a+1.
X0

Hence Lemma 62.54. O

Remark 62.56. We remark that the term fz *(p d\) would be non-negative

upto an exponentially small error, if we con81der J holomorphlc maps w; for Jp-
holomorphic ones for non-integrable J. A precise control of this term would be
needed to study J-holomorphic maps for J not satisfying Assumption 54.20.

Now Proposition 62.30 follows by combining (62.50) and Lemma 62.55. [J

62.4. C*° convergence on the neck region.

In this subsection and the next, using the energy estimates obtained in the last
subsection we prove that w; converges to the cylindrical map

(1,t) — (a1 4 const, v,(t))

for a € S"! on Myeqc. This will prove (62.14), which is the first half of Theorem
62.13.

One difficult point of the proof is a choice of parametrization of the maps. We
recall that there is no canonical coordinates on the domain for the maps that we
are considering. A general strategy laid out in §11 and the appendix of [FuOn991I]
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to handle this problem is to add auxiliary marked points to the domain so that the
corresponding sequence of the domain marked Riemann surfaces forms a sequence
of stable curves. The same strategy has been applied in Lemma 10.7 [BEHWZ03].

Our current circumstance is regarded as a sub-case of the relative version of
[BEHWZ03]. To work out the analytic details needed to carry out this proof for
general J in all details, we need do all the ingredients necessary to establish the
analytic foundation of symplectic field theory advocated in [EGHO00]. This is too
much for the purpose of this section.

Instead, in this subsection, we will exploit various special features that are present
in the case of our study. We list those points here for the readers’ convenience :

(1) J satisfies Assumption 54.20 and in particular is integrable around p;2 and
so in the neck region M ecx.

(2) The ends of the Lagrangian submanifolds (H¢, )" are cylindrical, not just
asymptotically cylindrical as H2, . 7

(3) The chord vout,; is C*°-close to the Reeb chord Yout,o and Yout,q is the Reeb
chord of the minimal A-length.

(4) We study pseudo-holomorphic curves in an exact symplectic manifold with
exact Lagrangian submanifolds as boundary conditions.

The integrability of J and the exactness above remove various difficult points to
handle the general case. This enables us to exploit ideas coming from the study of
one dimensional complex analytic varieties and positive currents, and the Hausdorff
convergence of analytic varieties in some compactness arguments. We also note
that for analytic varieties Hausdorff topology is much weaker and easier to use than
the stable map topology introduced in [FuOn9911]. However the study of pseudo-
holomorphic maps for general J would require to use the stable map topology. Our
current argument here is somewhat similar to [Pan94] in spirit.

For given sg, we define the translation map

Tey : R x §2"71 5 R x g2t

by
Tso(s,2) = (s — sp, ).

Let s; € R be a sequence satisfying

(62.57.1) lim s; = —o0
1
(62.57.2) lim s; — 3 log 2¢; ; = +00.

In terms of the standard polar coordinates (r,0) of C™ with r = e®, the condition
(62.57) corresponds to

lim r; =0, lim
i—00 i—00 2€1
’
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Let X be a closed subset of R x $?"~1 = C"\ {0} and A; be a sequence of closed
subsets thereof such that

A; C (—o0,logeg] x S*" L,

Definition 62.58. We say T, (A;) converges to X in compact Hausdorff topology
if for each R > 0 the sequence of sets

(=R, R] x 8" 1) N T, (4)
converges to
([FR,R] x S*" HynX
in Hausdorff topology.

Definition 62.59. (1) Here the Hausdorff topology stands for the convergence with

respect to the Hausdorff distance on the set of all closed subsets of the metric space

[—R, R] x 82"~ 1. See, e.g., [Grom99] for the definition of the Hausdorff distance.
(2) We note that (62.57) implies

1
T;_l([—R, R] x S2n=1y [5 log €1 ; + log Sp, log ep] % Gg2n—1

for sufficiently large ¢ for each given R.

Lemma 62.60. For each given sequence s; satisfying (62.57) there exists a subse-
quence, still denoted by s;, such that

T, (wi(Zi0))

converges to a closed set X ({s;}) in compact Hausdorff topology.
See (62241) for Ei,O-

Proof. This is immediate from the fact that the set of closed subsets of a given
compact metric space is compact in Hausdorff topology. [

We now use the energy estimate given in Proposition 62.30 and prove the follow-
ing :
Lemma 62.61. Consider Ry, Ry with %log €1, +1og Sy < R1 < Ry < logey and
denote Ry — Ry = R. Assume R > 1. Then we have

/ (ds NA+dX) <CR
(ZSZ'(wi(zi,o))m([Rth]XSQ”—l)

for some constant C > 0 independent of i and R.
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Proof. By the translational invariance of d\, we have

/ d\ = / d.
Tsi (wl(Eq,o))ﬂ([Rl ,RQ} XSQ"_I) wi(Zi,O)ﬂ([R1+si,R2+si] stn_l)

Since (62.57) implies [R; + s, Ra + s;] x S?"~1 C [% log €1,; + log Sp, log €] x S?7~1
for all sufficiently large 7 and w;d\ > 0, the inequality

(62.62) d\ < Egx(w;) <C

/Qﬂi(2i7o)ﬂ([R1+Si,R2+si] XSQn_l)

follows from Proposition 62.30.
To estimate the integral of the first integrand above, we first note

(62.63) w; (ds AN X) > 0.

We then take a function p € C such that p = 1/(2R) on [R1, R]. By the transla-
tional invariance of ds A \, we have

/ ds N\ = / ds N\ M.
Tsi (wi(zi,o))ﬁ([Rl,Rg]stn_l) wi(Ei,O)ﬂ([Rl—i—si,Rg—i—si]><S2"—1)

Now Proposition 62.30 and (62.63) imply

/ ds/\)\§2R/ w; (p ds A X)
Ts; (wi(3i,0))N([R1,R2]xS2n—1) Yo

(62.64) < 2RE\(w;) < CR.

Adding (62.62) and (62.64) and redefining C', we have finished the proof. [

Now we quote the following well established facts in several complex variable
theory. (See Chapter 2 §11 [Chi89], for example.) For readers’ convenience, we
recall the main arguments of their proofs.

Proposition 62.65. Let U C C™ be an open set and A; C C™ be a sequence of 1
dimensional complex subvarieties. We assume that

A;NU

X = hm(AZﬂU)

71— 00

is uniformly bounded over i. Let
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be the limit with respect to the compact Hausdorff convergence. Then we have the
following :

(62.66.1) X is a one dimensional complex subvariety.

(62.66.2) There exists a positive integer valued function, called the multiplicity,
m : Xreg — Z>o on the regular point set X,eg of X such that m is locally constant
and that A; NU converges to mX as an integral current on any compact subsets of
U, after taking a subsequence if necessary.

(62.66.3) Suppose X is smooth and m = 1 in addition. Then any compact subset
of U has its open neighborhood V' for which A; NV is smooth for all sufficiently
large i and is diffeomorphic to X N'V. Moreover A; NV converges to X NV in
C*°-topology of complex submanifolds.

Proof. (62.66.1) is a theorem by Bishop [Bis64]. We prove (62.66.2), (62.66.3) below
for completeness.

Let p € X be a regular point. We choose a neighborhood W of p and after
changing the coordinates on W we may assume

WnX=(Cx{0}H)nw.

Let € be a small positive number. Then for 2z, € C sufficiently close to 0 and for
any sufficiently large i, we have

({20} x 8B.(0,C" 1)) N A; = 0.

Here B.(0,C"~1) c C"1! is the ball centered at 0 and of radius e. For such zy and
¢ the local intersection number

[{z0} x Be(0,C" 1) N [Ai] € Zo

is well-defined and independent of zy. This is the definition of multiplicity m;(p) of
the analytic variety A; at p. (See [Chi89].) If follows from the uniform bound for
the area [, . wo that m;(p) is finite. (See Figure 62.5.)

Therefore by taking a subsequence if necessary, we may assume that m;(p) is
independent of i. In this way we obtain a locally constant function m. It is now
easy to see that ANU; converges to mX as integral currents on any compact subsets
of U. This finishes the proof of (62.66.2).

We next assume m = 1. Then by positivity of local intersection numbers, it fol-
lows that {29} x B¢(0, C" 1) intersects transversally with A; at exactly one point for
any zg € C x {0}. We can use this fact to find a local holomorphic parametrization
of A; that converge in C'*°-topology. This finishes the proof of (62.66.3). O
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Figure 62.5.
Lemma 62.67. The compact Hausdorff limit

X({si)) = lim Ty (wi(Xi0))

obtained in Lemma 62.60 has the structure of one dimensional complex analytic set
with boundary lying in R x (Sgn ' USY™1) in the following sense :

(62.68.1)  Ifp € R x (S?=1\ (Sg-tu SY™)), then there ewists a neighborhood
U of p such that UN X ({s;}) is a one dimensional complex analytic set.

(62.68.2) If p e R x S]g;l, we can choose a neighborhood U of p and an anti-
holomorphic isometric involution Inv : U — U such that its fixed point set is (R x
Se)NU and the double (X ({s:})NU)UInv(X ({s;}) NU) has the structure of one

dimensional complex analytic set. The case p € R X SX_l 18 similar.

Moreover, after a taking subsequence, T, (w;(X;0)) converges to mX ({s;}) on
compact subsets as currents. Here m : X ({8;})reg — Z>0 is the multiplicity function
defined on the set of reqular points of X ({s;}).

Proof. (62.68.1) is a consequence of Lemma 62.61 and (62.66.1). We can use the
reflection principle to reduce (62.68.2) to (62.68.1). (Note Sz, ' and S3~' are the
intersections with S$27~! of the fixed point sets of some involutions defined on C"
that are isometric and anti-holomorphic.)

The last statement is a consequence of (62.66.2). [

For a one dimensional complex analytic subset X C R x §27~1 = C"\ {0}, we
define the analogs to the energies given in Proposition 62.30 in a similar way : We
first define

Ean(X) ::/Xd)\
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regarding X as a holomorphic 1-current on C”.
We next let C be the set of all smooth functions p : R — R>( of compact support
such that [ p =1. We then set

E\(X) :SIélco/Xp(s)(ds/\)\).

We finally put
E(X) = Eax(X) + Ex(X).
We remark that the two forms d\ and ds A X are nonnegative on one dimensional

complex analytic set X. Then, by a version of Fatou’s lemma, we have the following

Lemma 62.69.

Ex(X({s:})) <liminf Ey(w;).
The same holds for Egy and E.
Proof. The lemma follows easily from (62.66.2). O

An immediate corollary of this lemma and Proposition 62.30 is the following
finiteness of energies.

Corollary 62.70. E\(X({s;})), Eax(X({s:})), E(X({s:})) are all finite.

We next take a sequence ¢ (resp. t; ) converging +oco (resp. —oc). We will just
write t; below for either of t; ort;.

Lemma 62.71. There exists a subsequence of t;, again denoted by t;, such that
lim T, (X ({si}))
j—00

converges both in compact Hausdorff topology and in the weak topology of integral
currents. Furthermore the limit has the structure of one dimensional complex ana-
lytic set with boundary contained R X (Sﬁ;l U Sx_l), which has finite multiplicity.

Proof. Once we have the finiteness of energies in Corollary 62.70, the proof is the
same as that of Lemma 62.60 and of Lemma 62.67 and so omitted. [J

Now translational invariance of d), finiteness of Egx (X ({s;})) and Lemma 62.71
immediately give rise to the following vanishing result for the energy FEg,.

Lemma 62.72.
Eax (J.Liffoo T, (X({Sz‘}))> = 0.

This then gives rise to
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Corollary 62.73. There exist a finitely many Reeb chords 71, ..., vx with
7i(0),7%(1) € S ' U SR

such that

j—too

K
lim %y (X({s:}) U mi(R X ).
k=1

Here my, are the multiplicities of .

Proposition 62.74. K =1 in Corollary 62.73. Moreover v, is a minimal Reeb
chord joining Sg.* to Sy~'. Furthermore mi = 1 and Ty, (X ({s;})) converges to
R x 1 in compact C*° topology.

Proof. First by taking a diagonal subsequence we can choose an increasing map
j — i(j) such that

(62.75) Jli{go Tt +s:0) (Wi (Zigiy0) = jE{{loo T, (X({s:}))-

And we may assume that ¢; + s;(;) is a regular level. We consider the chord
Ve +3:00,i0) = Wich) (Bigg).0) 0 ({t5 + sig} x S
connecting Sgn ' U SY to Sgnt USSP From (62.75) and Corollary 62.73 we

obtain
lim A=) "my / A
Il k Tk

’th +5i(4) K16

We recall from the remark after (62.47) that
htj-i-si(j)vi(j)’ a%fj +5i(j)7i(j)]

represents the same homology class as v; out € H1(S*" ™1, (Spn 1 USXfl)). Therefore
there exists at least one of its connected components joining SZ, ! to SX_l. Let v
be the limit of that component. We remark that f% A are nonnegative for the Reeb
chords 7. Combining all these, we obtain

(62.76.1) /A<ka/ A= hm/ A
j—oo Vej+s4(4) i)

On the other hand, Lemma 62.31 and (62.10.2) imply

(62.76.2) lim A< lim / A= a.
v

) — 00 | — 00
7= ’7tj+si(j),i(j) 7= i(j),out
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Therefore all the inequalities in (62.76.1) and (62.76.2) become the equality. This
implies K = 1, m; = 1 and 7, is a minimal Reeb chord. Now m; = 1 and (62.66.3)
imply that T;, (X ({s;})) converges to R x 1 in compact C*° topology. This finishes
the proof. [

Let s; be a sequence that consist of regular levels and that satisfy (62.57). We
put
Yi>s; = {2 € Tio | s(wi2)) € [si,log €]}

Here s : R x $?"~! — R is the projection. ¥; >, is a manifold with smooth
boundary and corner.

Lemma 62.77.
lim w;d\ = 0.

L —
14— 00 S,

Proof. Suppose that the lemma does not hold for s;. Then by taking a subsequence,

Wwe may assume
/ wid\ > ¢ > 0.
Ei,zsi

Moreover we can take a subsequence and ¢, so that (62.75) holds. Then the equality
holds in (62.76.2) in the same way as that of Lemma 62.74. On the other hand,
Stokes’ theorem and Lemma 62.31 give rise to

/%(j)"’“t)\ - /ﬁytj"‘si(j)ai(j))\ = /Z‘(,) widAze>0.
i(j),8>5;

This is a contradiction to the equality for (62.75). O
Corollary 62.78. For each € > 0 there exists S’ and Iy such that if i > Iy then

/ w;dA < e.
Ei>

1
3 log 51,i+s/

Proof. 1f Corollary 62.78 is false there exists a sequence i > k such that
/ w; d\ > e.
21‘,2% logey 4, +k

We may assume that

. 1
finy s (G oecrs, ) = -

by taking a subsequence of i, if necessary. We then obtain a contradiction by
applying Lemma 62.77 to w;, and s, = 3loger;, + k. O

Now we are going to prove the main result of this subsection.
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Proposition 62.79. For each given k, there exist Iy, Ry and constants o(i, Ry | k)
with
lim lim o(i,Rop | k) =0

1—00 Rg—o00

for each k, such that for all © > Iy and for all s > %log €1,; +1ogSo + Ry the
followings hold :

(62.80.1) s is a reqular level. The curve w;(3;) N ({s} x S?~1) is parameterized
by an arc ;s : [0,1] — {s} x S?"~1 for which there exists a € S"~' such that
(62.81.1) V¥ (v — 70.0)| < 0lis Ro | ).
(62.80.2) Moreover, for si € [% log e ; +1og Sy + Ry, log ey — Ro| the set
Sisi—1<s<si41 = wi(2;) N ([s1 — 1,81 + 1] x 52"~ 1)

has a parametrization

Wisi—1<s<s1 ¢ [~/ 1/a] X [0,1] = 34 1<t
for which we have

(62.81.2) IVF(w; s, —1<5<s, 11 — W )| < o(i, Ry | k).

a,S81

Here we put
wgi,tl (1,t) = (a1 + $1,7a(t)).

Proof. The proof will be given by contradiction. Suppose to the contrary. Then we
may assume, by taking a subsequence if necessary, that there exists a sequence s;
with

1
S; — 3 log 2¢; ; — o0

such that one of the following must hold :
(62.82.1)  s; is not a regular level or w; ' ({s;} x S2"~1) is disconnected.
(62.82.2)  s; is a regular level. There exist k and ¢ > 0 such that

|vk(7a - %’,sz') >c

for any a and parametrization ; s, of w;(3;) N ({s;} x S2"~1).
(62.82.3)  There exist k and ¢ > 0 such that

IVF(wis,—1<s<s,41 — wos )| > ¢

for any parametrization w; s, —1<s<s,+1 of wi(3;) N ([s1 — 1,81 + 1] x §2771).
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Note by the choice s; satisfies (62.57.2). Lemma 62.8 also allows us to assume
(62.57.1). By the uniform area bound for T, (w;(X;0)) we obtain in Lemma 62.61,
Proposition 62.65 (62.66.3) implies that lim; o T, (w;(2;0)) converges to a one
dimensional complex analytic set X ({s;}). Lemma 62.77 then implies

Eix(X({si})) =0

and so the conclusion of Corollary 62.73 holds for X ({s;}). By the same way as
Proposition 62.74 we prove

X({SZ}) =R X 7,

for some a. In particular X ({s;}) is smooth and has multiplicity one. Therefore
(62.66.3) implies that T, (w;(X;0)) converges to R x v, as a smooth manifold in
compact C'*° topology. It follows from this that none of (62.82.1) - (62.82.3) can
occur, a contradiction. The proof of Proposition 62.79 is now finished. [

62.5. Exponential decay in the neck region.

In this subsection, we prove (62.14), the exponential convergence to Reeb chords.
The main tool for such a convergence result is the characterization of the asymp-
totics of Jy-holomorphic maps with small d\-energy E;\, Theorem 60.85 below.
This is a minor variation of Theorem 1.3 [HWZ02] in our relative context.

Let R > 0 be given and

w: [-R,R] x[0,1] — R x §2~!
be a Jy-holomorphic map satisfying the boundary condition
(62.83) w(r,0) € R x Sgt, w(r,1) e R x Sy 1.

As before we consider the energies

(62.84.1) Ed)\(w> :/ w*d)\,
[—R,R]x][0,1]
(62.84.2) E\(w) = sup/ w*(pds A N),
peC J[-R,R]x[0,1]
(62.84.3) E(w) = Egx(w) + Ex(w),

where C is as in (62.27).
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Theorem 62.85. For each Ey > 0 and k there exist positive constants eg, Ry, ci,
and Cj, with the following properties. Let w : [—R, R] x [0,1] — R x §?"~! be a
Jo-holomorphic map that satisfy (62.83). We assume :

(62.86.0)  E(w) < E,,

(62.86.1) R > Ry,

(62.86.2) de(w) < €0,

(62.86.3)  the chord wy(t) := w(0,t) satisfies

/ngg 37&.

Then, we can find a € S ' and s; € R for which we have

(62.87) IVF(w — w0 )|(7,t) < Ce (B=I7D

a,Ss1

on (1,t) € [-R+ 10, R — 10] x [0, 1] where w2t is the cylindrical strip defined by

a,S81
flat

w,’, (1,1) = (s1 + at,74(t)) as before.

For the case of w without boundary, that is, for the case of pseudo-holomorphic
map w from the annulus [~ R, R] x S!, the analog of Theorem 62.85 was proved in
[HWZ02] for the case of non-degenerate isolated Reeb orbits and for its Bott-Morse
version in [Bou02] and [BEHWZO03] respectively.

For the completeness’s sake, we give the proof of Theorem 62.85 below. The first
step is to prove the following version of the e-regularity result.

Proposition 62.88. (e-regularity) Let Ey, R and k be given and consider Jy-
holomorphic maps w : [—R, R] x [0,1] — R x 82"~ satisfying (62.83) and E(w) <
FEy. Then there exists a sufficiently small ey > 0 such that we have

‘ka| < O},
on [-R + 10, R — 10] x [0,1] for all w satisfying Eq\(w) < e;. Here Ci > 0 is
independent of R and of such w’s.
Proof. As in the scheme of [Hof93], we start with the following lemma.

Lemma 62.89. There exists a constant Cy > 0 with the following properties : Let
w:[-R,R] x[0,1] - R x S?>"~1 be a C* map and assume

(62.89.1) sup \Vwl|(7,t) > Cp.
(7,t)€[-R+10,R—10] x[0,1]

Then there exists (1o,t0) € [-R+ 5, R — 5] such that

(62.90.1) |V2U|(7'0,t0) =C Z C(),
(62.90.2) \Vw|(1h,th) < 2C if dist((7), 1)), (10, t0)) < C~Y/2,
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Proof. We will prove that any choice of Cy > 0 satisfying

\/500—1/2
V2-1

will do our purpose. This choice of Cy will be justified in the course of the proof.

Let w satisfy (62.89.1). We will prove the lemma by contradiction. Suppose to
the contrary that for any choice of (1,t) € [-R + 5, R — 5], (62.90) fails to hold.
Take (71,t1) € [-R + 10, R — 10] x [0, 1] for which we have

<1

\Vwl|(11,t1) = C1 > Cp.

We will inductively construct a sequence (7, t) satisfying

(62.91.1)  |Vw|(mg,tx) = C > 28710y,

(62.91.2)  dist((7, t1), (Th—1,tx—1)) < C; 17

Suppose such a sequence (7;,t;) has been chosen for i < k. We obtain
(62.92)

— ~1/2 - : L1 V20,
dist((71,t1), (Th—1,tr—1)) < 3 C; 2 < (Y 20792 ) ot = ﬁ
i=1 i=1

Therefore by the choice of Cy in the beginning of the proof, we have

\/500—1/2
V2 -1

Then clearly (74—1,tx—1) € [-R+ 5, R — 5] and (751, tx—1) satisfies (62.90.1) by
the induction hypothesis (62.91.1). By the standing hypothesis in the beginning
of the proof, (60.90.2) must fail to hold for (79,t9) = (Tk—1,tk—1). In other words,
there must exist (7),t,) = (7, tx) for which (62.91.2) and (62.91.1) hold.

Now since C} ' < ﬁ by the choice of Cj, in (62.91.1), (62.91.2) implies

diSt((Tl,tl),(Tk_l,tk_l)) < < 1.

lim Z dist((7g, tk), (Th—1,tk—1)) =0

ko—00
k>kg

and hence (7, t) is a Cauchy sequence. Denote its limit by (Teo, too)-
Since w is assumed to be C', we have

IVw(Too,too)| :=C < oo and |Vw(rg,tr) — VW (Teo, too)| — 0
and in particular we have

IVw(rg, te)| <C+1< 00
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for all sufficiently large k. On the other hand, (62.91.1) implies

lim |[Vw|(7g,tx) = oo,

k—oo

a contradiction. This finishes the proof. [J

Obviously the particular choice of the pair 5 < 10 in the lemma is nothing special
but can be replaced by any pair of positive numbers K; < K.

We continue the proof of Proposition 62.88. By the standard elliptic regularity
of pseudo-holomorphic maps, it suffices to show the derivative bound

(62.93) Vw|<C  on[-R+7,R—17x0,1]

where (-R+7,R—7) x [0,1] D [-R+ 10, R — 10] x [0, 1].

We will prove (62.93) by contradiction. We determine e later in the proof. (This
e1 in fact can be chosen independently of Fy.) Suppose that there exists no C such
that (62.93) holds for any w : [-R, R] x [0,1] — R x §?"~1 satisfying (62.83) and
E(w) < Ey, Egx(w) < e1. Then there exists w; : [—R;, R;] x [0,1] — R x §27~1
(1i,t;) € [-Ri + 7, R; — 7] x [0,1] such that

lim |Vw;|(7;,t;) = oo.

We now apply Lemma 62.89 to find (7/,t}) € [-R; + 5, R; — 5] x [0, 1] such that the
following holds.

(62.94.1)  |Va|(7],t) clﬁoo

(62.94.2)  If dist((r, 1), (r{,t})) < C;,/* then
|Vwi|(7', t) S 201’2'.

We now deduce contradiction from (62.94) by a blowing argument. We put

D, = {x—kv—lye(c

dist((zCy} +7/,yCy ) +1), (7,1) < €7}
(9301,i +T i?ycl,i +t;) € R x [0, 1]

and define

w; : D; — R x §2n—1

by

By taking subsequence, we may assume one of (62.95.1)-(62.95.3) below hold :
(62.95.1)  lim;_.oc D; = Doy = C.
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(62.95.2)  There exists ¢ > 0 such that
illrgoDi:{ZGC|Imz2—c}:DOO:]HI—C\/—_1.

(62.95.3)  There exists ¢ > 0 such that
Z.linoloDi:{ZGC|Imz§c}:Doo = —H+ cv/—1.

(62.94.2) implies that
(62.96) V| < 2.
Since w; is holomorphic, we can use (62.96) to find a subsequence such that w;

converges to
Woo : Dog — R x §2771

in compact C'* topology.
For the case (62.95.2), we have

(62.97.1) Woo(0Dwo) C R x SEL.
For the case (62.95.3), we have

(62.97.2) Woo(0Doso) CR x SE~ 1
(62.94.1) implies that

(62.98) Ve |(0) = 1.

Now consider the energies of W,

(62.99.1) Ea\(Weo) = / wr d\,
D
(62.99.2) Ey(Ws) = Sup/ wi (pds A N),
pEC J Do
(62.99.3) E(Woo) = Eax(Woo) + Ex (e ),

where C is as in (62.27). The following easily follows from the hypothesis F(w;) <
Eo, Egx(w;) < e; and non-negativity of the forms dA and ds A A whose proof is
omitted.
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Lemma 62.100. E(Ws) < Ep, Eg)(Ws) < €.
We next define a holomorphic map
(62.101) Woo : Doy — CP™!
as the composition of W, and the projection
TR x §¥h - g2l cprtl

Here 5?71 — CP™! is the Hopf fibration whose fibers are the Reeb orbits of the
contact form A\. We note that d\ is a pull back of the Kahler form w¢pn-1 of CP?~!
under the projection. Hence Lemma 62.100 implies

(62.102) / Wh wepn—1 < €1 < 00.
Do

We are now ready to wrap up the proof of Proposition 62.88. We discuss the two
cases (62.95.1), (62.95.2) separately. ((62.95.3) is obviously similar to (62.95.2).)

Case (62.95.1) : We use (62.102) and the removable singularity theorem to obtain
(62.103.1) w2 8% - CP"L
We finally fix e; > 0 to be

1
(621032) €1 = gw(cpn [L]

where [L] is the homology class of the projective line in CP™. Then we have

W wepn-1 > €1
g2

for any nonconstant holomorphic map w. Therefore we derive from (62.102) that
Wso Must be constant.
What this means is that there exists a Reeb orbit v : ST — §27~! such that

Weo (C) C R x (SY) Cc R x §2"71,
Since R x v(S1) is a cylinder and the map
Weo : C — R x y(Sh)

is nonconstant, its image must be dense : This is because wx lifts to a nonconstant
holomorphic map C — C whose image is dense by Picard’s theorem. This implies

E(s) = 00
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which is a contradiction to Lemma 62.100. Therefore this case cannot occur.

Case (62.95.2) : We use (62.102) and the removable singularity theorem to obtain
wl, : (D* 0D?*) — (CP" 1 RP"1).

The choice e; < %u}(cpn [L] made in (62.103.2) implies that w, must be constant.
Similarly as in the case of (62.95.1), this implies that there exists a Reeb orbit
v : 8t — §2n=1 guch that

Woo(H — cv/—1) C R x y(S1).
Moreover there is a point p € (S!) such that
Woo (OH — cv/—1) C R x {p}.
Applying the reflection principle to w., we obtain a nonconstant holomorphic map
Woo : C — R x y(Sh)

which has an infinite energy, a contradiction. Hence this case cannot occur either.
In conclusion, (62.93) must hold and hence the proof of Proposition 62.88. [

Remark 62.104. The argument in the last step of the proof of Proposition 62.88
is rather ad hoc since we exploit the fact that the set of Reeb orbits of the contact
structure on S?"~! consists of the fibers of the Hopf fibration. (See also [LiRu01].)
Because of this, the above proof seems to be simpler than other proofs such as the
ones given in [HWZ02], [Bou2], [BEHWZ03]. Since study of this particular case
is enough for our purpose in this book, we refrain ourselves from taking the more
general route that works for arbitrary Bott-Morse case, including the case of non-
integrable J’s and with possibly non-cylindrical but only asymptotically cylindrical
ends.

Now let us continue the proof of Theorem 62.85. For each given Reeb orbit ~,

flat
we denote w,’ by

wﬂat (7_’ t) — (a,yr + S1,’Y(t))7

vY,S1
avz/ Y
Sl

We call o, the action of v. For the notational convenience, we will regard a constant
curve v = (s1,01) as a ‘Reeb orbit’ with zero action and still denote by

where a, is given by

wE, = (s1,01)

in Lemma 62.105 and Lemma 62.159 below.
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Lemma 62.105. Let ¢, Ey and ko be given. Then there exist es, Ro with the
following property : For any Jo-holomorphic map w : [—-R, R] x [0,1] — R x §?n~1
with R > Ra, and Egx(w) < e2, and for any 7 € [—R + 3, R — 3|, there exist $1
and a Reeb chord v : [0,1] — S?"~1 joining SE. ! to SX_I such that

(62.106) IVF(w — wl?t )|(7,1) < e

Y,S1

on [r — 1,71 + 1] x [0,1] for k < ko.
We note that v may vary depending on 77 in this lemma.

Proof. Suppose to the contrary. Then, after taking a subsequence, we can find
constants € > 0 and sequences of e ; — 0, R; — 00, (71, t;) € [-R;+3, R;—3] %[0, 1]
and pseudo-holomorphic maps

w; - [—RZ,Rl] X [0, 1] — R x SQn_l

such that they satisfy E(w;) < Ey, Egx(w;) < ez, and such that for some k < kg
we have

(1,t)€lTi,1—1,7,14+1]x[0,1] ’

for any Reeb chords « or points ©; € S?"~! and for s;.

Applying Proposition 62.88 and the diagonal sequence argument, we may take a
sequence sz ; and then subsequences thereof, still denoted by the same 7’s such that
(1,t) = To, ,wi(T + 731, 1)

converges to a Jp-holomorphic map
Weo : R x [0,1] — R x §271
in compact C* topology. As before, we derive

de(woo) = 0, E(woo) < Eo.

Then it follows either ws, is constant or

flat

Woo = Wy s}

for some Reeb chord « and s}. This contradicts to (62.107) and hence the proof. [
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Lemma 62.108. Under the same hypotheses as Lemma 62.105, assume (62.86.3)
in addition. Then for any given 11 € [—R+3, R—3]| there exist sy € R anda € S™!
such that

(62.109) IVF(w — w2 )|(1,1) < e

a,S1

on [ry — 1,71 +1] x [0,1] for k < ko. Here we recall wi? = wi™, —in the notation
of Lemma 62.105.

Proof. Tt suffices to show that v = v, for some a € S"~! in the proof of Lemma
62.105. This is immediate from (62.86.3) if 7, = 0.

To consider general 71, we deform it from 0 to the given 71 in [R — 3, R+ 3]. As
we mentioned the Reeb strip v may change accordingly. However by (62.106), it
can ‘jump’ only up to e. (Here we use the C? distance between two Reeb strips to
measure the size of the jump.)

We now use the fact that the set of Reeb chords of the form 74, a € S"! is
minimal nondegenerate in the Bott-Morse sense and so positive C°-distance away
from all other possible Reeb chords, including constant orbits. Therefore if we take
e small enough then the Reeb chord v must be of the form ~, for some a. This
finishes the proof. [J

Once Lemma 62.108 is established, one can prove Theorem 62.85 by the gen-
eral scheme of handling the Bott-Morse type Floer theory, which was developed in
[Fuk961I] §7, or in the proof of Lemma 11.2 of §14 [FuOn991I]. Here we again take
a short cut by exploiting our special circumstance.

Proof of Theorem 62.85. Let w be as in Theorem 62.85. Define
wW:[-R,R] x[0,1] — CP"!
to be the composition of w with
7:Rx 82t 5 g2n=l _, cprl
as in the proof of Proposition 62.88. We note
TR x (Sgatusy™)) CRP™!
and so w satisfies the real boundary condition
(62.110) w([—R, R] x {0,1}) c RP" !,

Moreover, since d\ is a pull back of the Kahler form wgpn—1 of CP?1, it follows
that

(62.111) / W 'wepn—1 = / w*d\ < eg.
[—R,R]x[0,1] [—R,R]x[0,1]
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We use the boundary condition (62.110) to apply the reflection principle and obtain
a holomorphic cylinder
w:[-R,R] x St - Ccpn?

whose area has the bound
(62.112) / W wepn-1 < 2eq.
[-R,R]xS?

Moreover Lemma 62.108 implies

sup  Diam(@w({s} x S1)) < o(ep)
s€[—R,R]

where o(eq) stands for any function of eq satisfying lim.,_.o o(eg) = 0.
Therefore, by the monotonicity formula (see Lemma 4.2.1 [Mul94], for example),
we obtain

(62.113) Diam(w([—R, R] x S')) < o(eo)

Here we use the following well-known fact on the harmonic function whose proof
we omit.

Lemma 62.114. If f : [-R, R] x S' — R is a harmonic function satisfying
Diam(f([-R, R] x S*)) < 1,

then there exists ¢ € R such that

(62.115) IVE(f = o)|(r,t) < Creer(B=ITD,

Here Cy, ¢ depends only on k =0,1,2,---.

We derive from (62.113) and Lemma 62.114 that there exists a point a € CP™~1
such that

(62.116) IV*(w — a)|(r, t) < CpecrEID,

We may replace @ with w(0,0) € RP"~! without destroying the inequality (62.116).
We remark that

7~ 1(@) = Ca\ {0} € C"\ {0} =R x §2"~!

is a one dimensional complex vector space minus origin. Here a € S"~1 C R™.
We define
w' :[-R,R] x[0,1] - C=CacC"

as the composition of w and the unitary projection II, : C* — C" with ImageIl, =
Ca. There exists R3 depending only on Cp, ¢p in (62.116) such that

w'([-R+ R3, R — R3] x [0,1]) n {0} = 0.
Therefore (62.116), and (62.109) (combined with Lemma 62.114 again) imply
(62.117) IVF(w — w')|(7,t) < Cre e+ E-ITD,

Here we use the product metric of the target space C™ \ {0} 2 R x S?"~!. Now the
following lemma will complete the proof of Theorem 62.85.
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Lemma 62.118. There exists 19 such that
(62.119) |Vk(w’ — wfro)|(7—’ t) < CkG*Ck(R*\TD'

Here
w’, (7,t) = exp(a(T + 70 + V—1t)).

We use the product metrics of C\{0} =2 Rx St both on the target and [—R+ R3, R—
R3] x [0,1] and on the domain.

Proof. We put
F(r,t) =logw'(1,t) — a(T + vV —1t).

Note Lemma 62.108 implies that the image of w’ is in the sector {z | —e < Argz <
a + €}. So log above is well defined. We have

ImF(7,0) = ImF(7,1) = 0.
Hence we apply reflection principle to obtain a holomorphic function
F:[-R+R3,R— R3] x S* — C.
By Lemma 62.108 and (62.116), we have
IImF (7, t)| < e.
Therefore we can use Lemma 62.114 to derive
|VFImF|(1,t) < Cre~ e (B=I7D,

(62.119) follows easily. This finishes the proof [
The proof of Theorem 62.85 is finally complete. [

Now we go back to the situation of Theorem 62.13. We will use Theorem 62.85
to prove (62.14), which establishes exponential convergence on the neck region.
Let
Ey = sup E(w;) < oo.
(2

We take eg as in Theorem 62.85. By Corollary 62.78 there exists S’ and Iy such
that if ¢+ > Iy then

(62.120) / widA < eg.
by

i,>% logey ;+5’

We may assume S’ > log Sy and 3 loger ; + 5" < log e for large i.
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We put
1
Ui one = w; ' <{§ logey; + 5, oo} X 82”_1> :

The inclusion U, ont O H \ X; is obvious. The main step is to construct the
parametrization

Yimeck : (=T + C14,81 + C2,4) x [0,1] = U ous
satisfying (62.14). Recall the definition

1
T, = —a ! (5 log €1, + log S()>

and S is the constant appearing in (62.10.3). We put

1
ﬂ = —a_l (5 10g €1, -+ S/> .

One consequence of Proposition 62.79 is that the intersection U; neck is diffeo-
morphic to a disc with 4 corners. Namely, the boundary O(U; neck) is decomposed

into R R R
a(ui,neck) = ’Yi,—ozTi’ U [%,—aTi’ (0)7 ’Yi,out(o)]

U '/Y\i,out U [//y\i,out(l)a ’/y\i,faTi’(l)]‘
Here we note
/f?i,faTi’ (0) = w;l(’)/@faTi’ <O))
i —arr (1) = w; (i —ary (1))

liein R = OH and so regard them as real numbers. The intervals [7; _a77(0),7i,0ut (0)]
and [3; out (1), Vi, —a77(1)] lie in Ry and R_ respectively.

Figure 62.6.
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By the convergence in Corollary 62.9, it follows that 7; ou is C°° approximates the
half circle {z € H | |z2| = €y}. On the other hand, at this stage we are unable to
exclude the possibility that the shape of arc ;Y\i,—ozTi’ could be wild in H and hence the
standard (cylindrical) coordinate might not be a good one to use to parameterize
the map w;. The role of 1; neck is to transform %a—aT{ to a more tame curve (See
the argument of §62.6.)

Applying the Riemann mapping theorem, we obtain a sequence R; ; > 0 and a
conformal isomorphism

(62.121) Yi+ [=R1, 0] x [0, 1] = Ui neck

such that (See Figure 62.6.)

(62.122.1)  (w; 0 h;)(—R1,i,0) =% —arr (0),
(62.122.2) (w0 thy)(—Ris,1) = Yi—arr (1),
(62.122.3)  (w; 0 1;)(0,0) =7 0ut(0),
(62.122.4)  (w;o %)(0, 1) = Yiout(1).

The following lemma intuitively looks obvious. For the completeness’ sake, we
give its proof based on the method of extremal length. (See [AhBe50] §4.)

Lemma 62.123.
lim Rl,i = +00.

i—00
Proof. We consider the submanifold
w; (Ui neck) C R x Gg2n—1
and denote by ginq the Riemannian metric induced from the product metric on

R x §2n—1
We also consider the product

1
{5 loge; ; + 5, log 60:| x [0, &

equipped with standard product metric gg. Then it follows from Proposition 62.79
that there is a diffeomorphism

1
D, : wi (Ui neck) = {5 loge; ; + 5, log eo] x [0, o

that has the properties,
(62.124.1) @, (Ui neck N ({5} x 5?7 1)) = {s} x [0,q].
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(62.124.2)  For each € there exists C' = Ry such that

|Pix(gind) — golor < €
on [% log2¢1,; + 5" + C,log ey — C] x [0, a] for all sufficiently large i.

Next we denote g2 = ®;.(gina) and by g; to be the standard metric on [—R; ;, 0] x
[0, 1].

Figure 62.7.
Since there are several metrics that we consider, we enlist them here for the purpose
of referencing (See Figure 62.7.) :

(1) gina = the induced metric on the image w; (U peck) C R x S27~1,
(2) go = the standard metric on the product [5loge; + 5, log €] X [0, ],
(3) g1 = the standard metric on [—Ry ;, 0] x [0, 1],

(4) g2 = q)*(gind)~

Since w; o 1); is holomorphic and so g1-ging conformal, we have (w; o ¥;).(g1) =
f?gina and so

(62.125) (®; 0ow; 0;)w(g1) = f292

for a positive function f on [§loge; + S',log €] x [0, a.
Denote X = [loge;; + 5"+ C,logey — C] x [0, o] and its area form by dA,, for
the metric go. We compute

(fron) = (o) ([ )

(62.126) < Vol Ry ogeo] < (0.1s00) x (1+) ([ aa,,)

1
< (1+€)a(Ry; + log 60)(—5 loge; ; — S +logey — 20).
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On the other hand, we derive, from (62.124.2) and (62.125),

logeg—C
/ fdA, > (1+¢e)~! / lengthg, (w; o, ¢) ds.
X %IOgGLi—l—S/-‘rC

Since w; 'v;.4(0) € R x {0}, w; 'v; s(a) € R x {1}, it follows that lengthg, (w; * o
vi.s) > 1 and so

1
(62.127) (14 e)/ fdAg, > —5 loger; — S —2C + logep.
X

Substituting this into (62.126), we have obtained

1 1
(62128) Rl,i + 10g €0 Z te (—5 log €1, — S/ —-2C + lOg 60)
(07

The lemma now follows from the convergence €; ; — 0. [

We define
w) : [~Ry4,0] x [0,1] — R x §2"~1

by

By our choice of U; out and (62.120), we have

/w;*d)\ < €

for i > Iy. Therefore, we can apply Theorem 62.85 to w/ for sufficiently large
i. It follows from (62.87) that |R;; — 73| is uniformly bounded. (Note T; — T is
independent of .)

Now take Cs5; such that

S1—T; 1 S, —1T;
(soww%)( 12 +C3,i>§>:a( 12 )

and define
¢i,neck(7'3 t) = lDZ(T + 0371', t).

Again from (62.87), C3; are uniformly bounded. By Theorem 62.85 for £ = 1 and
integrating over [0, |7|], we derive
Il | Pric
S / Cle
0

S, —1T; S, —T;
sowiowiyneck< 12 +T,t)—a( 12 +7'>
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We put Cy; =T; — R1; — C34, Ca; = 51 — C3;. Then

Yineck : [=Ti + Ci4, 51 + Co4] x [0,1] = U neck
is a biholomorphic map which satisfies

S1—1T;

|Vk (wl o wi,neck - wgito” ( + T, t) S C’ke_ck|7'|

by Theorem 62.85 again. Then (62.14.2) follows. (62.14.3) is trivial. This finishes
the proof of (62.14).

We also remark that the convergence statement lim; .., a; = ag in Theorem
62.13 follows from (62.14) and Lemma 62.8.

62.6. C*° convergence in a neighborhood of p;,.

In this subsection, we prove (62.15) of Theorem 62.13 and completes the proof
thereof. We first prepare some notations. Let w; : H — M be as in Theorem 62.13.
It restricts to a map

w; + By — B(piz; €0)(= 1(B*" (o))
where ¥; C H is as in §62.2. We identify B(pi2;€9) with B?" () via the Darboux
chart 1.
Lemma 62.129. w;(X%;) does not contain 0 € C™.

Proof. Using estimate (62.14) the proof is similar to the proof of Proposition 60.59
and hence is omitted. [

Applying an element of Aut(H;{£1}) to the domain H, may assume that w;
satisfies

(62.130.1) |w;(0)|cr = inf{|w;(2)|cn | 2 € OH}.
We put
(62.130.2) €3 = sup{|z| | z € &;, |wi(2)|cr < 24/€1,:5} > 0.

Conditions (62.7), Lemma 62.8 and (62.130.1) imply lim; .. €3,; = 0.
We define a rescaled map
2’171' . egﬂlE@ — C"
by

~ —1/2
w;i(z) = 61,1'/ wi(€3,i2).
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(62.10.3) shows that 7; out = 0%; C H is close to the image of the curve t —
e™(51+V=11) ¢ H. This implies 3; D H.|<ers1 /2 and 63:,}22‘ D H‘Z|§€;eﬂsl/2. We
put

Sl,i = 63_’1167T51 /2
and consider the restriction

Wi Hyzj<s,, — C"\ {0} 2 R x 5271

of w;. We remark lim;_, S1; = 00.
We have Lo
/&)/i<6H|Z|<Sl,i) - 61_,2' (H? ), = (Hfl)’

—€1,4

where the right hand side is independent of i, and

H)) N ([log Sy, log ey — log ey ;/2] x S~ 1
(62.131) (H21)" N ([log So, log € ge1,i/2] n—1> .
= [log So,logeo — 10g€17¢/2] X (S]Rn U SA )

We next consider the energies of w; given by

(62.132.1) B (W;) = / w;d(e?* \)
{z€H|z <5y ;| |wi(2)[cn <250}
and
(62.132.2) Fan(1: 5) = / T,
{z€H)2 <5, ;| 1Wi(2)|cn 2e5)}

Next let C be the set of all nonnegative smooth function p : R — R whose support
is compact and is contained in [log Sy, c0) and such that [ p(s) = 1. Then we define

(62.133.1) Ex(w;) = Sup/ﬁ;-"(p ds A N),
peC
(62.133.2) Epeck(W;) = Egx(w;;1log So) + Ex(w;).

Lemma 62.134. E, . (w;) and Ein(w;) are uniformly bounded above over i.
Proof. Tt is easy to see from the scaling property that
Eneck(ﬁ;i) S E(wl)

and hence it is uniformly bounded by Proposition 62.30.
On the other hand, we have

~ —1 *
Eint(w;) < €1, / - Wwo
i,% log ely,rHogQSO’lnt

by definition which becomes uniformly bounded by Proposition 62.51. This finishes
the proof. [
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Lemma 62.135.

lim lim sup Egy(w;; S) = 0.

S—00 oo

Proof. This is a consequence of Corollary 62.78. [

We next describe the metrics on the domain H and the target C”, with which
we evaluate the C* norms of w;’s.

For the target, we required the metric, denoted by g¢., to satisfy the following
properties :

(62.136.1) g is a flat Euclidean metric on the Euclidean ball B2"(Sy).

(62.136.2)  Outside the (Euclidean) ball B>"(2Sy) of radius 25y, it is the standard
product metric on [log 25y, 00) x S2"71(35,/2). (Here S*"~1(35y/2) is the round
sphere of radius 3Sy/2.

(62.136.3)  ggw is of nonnegative curvature.

Figure 62.8.

For the domain, we require the metric, denoted by gy, to have totally geodesic
boundary and to satisfy the following properties :

(62.137.1) gy is a flat Euclidean metric on the Euclidean ball By (0, H).

(62.137.2)  Outside the (Euclidean) ball B2(0, H) of radius 2, gf; is the standard
product metric [0, 00) x [0, 37/2].
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(62.137.3) gy is of nonnegative curvature.

Figure 62.9.

We divide our analysis into the following two cases :

Case A : For each R, |Vw;| are uniformly bounded on H,|<p.
Case B : There exists a bounded sequence of points z; € H such that |Vw;|(z;)
goes to infinity.

We start with Case A. In this case, by the elliptic regularity, the C* norm of w;
is uniformly bounded on any bounded subset of H. (We here use the fact that w;
satisfy the same Lagrangian boundary condition, independent of i.)

Therefore, by Ascoli-Arzela’s theorem, we can find a subsequence of w; that
converges to a holomorphic map

Weo : (H,OH) — (C™, (H*,)")

in compact C'*° topology. The following energy bound is an immediate consequences
of Lemma 62.134.
Lemma 62.138. Ej,(Ws) and Epeck (W) are finite.

Next we prove the following
Lemma 62.139. w., is unbounded.
Proof. The proof is by contradiction. Suppose that sup |Wso|cn < C < 00. Then
we can choose p € C such that

supp p C {(5,0) € R x §?"1 | log2Sy — 1 < s <logC + 1}

and
1

logC'+ 1 —log 25,

p(s) = for s € [log2Sy,log C].
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Denote ¢ = . Then we have

1
log C—log 2S5y

/ W d(e**N) < Byt (Woo) + C2 / w (ds A X+ dN)
H {z| s(Wso (2))>1og 250 }

< Bt (Woo) + CPE\ (oo ) /¢ + C?Egx(eo) < 00.

Recalling wg = d(e**)\) is the standard symplectic structure on C", we have shown
that ws, has finite area. Applying a conformal diffeomorphism (H,dH) = (D? \
{1},0D? \ {1}) and the removable singularity theorem, we can extend Wy to a
holomorphic map

wk : (D% 0D?) — (C", (H*)).

Since (H%,)" is an ezact Lagrangian submanifold, it follows that w} and so wu
must be a constant map.

We will next prove that w., can not be a constant, which will finish the proof.
By (62.130.2) and by the definition of w; there exists z; with z; € H such that

and
(62.140.2) inf{|@; (2)|cn | 2] > 1} > 28

Recall (H*;)' N ([log Sp, 00) x $?7~1) has two connected components
llog Sp, 00) x Sgnt, [log Sp,00) x Si~t.
And (62.140.2) implies

@i ([1,00)) C [log Sp,00) x STt

(60.140.3) ~ "
w;((—o0, —1]) C [log Sp, 00) x S}

where [1,00), (—00, —1] C R = 9H. Therefore there must exist a sequence z, such
that

(62.140.4) Wi (2))|cn <250 and |w;(2) — wi(2])|cn > 25 tan (%) :
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Figure 62.10.

Then (62.140.2) and (62.140.4) imply that we may assume both z; and z; converge
by taking subsequences. Denote

/ . / .
Zoo = lim z;, 2o = lim z;.
11— 00 11— 00

Then |Weo(200) — Woo (25 )|cn > 250 tan (§) and so We cannot be constant. This

finishes the proof. [J
Lemma 62.141. We have

Weo € M(H,C"; (H®,)").

Proof. It remains to show that there exists a minimal Reeb chord 7, for some
Ao € Sgn ! and a constant s; € R such that W, satisfies

[Woo(2) = wa2 o, (2)|en — 0

in exponential order as |z| — oo.
Let Ey = Fpeck(Wso). We take eg as in Theorem 62.85. Since F (W) < 00, we
can choose S such that

E(Wso; S) < ep.

Then, we can apply Theorem 62.85 to the restriction of w., to [S,S + 2R] x [0, 1].
Note W ([S, S + 2R] x [0,1]) C [log 2S5y, 00) x S?"~1 by (62.140.2) and (H;)' N
(log 25y, 00) x S?"~1) = [log 25y, 00) x (Sgn' U SK™1). Therefore, the boundary
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condition (62.83) follows from (62.140.3). Moreover (62.86.3) can be proved as
follows : Put
V() = Weo (S + R, 1), 7i(t) = wi( S+ R,1).

Then, by Corollary 62.9 and (62.32.1), we have :
1 1 1
3
/ yA=lim [ A< lm [ 4 A< o
t=0 ’ 2

=00 Ji=0 =00 Ji—=0

as required.
Therefore we have constants R ;, a; and s; ; such that Ry ; — oo and

(62.142) |V (oo — wiat )|g]]/qlzg(£jn (1,t) < Cre~ kI T=5—Ra ;|

aj,;51,5

on (1,t) €[S+ 10,5 — 10 + 2R, ;] x [0,1].

We may assume a; — ao, by compactness of S"~!. And since the intervals
[S+10,5 — 10+ 2R, ;] are nested as Ry ; /" 0o, we should also have s; ; — s1 as
j — oo for s; appearing in Theorem 62.85. Then (62.142) implies

IVF (W — ngj’sl)]gﬁ,%n (1,t) < Che 7],
on (1,t) € [S+10,00) x [0,1]. Lemma 62.141 follows. [

Now we are ready to complete the proof of (62.15) for Case A. We take an
isomorphism 1 : H — H such that 1 (c0) = oo and

Woo 0 ) € Mo(H,C™; (H,)").

(See Definition 61.14.)
By definition (61.8) of M(H,C™; (H%)") there exists a, such that

(62.143) lim |V (oo — wi* 6)lgr.g0, (T:1) =0

a
T—00 e

for some S. Therefore recalling the definition of wg, given right above Theorem
62.13, we have
ﬁjoo © ¢ = Wq,b

for some b after re-choosing 1 if necessary. We now define the map

VYiint © [—00, R;) x [0,1] — HL.

(62.144) Viint (T, ) := €3,:9(T, ).
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(We will determine R; later in the proof.) Since we have
6£§/2(w¢ 0 Wi int) = W; 0P

by definition of w;, it follows that e;’;/ Q(wi 0 ;i int) CONVErges to wg__ p on compact
C*° topology.
By the diagonal sequence argument, we can choose a sequence R; — oo so that

(62.145) Zli}rglo ig% |Vk(617’3/2(w71 o ¢i,int) — waoo,b)|gﬁ.ﬂ,g(’cn (T7 t) — O

Let eg, Rg be as in Theorem 62.85. It follows from (62.143) that there exist Ss,
Iy such that the following holds for ¢ > I :

(62.146.1) / (efg/z(wi 0 i int)) dA < e
[S3,2R;)x[0,1]

(62.146.2)  2R; — S5 > Ro.
We can apply Theorem 62.85 to obtain a}, s, such that

(62.147) V¥ (e (ws 0 i) — Wi )|(7,1) < e e i tRRTHIT=S 1),

Comparing (62.147) with (62.145) we have s, — 0. Perturbing t; jn slightly and
re-choosing s;, we may assume s, = 0.
(62.147) and (62.14) around 7 = R; imply

la; — a}] < Ce ¢,
Therefore we obtain
(62.148) V(e (wi 0 i) — wlh) () < Cremor RSl

Now (62.15.3.1) follows from (62.145) and (62.15.3.2) follows from (62.148) respec-
tively. The proof of (62.15) in Case A is complete.

Now we turn to Case B. Using the boundedness of z;, the following lemma can
be proved by the same way as that of Lemma 62.89 and so its proof is omitted.

Lemma 62.149. We can take a bounded sequence z, € H with the following prop-
erties.

(62.150.1)  disty, (2, 2) <1 for large i.
H
(62.150.2) O = |[Vw;(2))|gy 4, goes to infinity.

(62.150.3)  If 2’ satisfies disty (2',2]) < 02_1/2, then [Vw;(2')|gy g, < 2C7.

We can now use a similar argument as the proof of Proposition 62.88 and prove
the following C°-bound.
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Lemma 62.151. The sequence w;(z,) € C™ is bounded.

Proof. The proof is by contradiction.
Suppose to the contrary that Rs; = |w;(2])|cn — 0o. We put

D; = {u € C | disty, (C/  utz], 2}) < min{C;~'\/Rs,1/2,C; %}, Citutz) € HY.

1771

We note that D; is a convex domain of its diameter with the order of

min{+/Rs /2, 021/2}

which goes to 0o as i — co.
We define w; : D; — C™ by

’LEZ(U) = @l(CZ'_lu + Z;)

We now prove

Sublemma 62.152.

inf |17171(u>| > \/R3,Z' (\/Rg,i — 1) > 25y

ueD;

if © 1s sufficiently large.
Proof. We note

(@i (w)| > [@;(0)] — [wi(w) — w,(0)]

(62.153) = [@i(])| = [wi(u) = w;(0)]
We have |w;(z,)| = Rs,; and
~ ~ 1 ~
|w;(u) —w;(0)] < / lu - Vw;(su)| ds
0
1
= / lu - CI7 ' Vwy (C] (su) + 2})| ds
0
1
< [ le V(e su) + ) ds
0
But since su € D; for all s € [0, 1], we have

dist(C] ™ (su) + 2}, 2) < 02—1/2.

1771
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Then (62.150.3) implies

V@ (C1 (su) + 21)| < 201,

(2

Therefore we have _ _
[w;(u) — w;(0)] < 2Jul < /Rs;.

Substituting these into (62.153), we derive

’wz ‘>R31 \/RBz \/R3Z \/R32_1

This finishes the proof of Sublemma 62.152. [J
Since (H%;)' N (C™\ B**(2Sy)) C R® U A, Sublemma 62.152 allows us to regard

151- as a sequence of maps
ﬁi : (D;,0D;) — (R x 52"_1,R > (S]g;l U Szr\hl))

(Note 0D; could be empty.) We have

(62.154.1)  E(w;) < Ey.
(62.154.2)  Eg\(w;) — 0.

Here (62.154.2) follows from Lemma 62.135. We can find s, — oo and a subse-
quence such that T o w; converges to a map

Woo : (Dogy @Do) — (R x S2"71 R x (S271U ST

in compact C'* topology. We can now deduce contradiction in the same way as the
proof of Proposition 62.88 especially in the proof of (62.93). This finishes the proof
of Lemma 62.151. [J

We put

Dj = {u € C|disty (C/ u+2],2) < C; V2 crly+ 2 € HY

(ANt}

and define
W : D; —C"

by
Wi (u) = w;(C; 4 20).

Then we derive the uniform bounds

(62.155) Vi (u)| < 7YV (C;Hu + 2) < C7H(20;) =2
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from (62.150.3). Then Lemma 62.151 and this derivative bound enable us to apply
Ascoli-Arzela theorem to w; and derive that w; converges in C'*° compact topology.
Now depending on whether C! dist(z;,0D}) — oo or C dist(z;, 0D}) < ¢ for some
¢ > 0, one of the following alternatives occurs : (Note D is a convex domain of C.)
(62.156.1)  lim;_,oc D} = D’_ = C.
(62.156.2)  There exists ¢ > 0 such that
lim D =D/ ={2€C|Imz > —c} =H-—cvV-1.

71— 00

Moreover (62.155) enables us to assume that w; converges to Wy : DL, — C™ in
compact C'*° topology by taking a subsequence if necessary.

Lemma 62.157. W, is unbounded.

Proof. Suppose contrary that We.(D.,) is bounded. Then in the same way as the
proof of Lemma 62.139, we can prove that @, is constant. On the other hand,
since |Vw;(0)] = 1 it follows that |V (0)| = 1. This is a contradiction. [

Proposition 62.158. D/ # C. Namely (62.156.1) does not occur.

Proof. The proof will be by contradiction. Assume D’ = C and identify C\ {0} =
RxS!. By Lemma 62.157 and the derivative bound (62.155), we can find S(k) — oo,
T — 00, such that

Woo ([T, — 1,7 + 1] x S1) C (=10 + log S(k), 10 + log S(k)) x S*"~1.

Then by the same way as the proof of Lemma 62.105 we have the following :

Lemma 62.159. By taking a subsequence if necessary we can find a closed Reeb
orbit v : St — S*"~1 and S; — oo such that

lim sup IV (oo — w§?§;)|(7, t)=0

k=00 (rt)€[rp—1,m+1]x S1

for € < ly. Here we define wgigl,v by wfyli;l,v (7,t) = (7451, 7(t)), and oy = [g1 Y.

We next prove :
Lemma 62.160. v in Lemma 62.159 is not a constant loop.

Proof. (The argument below is a minor modification of one in [Hof93 p 538].) Sup-
pose to the contrary that « is a constant loop. If W., does not pass the origin, then
Stokes’ formula and Lemma 62.159 imply

lim W5 d)\ = / YA = 0.
Sl

k=00 J[—0o,m] x S1
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Namely

/ @ d\ = 0.
C

This implies that the projectivization [Ws] : C — CP" 1 of @, has zero area and
so must be constant, which implies that the image of wW,, must be contained in some
complex line C - a for some a € C".

We remark that the restriction of the one form A to Ca \ {0} is a closed form. It
follows that

/ wr d(e**\) = 225k+1 /’y,?]rl)\ — 225k /’y,':)\,

Wt ([S],55) 411X S2m 1)

where 7}, is the restriction of e, to Wi ({S}} x S2"~1).
Since 7y, converges to a constant loop, it is homologous to zero for large k. It
follows from dA = 0 that
/ T A=0

/ WX d(e**N) =0
oo ([Sy,S),41]x 82 —1)

for large k. Therefore we have

for large k. Hence, by unique continuation and holomorphicity, w., is a constant
map. This is a contradiction.

Now consider the case W '(0) # (). It follows from the convergence in Lemma
62.159 as T — oo that the set W (0) has finite order. We write the finite set W (0)
as

,&7;)1(0) = {Zla T 7Zm}

for some m € Z,. We denote by n; the order of vanishing as before in (60.61).
Then we have

lim Wi A\ =2mn; > 21

0=0JaB..(5)

for all <.
On the other hand, we recall that

Ed)\ (@oo) S hm inf Ed)\ (@z)

71— 00

the last of which is uniformly bounded by Lemma 62.134. In particular, the limit

lim W dA
0=0Jc\ur , B., (5)
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exists and hence we obtain

(62.161) / O d\ = =27 Z/ 49
C\U;Zlei (5) =1 aBzi (5)

by Stokes’ formula. We recall that w? d\ is a non-negative form and hence the left
hand side of (62.161) is non-negative for all § > 0. But the right hand side thereof
converges to —2m > " n; < —2mm < 0 as § — 0.

This gives rise to a contradiction and hence v cannot be constant. [J

Lemmas 62.159 and 62.160 imply that for all sufficiently large k, the e-neighborhood
of

fl}oo([Tk — 1,7 + 1] X Sl)

contains {5} } x v where v is a nontrivial closed Reeb orbit.

Recall w; was defined as

@i (u) = e Pwi(es, (C7 u+ 21)).

Namely in cylindrical coordinates (s,0) of C* \ {0} 2 R x $?"~! — R, we have

1
s(wi(e;g,i(q{_lu +20)) = 5 log e ; + s(w;(u)).

Therefore, by the choice of 74, we have :
1
(62.162) w;(e3(C7 u+ 2))) € 3 log €1 ; + log So + Ry, oo) x §2n—1

if u € [r, — 1,7 + 1] x S, k is large and i > C(k). Here Ry is the constant as in
Proposition 62.79.

It follows from Proposition 62.79 that the ©-component of Weo ([T —1, T +1] x S1)
must be contained in a small neighborhood of a minimal Reeb chord joining S%, !
to Sy

This is impossible since it contains the whole closed Reeb orbit v of §?"~1. The
proof of Proposition 62.158 is now complete. [

We now continue the proof of Theorem 62.13. We have proved D/ = H—c/—1.
Replacing z} to a point € H closest to z, + c¢Cly/—1 , we may assume z, € OH and
D! =H.

We identify H\ {0} = R x [0, 1] as before. It follows from Lemma 62.157 and the
derivative bound (62.155), we can find a S(k) — oo, 7, — oo such that

Woo([rr — 1,7 + 1] x [0,1]) C [~10 + log S(k), 10 4 log S(k)] x S%"~!
and
Woo [Tk — 1,7 + 1] x {0,1}) C [<10 4 log S(k), 10 4 log S(k)] x (Sz-t U Sy™).
Then by the same way as the proof of Lemma 62.105 we prove the following :
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Lemma 62.163. By taking a subsequence if necessary we can find a Reeb chord
v :([0,1],0[0,1]) — (2=, Sg P U S and S), — oo such that

(62.164) Jim sup [V (@ — wi)|(1,1) =0
OO ()€l —1,m+1] X[0,1]

for £ < ly. Here we define wgié; by wgf’g; (1,t) = (ay7 + 5,,7(%)), and o, =
f[0,1] TEN

We next prove the following :
Lemma 62.165. ~ is equal to 7., a minimal Reeb chord joining S to Sj\hl.
Proof. We first prove by contradiction that ~ is not a constant path. Let us assume
If y=po € Sp~'. We regard (74,0) = ™™, (74,1) = —e™™ € OH = R and let

= [—€e™ e C R.

By Stokes’ formula

k—o0 k—o0 Tk

lim Wi d\ = / v*A — lim Wi A — 2mm
[—o0,Tk] % [0,1] [0,1]

where m is the sum of multiplicities of w!(0). We remark that the integral fﬁk Wi A
depends only on the relative homology class

Woox ([fir; Ofir]) € Hi(H, s ({ag} x Spa ') U ({ag} x Sga )

(Here fir(j) € {al} x Sg='.) This fact can be proved in the same way as (60.63).
Therefore, we have fﬁk wi A =0 for large k. It follows from the similar argument
as the proof of Lemma 62.160 that w., is a constant map. This is a contradiction.
We can then prove that v must coincide with 7, for some a in the same way as
the last step of the proof of Proposition 62.158. [

By Lemmata 62.163, 62.165, Proposition 62.79 and the convergence w; — Weo,
we find that

Lemma 62.166.
(62.167) W ({Sp} x S* 1 C [ — 1,7 + 1] x [0,1]

for all sufficiently large k.

Now we prove the following lemma. Let Ry be as in Proposition 62.79.
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Lemma 62.168. There exists Ry > log Sy + Ry with the following properties :

(62.169.1) @ is transversal to { Ry} x S?"~1 for large i. The preimage w; ' ({ R4} X
S2n=1) is an arc, which we denote by ;.
(62.169.2) If we put

i = {ess(C7Fu(t) + 2) | t € [0,1]},

¥ \ A} is a disjoint union of DI and DS such that
1
wi(Dth) C 5 lOg €1, + R4, 60) X S2n_1.

(62.169.3)  4; C H is uniformly bounded.

Proof. We put R4 = 5}, for large k. (62.169.1) is a consequence of (62.162) and Lem-
mas 62.163, 62.166. (62.169.3) is a consequence of Lemma 62.166. Then recalling
the definition of w;

~ _ —1/2 1—1 /

w;(u) = €1,i wi(e3,:(C; u+2;))

we derive (62.169.2) from (62.169.1) and Lemma 62.166. [
Lemma 62.168 and Proposition 62.79 imply that for large ¢

(62.171) w-_l([—OO,IOgSO +RO] X S2n—1) C D;m.

7

(62.130.1) implies that
1
w;(0) € [—oo, 5 log €15 + log 25,] x 2"~ 1.

Therefore
(62.172) 0 € D™,

We can take 2] € H such that |z]| = €34, |wi(2])| = 2,/€1,:50 by (62.130.2). Then
we obtain

(62.173) 2l e D™

from (62.171). And (62.172), (62.173) imply that both —C/z] and C{(eg’%zg’ — 2])
lie in the convex hull of 7;.

Therefore it follows from (62.169.3) that [Cle; 12" = C! is bounded, which con-
tradicts to the standing hypothesis C! = |Vw;(z})| — oo in Case B. This implies
that Case B does not occur.

The proof of Theorem 62.13 is finally completed. [
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62.7. Wrap up of the proof of Theorem 62.2.

In this subsection, we use Theorem 62.13 to complete the proof of Theorem 62.2.

Let w;, €1,i, €2; be the sequences chosen in (62.7). Subsequently we obtain a;, b,
5k,i7 ui,inta z/{z',out7 ui,neclm %‘,mm wi,neclm Riv Cl,i? 02,1' that appear in Theorem 62.13.

If 7 is enough large we can apply Theorem 61.46 (2) to € = —€;1 4, €2 = €24,b €
S"=2 and obtain another pseudo-holomorphic map

w; :H— M
satisfying the same Lagrangian boundary condition as w;, which is
wi(z) € L_¢, ,, z € [-1,1] CR,
w;(z) € Loy, z € R\ [-1,1].
We next apply Theorem 62.13 to this new sequence wj. We put primes on the

objects corresponding to w; to tell them from those associated to w;. Without loss
of any generality, we may assume

€35 = €2k, 0y = 02k, Ri = Ry, C1; =C1,;, Coy = Cy ;.
(In fact we may replace them by max(ez x, €, ;,), min(R;, R;) and etc.)
Lemma 62.174. We have b=1V'.

Proof. Tt follows from the gluing construction that there exist g; € Aut(HU oo; £1)
such that el_;l (w} o g;) converges to wg,  in compact C*° topology around 0 € H.
Here ap = (1,0,---,0).

On the other hand, (62.15.3.1) and lim; .~ a; = ag (which is proved at the end

of §62.5) say that the sequence of rescaled maps 61_11 (w)o Jz’,im) converges to Wa b/

in compact C'*° topology. The lemma follows easily. [J

Our next task is to find a path r — w! joining w; to w;. This is Step (62.5.2).
We start with constructing a coordinated chart of the domain by interpolating the
ones for w; and w;.

Let R; be the sequence that appears in Theorem 62.13. We will fix the constants
Rout and Rjy¢ later, which are sufficiently large and independent of i. We take i’s
so large that R; > 10R;,;. We define the coordinate transformations

(621751> Qi;neck,int . (Rint7 Rint + 1) X [07 1] - (_E + Cl,i7 Sl + C2,i) X [07 1]

(62.175.2) ;;neck,int : (Rint, Rint + 1) x [0,1] — (=T; + C4 i, 51 + C2,) x [0,1]
by the formula

(62.176.1) W; © Yj neck © Pineck,int = Wi © Vj int,

(62.176.2) W © Y neck © Piineck,int = Wi © Vi ing.-

Hereafter we denote by o(n | a,b, ¢, --) a sequence of constants depending only on
n,a,b,c,--- and satisfying lim, .., o(n | a,b,c,---) = 0 for each fixed a,b,c,---.

(In particular o(n) is a sequence of constants such that lim,,_,, o(n) = 0.) We may
replace them several times in the proof with the same symbols.
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Lemma 62.177. (1) If i is sufficiently large, ®ineck,int; P} . are uniquely

i;neck,in
determined.
(2) Both ®;.neck int and @;;neck’int are biholomorphic onto their images respectively.
(3)
<621781> ‘vk(q)i;ﬂeCk,int - Qg;neck,in‘c)‘(T’ t) S O(Z | k? Rint) + Cke_ckRint-
(4)
(62.178.2) |®4.neck.int (T, 1) — (T + (22) "t loge1 4, )| < 0(i | Ring) + o(Rint),
(62.178.3) [P, et int (T3 1) — (7 + (200) "' log €14, )| < 0(i | Rint) + 0(Rint)-

Proof. (1) is obvious from (62.14.2) and (62.15.3.2). (2) follows from (62.176).
Lemma 62.174 and a;, a; — ao imply

(621791) |Vk (wz o wi,neck - 'lU,/L © ¢£’neck)| S O(Z | k)

on
[(20) "t log €1 5 + Riny — 10, (2a) "' log ey ; + Ring + 10] x [0, 1],

and
(62.179.2) !Vk(wi 0 1hj ing — W; O ¢g,int)| <o(i|k)
on

[Rin‘w Rint + 1] X [07 1]

We remark that the images of ®;.neck,int, (I);;neck,int is in [(2a)"'loger; + Rint —
10, (2a) " log €1 ;4 Ring +10] x [0, 1] by (62.15.3.2) and (62.14.2). Therefore (16.179),
(62.15.3.2) and (62.14.2) imply (62.178.1).

(62.178.2)-(62.178.3) also follow from (62.14.2), (62.15.3.2). O

We next define coordinate transformations

(62.180.1)  Pineck,out : (51— Rout — 1,51 — Rout) x [0,1] — H\ {0}
(62.180.2) @/ : (81— Rows — 1,81 — Rout) x [0,1] — H\ {0}

i;neck,out

to be the restrictions of (¥; neck) s (V) Loac) ', TESpectively.



Lemma 62.181. (1) ®;.peck out, @;;neck’out are biholomorphic onto its images.

(2) They satisfy
<62182) ‘vk(q)i;ne‘:k@ln - {i;neck,out)’ < O(Z ‘ k, Rout) + Cke_ckRout-

(3) They also satisfy

(62.183.1) |Ps:neck,out (7, ) — (7, 1)
(621832) ‘(Dz ;neck, out( ) ( )

( out) + O<Rout)7

| |
| ( | out)+0(Rout)-

I/\ I/\

Proof. By construction and from Lemma 62.8, we obtain

(621841> ‘Vk (wz o (I)Z :neck,out — Wtri © (pi'neck,out)‘(Ta t) S O(Z | k7 out)a
(621842) |Vk (’LU © (I)z neck,out — Wtri © (I’z neck, out)|(7_7 t) S O<Z | k? ROUt)
By Theorem 54.17 and wyy; € Mo (H, C™; (HZ,, ,)"); we have
(62.185) |vk(wtr1 wga(fo)l(7-7 t) S CkefckRout,
on (Sl - Rout - 17 Sl - Rout) X [07 1]

From (62.14), we also obtain
(62.186.1) V5 (w; 0 Bimeckous — WHE )| (7,1) < Crerliont,
(62.186.2) V¥ (W] 0 @ ek ot — Wo'ar )| (7, ) < Cre™ o flowe

on (S1 — Rous — 1,51 — Rout) % [0,1].
Combining (62.184), (62.186) and the convergence a;,a;, — ag, we obtain

|vk (wtri o q)i;neck,out Weri © (I)z ;neck, out)| S 0(2 ‘ kv Rout) + Cke_ckRout.

163

Therefore (62.185) implies (62.182) and (62.183) follows from (62.186) and Lemma

62.8. U

Now fix an identification H \ {0} with R x [0, 1] by the unique conformal isomor-

phism satisfying
0 < —00, 00 « 00, 0+ v—1 < (0,1/2)

as before. Then for each r € [0, 1] we define the maps @
[0,1] — R x [0, 1], and 7,

i;neck,int *

i;neck,out

(62.187.1) tmeck,int = (1= 1) Piineck int 7P peck int

i;neck,int

(621872) :;neck,out = (1 - T)q)i;HeCkaOUt+rq);;neck,out'

[Rinta Rint + 1] X
: [Sl Rout 1,51 Out] X [0 1] — R X [0, 1] by
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If we choose sufficiently large constants Ry, Rintg and then ¢’s with i > I(Rout, Rint)
for the constant I(Rout, Rint) depending only on Ry, Rint, it follows from (62.183)
that these are well-defined and become diffeomorphisms onto their images respec-

tively.

Next we put
(62.188.1) U iy = [—00, Ring + 1) x [0,1],
(62.188.2) U ouy = (51— Rous — 1,00] x [0, 1].

We define U], . to be the smallest connected open subset of R x [0,1] which
contains both the images of @} . ;,, and @7 It again follows from (62.183)

that there exists o( Rint), o(Rout) such that

i;neck,out”

[(204)71 10g €1 ) + Rint + O(Rint) Sl - Rout - O(Rout)]

(62.188.3) . 1
g u@ ,neck C [( ) IOg €1,4 + Rlnt (Rint)a Sl - Rout + O(Rout)]~
Figure 62.11.
Gluing Ui, Ui pecks Ui oug DY the transition maps @ ooy ines PFeck our PEIWEED

the nearby domams we obtain a real 2 dimensional compact manifold Y., with
boundary : Here we regard U;, as an open neighborhood of 0 € H.
From now on, we equip >, with a metric which we describe on each of the three
domains separately.
First we decompose U], into
u;

2,int

H|z|<1 U ([0 Rlnt + ] X [07 1])

On Hj.|<; we use standard Euclidean metric and on [0, Riys + 1] x [0, 1] we use the
product metric.
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We use the product metric on
U peae C R X [0,1].
Finally we decompose
Zout = ([Sl — Roue — 1,51 — Rout] X [0, 1]) U H|Z|Zesl—Rout-

We use the product metric on [S1 — Rout — 1,51 — Rout] X [0, 1]. On the other hand
on the outside region H,,|>.s1-Rrou , We take the isomorphism
Hizppesi—row = Hizj<rs 2 0 e flone /2

and pushforward the standard Euclidean metric on H,|<; onto H,|>cs1-Rou - See
Figure 62.12.

Figure 62.12.

Note the metrics above do not match on the overlapped parts. So we need to
modify them appropriately to get a smooth metric gy, on X,. We do this so that
the ratio g’ET /g is uniformly bounded, where g is one of the above metrics. This
process is not essential since we use the metric only to define C* or Sobolev norms
for the tensors or the maps defined on ¥,.. The norms obtained for different choices
are all equivalent independent of the choice of smoothing as long as the ratio g’zr /g
is uniformly bounded.

We next define a complex structure on ;.. Since @ oy ot Piipeci ine f0r 7 =0, 1
are biholomorphic onto their images, it follows that ¥, 31 has the canonical glued
complex structures denoted by j(®, j(1). Clearly (2, () = (H, jo) = (21, ;M).

For the cases r # 0, 1, we remark that since the transition maps D} heck out

or . are not jo-holomorphic in general, the standard complex structure jo on

i;neck,in
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the three coordinate domains are not compatible with the transition maps and
so do not glue globally. Therefore we manually put an almost complex structure
interpolating them on the transition regions. By the two dimensionality of X,., the
constructed almost complex structure will be indeed integrable.

Consider the set

JR?) = {j :R* = R?| j* = -1} C GL(2;R).
We take its neighborhood U(J(R?)) in GL(2;R) and a smooth retraction
I U(RE) — 3(R2).
Consider a smooth cut-off function x4 : R — [0, 1] such that

1
0 T<A+E’

9
1 7'>A+—10.

= {

It follows from (62.178) and its C''-analog that

(62.189) |(®F Yujo — Jo| < o(i | Ring) + Ce™¢Fint,

i;neck,int

Similar inequality also holds for (® .. out)«jo by (62.184) and its C'*-version.

T T
Therefore we can define complex structures on U, and U, by

j;int = H(<1 — XRint (T))jo T X Rins (T)(q):;neck,int):ljo)7
j;n,out = H(Xsl_Rout_l(T)jO + (1 - Xsl—Rout—l(T))(q)g;neck,out):lj()%

respectively. Here jj is the standard complex structure of R x [0,1] 2 H \ {0} and
the summation is just the matrix sum in M?*?(R). (62.189) makes the sums lie in
the neighborhood U (J(R?)) if Ry is sufficiently large and i > I(Rjy). Therefore
the almost complex structures j;,,, are well defined. Similarly for Ry large and
i > I(Rout), the almost complex structures j ,, are well defined.

We define an almost complex structure ji' ., on U; by the formula

,neck

T s : r
(q)i;neck,int)*(]i,int) on the 1mage of (I)z';neck,int?

. o r o . r
ji,neck - ((I)i;neck,out)*(]i,out) on the lmage of (I)i;neck,out’

Jo elsewhere.

It is easy to check that ji ., is well defined when ji; ., ji oy are well defined.
They are glued to give an almost complex structure j&) on X,. This indeed defines
a complex structure on X, since X, is two dimensional for which every almost
complex structure is a complex structure.
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Lemma 62.190. (1) ji;) = jo on Uiy \ [Rine, Rine + 1] X [0,1], on U o \ [S1 —
0

Rout 1 Sl 0 t] X 1] and on uzr,neck \ (Im(@f neck, mt) U Im(q)f neck, 0ut>)

u [ )
(2) |vk(j(z) Jo)|(r,t) < o(i |k, Rint)"|_C€_CRmt on [Rlnt7Rint+1] [0,1] C Uy,
)| < o

7,int
(3) |V (‘7(2) ]0 < o\t | ) out) +C€_CRUM on [Sl _Rout - 17 Sl _Rout] [07 1]
uzrout

We remark that jo in (1) and (2) means the standard complex structure jy on
any open subset of R x [0,1] C C.

Proof. (1) is immediate from definition. (2) follows from (62.189) and its C* ana-
logues. The proof of (3) is similar. [

Now we are ready to interpolate w; and w} to define a family of approximate

holomorphic maps
w; X, — M.

We recall the decomposition

M = B(pi2;€0) U (M \ B(p12;€0))

and the identification or cylindrical coordinates

(5,0) : B(pi2; o) \ {p12} = B*"(e0) \ {0} — R x $*" 71
Denote by exp the exponential map of the product metric on R x §2"~1 and
E(q,q") == (expy) ' (¢') € Ty(R x $?"71).
B{ote(tl/lat/)E is well-defined as long as ©’ # —© on S?"~!, where ¢ = (5,0) and
q = (s,0).

For the notational convenience, we make the following abuse of notations.

Definition 62.191. Let ¢ = (5,0),¢ = (s/,0') € R x §?"~! with @' # -0, we
define
7(5,0) + (1 —7)(s',0") = exp,(rE(q,q"))

Definition 62.192. (1) For (7,t) € U],

define the maps

Wi (T, 1) = (1= XRipe (7)) ((1 = 1) wi (Ym0 (75 1)) + 1w (95 504 (7, 1))
+ X Rint (T) (((1 - T)wi(wi,neck<7— ’t )) + rw; (% neck(T 7t ))) :

we put ®ineckint(7,t) =: (7,t') and

(62.193.1)

In case (7,t) is not in the domain of ®;.peck,int, We have xg,,(7) = 0. Hence the
above formula makes sense. We remark that in (62.193.1) we use the notation in
Definition 62.191 three times.
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(2) For (7,t) e U

i,outy W€ put ¢)i;neck,out (T, t) = (T/,t/) and define :

(62.193.2)
W] (T,1) =X8, = Rows =1 () (1 = 1)w; (s,0ut (7, 1)) + 7w (15 00 (75 1))

+ (1= X8~ R ~1(7)) (1 = 1) wi (Pineci (77, 1)) + 1w (V] peai (7', 1)) -
(3) We define w] on U .. as follows.

i,nec

(62.193.3)
(w: ¢ CI)i_;I}eck,int)(T’ t) on Im(q)i;neck,int)a
wZ(T, t) = (w: o) (p;ieck,out)(T’ t) on Im(q)i;neck,out)a

(1 = 1)wi(Yineck (7, 1)) + 7w (Y] Loac(7,1))  eleswhere.

In the next lemma and thereafter we equip a metric ¢g), adapted to the above

decomposition of M,
M = BP12 (60) U (M \ BP12 (60))'

On M\ B,,,(eo) the metric g4, is 5 "gar. We further divide B,,, (o) into
1 _
Bp12 (60) = Bo(SOw/GLZ'?(Cn) U ([5 log 6171' -+ log So, log 60] X SQn 1).
Then we define the metric ¢}, by
(€0) " 2gm on M \ B(p12;€o)
gy = PxgrRxs2n—1 on (B(p12;€0) \ B(p12; Sor/€1))

50_261_,}]*9@” on B(p12;S0./€1,i)
with a suitable smoothing along the gluing hypersurfaces. See Figure 62.13.

Figure 62.13.
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Lemma 62.194. (1) w] is well defined and smooth.
2) wd=w;, w}=w.

(3)  lim; oo sup |V¥(w! — w;)| = 0. Here we identify U\ ., Ul .., UT with

i,int? “*4,out’ **i neck
Ui int; Ui out, Ui neck and then the difference w] — w; makes sense on each of those

charts. B
(4)  limy o sup |[VF(9;rw])| = 0.
In (5),(6),(7),(8),(9) below, Cy, cr are positive numbers independent of i and
Rint; Rout-
(5)  For (7,t) € [0, Ring] % [0,1] C U}y, we have

IVF(@rw))|(7,t) < Cre™ I,
(6) For (7,t) € [S1 — Rout, S1] X [0,1] C U]y, we have
[V (@jrwi)| (7, 1) < Cre™ 7.
(7)  For (7,t) € U] e \ (IM(Piineck,out) U Im(Pineck,int) ), we have
[VE @) |(r,6) < Cheor mintirlir+ T,

(8) For (7,t) € [Rint, Ring + 1] X [0,1] C U], we have

2,int’
V*@jrw])|(7,8) < ofi | K, Ring) + Cire ™ Fine.

we have

(9) For (7', t) S [Sl - Rout — 1,81 — Rout] X [0, 1] cur

2,0ut’
|Vk (gjfw:”(T? t) < O(Z | k? Rout) + Ck;eickROUt.

Proof. (1),(2) and (3) are easy to see from the definition of w]. (4) then follows.
Next we prove (7). We recall

‘Vk (UJi o wi,neCk - wgito)‘(T’ t) < Cre ™k min{|7—|,|7——|—Ti|}7

V0] e — )| (7 0) < Cueoxminlobir T,

i,neck

Note a; # a; in general. This is the reason we do not have exponential decay
estimate for w] — w;. Nevertheless we have

(62.195) IVE (W] 0 @ poaie — w2 (7, 1) < Cre=r mindIThir+Til}

where
al =ra;+ (1 —r)a;.
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(Here we use a similar notation as Definition 62.191.)
(7) follows immediately from (62.195). The proofs of (5) and (6) are similar.

The proof of (8) and (9) is also similar to the proof of (7). The term o(i | k, Rint)
and o(i | k, Rout) appear on the right hand side, since they appeared in Lemma
62.190 (2)(3) and (62.178),(62.182). O

We have thus constructed approximate solutions w; and established their basic
estimates. This finishes Step (62.5.2).

We next proceed to Step (62.5.3). Namely we deform w] to a family of pseudo-
holomorphic maps. We use the implicit function theorem for this purpose. For this
we need the weighted Sobolev space similar to the one used in §61.6.

We begin with defining a weight function p: 3, — R. Let § > 0.

Definition 62.196. (1) If (7,t) € U; int We put

1 T <0,

62.197.1 iint (7, 1) =
( ) Ps,i,int (T, 1) {65IT| 0 <7< Ry + 1.

(2) (7—7 t) € ui,neck we put

eXp((s’T - (206>_1 log 61,i|) T < (2a) " 'loger,i+S1 1

(621972) p5,i,neck(7—, t) = { o 2 )
exp(d|T — S1]) (22) lo2g€1,i+S1 t1<T

and

62.197.3 5imec (T2 1) = exp s(20) Hoger; +51)

( Ps.i. :

if (200 logeritSi g < g < Qo) losaitS 4 (Gee Figure 62.14.)

(3)  (7,t) € U; our we put

€6|T751‘ Sl - Rout S T S 517

62.197.4 () =
( ) Poimeck(7 1) {1 S1 <,
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Figure 62.14.

Lemma 62.198. There exists ps; r such that the ratios ps i r/ps.inecks Ps,ir/Ps,i,int
psir/ ps,iout, are all bounded from above and from below by positive constants inde-
pendent of i and Ring, Rout-

Proof. Lemma 62.177 (4), Lemma 62.181 (3) and (62.188.3) imply that the ratio
P6.i.int/ P6,i neck a0d Ps i out/Ps.i neck are uniformly bounded on the overlapped parts.
The lemma then can be proved by using partitions of unity in an obvious way. [

Definition 62.199. (1) Let V be a smooth section of w;*T'M over ¥, such that
V(z) e w[*T(L_, ;) or V(z) € w;*T(Lg) for z € 0%,.

We take X/((Qo‘rll(;gél’ﬁs1 ,1/2) where ((20‘)7110561’#51 ,1/2) € Ui neck. We ex-
tend V' to a section Vj defined on the union Z/l;rneck of

ui,neck
[07 Rint] X [07 1] - z/li,int
[Sl - Rout» Sl] X [07 1] C ui,out

in the same way as (61.39). Now we put
p
||V||17P7P6,i,r

-1 )
— ‘V ((205) log€1,2+5171/2)

p
5 +/ . (IVVIE +(VIE) Qg

” ui,neck

(62.200)

e[ e (V0 = VOl 1 = VOl ) dAyg

i,neck

We denote by W,.» (¥, : wi*TM;w]*T(L_., ,)) the completion of the set of such
V’s with respect to the norm || - ||1 5,5, ., -
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(2) Let V be a section of wI*T(Lg) ® A%1(%,, j,). We define

(62.201) V|

57.06,71,7' :/E\ pé’l’T|V|§§\4 dAg/Er.

We denote by LP = (%, : wi*TM;w;*T(L_, ;) ® A%1(X,.,4,)) the completion of

the set of all such V' by the norm || - ||, 5, .-
Now we have

Lemma 62.202. If Rout, Rint are sufficiently large and if i > I(Rout, Rint), then

the following holds.

(1)  The operator :

Dwﬁjr :Wpl(;gT(z,ﬂ cw] TM;w]*T(L_., ,))
— LY (Zr it w TM;w;™ T (L, ;) ® AN, )

15 a Fredholm operator.
(2)  There exists

Qip i L2 (S w]*TM;wi*T(L_, ,) ® A%, 5)
— WP (S w] TM;w*T(L_e, ,))

such that _
D.yrdj, 0 Q; = identity.

The operator norm of Q; , ts bounded by a number independent of i, v, Rout, Rint
as far as i > I(Rout, Rint)-

The same holds if we replace w; by a map which is sufficiently close to w; with
respect to the Wplggm norm.

The proof is the same as the proof of Lemma 61.44 and hence is omitted.

Lemma 62.203. If 6 > 0 is sufficiently small then we have

||5j§"w;ﬂ||p,p<s,¢,r < O(i | Ring, Rout) + O(Rint) + O(Rout>-

Proof. We may choose ¢ smaller than the constant ¢ in (5),(6),(7),(8),(9) of Lemma
62.194. For S < min(Rint, Rout), we consider the union Ug of the following three

sets :
'S

i,neck
[57 Rint + 1] X [07 1] - Z/{Zint
[Sl - Rout - 1781 - S] X [07 1] - uzr,out'
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We put
glue,int = [Rint7 Riﬂt + 1] X [07 1] - u’Zint?
glue,out = [Sl — Rout — 1, S1— Rout] X [07 1] - uzr,int'

Then by (5),(6),(7) of Lemma 62.194 we have
(62.204.1) (p57¢7r|5j;“w;|§5w)(7‘, t) < Ce_(co—zS)Se_(co—(S) dist((7,t),0U%)

on
US \ (uglue,int U u;lue,out)'
Using (8),(9) of Lemma 62.194 we have

(62.204.2) (pé,m@j{wr )(T,t) < O Rint o(i | Rint) + Ce—(co=08)Ring

‘p
7 g?\/[
on uglue,int and

(62.204.3) (5.0, [0jrwi [y, )(7,1) < €2Tor0(i | Royy) + Ce (070 flou

r
on glue,out"

Moreover, by (4) of Lemma 62.194, we have
ps.ir|0rwl|l, dAy < o(i]S).
/H\ug T gn 0
Therefore we have
/ pé,z,r|5jfw:|§§w leélg’E S Ce_(co_é)s + O(Z | Rint; Rout) + O(Rint) + O(Rout)‘
Us r

The lemma follows. O

Using Lemmas 62.202 and 62.203 we can apply the implicit function theorem in
a standard way and obtain the following.

Proposition 62.205. For a sufficiently large i, there exists a continuous family of

w]" such that

(62.206.1)  wd = w;, w} = w!.

(2 1

(62.206.1)  w!’ is j.-Jpr holomorphic.

(3

We have thus worked out Step (62.5.3).

Now we are to wrap up the proof of Theorem 62.2. We remark that (%, j,)
is biholomorphic to H. By our choice w}’ = w/ is in the family constructed in
Theorem 61.46. So using Proposition 62.205, an index calculation and a continuity
argument, we prove that w; lies in the family constructed in Theorem 61.46. In

particular so is w? = w;. The proof of Theorem 62.2 is now complete. [

7
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62.8. Proof of Theorem 60.50.

In this subsection, we prove Theorem 60.50. We first prove the following result
which is slightly easier to prove than Theorem 60.50.

Proposition 62.207. For each fixed €, The map

(62.208) ) m@.cr(H)) = (0,7)

a€e(0,m)

is proper. Here (62.208) maps elements in M(H, C"; (HS)") to «.

Since we have a natural diffeomorphism between M(H, C"; (Hg)") and M(H, C"; (Hg,, .)’),
we may assume € = +1 without loss of generality. We will consider the case e = —1
only since the case € = 1 is easier.
Before proving Proposition 62.207, we define a topology of the total space of the
projection
U Wir@,.cs () — (0.m)
a€e(0,m)

which forms a locally trivial fibration. This topology is used in the statement of
Proposition 62.207. It will suffice to prove local triviality of this projection which
will in turn induce a topology in an obvious way from the model fiber of the above
fibration.
For this purpose, we will construct a trivialization of U, .y <a., Wal’p(]HI, C™ (H2))
over the interval (a7, as) explicitly, when the difference as — oy is sufficiently small.
We first construct a smooth family of diffeomorphisms

B, : (C*, (HM)) — (C", (HY))

parameterized by a’s with a7 < o < a5 in several steps.
We start with defining a family of diffeomorphisms

q)a . S2n—1 N SQn—l'

Let p € S?"~! be a point in a neighborhood of | J
(60.55).) We take a minimal geodesic

cel0,al Sn=1. (Sn~1 is defined in

Y [0,dist (S5, p)] — 52

parameterized by arc length and with 4,(0) € S§~*, ~,(dist(Sy*,p)) = p. We
extend it to a geodesic (parameterized by the arc length) up to the cut locus and
denote it by the same symbol. We put

D, (p) = yp(dist(S5 1, p)a/an).
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In this way we define an diffeomorphism ®, on a neighborhood of Uce[o,a] St
such that
Q)a(S?_l) =Sn

ac/on

for ¢ € [0, a1 + €]. We extend it to a diffeomorphism ®,, : §?"~1 — §27~1 5o that
it is close to identity. We next identify C™ \ {0} 2 R x S?*~! and define

&;a ‘R x S LR x §2nt

such that

D, (s,2) = (s,P4(x))

if s is large,

D, (s,2) = (s,2)
if s is small, and
O, (HY) = (HS,)
We thus obtain : N
O, 1 (C™, (HEY)) — (C (HE)).

We use it to identify

U WiP@.C (H2)) = (a1 a0) x WP (ELCT (HEY).

a;<a<az

The right hand side has a direct product topology. So we define a topology on the
left hand side by this identification.

The topology on |J,, W;’p(H, C™; (H?)) which is used in Theorem 60.50 can be
defined in the same way.

Proof of Proposition 62.207. Let c; € (0,7) be a sequence converging to a € (0, ),
and a; € S™1 converging to a... Consider any sequence w; € M (H, C"; (H)')
and denote the corresponding class by

[wi] € M(H,C"; (H?)", ;) = M(H, C"; (H%})")/ Aut(H).

We will find a sequence g; € Aut(H) such that a subsequence of w; o g; converges
in |J, W3 P(H,C™; (H*,)").
We first prove the following.

Lemma 62.209. There exists a sequence of holomorphic diffeomorphisms

; [0,00) x [0,1] — H
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onto its image and constants ci,Cy, So independent of © such that

(62.210) [VF((wi 0 9i) — wery))|(7,1) < Cre™
and

(62.211) i([0,00) x [0,1]) D w;H(C™\ B>*(S2)),
for large i.

Proof. The proof is similar to that of Theorem 62.13. So the discussion below is
rather brief.
We identify
C™\ {0} =R x 2!

as before, and denote
Yi>s = wi_l([s,oo) X SQn*l)) C H.
We consider
Zi,ZlogZSo = wz_l([log 250,00) X S2n_1)) C H

and define energies as follows :
Ed)\(wi) = / w;-"d)\,
i, >log 250

E)\,neck(wi) = Sup/ wf (pdS VAN )\),
PEC IS, Si0g 250

Eneck<wi) - Ed)\(wi) + Ek,neck(wi)a

where C is the set of all smooth nonnegative functions on [log 2.5y, o) with compact
support such that [ pds = 1.

The following sublemma can be proved in the same way as Proposition 62.30 in
§62.4 whose proof is omitted.

Sublemma 62.212. FE, .. (w;) is uniformly bounded.

Moreover by the argument of §62.4 (especially Proposition 62.79) we can prove
that there exist S3 > 0 and I such the following holds for ¢ > I3 and s3 > Ss.

(62.213.1) sz is aregular level. The curve w;(3;)N({s3}xS5?"~1) is parameterized
by an arc 7; s, : [0,1] — {s3} x S?"~1 for which there exists a € S"~! such that

(62.214.1) IV*(Ya = 7is)| < 0(i, S3 | k).
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(62.213.2)  Moreover, the set
Siss—1<s<ss+1 = wi(H) N ([s3 — 1,83 + 1] x §**71)
has a parametrization
Wis3—1<s<sa+1 * [—1/a, 1/a] X [0,1] = Xj oy —1<s<ss 1
for which we have

(62.214.2) |Vk(wi,ss_1§5§53+1 — ,wﬂat )| < O(i, S3 | k’)

a,s3

Here we put wi? (7,t) = (a7 + s3,74(t)).

a,s3

Denote Fy = sup Epeck(w;) and let ey be as in Theorem 62.85. We remark that
we can take ep independent of «; since the set {a; | i = 1,2,---} is relatively
compact in (0,7) by the choice.

We may also choose S5 and I3 so that if s > S3 and ¢ > I3, then we have

(62.215) / w;dA < eg.
Ei,Zs

Using (62.213)-(62.215) we can apply Theorem 62.85. The rest of the proof is
similar to the argument presented in §62.5 and omitted. [

Composing w; with an element v € R C Aut(H) (the group consisting of trans-
lations z — z + v), we may assume

(62.216) lw; (0)|cn = inf{|w;(2)|cn | 2 € HHL.

We recall that w;(H) does not contain 0 € C™ by Proposition 60.54. Therefore com-
posing w; with an element A € Ry C Aut(H) (the group consisting of homotheties
z — Az), we may also assume

(62.217) sup{|z| | z € H, |w;(2)|cn = 252} = 1.

Lemma 62.218. w; has a convergent subsequence in compact C* topology.
Proof. The proof is similar to that of (62.15) given in §62.6.
By elliptic regularity and Ascoli-Arzela’s theorem, it suffices to show that
sup{|Vwi|(z) | |2] < R}

is bounded for each R. (We use the standard metric for H and the product metric
on C"\ {0} @ R x §?"~1) We will prove this by contradiction. Supposing to the
contrary and taking a subsequence if necessary, we may assume the following :
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There exists a bounded sequence z; € H such that

(62.219) lim |Vw;|(z;) = oo.

We apply Lemma 62.89 to find 2} such that

(62.220.1)  |Vw;|(z]) := C; — 00 as i — 0.
(62.220.2)  If |z — 2/| < C; /% then |Vuw;|(2) < 2C;.
(62.220.3)  |z}| is bounded.

Using Lemma 62.209 and the proof of Lemma 62.151, we can show that |w;(2])|
is bounded.
We put

62.221 Di={ucC||Cu|<CY? ClutzcH
( 3 (A (2

and define w; : D; — C" by

(62.222) Wi (u) = wi(C; tu+ 20).

Let D, = lim D;. By taking a subsequence we may assume that one of the following
occurs.

(62.223.1) D, =C.
(62.223.2) Do =H — cy/—1.

We use boundedness of |w;(z})| and (62.220.2) to show that w; has a subsequence
(still denoted by w;) which converges to

(62.224) Woo : Doy — C™

in compact C* topology. Since |Vw;|(0) = 1 and hence |Vw.|(0) = 1 it follows
that W, is nontrivial. We can then prove that w., must be unbounded in the same
way as Lemma 62.157.

Using Lemma 62.209 and the proof of Propositoin 62.158, we prove that (62.223.1)
can not occur.

Now assume (62.223.2). Slightly perturbing z;, we may assume that z; € OH,
Do, = H. We use Lemma 62.209 and the fact that w., is unbounded to show that
there exists R > 1057 with the following properties (Compare this with Lemma
62.168.) :

(62.225.1)  w; is transversal to { R} x S2"~! for large 4. The preimage w; ' ({R} x
S27=1) is an arc, which we denote by 7;.
(62.225.2)  If we put

Y ={C;'qi(t) + 2 | t € [0,1]},
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then 3; \ 7/ is a disjoint union of DI and D$* such that
w;(DFY) C [R,00) x §2"7 1,

(62.225.3)  5; C D; C H is uniformly bounded.

It follows that

llirgo Diam{z € H | |w;(z)| < ef'} = 0.

On the other hand (62.216) and (62.217) imply
(62.226) Diam{z € H | |w;(2)| < 253} > 1.
This is a contradiction. The proof of Lemma 62.218 is complete. []

Taking a subsequence if necessary, we may assume that

Jim =

in compact C*° topology. Then (62.216) and (62.217) imply ws must be noncon-
stant. We also derive from the conformal invariance of the energy and from the
convergence that its energies are all finite. Then in the same way as the proof

of Lemma 62.141, we use Lemma 62.209 to prove that w. satisfies the correct
asymptotic condition and hence

(62.227) Weo € M(H,C™; (H*,)).
This implies there exists a constant S such that
(62.228) w ! ((—o0,log 28,] x S*"~1) ¢ B?"(S) N H.

Since w; ! ({log 252} x.S2"~1) is connected by Lemma 62.209, it follows from (62.228)
that

(62.229) w; ' ((—00,log28,] x S?"71) c B*(S +1)NH,

for all sufficiently large i’s. (We remark that the convergence in Lemma 62.218 is
compact C* convergence. Therefore (62.228) does not directly imply (62.229) but
we can use Lemma 62.209 to obtain (62.229).)

It follows from (62.229) and (62.215) that

(62.230) w(dN) < ep.

/[log S5+410,00)x[0,1]
Here we regard [log .S + 10,00) x [0,1] as a subset of H as before. Note S is inde-
pendent of i.

By (62.230) we can apply Theorem 62.85 to show that

(62231) |vk(wl o wﬂat )|(7_’ t) S Cke_ck(T_S)

Qi,S;
here ¢, C} is independent of i. Using compact C'*° convergence we derive that s;
converges to Soo-
Now using compact C*° convergence and exponential decay (62.231) we can
prove that w; converges to we, in |J, W5 ¥ (H,C™; (H*,)"). The proof of Proposition
62.207 is now complete [J
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Remark 62.232. The proof of the last step of Proposition 62.207 is simpler than
that of the proof of Theorem 62.2 given in §62.7. This is because we are proving
compactness here which is easier to prove than the surjectivity in general.

Now we are ready to wrap up the proof of Theorem 60.50. Let 0 < a; < ap < .
We use Proposition 62.207 and Theorem 60.26 (Remark 60.28) in the same way as
in §60.4 and show that there exists a constant Sy ; such that for any Sy > Sp1 we
have a diffeomorphism

(62.233) U M@LC"(H) a) = [ar, 0] x S"72.

a€lar,az]

Here the map (62.208) is the projection to the [y, as] factor. (Note Sy appears in
the definition of (H%;)".) Now we use (the proof of) Proposition 61.9 to obtain

(62.234) g, 00] x S"2C ) M(H,C™;(H®),a).

a€lar,as]

If (62.234) were not an equality, there would exist an element [w] in

U MEC(HE),a)\ (Jar, 2] x 5™72).

aclag, o]

Then we could take Sy large enough (which may depend on w) so that [w] produce
an element of M(H,C";(H%,)") by Proposition 61.9. This would contradict to
(62.233). This implies Theorem 60.50 in case ¢ = —1. The proof for the other € is
similar. The proof of Theorem 60.50 is now complete. [

Remark 62.235. We here remark one rather delicate point in the above proof.
Namely to deduce Theorem 62.2 from Proposition 62.207 we use (the proof of)
Proposition 62.207 which claims that the moduli space M(H,C™; (H%),a) is dif-
feomorphic to M(H, C™; (H?%,),a) if Sy (which appears in the definition of (H%,)’)
is sufficiently large. Actually we use the compactness of these moduli spaces to
obtain a global diffeomorpism betwee them.

The argument however is not circular as we explain below.

First by the argument of §59.3, the moduli space M(H, C™; (Hf{z)’, a) is diffeo-
morphic to S™~2 and is in particular compact.

On the other hand, by Propositio 62.207, the moduli space M(H, C™; (H%,)’,a)
is compact for any .

So we can use (the proof of) Proposition 61.9 to show that M(H, C™; (Hf{z)’, a)
is diffeomorphic to S™~?2 for sufficiently large Sy. We next use the argument of §60.4
to show that M(H,C"; (H%,)’,a) is diffeomorphic to S"~2 for any o € (0, 7).

We next use (the proof of) Proposition 61.9 to find an open embedding :

S"7% = M(H,C" (H*,) ,a) — M(H,C"; (H*,),a).
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We suppose that this is not surjective. We take an element w in M (H, C™; (H%,),a)\
S™=2. We remark that M(H, C"; (H®,),a) is independent of Sy, since Sy is used
only to define (H?%;)".

Therefore using the compactness of S"~2 U {w} and (the proof of) Proposition
61.9 we can find S} (which may depend on w) such that there exists an injective
map

Sm2y {w} - M(H,C™; (H*,),a).

(Here we use S in place of Sy to define (H®;)".) This is a contradiction since
M(H,C"; (H*,),a) is diffeomorphic to S®~2 for any sufficiently large S.

Remark 62.236. The proof of Proposition 62.207 given in this subsection itself
does not work if we replace (H%,)" by H*,. This is because H%; is only asymptot-
ically flat and we took several short cut in this section using the fact that (H;)’
is flat outside a compact set.

Indeed, we can avoid using Proposition 62.207 and directly prove Theorem 60.50,
if we develop analysis of pseudo-holomorphic curves with asymptotically cylindrical
ends. This is certainly possible but will be carried out elsewhere since we do not
need such general analysis in this book.
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