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Flag manifolds

The flag manifold X of a (simply conn.) simple group G over k is:

» the largest compact G-homogeneous manifold (over k = C);

> realizes all finite-dimensional G-modules in a nice way
(Borel-Weil, Demazure CF, PRV-Kumar theorem, SMT...);

» a source of concrete realization of the classifying spaces
(~ characteristic classes and equivariant cohomology);

> categorifies the induction process in representation theory
(localization theorem, Deligne-Lusztig theory when k = [Fy).

These four items are somehow mutually connected.



Affine flag varieties

In 1980/90s, the extension of the above results to Kac-Moody
groups are pursued. This includes:

» construction of affine flag manifolds (X,¢, Xaf) via various loop
groups/Kac-Moody groups, incl. affine Grassmannian Grg;

> realization of integrable highest weight modules
(Borel-Weil, Demazure CF, PRV theorem, SMT...);

» uniformizes moduli spaces of geometric data on curves;

» Kazhdan-Lusztig algorithm and the Lusztig program for affine
Kac-Moody algebras.

As we have

oo 1A=(28)|abcdeC(z) detA#0}
IGL(2) = {B=(2%)]a,b,c,d €C[z],det B € C[z]*}

this is not the field extension of the flag manifold P% of GL(2,C).



Semi-infinite combinatorics and semi-infinite flag manifolds

In the meantime, objects of the form (when G = GL(2))

 _ {A=(25)|a,b,c,d e C(z),det A0}

Xe = {B=(35)]a b deC(z),detBeC[z]*}

gradually attracted attention:

>
>
>

Lusztig (1981,1990): generic Bruhat order (~ orbit closures);
Feigin-Frenkel (1990): affine Lie algebra at —h" on X2 ;
Drinfeld-Finkelberg-Mirkovi¢ (1999) constructed a variant of
X7 as the space of rational maps;

Arkhipov-Braverman-Bezrukavnikov-Gaitsgory-Mirkovi¢
(2005) connected them to representation theory (of ug);

Givental-Lee (2005) and Braverman-Finkelberg (2014)
connected them to quantum K-theory of X = G/B.



Semi-infinite flag manifolds
In order to equip semi-infinite flag manifolds with Hausdorff
topology, we should consider a variant (when G = GL(2)):
{A=(25)|a,b,c,deC(z),det A0}
{B=(35)|abecC* decC(2)}

rat __
Q¢ =

» Recorded in Finkelberg-Mirkovi¢ (1999), but they mainly use
quasi-map spaces (= the Drinfeld compactification of the
space of maps P! — X) and Zastava spaces (C QE%);

» The union of quasi-map spaces define a “Zariski” dense
subset of Q2" (the ind-model of Q2*);

» Being algebro-geometric object, one should be able to write
Q&' down by its coordinate rings (the formal model of Q2*);

» If one carry this out, then one might pursue loop analogues
for the various subjects related to X.

The goal of this talk is to exhibit the status quo of such an idea.



Homogeneous coordinate ring of flag manifolds

G : simply connected simple algebraic group over C O a maximal
solvable (Borel) subgroup B and maximal torus T C B.

X=G/B=(G/N)/T, N=[B,B] (B=Tx N)
is the flag variety of G.
CIG/NI= P Vi, V5i®Vi— Vf,, is multi
AePy

where P C P is a submonoid of the character group P of T, and
V) is a fin. dim'l irred. G-module with h.w. A € P,. We have

X = (Spec C[G/N] \ {locus of non-free T-action})/T.

This is a general recipé to produce an algebraic variety from a
tensor-compatible family of representaions of an algebra.



Integrable modules of g

g = Lie G : Lie algebra of G with its untwisted affinization g.
Analogue of fin. dim’l reps of g (or G) for g are integrable reps.

Simple root of g = s[(2,C) C g. A g-module is integrable if such
sl(2, C)-actions integrate to @ fin. dim’'l SL(2, C)-actions.

Theorem (Chari, 1986, Chari-Pressley 2001)

Indec. integrable g-module with finite dim’l weight spaces are:
1. Integrable highest weight modules (c.f. Kac's book);
2. Integrable lowest weight modules (dual of the above);
3. Some level zero modules, including global Weyl modules

(a maximal cyclic module with the same T-weight as V).

Integrable h.w./l.w. modules describe the usual (thin, thick) affine
flag varieties (Kac-Peterson, Kashiwara, Mokler, K).



lwahori/current/loop algebras
Set g :=[g,09] = g/Cd. For the level zero modules, the g-action
factors through g[z*!] := g ® C[z*!] 2 §/(K = 0).

We define the Iwahori and current algebras of g as:
b:=Lie B+ g® Clz]z C g[z] := g ® C[z] C g[z*}].

They have gradings by d (or setting deg z = 1).
> g[z] localizes to g[z*!], and share similar rep. theory;

> b “generates’ g by adding sl(2) for each simple root ~
Demazure functors D; (i € I,: index of simple roots of g);

» global Weyl modules Wy (A € Py) of g[z] must satisfy a
recursive formula (for some i1, ..., i € I):

Q°Wy = (Dj0--- 0D )(Wy) =1 Dy(Wy) ¢g° is grading shift.

(D is a version of Macdonald operator)

Irreps of g[z] or g ® C[z*!] are classified by Drinfeld polynomials,
an enrichment of P,. The module W cares only their degrees.



Adjoint property and orthogonality relations
Propostion (“adjoint property”, Feigin-K-Makedonskyi 2020)
For suitable b-modules M, N and i € I, we have:

EXt(”b‘j)('Di(M)v N ) = EXt(E’B)(M7 DI(N) )

Enhancement of Polo (1989), and also a part of affine version of
Bezrukavnikov's picture (see Khoroshkhin-K-Makedonskyi 2020+).

Theorem ( “orthogonality”, BBCIKLM 2012-2015)
For each A\, u € P, we have

Coo (Va2 V) ‘

0 (else) )

Ext(gr21.0) (W, W) = {

The vanishing part of (1) follows by comparing “eigenvalues” of
D, transferred by the adjoint property (valid also for char > 0).



The ring R

Universal property of Wy induces a (unique degree 0) map
W)\+M—>W/\®WN )\,/,LGP+.
This yields a (non-Noetherian) commutative algebra

R:= @ WY  e"is the restricted dual.
AeP,

We have G[z]/N[z] C Spec R, where
E[z] := E(C[z]) for an algebraic group E over C.

The global Weyl module Xy of g[z*!] contains W
~ Wy Cq Wy =Dy (Wy) C Du(X)) =X, [ JDw(Wy) =X,

by D;(Xy) = X\ for i € .



The formal model of semi-infinite flag manifolds
Dualizing, we obtain a projective system of commutative rings:

R «— Di,(R) ¢— -+
We define
Q := (Spec R\ {non-free T-action})/T C U(@L/)*(Q) = Qe

Theorem (K 2021)

The ind-scheme Q™ coarsely (ind-)represents the functor
CommAlge 5 R = G(R((2))/(T(R) - N(R((2)))) € Sets.
In case G = SL(2), we have
Q = P(C?[z]) c P(C?((2) = Q™,

where PP is over C. l.e. we need to treat z and z~1 differently.



Borel-Weil theorem and equivariant K-group

Theorem (Naito-K-Sagaki 2020)
For each X € P, we have a line bundle O(\) on Q such that

Wy (i=0X\€P,)

HI(Q,0(\) = {0 (s

Ind-model analogue of this result is due to Braverman-Finkelberg.

We define (T x G,)-equivariant K-group of Q via numerics:

F ) (-1)gch H(Q,F @0 O()) = x(Q, F())) AeP

i>0

by imposing suitable restrictions on (T x G,)-equivariant sheaf F.

~+ One can define K7(Q') suitably (not automatically a ring).



Richardson varieties of X

The Chevalley involution of (G, T) sends B to its opposite B~ .

Theorem (Bruhat decomposition and Richardson's theorem)

1. T-fixed points of X < the finite Weyl group W of G;

2. B-orbits (resp. B~ -orbits) of X < W (through XT)
~» X(w, v): intersection of B and B~ orbit for w,v € W.

3. X(w,v) is either empty or an irreducible smooth variety.

B-orbit closure X, corresponding to w € W is our Schubert
varieties, and X(w, v) are our open Richardson varieties.

Richardson varieties knows the “intersection theory” of X.

X(w,v) is defined over Z, and its structure and topology over R
(often projected) attracted attention (see e.g. Williams' talk).



Schubert and Richardson varieties of Q™

In general, we have
Q" = [[P(Ve, @c C(2)) € [[P(Ver; ©c Clz, 271,
iel iel

where {w;};c1 C P4+: fundamental weights. The Chevalley
involution @ of g should “swap” G[z] and G[z71] in G((2)).

B = evy'(B) C G[z], where evg : G[z] — G is evaluation.
Theorem (essentially due to lwahori-Matsumoto 1965)

B\Q"™* is in bijection with W, the affine Weyl group of G. Let
0O, C Q' be the l-orbit corr. to w € W,¢ and set Q,, := O,,.
For w, v € W,¢, we define the Richardson variety of Q™ as
Aw, v) == Qu NO(Quw,) C [[P(Ver, @c Clz, 271),
i€l
where N is understood scheme-theoretically and wyg € W C Ws.



Connection between Q' and the space of rational maps

Theorem (K 2021)

For all w,v € W, the variety Q(w, v) is irreducible and reduced.
It is normal and have an explicit dimension formula.

Proof uses the Frobenius splitting (FS) of Q' transplanted as:
Xat ~ Xaf ~ Q ~ Qrat.

Xat has FS by Kumar and Mathieu, X,¢ has FS by K (2020), and
next two are by the relation between integrable l.w. E;modules,
W,ys, and Xs. Then, we lift its consequences from {F,}, to C.

Corollary (K 2021) For j3 varying in Hx(X,Z), we have

{G-stable Richardson © Q™) = {{f : PT = X | AL[PY] = B} "},

where Drin denotes the Drinfeld compactification.



(Small) quantum K-groups of flag manifolds

Quantum K-group gK(X) on X = G/B is defined by evaluation on

Kont

{f: (P, {xm}t,_;) = X | degf = 5} t=2,3

by its original definition (Givental 2000, Lee 2005).
Here, Kont denotes the Kontevich compacitification (stable maps).

Reconstruction theorem (Iritani-Milanov-Tonita 2015) reduces
calculations to t =1, 2.

Above moduli spaces with t = 1,2 with Schubert class insertions
yields “resolutions” of Richardson varieties of Q2.

Therefore, K-theoretic counts on Q™ knows gK(X) of X if the
singularities involved are all rational.
< [K, 2018+] (reduced to [Braverman-Finkelberg, 2014, 2017])



Pontryagin product on affine Grassmannians

We have an identification

G[zil]

416 = 61

— QK ={f:S' = K| fis poly s.it. f(1) = e},

where K C G is the maximal compact subgroup. The RHS has a
product induced by the mult on K. This induces a product ® on
K'P(QK). The Birkhoff factorization induces an identification

(Kg(Grg),conv) = (K P(QK), ),

where the product on the LHS is the convolution product. Its
scalar extension to

Kr(pt) = K52 (pt) D KiP(pt) = Kg(pt)

yields the (T N K)-equivariant Pontryagin product.
([Lam-Schilling-Shimozono 2010] and [LLMS 2018])



The Peterson isomorphism in K-theory

We have some natural multiplicative systems on K1(Grg) and
gK7(X) (in an “oppisotite” direction to each other).

Theorem (conjectured by Lam-Li-Mihalcea-Shimozono, K 2018+)

We have a commutative diagram

/T(Qrai)\) ;
® v

K7 (Gr6)ioc qKT(X)ioc

that respects the Schubert bases and operations in each objects.

We have its parabolic & non-commutative versions. H,-version of
the bottom arrow (due to Peterson-Lam-Mihalcea-Shimozono) can
be proven via Q, but it does not yield a triangle as above (yet?).



Some perspectives

1. We expect virtually all results on the geometry of X and their
descriptions (including some combinatorics) have reasonable
analogues in the setting of Q'2t;

2. Above triangle tells finer structure of gK7(X) via K7(Q™);

3. Our Q! is an algebraic version of the loop space of X.
Hence, the morphism W, that is an instance of the loop space
formalism to describe gH(X), would exist in greater generality;

4. We have “global counter-parts” in each piece of the above
triangle. ~~ global version of the above triangle?

5. The study of tensor products should be replaced with the
calculation of a kind of conformal blocks?

6. We now understand some vector bundles, including sheaf of
differential operators of Q™. ~» some representations of g.



