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Flag manifolds

The flag manifold X of a (simply conn.) simple group G over k is:

◮ the largest compact G -homogeneous manifold (over k = C);
◮ realizes all finite-dimensional G -modules in a nice way

(Borel-Weil, Demazure CF, PRV-Kumar theorem, SMT...);

◮ a source of concrete realization of the classifying spaces
(⇝ characteristic classes and equivariant cohomology);

◮ categorifies the induction process in representation theory
(localization theorem, Deligne-Lusztig theory when k = Fq).

These four items are somehow mutually connected.



Affine flag varieties

In 1980/90s, the extension of the above results to Kac-Moody
groups are pursued. This includes:

◮ construction of affine flag manifolds (Xaf ,Xaf) via various loop
groups/Kac-Moody groups, incl. affine Grassmannian GrG ;

◮ realization of integrable highest weight modules
(Borel-Weil, Demazure CF, PRV theorem, SMT...);

◮ uniformizes moduli spaces of geometric data on curves;

◮ Kazhdan-Lusztig algorithm and the Lusztig program for affine
Kac-Moody algebras.

As we have

GrGL(2) ∼=
{A =

!
a b
c d

"
| a, b, c , d ∈ C((z)), detA ∕= 0}

{B =
!
a b
c d

"
| a, b, c , d ∈ C[[z ]], detB ∈ C[[z ]]×}

,

this is not the field extension of the flag manifold P1
C of GL(2,C).



Semi-infinite combinatorics and semi-infinite flag manifolds

In the meantime, objects of the form (when G = GL(2))

X
∞
2 =

{A =
!
a b
c d

"
| a, b, c , d ∈ C((z)), detA ∕= 0}

{B =
!
a b
0 d

"
| a, b, d ∈ C((z)), detB ∈ C[[z ]]×}

gradually attracted attention:

◮ Lusztig (1981,1990): generic Bruhat order (⇝ orbit closures);

◮ Feigin-Frenkel (1990): affine Lie algebra at −h∨ on X
∞
2 ;

◮ Drinfeld-Finkelberg-Mirković (1999) constructed a variant of
X

∞
2 as the space of rational maps;

◮ Arkhipov-Braverman-Bezrukavnikov-Gaitsgory-Mirković
(2005) connected them to representation theory (of uq);

◮ Givental-Lee (2005) and Braverman-Finkelberg (2014)
connected them to quantum K -theory of X = G/B .



Semi-infinite flag manifolds

In order to equip semi-infinite flag manifolds with Hausdorff
topology, we should consider a variant (when G = GL(2)):

Qrat
G =

{A =
!
a b
c d

"
| a, b, c , d ∈ C((z)), detA ∕= 0}

{B =
!
a b
0 d

"
| a, b ∈ C×, d ∈ C((z))}

◮ Recorded in Finkelberg-Mirković (1999), but they mainly use
quasi-map spaces (= the Drinfeld compactification of the
space of maps P1 → X ) and Zastava spaces (⊂ Qrat

G );

◮ The union of quasi-map spaces define a “Zariski” dense
subset of Qrat

G (the ind-model of Qrat
G );

◮ Being algebro-geometric object, one should be able to write
Qrat

G down by its coordinate rings (the formal model of Qrat
G );

◮ If one carry this out, then one might pursue loop analogues
for the various subjects related to X .

The goal of this talk is to exhibit the status quo of such an idea.



Homogeneous coordinate ring of flag manifolds

G : simply connected simple algebraic group over C ⊃ a maximal
solvable (Borel) subgroup B and maximal torus T ⊂ B .

X = G/B = (G/N)/T , N = [B ,B] (B = T ⋉ N)

is the flag variety of G .

C[G/N] =
#

λ∈P+

V ∗
λ , V ∗

λ ⊗ V ∗
µ → V ∗

λ+µ is multi.

where P+ ⊂ P is a submonoid of the character group P of T , and
Vλ is a fin. dim’l irred. G -module with h.w. λ ∈ P+. We have

X = (SpecC[G/N] \ {locus of non-free T -action})/T .

This is a general recipé to produce an algebraic variety from a
tensor-compatible family of representaions of an algebra.



Integrable modules of !g

g = LieG : Lie algebra of G with its untwisted affinization $g.
Analogue of fin. dim’l reps of g (or G ) for $g are integrable reps.

Simple root of $g ⇒ sl(2,C) ⊂ $g. A $g-module is integrable if such
sl(2,C)-actions integrate to ⊕ fin. dim’l SL(2,C)-actions.

Theorem (Chari, 1986, Chari-Pressley 2001)

Indec. integrable $g-module with finite dim’l weight spaces are:

1. Integrable highest weight modules (c.f. Kac’s book);

2. Integrable lowest weight modules (dual of the above);

3. Some level zero modules, including global Weyl modules
(a maximal cyclic module with the same T -weight as Vλ).

Integrable h.w./l.w. modules describe the usual (thin, thick) affine
flag varieties (Kac-Peterson, Kashiwara, Mokler, K).



Iwahori/current/loop algebras
Set %g := [$g,$g] ∼= $g/Cd . For the level zero modules, the %g-action
factors through g[z±1] := g⊗ C[z±1] ∼= %g/(K = 0).

We define the Iwahori and current algebras of $g as:

$b := LieB + g⊗ C[z ]z ⊂ g[z ] := g⊗ C[z ] ⊂ g[z±1].

They have gradings by d (or setting deg z = 1).

◮ g[z ] localizes to g[z±1], and share similar rep. theory;

◮ $b “generates” %g by adding sl(2) for each simple root ⇝
Demazure functors Di (i ∈ Iaf : index of simple roots of $g);

◮ global Weyl modules Wλ (λ ∈ P+) of g[z ] must satisfy a
recursive formula (for some i1, . . . , il ∈ Iaf):

q•Wλ
∼= (Di1 ◦ · · · ◦Dil )(Wλ) =: Dw (Wλ) q• is grading shift.

(Dw is a version of Macdonald operator)

Irreps of g[z ] or g⊗ C[z±1] are classified by Drinfeld polynomials,
an enrichment of P+. The module Wλ cares only their degrees.



Adjoint property and orthogonality relations

Propostion (“adjoint property”, Feigin-K-Makedonskyi 2020)

For suitable $b-modules M,N and i ∈ Iaf , we have:

Ext•
(!b,!h)(Di (M),N∗) ∼= Ext•

(!b,!h)(M,Di (N)∗).

Enhancement of Polo (1989), and also a part of affine version of
Bezrukavnikov’s picture (see Khoroshkhin-K-Makedonskyi 2020+).

Theorem (“orthogonality”, BBCIKLM 2012–2015)

For each λ, µ ∈ P+, we have

Exti(g[z],h)(Wλ,W
∗
µ ) =

&
Cδi,0 (Vλ

∼= V ∗
µ )

0 (else)
. (1)

The vanishing part of (1) follows by comparing “eigenvalues” of
Dw transferred by the adjoint property (valid also for char > 0).



The ring R
Universal property of Wλ induces a (unique degree 0) map

Wλ+µ −→ Wλ ⊗Wµ λ, µ ∈ P+.

This yields a (non-Noetherian) commutative algebra

R :=
#

λ∈P+

W∨
λ •∨ is the restricted dual.

We have G [[z ]]/N[[z ]] ⊂ SpecR , where

E [[z ]] := E (C[[z ]]) for an algebraic group E over C.

The global Weyl module Xλ of g[z±1] contains Wλ.

⇝ Wλ ⊊ q•Wλ = Dw (Wλ) ⊊ Dw (Xλ) = Xλ,
'

w

Dw (Wλ) = Xλ

by Di (Xλ) = Xλ for i ∈ Iaf .



The formal model of semi-infinite flag manifolds
Dualizing, we obtain a projective system of commutative rings:

R ←←− D†
w (R) ←←− · · ·

We define

Q := (SpecR \ {non-free T -action})/T ⊂
'

w

(D†
w )

∗(Q) = Qrat.

Theorem (K 2021)

The ind-scheme Qrat coarsely (ind-)represents the functor

CommAlgC ∋ R .→ G (R((z)))/(T (R) · N(R((z)))) ∈ Sets.

In case G = SL(2), we have

Q = P(C2[[z ]]) ⊂ P(C2((z))) = Qrat,

where P is over C. I.e. we need to treat z and z−1 differently.



Borel-Weil theorem and equivariant K -group

Theorem (Naito-K-Sagaki 2020)

For each λ ∈ P , we have a line bundle O(λ) on Q such that

H i (Q,O(λ))∨ ∼=

&
Wλ (i = 0,λ ∈ P+)

0 (else)
.

Ind-model analogue of this result is due to Braverman-Finkelberg.

We define (T ×Gm)-equivariant K -group of Q via numerics:

F .→
(

i≥0

(−1)igchH i (Q,F ⊗O O(λ)) ≡ χ(Q,F(λ)) λ ∈ P

by imposing suitable restrictions on (T ×Gm)-equivariant sheaf F .

⇝ One can define KT (Q
rat) suitably (not automatically a ring).



Richardson varieties of X

The Chevalley involution of (G ,T ) sends B to its opposite B−.

Theorem (Bruhat decomposition and Richardson’s theorem)

1. T -fixed points of X ⇔ the finite Weyl group W of G ;

2. B-orbits (resp. B−-orbits) of X ⇔ W (through XT )
⇝ X (w , v): intersection of B and B−orbit for w , v ∈ W .

3. X (w , v) is either empty or an irreducible smooth variety.

B-orbit closure Xw corresponding to w ∈ W is our Schubert
varieties, and X (w , v) are our open Richardson varieties.

Richardson varieties knows the “intersection theory” of X .

X (w , v) is defined over Z, and its structure and topology over R
(often projected) attracted attention (see e.g. Williams’ talk).



Schubert and Richardson varieties of Qrat

In general, we have

Qrat ↩→
)

i∈I
P(Vϖi ⊗C C((z))) ⊂

)

i∈I
P(Vϖi ⊗C C[[z , z−1]]),

where {ϖi}i∈I ⊂ P+: fundamental weights. The Chevalley
involution θ of $g should “swap” G [z ] and G [z−1] in G ((z)).

B̃ := ev−1
0 (B) ⊂ G [[z ]], where ev0 : G [[z ]] → G is evaluation.

Theorem (essentially due to Iwahori-Matsumoto 1965)

B̃\Qrat is in bijection with Waf , the affine Weyl group of G . Let
Ow ⊂ Qrat be the I-orbit corr. to w ∈ Waf and set Qw := Ow .

For w , v ∈ Waf , we define the Richardson variety of Qrat as:

Q(w , v) := Qw ∩ θ(Qvw0) ⊂
)

i∈I
P(Vϖi ⊗C C[[z , z−1]]),

where ∩ is understood scheme-theoretically and w0 ∈ W ⊂ Waf .



Connection between Qrat and the space of rational maps

Theorem (K 2021)

For all w , v ∈ Waf , the variety Q(w , v) is irreducible and reduced.
It is normal and have an explicit dimension formula.

Proof uses the Frobenius splitting (FS) of Qrat, transplanted as:

Xaf ⇝ Xaf ⇝ Q ⇝ Qrat.

Xaf has FS by Kumar and Mathieu, Xaf has FS by K (2020), and
next two are by the relation between integrable l.w. $g-modules,
Wλs, and Xλs. Then, we lift its consequences from {Fp}p to C.

Corollary (K 2021) For β varying in H2(X ,Z), we have

{G -stable Richardson ⊂ Qrat} = {{f : P1 → X | f∗[P1] = β}Drin}β ,

where Drin denotes the Drinfeld compactification.



(Small) quantum K -groups of flag manifolds

Quantum K -group qK (X ) on X = G/B is defined by evaluation on

{f : (P1, {xm}tm=1) → X | deg f = β}Kont t = 2, 3

by its original definition (Givental 2000, Lee 2005).

Here, Kont denotes the Kontevich compacitification (stable maps).

Reconstruction theorem (Iritani-Milanov-Tonita 2015) reduces
calculations to t = 1, 2.

Above moduli spaces with t = 1, 2 with Schubert class insertions
yields “resolutions” of Richardson varieties of Qrat.

Therefore, K -theoretic counts on Qrat knows qK (X ) of X if the
singularities involved are all rational.

⇐ [K, 2018+] (reduced to [Braverman-Finkelberg, 2014, 2017])



Pontryagin product on affine Grassmannians

We have an identification

GrG =
G [z±1]

G [z ]

∼=←− ΩK = {f : S1 → K | f is poly s.t. f (1) = e},

where K ⊂ G is the maximal compact subgroup. The RHS has a
product induced by the mult on K . This induces a product ⊙ on
K top(ΩK ). The Birkhoff factorization induces an identification

(KG (GrG ), conv) ∼= (K top
K (ΩK ),⊙),

where the product on the LHS is the convolution product. Its
scalar extension to

KT (pt) = K top
T∩K (pt) ⊃ K top

K (pt) = KG (pt)

yields the (T ∩ K )-equivariant Pontryagin product.
([Lam-Schilling-Shimozono 2010] and [LLMS 2018])



The Peterson isomorphism in K -theory

We have some natural multiplicative systems on KT (GrG ) and
qKT (X ) (in an “oppisotite” direction to each other).

Theorem (conjectured by Lam-Li-Mihalcea-Shimozono, K 2018+)

We have a commutative diagram

KT (Q
rat)

KT (GrG )loc !!
!
"

Φ
""!!!!!!!!!!!

qKT (X )loc
# $

Ψ
##◆◆◆◆◆◆◆◆◆◆◆

,

that respects the Schubert bases and operations in each objects.

We have its parabolic & non-commutative versions. H•-version of
the bottom arrow (due to Peterson-Lam-Mihalcea-Shimozono) can
be proven via Q, but it does not yield a triangle as above (yet?).



Some perspectives

1. We expect virtually all results on the geometry of X and their
descriptions (including some combinatorics) have reasonable
analogues in the setting of Qrat;

2. Above triangle tells finer structure of qKT (X ) via KT (Q
rat);

3. Our Qrat is an algebraic version of the loop space of X .
Hence, the morphism Ψ, that is an instance of the loop space
formalism to describe qH(X ), would exist in greater generality;

4. We have “global counter-parts” in each piece of the above
triangle. ⇝ global version of the above triangle?

5. The study of tensor products should be replaced with the
calculation of a kind of conformal blocks?

6. We now understand some vector bundles, including sheaf of
differential operators of Qrat. ⇝ some representations of $g.


