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Summary. In this article the author describes a general framework to establish
foundation of various topological field theories. By taking the case of Lagrangian
Floer theory as an example, we explain it in a way so that it is applicable to many
similar situations including, for example, the case of ‘symplectic field theory’. The
results of this article is not really new in the sense that its proof was already written
in [33], in detail. However several statements are formulated here, for the first time.
Especially the relation to the theory of operad is clarified.

1 Introduction

The purpose of this article is to describe a general framework to construct
topological field theory by using smooth correspondence (by various moduli
spaces typically). We explain our general construction by taking the case of
Lagrangian Floer theory [32, 33, 34] as an example. However we explain it in
the way so that it is applicable to many similar situations, including, for ex-
ample, the case of ‘symplectic field theory’ [18] (that is Gromov-Witten theory
of symplectic manifold with cylindrical ends). This article is also useful for
the readers who are interested in the general procedure which was established
in [33] but are not familiar with the theory of pseudo-holomorphic curves
(especially with its analytic detail).

In this article, we extract from [33] various results and techniques and
formulate them in such a way so that its generalizations to other similar
situations are apparent. We do so by clarifying its relation to the theory of
operads. In this way, we may regard the analytic parts of the story as a ‘black
box’, and separate geometric (topological) and algebraic constructions from
analytic part of the story. The geometric and algebraic constructions include
in particular the transversality and orientation issue, which are the heart of
the rigorous construction of topological field theories of various kinds. The
analytic part of the story, such as Fredholm theory, gluing, compactness and
etc., are to be worked out for each individual cases. In many (but not all)
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of the cases which are important for applications to topological field theory,
the analytic part of the story, by now, is well-established or understood by
experts in principle. For example, in the case of pseudo-holomorphic discs
with boundary condition given by a Lagrangian submanifold, we carried it
out in [33] especially in its §29. (This part of [33] is not discussed in this
article, except its conclusion.) The results of this article (and its cousin for
other operads or props) clarify the output of the analytic part of the story
which is required for the foundation of topological field theory, in a way so
that one can state it without looking the proof of analytic part. This seems
to be useful for various researchers, since building foundation of topological
field theory now is becoming rather massive work to carry out which requires
many different kinds of mathematics and is becoming harder to be worked
out by a single researcher.

It is possible to formulate the axioms under which the framework of [33]
and of this article is applicable. Those axioms are to be formulated in terms
of a ‘differential topology analogue’ of operads (or props) (See for example
[1, 49] for a review of operads, props etc. and Definition 2 for its ‘differential
topology analogue’) and correspondence by spaces with Kuranishi structure
(see [30]) parametrized by such an operad (or prop). In other words, output of
the analytic part is to be formulated as the existence of spaces with Kuranishi
structure with appropriate compatibility conditions. To formulate the com-
patibility conditions in a precise way is the main part of this article. In this
article we give a precise formulation in the case of A∞ operad. The author is
planning to discuss it in more general situation elsewhere.

The main theorem of this article is as follows. We define the notion of
G-gapped filtered Kuranishi A∞ correspondence in §10. There we define the
notion of morphism between them and also homotopy between morphisms.
Thus we have a homotopy category of G-gapped filtered Kuranishi A∞ cor-
respondences, which we denote by HAKCorrG. We also have a homotopy cat-
egory of G-gapped filtered A∞ algebras (with Q coefficient). This notion is
defined in [33] Chapter 4. See also §7 and §9 of this article. We denote this
category by HAlgQ

G.

Theorem 12. There exists a functor HAKCorrG → HAlgQ
G.

This theorem is in §10. Roughly speaking, Theorem 12 says that we can
associate an A∞ algebra in a canonical way to Kuranishi correspondence. Thus
it reduces the construction of A∞ algebra to the construction of Kuranishi
correspondence.

Actually once the statement is given, we can extract the proof of Theorem
12 from [33]. So the main new point of this article is the statement itself. In
other words, it is the idea to formulate the construction using the operad and
correspondence by Kuranishi structure.

The contents of each sections are in order. §2 is a review of the general
idea of topological field theory and smooth correspondence. We emphasize
the important role of chain level intersection theory in it. In §3, we exhibits
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our construction in the simplest case, that is the Bott-Morse theory on finite
dimensional manifold. §4 and §5 are reviews of A∞ space and A∞ algebra,
respectively. Thus, up to §5, this article is a review and there is nothing new
there. We start discussing our main theorem from §6. In §6, we study the
case of a correspondence by a manifold which is parametrized by an A∞
operad. In §7 we study morphism between such correspondences and in §8 we
study homotopy between morphisms. We generalize it to its filtered version
in §9. Such a generalization is essential to apply it to various topological field
theories. Then in §10 we introduce the notion of Kuranishi correspondence
and Theorem 12. §11 is again a review and explains how Theorem 12 is used
in Lagrangian Floer theory. As we mentioned already the heart of the proof of
Theorem 12 is the study of transversality and orientation. They are discussed
in detail in [33] §30 and Chapter 9 respectively. The argument there can be
directly applied to prove Theorem 12. In §12 we give the transversality part
of the proof of Theorem 12 over R coefficient, in a way different from [33]. See
the beginning of §12, where we discuss various known techniques to handle
transversality. In §13 we discuss orientation. There we explain the way how
to translate the argument on orientation in [33] Chapter 9 to our abstract
situation.

A part of this article is a survey. But the main result Theorem 12 is new
and its proof is completed in this paper (using the results quoted from [33]).

The author would like to thank Y.-G.Oh, H.Ohta, K.Ono with whom most
of the works presented in this article were done. He would also like to thank the
organizers of the conference “Arithmetic and Geometry Around Quantization”
Istanbul 2006, especially to Ozgur Ceyhan to give him an opportunity to
write this article. This article grows up from the lecture delivered there by
the author.

2 Smooth correspondence and chain level intersection
theory

Let us begin with explaining the notion of smooth correspondence.
A typical example of smooth correspondence is given by the following

diagram :

M
π1←−−−− M

π2−−−−→ N (1)

of oriented closed manifolds of dimension m, x, n, respectively. It induces a
homomorphism

CorrM : Hd(M) → Hd+x−m(N) (2)

by
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CorrM([c]) = (π2∗ ◦ PD ◦ π∗
1 ◦ PD)([c]) (3)

where PD is the Poincaré duality. More explicitly we can define this homo-
morphism by using singular homology as follows. Let

c =
∑

σi, σi : ∆d → M

be a singular chain representing the homology class [c]. We assume that σi

are smooth and transversal to π1. Then we take a simplicial decomposition

∆d
σi ×π1 M =

∑
j

∆d+x−m
i,j (4)

of the fiber product. The map π2 induces σij : ∆d+x−m
i,j → N . We thus obtain

a singular chain on N by

CorrM(c) =
∑
i,j

(∆d+x−m
i,j , σij). (5)

An immediate generalization of it is

M × · · · × M︸ ︷︷ ︸
k

π1←−−−− M
π2−−−−→ N (6)

which defines a multi-linear map

CorrM : (H(M)⊗k)d → Hd+x−m(N), (7)

or, in other words, a family of operations on homology group.
An example is given by the diagram

M × M
π1←−−−− M

π2−−−−→ M (8)

where
π1(p) = (p, p), π2(p) = p.

The homomorphism (7) in this case is nothing but the intersection pairing.
We can apply a similar idea to the case when M is a moduli space of various
kinds.

Correspondence is extensively used in algebraic geometry. (In a situation
closely related to topological field theory, correspondence was used by H.
Nakajima [53] to construct various algebraic structures. His concept of ‘gener-
ating space’ ([54]) is somewhat similar to the notion of Kuranishi correspon-
dence.) In complex algebraic geometry, it is, in principle, possible to include
the case when M , M, N are singular spaces, since the singularity occurs in
real codimension two.

However in case of real C∞ manifold, if we include the manifold M which
is not necessary closed (that is a manifold which may have boundary and/or



Kuranishi correspondence and Topological field theory 5

corner), we will be in a trouble. This is because Poincaré duality does not
hold in the way appearing in Formula (3). We can still define operations in
the chain level by the formula (5). However the operation, then, does not
induce a map between homology groups, directly.

This problem can also be reformulated as follows. Let fi : Pi → M and f :
Q → N be maps from smooth oriented manifolds (without boundary), which
represent cycles on M or N , respectively. Under appropriate transversality
conditions, we count (with sign) the order of the set

{(x, p1, · · · , pk, q) ∈ M × Mk × N | π1(x) = fi(pi), π2(x) = f(q)}, (9)

in case when its (virtual) dimension is zero. The order (counted with sign) of
(9) is an ‘invariant’ of various kinds in case M is a moduli space. For exam-
ple Donaldson invariant of a 4 manifold and Gromov-Witten invariant of a
symplectic manifold both can be regarded as invariants of this kind1. When
the boundary of M is not empty, the order (counted with sign) of (9) is not
an invariant of the homology classes but depends on the chains Pi, Q which
represent the homology classes. So we need to perform our construction in the
chain level. The first example where one needs such a chain level construc-
tion, is the theory of Floer homology. In that case the ‘invariant’ obtained by
counting (with sign) of something similar to (9) depends on various choices
involved. What is invariant in Floer’s case is the homology group of the chain
complex, of which the matrix coefficient of the boundary operator is obtained
by such counting.

In various important cases, the boundary of the moduli space M, is de-
scribed as a fiber product of other moduli spaces. To be slightly more precise,
we consider the following situation. (See §9 and also [33] §30.2 for more de-
tailed exposition.)

Let (O,≤) be a partially ordered set. We suppose that, for each α ∈ O,
we have a space Mα together with a diagram

M × · · · × M︸ ︷︷ ︸
kα

π1←−−−− Mα
π2−−−−→ M (10)

Here Mα is a manifold with boundary. (In more general case, Mα is a space
with Kuranishi structure with boundary (See [30] and §10).) Moreover, the
boundary of Mα is described as a fiber product of various Mβ with β ∈ O,
β < α.

Such a situation occurs in case when moduli space has a Uhlenbeck type
bubbles and noncompactness of the moduli space occurs only by this bub-
bling phenomenon. In those cases, the partially ordered set A encodes the
energy of elements of our moduli space together with a data describing com-
plexity of the combinatorial structure of the singular objects appearing in the
compactification.
1 We need to include the case when M or N are of infinite dimension in the case

of Donaldson invariant. Namely they are the spaces of connections in that case.
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In such situation, we are going to define some algebraic system on a set of
chains on M so that the numbers defined by counting the order of a set like (9)
are its structure constants. The structure constant itself is not well-defined.
Namely it depends on various choices.

One of such choices is the choice of perturbation (or multisection of our
Kuranishi structure) required to achieve relevant transversality condition.

Another choice is an extra geometric structure on our manifolds which we
need to determine a partial differential equation defining the moduli space Mα.
In the case of self-dual Yang-Mills gauge theory, it is a conformal structure
of 4-manifolds. In the case of Gromov-Witten theory, it is an almost complex
structure which is compatible with a given symplectic structure.

This extra structure we put later on, plays a very different role from the
structure we start with. In Gromov-Witten theory, for example, we start with
a symplectic structure and add an almost complex structure later on. The
invariant we finally obtain is independent of the almost complex structure
but may depend on symplectic structure. We remark that symplectic struc-
ture is of ‘topological’ nature. Namely its moduli space is of finite dimension
by Moser’s theorem. On the other hand, the moduli space of almost complex
structures is of infinite dimension. The word ‘topological’ in ‘topological field
theory’ in the title of this article, means that it depends only on ‘topological’
structure such as symplectic structure but is independent of the ‘geometric’
structure such as an almost complex structure. In this sense the word ‘topo-
logical field theory’ in the title of this article is slightly different from those
axiomatized by Atiyah [2]. Our terminology coincides with Witten [73].

In order to establish the independence of our ‘topological field theory’ of
perturbation and of ‘geometric’ structures, it is important to define an appro-
priate notion of homotopy equivalence among algebraic systems which appear.
We then prove that the algebraic system we obtain by smooth correspondence
is independent of the choices up to homotopy equivalence. We remark that es-
tablishing appropriate notion of equivalence is the most important part of the
application of homological algebra to our story, since the main role of homo-
logical algebra is to overcome the difficulty of dependence of the order of the
set (9) on various choices.

This story we outlined above is initiated by Donaldson and Floer in 1980’s,
first in gauge theory. Based on it, Witten [73] introduced the notion of topolog-
ical field theory. Around the same time, Gromov and Floer studied the case of
pseudo-holomorphic curve in symplectic geometry. In those days, the relevant
algebraic system are chain complex mainly. In early 1990’s, more advanced ho-
mological algebra is introduced and several researchers started to use it more
systematically. It appears in Mathematics (for example [66, 20, 21, 43, 40])
and in Physics (for example [72, 74]) independently.

For the development of the mathematical side of the story, one of the main
obstacle to build topological filed theory, in the level where advanced homo-
logical algebra is included, was the fact that we did not have enough general
framework for the transversality issue, at that time. The virtual fundamental
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cycle technique which was introduced by [30, 47, 59, 62] at the year 1996,
resolved this problem in sufficiently general situation. Then this obstacle was
removed, in the case when the group of automorphisms of objects involved
is of finite order. Actually this was the main motivation for the author and
K. Ono to introduce this technique and to write [30] Chapter 1 in a way so
that it can be directly applied to other situations than those we need in [30].
Applying virtual fundamental chain/cycle technique in the chain level, some-
times requires more careful discussion, which was completed soon after and
was written in detail in [33].

As we already mentioned, we need homological (or homotopical) algebra
of various kinds, to develop topological field theory in our sense. The relevant
algebraic structure sometimes had been known before. Especially, the notion
of A∞ algebra and L∞ algebra were already known much earlier in algebraic
topology. The importance of such structures in topological field theory was
realized more and more by various researchers during 1990’s. At the same time,
homological algebra to handle those structures itself has been developed. Since
the main motivation to use homological algebra in topological field theory is
slightly different from those in homotopy theory, one needs to clean it up
in a slightly different way. We need also to introduce several new algebraic
structures in order to study various problems in topological field theory. Study
of such homological algebra is still on the way of rapid progress by various
researchers.

The general strategy we mentioned above (together with the basic general
technology to realize it) was well established, as a principle, was known to
experts around the end of 1990’s, and was written in several articles. (See
for example [21, 24, 57].) The main focus of the development then turned to
rigorously establishing it in various important cases. Another main topic of
the subject is a calculation and application of the structure obtained. Around
the same time, the number of researchers working on topological field theory
(in the sense we use in this article) increased much. Working out the above
mentioned strategy in a considerable level of generality, is a heavy work. So its
completion took lots of time after the establishment of the general strategy. In
[33] we completed the case of Lagrangian Floer theory. Several other projects
are now in progress by various authors in various situations.

In this article the author comes back to general frame work, and axiomatize
it in a package, so that one can safely use it without repeating the proof.

3 Bott-Morse theory : a baby example

In this section, we discuss Bott-Morse theory as a simplest example of our
story. Let X be a compact smooth manifold of finite dimension and f : X → R

be a smooth function on X. We put
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Crit(f) = {x ∈ X | df(x) = 0}. (11)

Definition 1. f is said to be a Bott-Morse function if each connected com-
ponent Ri of Crit(f) is a smooth submanifold and the restriction of Hessian
Hessxf to the normal bundle NRi

X is non-degenerate.
We define the Morse index of f at Ri to be the sum of the multiplicities

of the negative eigenvalues of Hessxf on NRiX. (Here x ∈ Ri.) We denote it
by µ(Ri)

An example of Bott-Morse function is as in the Figure 1 below. In this example

R1
R2

R3

R4

R5

Fig. 1.

the critical point set is a union of 4 points R1, R2, R3, R4 and a circle R5.
The Morse indices of them are 2,2,1,1,0 respectively.

The main result of Bott-Morse theory is the following result due to Bott.
We enumerate critical submanifolds Ri such that f(Ri) ≥ f(Rj) for i < j.

Let N−
Ri

X be the subbundle of the normal bundle generated by the nega-
tive eigenspaces of Hessxf . Let Θ−

Ri
be the local system associated with the

determinant real line bundle of N−
Ri

X. (It corresponds to a homomorphism
π1(Ri) → {±1} = AutZ.)

Theorem 1 (Bott [8]). There exists a spectral sequence E∗
∗∗ such that

E2
i,j =

⊕
i

Hj−µ(Ri)(Ri;Θ−
Ri

) (12)

and such that it converges to H(X; Z).
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Classical proof is based on the stratification of the space X to the union
of stable manifolds of critical submanifolds. This approach is not suitable
for its generalization to some of its infinite dimensional version, especially to
the situation where Morse index is infinite. (This is the situation of Floer
homology.) We need to use Floer’s approach [19] to Morse theory in such
cases. We explain Bott-Morse version of Floer’s approach here following [24].
(See [4] for related results. The restriction on Bott-Morse function which was
assumed in [4] by now can be removed as we explained in [33] §30.2 Remark
30.20.)

We take a Riemannian metric g on X. We then have a gradient vector
field gradf of f . Let M̃(Ri, Rj) be the set of all maps � : R → X such that

d�

dt
(t) = −grad�(t)f (13)

lim
t→−∞ �(t) ∈ Ri, lim

t→+∞ �(t) ∈ Rj . (14)

The group R acts on M̃(Ri, Rj) by (s · �) = �(t + s). Let M(Ri, Rj) be the
quotient space. We define the maps πi by

π1(�) = lim
t→−∞ �(t), π2(�) = lim

t→+∞ �(t). (15)

They define a diagram

Ri
π1←−−−− M(Ri, Rj)

π2−−−−→ Rj . (16)

Now we have

Lemma 1. By perturbing f on a set away from Critf , we may choose f so
that M(Ri, Rj) is a smooth manifold with boundary and corners. Moreover
we have

∂M(Ri, Rj) =
⋃

i<k<j

M(Ri, Rk) ×Rk
M(Rk, Rj). (17)

Let us exhibit the lemma in case of the example of the Morse function in
Figure 1. In this case we have the following :

M(R1, R3) = M(R2, R3) = M(R1, R4) = M(R2, R4) = one point.
M(R3, R5) = M(R4, R5) = two points.

M(R1, R5) = M(R2, R5) = union of two arcs.

We then have

∂(M(R1, R5)) = (M(R1, R3) ×M(R3, R5)) ∪ (M(R1, R4) ×M(R4, R5))
= 4 points.

Now we have the following :
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Lemma 2. There exists a subcomplex C(Ri;Θ−
Ri

) ⊂ S(Ri;Θ−
Ri

) of the singu-
lar chain complex S(Ri;Θ−

Ri
) of Ri with Θ−

Ri
coefficient, such that the inclu-

sion induces an isomorphism of homologies and that the following holds.
If c ∈ C(Ri;Θ−

Ri
) then CorrM(Ri,Rj)(c) is well-defined by (5) and is in

C(Rj ;Θ−
Rj

). Moreover we have

[∂,CorrM] + CorrM ◦ CorrM = 0. (18)

Here in (18) we write CorrM in place of CorrM(Ri,Rj) for various i, j.
Lemmas 1 and 2 are in [22]. (See also [33] §30.2.)
We remark that (18) is a version of Maurer-Cartan equation. We define

∂M = ∂ + CorrM :
⊕

i

C(Ri;Θ−
Ri

) →
⊕

i

C(Ri;Θ−
Ri

). (19)

(18) implies

∂M ◦ ∂M = 0. (20)

Lemma 3. Ker∂M/Im∂M is isomorphic to the homology group of M .

We can prove Lemma 3 as follows. First we prove that Ker∂M/Im∂M is
independent of the choice of the Bott-Morse function f . (An infinite dimen-
sional version of this fact (whose proof is similar to and is harder than Lemma
3) is proved in [22]). Moreover in the case when f ≡ 0 the lemma is obvious.

By construction
Fj =

⊕
i≥j

C(Ri;Θ−
Ri

)

is a filtration of (
⊕

i C(Ri;Θ−
Ri

), ∂M). The spectral sequence associated to
this filtration is one required in Theorem 1.

We remark that in case j > i + 1 the correspondence CorrM(Ri,Rj) may
not define a homomorphism H(Ri;Θ−

Ri
) → H(Rj ;Θ−

Rj
) in the homology level,

because ∂M(Ri, Rj) 
= ∅ in general. This point is taken care of by the spec-
tral sequence. Namely the third differential d3 of the spectral sequence is
defined only partially and has ambiguity, which is controlled by the second
differential d2. This is a prototype of the phenomenon which appears in the
situation where we need more advanced homological algebra. (For example
massey product has a similar property.) In the situation of Theorem 1, we
study chain complex without any additional structure on it. In the situation
we will discuss later, we consider chain complex together with various mul-
tiplicative structures. We remark including multiplicative structure (the cup
and massey products) in Theorem 1 is rather a delicate issue, if we prove
it in a way described above. See [33] §30.2 on this point. Actually there are
many errors and confusions in various references on this point. If we prove it
by stratifying the space X, it is easy to prove that the spectral sequence in
Theorem 1 is multiplicative.
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4 A∞ space.

In the rest of this article we describe the construction outlined in §1 in more
detail. To be specific, we concentrate to the case of A∞ structure. We first re-
call the notion of A∞ structure introduced by Stasheff [65]. (See also Sugawara
[68].) (There are excellent books [1, 7, 49] etc., on related topics.)

The original motivation for Stasheff to introduce A∞ space is to study
loop space. Let us recall it briefly. Let (X, p) be a topological space with base
point. We put

Ω(X, p) = {� : [0, 1] → X | �(0) = �(1) = p}. (21)

We define m2 : Ω(X, p) × Ω(X, p) → Ω(X, p) by

m2(�1, �2)(t) =

{
�1(2t) if t ≤ 1/2
�2(2t − 1) if t ≥ 1/2

(22)

m2 is associative only modulo parametrization. In fact, for t ≤ 1/4, we have

(m2(�1,m2(�2, �3)))(t) = �1(2t) 
=
(m2(m2(�1, �2), �3))(t) = �1(4t).

On the other hand, there is a canonical homotopy between m2(�1,m2(�2, �3))
and m2(m2(�1, �2), �3). Actually some stronger statements than the existence
of homotopy hold. The A∞ structure is the way to state it precisely.

To define A∞ structure we need a series of contractible spaces Mk+1

together with continuous maps

◦i : Mk+1 ×Ml+1 → Mk+l, (23)

for i = 1, · · · , l, such that the following holds for a ∈ Mk+1, b ∈ Ml+1,
c ∈ Mm+1.

(a ◦j b) ◦i c = a ◦j (b ◦i−j+1 c), (24)

for i ≥ j (see Figure 2) and

(a ◦j b) ◦i c = (a ◦i c) ◦j+k2−1 b (25)

for i < j, a ∈ Mk1+1, b ∈ Mk2+1, c ∈ Mk3+1 (see Figure 3).

A topological space X is an A∞ space if there is a sequence of continuous
maps

Mk+1 × Xk → X; (a;x1, · · · , xk) �→ m(a;x1, · · · , xk) (26)

such that
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a b c

1

0

i − j + 11
j 1−

Fig. 2.

Fig. 3.

m(a ◦i b;x1, · · · , xk+�−1)
= m(a;x1, · · · , xi−1,m(b;xi, · · · , xi+�−1), · · · , xk+�−1). (27)

We remark that (24), (25) are compatible with (27).

Suppose that X is an A∞ space. Then, by taking an (arbitrary but fixed)
element a0 ∈ M2+1 we define

m2 = m(a0; ·, ·) : M2 → M.

Since M3+1 is contractible there exists a path joing a0 ◦1 a0 to a0 ◦2 a0. Using
it we have a homotopy between

m2(m2(x, y), z) = m(a0;m2(a0;x, y), z) = m(a0 ◦1 a0;x, y, z)

and
m2(x,m2(y, z)) = m(a0;x,m2(a0; y, z)) = m(a0 ◦2 a0;x, y, z).
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Namely m2 is homotopy associative. The condition (27) is more involved than
homotopy associativity.

An important result by Stasheff is that an H-space is an A∞ space if and
only if it is homotopy equivalent to a loop space Ω(X, p) for some (X, p). More
precisely loop space corresponds to an A∞ space with unit for this theorem.
We do not discuss unit here. (See §14.1.)

In the rest of this section, we give two examples of Mk+1 which satisfy
(24). We call such system of Mk+1 an A∞ operad.

Remark 1. We remark that the notion of operad which was introduced by May
[50] is similar to but is slightly different from above. It is a family of spaces
P(k) together with operations

P(l) × (P(k1) × · · · × P(kl)) → P(k1 + · · · + kl). (28)

Its axiom contains an associativity of the operation (28) and also symmetry
for exchanging Pki ’s. In our case, the structure map (23) is slightly different
from (28) and is closer to something called non Σ-operad. One important dif-
ference is that we do not require any kinds of commutativity to our operations
m(a;x1, · · · , xk).

There are several other variants of operad or prop. (The difference be-
tween operad and prop is as follows. An operad has several inputs but has
only one output. A prop has several inputs and several outputs.) See [49] for
those variants and history of its development. We can discuss correspondence
parametrized by them in a way similar to the case of A∞ operad which we
are discussing in this paper.

The first example of A∞ operad is classical and due to Boardman-Vogt
[7] Definition 1.19. (See [33] §9.) Let us consider the planer tree |T | (that is
a tree embedded in R2). We divide the set C0(|T |) of vertices of |T | into a
disjoint union

C0(|T |) = C0
int(|T |) ∪ C0

ext(|T |)
where every vertex in C0

int(|T |) has at least 3 edges and all the vertices in
C0

ext(|T |) have exactly one edge. We assume that there is no vertex with two
edges. Elements of C0

int(|T |), C0
ext(|T |) are said to be interior edges and exterior

edges, respectively. C1(|T |) denotes the set of all edges. We say an edge to
be exterior if it contains an exterior vertex. Otherwise the edge is said to be
interior.

We consider such |T | together with a function l : C1(|T |) → (0,∞] which
assigns the length l(e) to each edge e. We assume l(e) = ∞ if e is an exterior
edge.

We consider (|T |, l) as above such that the tree has exactly k + 1 exterior
vertices. We fix one exterior vertex v0 and consider the set of all the isomor-
phism classes of such (|T |, l, v0). We denote it by Grk+1 and call its element
a rooted metric ribbon tree with k + 1 exterior vertices. We enumerate the
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exterior vertices as {v0, v1, · · · , vk} so that it respects the counter-clockwise
orientation of R2.

We can prove (see [31] for example) that Grk+1 is homeomorphic to Dk−2

and hence is contractible.
We define

◦i : Grk+1 × Grl+1 → Grk+l

as follows. Let T = (|T |, l, v0) ∈ Grk+1, T ′ = (|T ′|, l′, v′0) ∈ Grl+1. Let
v′0, · · · , v′l be the exterior vertices of Grl+1 enumerated according to the
counter-clockwise orientation. We identify vi ∈ |T | and v′0 ∈ |T ′| to obtain
|T | ◦i |T ′|. The length of the edges of it is the same as one for |T | or |T ′|
except the new edge, whose length is defined to be infinity. We thus obtain an
element T ◦i T ′ of Grk+l. (24), (25) can be checked easily. Thus, by putting

T

T ′

1
2

· · · i · · ·

k

l
1

Fig. 4.

Mk+1 = Grk+1, we obtain an example of A∞-operad.

We next discuss another example of A∞-operad, which is closely related
to Lagrangian Floer theory.

We consider (D2; z0, · · · , zk) where D2 is the unit disc in C centered at
origin. zi, i = 0, · · · , k are pair-wise distinct points of ∂D2. We assume that
z0, · · · , zk respects counter-clockwise cyclic order of ∂D2. Let PSL(2; R) be
the group of all biholomorphic maps D2 → D2. For u ∈ PSL(2; R) we put

u · (D2; z0, · · · , zk) = (D2;u(z0), · · · , u(zk)) (29)

We denote by
◦
Mk+1 the set of all the equivalence classes of such (D2; z0, · · · , zk)

with respect to the relation (29).
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It is easy to see that
◦
Mk+1 is diffeomorphic to Rk−2. We can compactify

◦
Mk+1 to obtain Mk+1. An idea to do so is to take double and use Deligne-
Mumford compactification of the moduli space of Riemann surface. (See [32]
§3, where its generalization to higher genus is also discussed.)

An element of Mk+1 is regarded as (Σ; z0, · · · , zk) which satisfies the
following conditions. (See Figure 5.) We consider a Hausdorff topological space

Fig. 5.

Σ which is a union of discs D2
1, · · · , D2

k. We call D2
i a components of Σ. We

assume that, for each i 
= j, the intersection D2
i ∩ D2

j is either empty or
consists of one point which lies on the boundaries of D2

i and of D2
j . We assume

moreover that intersection of three components are empty. Furthermore Σ is
assumed to be connected and simply connected.

The set of all points on Σ which belongs to more than 2 components are
called singular.

We put
∂Σ =

⋃
∂D2

i

We assume that zi ∈ ∂Σ. We also assume that zi is not singular. We embed
Σ to C so that it is biholomorphic on each D2

i . We require (the image of)
z0, · · · , zk respects the counter-clockwise cyclic orientation induced by the
orientation of C.

Finally we assume the following stability condition. We say

ϕ : Σ → Σ′

is biholomorphic if it is a homeomorphism and if its restriction to D2
i induces

a biholomorphic maps D2
i → D2

j for some j. Here D2
i and D2

j are components
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of Σ and Σ′, respectively. Let Aut(Σ; z0, · · · , zk) be the group of all biholo-
morphic maps ϕ : Σ → Σ such that ϕ(zi) = zi. We say that (Σ; z0, · · · , zk)
is stable if Aut(Σ; z0, · · · , zk) is of finite order.

Two such (Σ; z0, · · · , zk), (Σ′; z′0, · · · , z′k) are said to be biholomorphic
to each other if there exists a biholomorphic map ϕ : Σ → Σ′ such that
ϕ(zi) = z′i.

Mk+1 is the set of all the biholomorphic equivalence classes of (Σ; z0, · · · , zk)
which is stable.

We can show that (Σ; z0, · · · , zk) is stable if and only if each components
contain at least 3 marked or singular points. We remark that in our case of
genus zero, Aut(Σ; z0, · · · , zk) is trivial if (Σ; z0, · · · , zk) is stable.

We define
◦i : Mk+1 ×Ml+1 → Mk+l

as follows. Let (Σ; z0, · · · , zk) ∈ Mk+1 and (Σ′; z′0, · · · , z′l) ∈ Ml+1. We iden-
tify zi ∈ Σ and z′0 ∈ Σ′ to obtain Σ′′. We put

(z′′0 , · · · , z′′k+l−1) = (z0, · · · , zi−1, z
′
1, · · · , z′l, zi+1, · · · , zk).

We now define

(Σ; z0, · · · , zk) ◦i (Σ′; z′0, · · · , z′l) = (Σ′′; z′′0 , · · · , z′′k+l−1)

which represents an element of Mk+�. We can easily check (24), (25).

Actually the two A∞-operads we described above are isomorphic to each
other. In fact the following theorem is proved in [31]. (This is a result along
the line of theory of the quadratic differential by Strebel [67] etc.)

Theorem 2. There exists a homeomorphism Grk+1
∼= Mk+1 which is com-

patible with ◦i.

We remark that Mk+1
∼= Dk−2. Moreover we have

∂Mk+1 =
∑

1≤i<j≤k

Mj−i+1 ◦i Mk−j+i (30)

where the images of the right hand sides intersect each other only at their
boundaries. We remark that (30) can be regarded as a Maurer-Cartan equa-
tion.

Using (30) inductively we obtain a cell decomposition of the cell Dk−2. A
famous example is the case k = 5. In that case we obtain a cell decomposition
of D3 which is called Stasheff cell.

It is classical that the existence of A∞ structure on X is independent of
the choice of the A∞ operad Mk+1. So in this article we always use the A∞
operad we constructed above.

For the purpose of this paper, the structure of differentiable manifold on
Mk+1 is important. So we make the following definition.
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Definition 2. A differentiable A∞ operad is an A∞ operad Mk+1 such that
Mk+1 is a compact and oriented smooth manifold (with boundary or corner)
and the structure map (23) is an smooth embedding. Moreover we assume
(30).

It is straightforward to extend this definition to the case of variants of operad
or prop.

5 A∞ algebra.

A∞ algebra is an algebraic analogue of A∞ space and is a generalization of
differential graded algebra. It is defined as follows.

Hereafter R is a commutative ring with unit. Let C be a graded R module.
We assume it is free as R module. We define its suspension C[1] (the degree
shift) by C[1]k = Ck+1. Hereafter we denote by deg′ the degree after shifted
and by deg the degree before shifted.

We define the Bar complex BC[1] by

BkC[1] = C[1] ⊗ · · · ⊗ C[1]︸ ︷︷ ︸
k times

, BC[1] =
∞⊕

k=0

BkC[1].

We define a coalgebra structure ∆ on BC[1] by

∆(x1 ⊗ · · · ⊗ xk) =
k∑

i=0

(x1 ⊗ · · · ⊗ xi) ⊗ (xi+1 ⊗ · · · ⊗ xk)

here in case i = 0, for example, the right hand side is 1 ⊗ (x1 ⊗ · · · ⊗ xk).
We consider a sequence of operations

mk : BkC[1] → C[1] (31)

of degree 1 for each k ≥ 1. It is extended uniquely to a coderivation

m̂k : BC[1] → BC[1]

whose Hom(BkC[1], B1C[1]) = Hom(BkC[1], C[1]) component is mk.
We recall ϕ : BC[1] → BC[1] is said to be a coderivation if and only if

∆ ◦ ϕ = (ϕ ⊗ 1 + 1 ⊗ ϕ) ◦ ∆. (32)

(Note that the right hand side is defined by (1⊗ϕ)(x⊗y) = (−1)deg′ x deg ϕx⊗
ϕ(y).)

We put
d̂ =

∑
k

m̂k : BC[1] → BC[1].
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Definition 3. (C,m∗) is an A∞ algebra if d̂ ◦ d̂ = 0.

We can rewrite the condition d̂◦ d̂ = 0 to the following relation, which is called
the A∞ relation.∑

1≤i<j≤k

(−1)∗mk−j+i(x1, · · · ,mj−i+1(xi, · · · , xj), · · · , xk) = 0 (33)

where

∗ = deg′ x1 + · · ·deg′ xi−1 = deg x1 + · · · + deg xi−1 + i − 1.

Our sign convention is slightly different from Stasheff’s [65].
We remark that (33) implies m1 ◦ m1 = 0. Namely (C,m1) is a chain

complex.

Example 1. If (C, d,∧) is a differential graded algebra, we may regard it as an
A∞ algebra by putting

m1(x) = (−1)deg xdx, m2(x, y) = (−1)deg x(deg y+1)x ∧ y. (34)

An alternative choice of sign m1(x) = dx, m2(x, y) = (−1)deg xx ∧ y, also
works. Here we follow the convention of [33].

The following result is classical and is certainly known to Stasheff.

Theorem 3. A structure of A∞ space on X induces a structure of A∞ algebra
on its singular chain complex.

Sketch of the proof : By using (30), we may take a simplicial decomposition
of Mk+1 so that ◦i are all simplicial embeddings.

We use the ‘cohomological’ notation for the degree of singular chain com-
plex S(X). Namely we put S−d(X) = Sd(X). (We remark that we do not
assume X is a manifold. So we can not use Poincaré duality to identify chain
with cochain.)

Let σi : ∆di → X, i = 1, · · · , k be singular chains. We take the standard
simplicial decomposition

Mk+1 × ∆d1 × · · · × ∆dk =
∑

j

∆d
j

induced by the simplicial decomposition of Mk+1, where d =
∑

di + k − 2.
We have

mk(σ1, · · · , σk) =
∑

±(∆d
j ;σ)

where
σ : Mk+1 × ∆d1 × · · · × ∆dk → X

is defined by

σ(a; p1, · · · , pk) = mk(a;σ1(p1), · · · , σk(pk)).

Since −d − 1 =
∑

(−di − 1) + 1 the degree is as required. We do not discuss
sign here. (33) can be checked by using (30). ��
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6 A∞ correspondence.

Theorem 3 we discussed at the end of the last section is a result on algebraic
topology where we never use manifold structure etc.

Contrary to Theorem 3 we use manifold structure and Poincaré duality in
the next theorem. To state it we need some notation.

We consider the following diagram of smooth maps :

Mk+1�⏐⏐π0

Mk ←−−−−
π2

Mk+1 −−−−→
π1

M

(35)

where M is a closed oriented manifold Mk+1 is a compact oriented manifold
which may have boundary or corner. We assume

dimMk+1 = dimM + dimMk+1 = dimM + k − 2. (36)

We define evi : Mk+1 → M by :

π2 = (ev1, · · · , evk), π1 = ev0.

Definition 4. We say that Mk+1, k = 1, 2, · · · is an A∞ correspondence on
M , if there exists a family of smooth maps

◦m,i : Mk+1 evi
×ev0 Ml+1 → Mk+l (37)

for i = 1, · · · , l with the following properties.

(1) (operad axiom) The following diagram commutes.

Mk+1 ×Ml+1 −−−−→◦i

Mk+l

π0×π0

�⏐⏐ π0

�⏐⏐
Mk+1 evi

×ev0 Ml+1 −−−−→◦m,i

Mk+l

(38)

(2) (cartesian axiom) Mk+1 evi ×ev0 Ml+1 coincides with the fiber product

(Mk+1 ×Ml+1) ×Mk+l
Mk+l

obtained by Diagram (38).
(3) (associativity axiom) We have

(a ◦m,j b) ◦m,i c = a ◦m,j (b ◦m,i−j+1 c), (39)

for i < j and

(a ◦m,j b) ◦m,i c = (a ◦m,i c) ◦m,j+k2−1 b (40)
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for i < j, c ∈ Mk2+1.
(4) (evaluation map axiom) The following diagram commutes.

Mk+l ←−−−−
π2

Mk+l −−−−→
π1

M∥∥∥ �⏐⏐◦m,i

∥∥∥
Mk+l ←−−−− Mk+1 evi

×ev0 Ml+1 −−−−→
π1◦pr1

M

(41)

Here the first arrow in the second line is

(ev1 ◦ pr1, · · · , evi−1 ◦ pr1, ev1 ◦ pr2, · · · , evl ◦ pr2, evi+1 ◦ pr1, · · · , evl ◦ pr1)

where pr1 : Mk+1 evi
×ev0 Ml+1 → Mk+1 is the projection to the first factor

and pr2 : Mk+1 evi ×ev0 Ml+1 → Ml+1 is the projection to the second factor.
(5) (Maurer-Cartan axiom) We have

∂Mn+1 =
⋃

k+l=n+1
1≤i≤k

◦m,i(Mk+1 evi
×ev0 Ml+1). (42)

The images of the fiber product of the right hand sides, intersect to each other
only at their boundaries.
(6) (orientation axiom) The isomorphism (42) preserves orientation.

We need a sign for (6) which will be discussed as Definition 27. The property
(3) is regarded as a Maurer-Cartan equation. We recall that the diagram (38)
is said to be cartesian when the condition (2) above holds.

A typical example of A∞ correspondence is as follows.

Example 2. Mk+1 = Mk × Mk+1 and π0, π1, π2 are obvious projections.

Example 3. Let M be a manifold which is an A∞ space such that the structure
map m : Mk+1 ×Mk → M is smooth. We put Mk+1 = Mk+1 ×Mk, π1 = m,
(π0, π1) =identity. This gives another example of A∞ correspondence.

Now the next results can be proved in the same way as [33] §30.

Theorem 4. If there is an A∞ correspondence on M then there exists a
cochain complex C(M ; Z) whose homology group is H∗(M ; Z) and such that
C(M ; Z) has a structure of A∞ algebra.

Remark 2. In our situation, we can prove Theorem 4 over Z2 coefficient with-
out assuming none of the conditions on orientations in Definition 4.

Applying Theorem 4 to Example 2 we obtain the following :

Corollary 1. For any oriented closed manifold M , there exists an A∞ algebra
whose cohomology group is H∗(M ; Z).
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Corollary 1 is [33] Theorem 9.8. It is also proved by McClure [51] and by
Wilson [71].

Remark 3. Actually the statement of Corollary 1 itself is a consequence of
classical fact. In fact the singular cochain complex has a cup product which
is associative in the chain level. What is important here is that the A∞ op-
erations are realized by the chain level intersection theory and by identifying
chain with cochain by Poincaré duality. We emphasize that the chain level
Poincaré duality is still a mysterious subject. We also emphasize that using
chain (instead cochain) is more natural in our situation since the moduli space
can be naturally regarded as a chain but can be regarded as a cochain only
via Poincaré duality.

Sketch of the proof of Theorem 4 : Let fi : Pi → M be ‘chains’ of dimension
dimM − di. (Actually the precise choice of the chain complex to work with
is the important part of the proof. See [33] Remark 1.34 and the beginning of
§12.) We consider the fiber product

Mk+1 π1 ×f1,··· ,fk
(P1 × · · · × Pk) (43)

over Mk. Assuming the transversality, (43) is a smooth manifold with bound-
ary or corner. π2 = ev0 : Mk+1 → M induces a smooth map ev0 from the
manifold (43). We now put

mk(P1, · · · , Pk) = (ev0)∗ (Mk+1 π1 ×f1,··· ,fk
(P1 × · · · × Pk)) . (44)

(44) is a chain of dimension

dimM + k − 2 +
∑

(dimM − di) − k dimM = dimM −
(∑

di − (k − 2)
)

.

Using Poincaré duality, we identify chain of dimension dimM − d on M with
cochain of degree d. Then (44) induces a map of degree k − 2 on cochains.
This is (after degree shift) a map with required degree.

(42) implies (33) modulo transversality and sign. ��
As we mentioned already, the main difficulty to prove Theorem 4 is the

study of orientation and transversality. Transversality is discussed in detail in
[33] §30 and orientation is discussed in detail in [33] Chapter 9. These points
will be discussed also in §12 and §13 of this paper.

We remark that if we replace ‘manifold’ by ‘space with Kuranishi struc-
ture’, we can still prove Theorem 4 over Q coefficient. See §10.

Remark 4. In this article we discuss A∞ structure since it is the only case
which is worked out and written in detail, at the time of writing this article.
However the argument of [33] can be generalized to show analogy of Theorem 4
for various other (differentiable) operads or props. Especially we can generalize
it to the case of L∞ structure, which appears in the loop space formulation
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of Floer theory ([29]) and involutive-bi-Lie infinity (or BV infinity) structure,
which appears when we study symplectic manifolds with cylindrical end [16,
18] and also in the higher genus generalization of Lagrangian Floer theory. It
appears also in string topology [12].

7 A∞ homomorphism.

As we mentioned before, the main motivation for the author to study ho-
motopy theory of A∞ algebra etc. is to find a correct way to state the well-
definedness of the algebraic system induced by the smooth correspondence by
moduli space. Actually those algebraic systems are well-defined up to homo-
topy equivalence. To prove it is our main purpose. For this purpose, it is very
important to define the notion of homotopy equivalence and derive its basic
properties. In this section we define A∞ homomorphism and describe a way
to obtain it from smooth correspondence.

Let (C,m) and (C ′,m′) be A∞ algebras. We consider a series of homomor-
phisms

fk : BkC[1] → C ′[1], (45)

k = 1, 2, · · · of degree 0. We can extend it uniquely to a coalgebra homomor-
phism

f̂ : BC[1] → BC[1]

whose Hom(BkC[1], C ′[1]) component is ϕk. Here ϕ̂ is said to be a coalgebra
homomorphism if (̂f ⊗ f̂) ◦ ∆ = ∆ ◦ f̂.

Definition 5. fk (k = 1, 2, · · · ) is said to be an A∞ homomorphism if d̂′ ◦ f̂ =
f̂ ◦ d̂. An A∞ homomorphism is said to be linear if fk = 0 for k 
= 1.

We can rewrite the condition d̂′ ◦ f̂ = f̂ ◦ d̂ as follows.∑
l

∑
k1+···+kl=k

m′
l(fk1(x1, · · · , xk1), · · · , fkl

(xk−kl+1, · · · , xk))

=
∑

1≤i<j≤k

(−1)∗fk−j+i(x1, · · · ,mj−i+1(xi, · · · , xj), · · · , xk) (46)

where
∗ = deg′ x1 + · · · + deg′ xi−1.

We remark that (46) implies that f1 : (C,m1) → (C ′,m1) is a chain map.

Definition 6. Let f : C(1) → C(2) and g : C(2) → C(3) be A∞ homomor-
phisms. The composition f ◦ g of them is defined by f̂ ◦ g = f̂ ◦ ĝ.
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We next are going to discuss how we obtain A∞ homomorphism by smooth
correspondence. For this purpose we need to find spaces Fk+1 whose relation
to A∞ homomorphism is the same as the relation of the spaces Mk+1 to
A∞ operations. We use the space Fk+1 also to define the notion of A∞ maps
between two A∞ spaces.

The following result which is [33] Theorem 29.51 gives such spaces Fk+1.
(Note in [33] we wrote Nk+1 in place of Fk+1.)

Theorem 5 (FOOO). There exists a cell decomposition Fk+1 of Dk−1 such
that the boundary ∂Fk+1 is a union of the following two types of spaces, which
intersect only at their boundaries.

(1) The spaces Ml+1 ×Fk1+1 × · · · Fkl+1 where
∑l

i=1 ki = k.
(2) The spaces F(k−j+i)+1 ×M(j−i+1)+1 where 1 ≤ i < j ≤ k.

Sketch of the proof : We define Fk+1 by modifying Mk+1. Let (Σ; z0, · · · , zk)
be an element of Mk+1 and Σ = ∪a∈AD2

a be the decomposition to the com-
ponents. We assume that z0 ∈ Da0 . We say a ≤ b if any path connecting Da

to Da0 intersects with Db. The relation ≤ defines a partial order on A.
We say a map ρ : A → [0, 1] to be a time allocation if ρ(a) ≤ ρ(b) for

all a, b ∈ A with a ≤ b. Let Fk+1 be the set of all isomorphism classes of
(Σ; z0, · · · , zk; ρ) where (Σ; z0, · · · , zk) ∈ Mk+1 and ρ is a time allocation.
We define a topology on it in an obvious way.

Lemma 4. Fk+1 is homeomorphic to Dk−1.

We omit the proof. See [33] §29.5.
Let us consider the boundary of Fk+1. Let (Σ(i); z(i)

0 , · · · , z
(i)
k ; ρ(i)) be a

sequence of elements of Fk+1. There are several cases where it converges to a
potential boundary point. It can be classified as follows.

(I) A component D
(i)
a splits into two components in the limit i → ∞.

(II) There exists a, b such that D
(i)
a ∩D

(i)
b 
= ∅ and such that limi→∞ ρ(i)(a) =

limi→∞ ρ(i)(b).
(III) limi→∞ ρ(i)(a0) = 1.
(IV) limi→∞ ρ(i)(a) = 0, for some a.

We observe that (I) cancels with (II). Namely they do not correspond to
a boundary point of Fk+1.

On the other hand, we can check that (III) corresponds to (1) of Theorem
5 and (IV) corresponds to (2) of Theorem 5. This implies the theorem. ��

Let us explain how we use Fk+1 to define an A∞ map between two A∞
spaces. We denote by

◦mf : Ml+1 ×Fk1+1 × · · · Fkl+1 → Fk1+···+kl+1 (47)

and
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Fig. 6. f(x1, x2, m(x3, x4), x5, x6)
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Fig. 7. m(f(x1, x2), f(x3, x4, x5, x6))
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◦fm,i : F(k−j+i)+1 ×M(j−i+1)+1 → Fk+1 (48)

the inclusions obtained by Theorem 5 (1) and (2), respectively. They satisfy
the following compatibility conditions (49), (50), (51), (52).

(a ◦i b) ◦mf (x1, · · · , xl)
= a ◦mf (x1, · · · , xi−1, b ◦mf (xi, · · · , xi+l2−1), · · · , xl)

(49)

where a ∈ Ml1+1, b ∈ Ml2+1, xn ∈ Fkn+1. See Figure 8.

x1 xi−1 xi

xi+l2−1
xi+l2

xl

M

ia
b

Fig. 8.

a ◦mf (x1, · · · , xi−1, xi ◦fm,j b, xi+1, · · · , xl)
= (a ◦mf (x1, · · · , xl)) ◦fm,j′ b,

(50)

where xn ∈ Fkn+1, j′ = j + k1 + · · · + ki−1. See Figure 9.

(x ◦fm,i a) ◦fm,j+l1−1 b = (x ◦fm,j b) ◦fm,i a (51)

where x ∈ Fk+1, a ∈ Ml1+1, b ∈ Ml2+1, i < j. See Figure 10.

(x ◦fm,i a) ◦fm,i+j−1 b = x ◦fm,i (a ◦j b). (52)

See Figure 11.

Let X, X ′ be A∞ spaces with structure maps

mk : Mk+1 × Xk → X, m′
k : Mk+1 × X ′k → X ′

respectively.
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Definition 7. An A∞ map from X to X ′ is a sequence of maps

fk : Fk+1 × Xk → X ′

with the following properties.

(1) Let k = k1 + · · · + kl, xi,j ∈ X for 1 ≤ i ≤ l, 1 ≤ j ≤ ki, and a ∈ Ml+1,
ci ∈ Fki+1. Then, we have

fk((a ◦mf (c1, · · · , cl)), (x1,1, · · · , xl,kl
))

= ml(a; fk1(c1;x1,1, · · · , x1,k1), · · · , fkl
(cl;xl,1, · · · , xl,kl

))
(53)

(2) Let 0 ≤ i ≤ k and a ∈ M(j−i+1)+1, c ∈ F(k−j+i)+1, x1, · · · , xk ∈ X. Then
we have

fk(c ◦mf,i a;x1, · · · , xk)
= fk−j+i(c;x1, · · · ,mj−i+1(a;xi, · · · , xj), · · · , xk).

(54)

We remark that in Stasheff [65] and in [49], the notion of A∞ map is
defined in the case X ′ is a monoid. (See [7].) Stasheff told the author that
A∞ map between A∞ spaces is defined in his thesis. A construction of Fk+1

can be found in [41]. It does not seem to be easy to see that the space in [41]
is a cell. For the purpose of homotopy theory, this point is not important at
all. However to apply it to the study of smooth correspondence, the fact that
Fk+1 is a smooth manifold is useful.

We mention the following which the author believes to be a classical result
in homotopy theory.

Proposition 1. An A∞ map X → X ′ between two A∞ spaces induces an
A∞ homomorphisms between A∞ algebras in Theorem 3.

The proof is similar to the proof of Theorem 3 and is omitted.
Now we use the spaces Fk+1 to define the notion of a morphism between

A∞ correspondences. Let

Mk+1�⏐⏐π0

Mk ←−−−−
π2

Mk+1 −−−−→
π1

M

(55)

and

Mk+1�⏐⏐π0

M ′k ←−−−−
π2

M′
k+1 −−−−→

π1
M ′

(56)

be A∞ correspondences.
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Definition 8. A morphism between two A∞ correspondences is the following
diagram of smooth manifolds (with boundary or corners)

Fk+1�⏐⏐π0

Mk ←−−−−
π2

Fk+1 −−−−→
π1

M ′
(57)

together with smooth maps

◦mf : Ml+1 π2 ×π1,··· ,π1 (Fk1+1 × · · · × Fkl+1) → Fk1+···+kl+1 (58)
◦fm,i : F(k−j+i)+1 evi ×ev0 M(j−i+1)+1 → Fk+1 (59)

with the following properties.

(1) The following diagrams commute.

Ml+1 ×Fk1+1 × · · ·×Fkl+1 −−−−→◦mf
Fk1+···+kl+1

π0×···×π0

�⏐⏐ π0

�⏐⏐
Ml+1 π2 ×π1,··· ,π1 (Fk1+1 × · · · × Fkl+1) −−−−→◦mf

Fk1+···+kl+1

(60)

F(k−j+i)+1 ×M(j−i+1)+1 −−−−→◦fm,i

Fk+1

π0×π0

�⏐⏐ π0

�⏐⏐
F(k−j+i)+1 evi ×ev0 M(j−i+1)+1 −−−−→◦fm,i

Fk+1

(61)

(2) Diagrams (60), (61) are cartesian.
(3) Formulae (49), (50), (51), (52) hold after replacing ◦fm,i, ◦mf by ◦fm,i, ◦mf.
(4) The following diagrams commute. We put k = k1 + · · · + kl

Mk ←−−−−
π2

Fk+1 −−−−→
π1

M ′∥∥∥ �⏐⏐◦mf

∥∥∥
Mk ←−−−− M′

l+1 π2 ×π1,··· ,π1 (Fk1+1 × · · · × Fkl+1) −−−−→
π1◦pr1

M ′
(62)

Here the first arrow in the second line is (π2 · · ·π2) on the factor Fk1+1×· · ·×
Fkl+1.

Mk ←−−−−
π2

Fk+1 −−−−→
π1

M ′∥∥∥ �⏐⏐◦fm,i

∥∥∥
Mk ←−−−− F(k−j+i)+1 evi ×ev0 M(j−i+1)+1 −−−−→

π1◦pr1
M ′

(63)
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Here the first arrow in the second line is

(ev1◦pr1, · · · , evi−1◦pr1, ev1◦pr2, · · · , evj−i+1◦pr2, evi+1◦pr1, · · · , evk−j+i◦pr1).

(5) The union of the images of ◦mf and of ◦fm,i is the boundary of Fk+1. Those
images intersect only at their boundaries.
(6) The identification of (5) preserves orientation.

Now we have :

Theorem 6. A morphism between two A∞ correspondences induces an A∞
homomorphism between A∞ algebras in Theorem 4.

The proof is similar to the proof of Theorem 4 and can be extracted from
[33] §30.

Before closing this section, we remark that there is a map :

Compk,k′ : Fk′+l+1 × (Fk1+1 × · · · Fkl+1) → Fk+k′+1 (64)

where k = (k1, · · · , kl), k′ = (k′
0, · · · , k′

l), k1+· · ·+kl = k and k′
0+· · ·+k′

l = k′.
The map (64) describes the way how the A∞ maps and A∞ correspondences
are composed. The map (64) is defined as follows.

Let S = (Σ; z0, · · · , zk′+l, ρ) ∈ Fk′+l and Si = (Σi; z
(i)
0 , · · · , z

(i)
ki

, ρi) ∈
Fki+1 (i = 1, · · · , l).

We identify zk′
0+···+k′

i−1+i ∈ ∂Σ with z
(i)
0 ∈ ∂Σi for each i and obtain Σ′.

Time allocations ρ and ρi induce a time allocation ρ′ on Σ′ as follows.
When Da is a component of Σ, we regard it as a component of Σ′ and put
ρ′(a) = (1 + ρ(a))/2. When Da is a component of Σi, we regard it as a
component of Σ′ and put ρ′(a) = ρi(a)/2.

We define (z′0, z
′
1, · · · , z′k+k′) as

(z0,z1, · · · , zk′
0
, z

(1)
1 , · · · , z

(1)
k1

, zk′
0+2, · · ·

· · · , zk′
1+···+k′

l−1+l−1, z
(l)
1 , · · · , z

(l)
kl

, zk′
1+···+k′

l−1+l+1, · · · , zk+k′).
(65)

(See Figure 12.) Then, we put

Compk,k′(S,S1, · · · ,Sl) = (Σ′; z′0, z
′
1, · · · , z′k+k′ ; ρ′). (66)

Lemma 5. Fn+1 is a union of the images of Compk,k′ for various k,k′ with
n = k1+· · ·+kl+k′

0+· · ·+k′
l. Those images intersect only at their boundaries.

The proof is easy from the combinatorial description of the elements of
Fk+1 and is omitted. (See also [33] §19.3.)

The map (64) is compatible with (47) and (48). We omit the precise de-
scription of the compatibility condition and leave it to the interested readers.
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By using (64) and Lemma 5 we can define a composition of two A∞ maps.
We omit it since we do not use it. The map (64) is related to the composition
of A∞ correspondences. Since composition of A∞ correspondences is more
naturally defined in case we include correspondence by spaces with Kuranishi
structure, we will introduce it in §10.

8 A∞ homotopy.

We begin this section with algebraic side of the story. In this section we
define the notion of homotopy between two A∞ homomorphisms. As far as
the author knows, there are two definitions of homotopy between two A∞
homomorphisms in the literature. One of then can be found, for example,
in [64, 46]. (In the case of graded commutative differential graded algebra,
a similar formulation is due to Sullivan [69].) Another is an A∞ version of
the definition of homotopy which is written in [35] in the case of differential
graded algebra. (See [28] for A∞ version of this second definition.) When
we were writing [33], we were trying to find a relation between these two
definitions but were not able to find it in the literature. (The author believes
that this equivalence was known to experts long ago.) So in [33] Chapter 4
we took an axiomatic approach and gave a definition which is equivalent to
both of them (and hence proved the equivalence of those two definitions as a
consequence). We will discuss this approach here.

Let (C,m) be an A∞ algebra.

Definition 9. An A∞ algebra (C,m) together with the following diagram is
said to be a model of [0, 1] × C if the conditions (1) - (4) below hold.
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C⏐⏐�Incl

C ←−−−−
Eval0

C −−−−→
Eval1

C

(67)

(1) Incl, Eval0, Eval1 are linear A∞ homomorphisms.
(2) Eval0 ◦ Incl = Eval1 ◦ Incl = identity.
(3) Eval0 ⊕ Eval1 : C → C ⊕ C is surjective.
(4) Incl : C → C is a chain homotopy equivalence.

Example 4. Let M be a manifold and C be its de Rham complex regarded as
an A∞ algebra. Let C be the de Rham complex of R × M . Let Incl, Eval0,
and Eval1 be the linear maps induced by the projection R × M → M , the
inclusion M → {0}×M ⊂ R×M , and the inclusion M → {1}×M ⊂ R×M ,
respectively. It is easy to see that C is a model of [0, 1] × C.

Proposition 2. For any (C,m) there exists a model of [0, 1] × C.

We can prove it either by an explicit construction or by using obstruction
theory to show the existence. We omit the proof and refer [33] §15.1.

The following is a kind of uniqueness theorem of model of [0, 1] × C.

Theorem 7. Let (C,m), (C ′,m′) be A∞ algebras and f : C → C ′ be an A∞
homomorphism. Let C, C′ be models of [0, 1]×C, [0, 1]×C ′ respectively. Then
there exists an A∞ homomorphism F : C → C′ such that

F ◦ Incl = Incl ◦ f, Evals0 ◦ F = f ◦ Evals0

where s0 = 0 or 1.

This is [33] Theorem 15.34.

Definition 10. Let (C,m), (C ′,m′) be A∞ algebras and f : (C,m) → (C ′,m′)
and g : (C,m) → (C ′,m′) be A∞ homomorphisms. Let C′ be a model of [0, 1]×
C ′.

We say an A∞ homomorphism H : C → C′ to be a homotopy from f and
g if

Eval0 ◦ H = f, Eval1 ◦ H = g.

We write f ∼C′ g if there exists a homotopy H : C → C′ between them.

Using Theorem 7, we can prove the following.

Proposition 3. (1) ∼C′ is independent of the choice of C′. (We write ∼ in
place of ∼C′ hereafter.)
(2) ∼ is an equivalence relation.
(3) ∼ is compatible with composition of A∞ homomorphisms. Namely if f ∼ g
then

f ◦ h ∼ g ◦ h, h′ ◦ f ∼ h′ ◦ g.
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Sketch of the proof : We assume f ∼C′ g. Let H : C → C′ be the homotopy
between them. Let C′′ be another model of [0, 1] × C ′. We apply Theorem 7
to the identity from C ′ to C ′ and obtain ID : C′ → C′′. It is easy to see that
ID ◦ H is a homotopy from f to g. We have f ∼C′′ g. (1) follows.

Let f ∼ g and g ∼ h. Let H(1) : C → C1 and H(2) : C → C2 be homotopies
from f to g and from g to h, respectively. We put

C′ = {(y1, y2) ∈ C1 ⊕ C2 | Eval1y1 = Eval0y2}.

It is easy to see that C′ is a model of [0, 1] × C ′. We define H : C → C′ by

Hk(x1, · · · , xk) = (H(1)
k (x1, · · · , xk),H(2)

k (x1, · · · , xk)).

It is easy to see that H is a homotopy from f to h. We thus proved that ∼ is
transitive. Other part of the proof of Proposition 3 is similar and is omitted.
(See [33] §15.2.) ��

Using Proposition 3 we can define the notion of two A∞ algebras to be
homotopy equivalent to each other and also the notion of A∞ homomorphism
to be a homotopy equivalence, in an obvious way.

We can then prove the following two basic results of homotopy theory of
A∞ algebras.

Theorem 8. If f : (C,m) → (C ′,m) is an A∞ homomorphism such that
f1 : (C,m1) → (C ′,m1) is a chain homotopy equivalence. Then f is a homotopy
equivalence. Namely there exists g : (C ′,m) → (C,m) such that g ◦ f and f ◦ g
are homotopic to identity.

This theorem seems to be known to experts. The proof based on our definition
of homotopy is in [33] §18.

Theorem 9. Let (C,m) be an A∞ algebra. Let C ′ ⊂ C be a subchain complex
of (C,m1) such that the inclusion (C ′,m1) → (C,m1) is a chain homotopy
equivalence.

Then there exists a sequence of operators m′
k for k ≥ 2 such that m′

k and
m′

1 = m1 define a structure of A∞ algebra on C ′.
Moreover there exists fk : BkC ′[1] → C[1] for k ≥ 2 such that fk together

with f1 = inclusion define a homotopy equivalence C ′ → C.

We put H(C) = Kerm1/Imm1.

Corollary 2. If R is a field (or H(C) is a free R module) then there exists
a structure of A∞ algebra on H(C) for which m1 = 0 and which is homotopy
equivalent to (C,m)

Theorem 9 and Corollary 2 have a long history which starts with [42]. Theorem
9 and Corollary 2 are proved in [33] §23.4. (The proof in [33] is similar to one
in [45].)
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We also refer [61] and references therein for more results on homological
algebra of A∞ structures.

We now discuss relations of the algebraic machinery described above to
geometry. We first remark that we can define the notion of homotopy for
two A∞ maps between A∞ spaces. Moreover we can prove that, if two A∞
maps are homotopic to each other, then induced A∞ homomorphisms are also
homotopic. We omit the proof of this since we do not use it.

Let us consider the case of A∞ correspondence. We consider two A∞ cor-
respondences (55), (56) and two morphisms

Fk+1�⏐⏐π0

Mk ←−−−−
π2

Fk+1 −−−−→
π1

M ′
(68)

Fk+1�⏐⏐π0

Mk ←−−−−
π2

F′
k+1 −−−−→

π1
M ′

(69)

between them.

Definition 11. A homotopy from (68) to (69) is a sequence of diagrams

Fk+1�⏐⏐π0

Mk ←−−−−
π2

Hk+1 −−−−→
π1

M ′ × [0, 1]

(70)

together with the smooth maps

◦mh : Ml+1 π2 ×π1,··· ,π1 (Hk1+1 ×[0,1] · · ·
· · · ×[0,1] Hkl+1) → Hk1+···+kl+1

(71)

◦hm,i : H(k−j+i)+1 evi
×ev0 M(j−i+1)+1 → Hk+1 (72)

with the following properties. (We remark that in (71) we take fiber product
over [0, 1] using the [0, 1] factor of π1.)

(1) π−1
1 (M ×{0}) = Fk+1, π−1

1 (M ×{1}) = F′
k+1. The restriction of the maps

(71), (72) are the maps (58), (59), respectively.
(2) The following diagrams commute and are cartesian.
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Ml+1 ×Fk1+1 × · · · Fkl+1 −−−−→◦mf

Fk1+···+kl+1

π0×···×π0

�⏐⏐ π0

�⏐⏐
Ml+1 π2 × (Hk1+1 ×[0,1] · · · ×[0,1] Hkl+1) −−−−→◦mh

Hk1+···+kl+1

(73)

F(k−j+i)+1 ×M(j−i+1)+1 −−−−→◦fm,i

Fk+1

π0×π0

�⏐⏐ π0

�⏐⏐
H(k−j+i)+1 evi

×ev0 M(j−i+1)+1 −−−−→◦hm,i

Hk+1

(74)

(3) Formulae (49), (50), (51), (52) holds after replacing ◦fm,i, ◦mf by ◦hm,i,
◦mh.
(4) The following diagrams commute. We put k = k1 + · · · + kl

Mk ←−−−−
π2

Hk+1 −−−−→
π1

M ′ × [0, 1]∥∥∥ �⏐⏐◦mf

∥∥∥
Mk ←−−−− Ml+1 π2 × (Hk1+1 ×[0,1] · · · ×[0,1] Hkl+1) −−−−→ M ′ × [0, 1]

(75)

Mk ←−−−−
π2

Hk+1 −−−−→
π1

M ′ × [0, 1]∥∥∥ �⏐⏐◦hm,i

∥∥∥
Mk ←−−−− H(k−j+i)+1 evi

×ev0 M(j−i+1)+1 −−−−→
π1◦pr1

M ′ × [0, 1]

(76)

(5) The union of the images of ◦mh and of ◦hm,i is the boundary of Hk+1.
Those images intersect only at their boundaries.
(6) The identification (5) preserves orientations.

Now we have

Theorem 10. A homotopy H between two A∞ correspondences F and F′ in-
duces a homotopy between the two A∞ homomorphisms induced by Theorem
6.

The proof can be extracted from [33] §30.10 - 13.

9 Filtered A∞ algebra and Filtered A∞ correspondence.

So far we developed a machinery which works at least to construct A∞ algebra
defined by the intersection theory on a manifold. (See Example 2.) To apply
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the machinery to the case when we use moduli spaces (of pseudo-holomorphic
curves for example), we need some generalizations. One generalization we need
is related to the fact that the structure constants of the algebraic system we
will construct is not a number but a kind of formal power series. The reason
why we need to consider formal power series lies on the following fact. In case
of the Gromov-Witten theory, for example, the moduli space Mk+1 which
appears in the definition of correspondence, is not compact and does not have
good compactification either. We need to put some energy bound to prove the
compactness of the moduli space of pseudo-holomorphic curves. Filtered A∞
algebra (and its cousins) will be used in order to take care of this problem.

Definition 12. A proper submonoid G is a submonoid of R≥0 × 2Z with the
following properties.

(1) If (0, µ) ∈ G then µ = 0.
(2) For each E0 ∈ R≥0 the set {(E, µ) ∈ G | E ≤ E0} is finite.

This definition is closely related to the Gromov compactness in the theory
of pseudo-holomorphic curve.

Let E : G → R≥0, µ : G → Z be the projections to the first and second
factors. We define the Novikov ring ΛR

G ([52]) associated with G as the set of
all such (formal) series

∑
β∈G

aiT
E(β)eµ(β)/2 (77)

where T and e are formal generators of degree 0 and 2 respectively, and ai ∈ R
(a commutative ring with unit, which we fixed at the beginning). It is easy
to see that, by Definition 12 (2), we can define sum and product between two
elements of the form (77), and ΛR

G becomes a ring.
The ring ΛR

G is contained in the universal Novikov ring ΛR
0,nov which is the

set of all the (formal) series

∑
β∈G

aiT
Eieµi (78)

where Ei ∈ R≥0 and µi ∈ Z are sequences such that limi→∞ Ei = ∞. (The
fact that Novikov ring is a natural coefficient ring of Floer homology was first
observed by Floer. It was used by [38] and [58].)

Remark 5. We consider a monoid G together with a partial order ≤ such that
the following holds.

(1) g ≤ g′, h ≤ h′ implies g · h ≤ g′ · h′.
(2) For any g0 there exists only a finite number of g ∈ G with g ≤ g0.
(3) We have β0 ≤ g for any g ∈ G. Here β0 = (0, 0).
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We then take the completion of its group ring

R̂(G) =

⎧⎨⎩∑
g∈G

ag[g]

∣∣∣∣∣∣ ag ∈ R, infinite sum

⎫⎬⎭ .

By (2) we can define a products of two elements of R̂(G) in an obvious way.
R̂(G) then is a ring.

In case of our G ⊂ R × 2Z, we have R̂(G) = ΛR
G.

In the case when noncommutative G appears (such as the case we consider
Lagrangian submanifolds with noncommutative fundamental group in Floer
theory) to use appropriate R̂(G) with noncommutative G may give more in-
formation.

The reason why we use universal Novikov ring ΛR
0,nov here is that, in

our application, the monoid G depends on various choices (such as almost
complex structure in the case Gromov-Witten or Floer theory). So to state
the independence of the structure of the choices, it is more convenient to use
ΛR

0,nov which contains all of ΛR
G.

Let C be a free graded R module. We put C = C⊗̂RΛR
0,nov. Here ⊗̂R is

the completion of the algebraic tensor product ⊗ with respect to the non-
Archimedean norm defined by the ideal generated by T .

Definition 13. A structure of G-gapped filtered A∞ algebra on C is defined
by a family of the operations

mk,β : BkC[1] → C[1]

of degree 1− µ(β), for β ∈ G and k = 0, 1, · · · , satisfying the following condi-
tions.

(1) mk,β0 = 0 if β0 = (0, 0) and k = 0.
(2) We define

mk =
∑
β∈G

TE(β)eµ(β)/2mk,β : BkC[1] → C[1].

Then it satisfies (33).

Definition 14. Let (C,m), (C ′,m′) be G-gapped filtered A∞ algebras. A G-
gapped filtered A∞ homomorphism f : C → C ′ is defined by a family of R
module homomorphisms

fk,β : BkC[1] → C
′
[1]

of degree −µ(β), for β ∈ G and k = 0, 1, · · · , satisfying the following condi-
tions.
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(1) mk,β0 = 0 if β0 = (0, 0) and k = 0.
(2) We define

fk =
∑

β

TE(β)eµ(β)/2fk,β : BkC[1] → C ′[1].

Then it satisfies (46).

Remark 6. We remark that in the case of filtered A∞ algebra, the maps m0 or
f0 may be nonzero. Filtered A∞ algebra (resp. homomorphism) is said to be
strict if m0 = 0 (resp. f0 = 0).

We can develop homotopy theory of filtered A∞ algebra in the same way
as that of A∞ algebra. Namely Propositions 2, 3 and Theorems 7, 8, 9 hold
without change. (See [33] for their proofs.) (We can do it for each fixed G.)

We next explain how to obtain a filtered A∞ algebra and filtered A∞
homomorphisms by smooth correspondence. We first define Mk+1,β for each
(k, β) such that k ≥ 2 or β 
= β0. We consider Σ =

⋃
a∈A D2

a and zi ∈ ∂Σ
satisfying the same condition as the definition of Mk+1 except the definition
of stability. Let β(·) : A → G be a map with β =

∑
β(a). We define the

following stability condition for (Σ; z1, · · · , zk;β(·)).

Definition 15. For each component Da either one of the following holds.
(1) Da contains at least three marked or singular points. (2) β(a) 
= (0, 0).

Mk+1,β is the set of all the isomorphism classes of such (Σ; z0, · · · , zk;β(·)).
This definition is closely related to the notion of stable map [44].

We can define a topology on Mk+1,β in an obvious way. Namely, in a
neighborhood of (Σ; z0, · · · , zk;β(·)) there are (Σ′; z′0, · · · , z′k;β′(·)) where Σ′

is obtained by resolving a singularity p ∈ Σ. If a component Da of Σ′ is
obtained by gluing two components Da1 and Da2 of Σ at p, then we put
β′(a) = β(a1) + β(a2).

By a similar gluing as §4, we obtain a continuous map :

◦i : Mk+1,β1 ×Ml+1,β2 → Mk+l,β1+β2 .

We remark here that the topology on Mk+1,β is rather pathological.
Namely it is not Hausdorff. Let us exhibit it by an example. We consider
◦
M2+1,β (which is the set of elements of M2+1,β with no singularity), for

β 
= (0, 0). Actually
◦
M2+1,β

∼=
◦
M2+1 is a point. On the other hand

M0+1,β ◦3 M3+1,β0 ⊂ M2+1,β .

(Here β0 = (0, 0).) The left hand side is diffeomorphic to M3+1 and is an
interval [0, 1].

Thus any neighborhood of any point of [0, 1] ∼= M0+1,β◦3M4+1,β0 contains

the point
◦
M2+1,β . Thus M2+1,β is not Hausdorff.
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β

β0

z1

z2

Fig. 13.

Remark 7. An appropriate language to describe this situation is (Artin) stack.
We do not use the notion of stack later in this article. So the reader can skip
this remark safely if he wants.

Let us consider the example we discussed above. We consider an element
(Σ; z0, z1, z2, z3;β(·)) ∈ M0,β ◦3 M3+1,β0 . The group of its automorphisms is
the group Aut(D2, {1}) which consists of the biholomorphic maps u : D2 →
D2 with u(1) = 1 ∈ ∂D2. This group is isomorphic to{(

a b
0 a−1

) ∣∣∣∣ a ∈ R+, b ∈ R

}
⊂ PSL(2; R) ∼= Aut(D2).

The (infinitesimal) neighborhood of the element (Σ; z0, z1, z2, z3;β(·)) in
M2+1,β is, by definition, a quotient of

M0+1,β ◦3 M3+1,β0 × [0, ε)

by the action of the group Aut(D2, {1}).
Note the parameter a above acts on [0, ε) factor by t �→ at. Also the element

∂/∂b in the Lie algebra of Aut(D2, {1}) moves the position of third marked
point z3 of the M3+1,β0 factor, when [0, ε) factor is positive. Thus we have

M0+1,β ◦3 M3+1,β0 × [0, ε)
Aut(D2, {1}) = (M0+1,β ◦3 M3+1,β0 × {0}) ∪ {one point}.

Here {one point} in the right hand side is the quotient of M0+1,β◦3M3+1,β0×
(0, ε) by Aut(D2, {1}) action and is identified with

◦
M2+1,β .

Thus the neighborhood of (Σ; z0, z1, z2, z3;β(·)) in M3+1,β0 is as we men-
tioned above.

The fact that M3+1,β0 is not Hausdorff is a consequence of the noncom-
pactness of the group Aut(D2, {1}).
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Now we define the notion of G-gapped filtered A∞ correspondence. Ac-
tually the definition is almost the same as Definition 4. Suppose we have a
family of the following commutative diagrams.

Mk+1,β�⏐⏐π0

Mk ←−−−−
π2

Mk+1(β) −−−−→
π1

M

(79)

such that Mk+1(β) is a smooth (Hausdorff) manifold with boundary or corners
and that

dimMk+1(β) = dimM + µ(β) + k − 2. (80)

We assume also that we have a family of smooth maps

◦m,i : Mk+1(β1) evi ×ev0 Ml+1(β2) → Mk+l(β1 + β2). (81)

To state one of the conditions (cartesian axiom (2) below) we need some
notations. Let us consider the space Mk+l,β . It is not Hausdorff as mentioned
before. It is decomposed into union of smooth manifolds according to its combi-
natorial structure. Namely if we collect all of the elements (Σ; z0, · · · , zk;β(·))
which is homeomorphic to a given element of Mk+l,β then it is a smooth man-
ifold. (This manifold is actually a ball.) We write this stratum Mk+l,β(S),
where S stands for a homeomorphism type of (Σ; z0, · · · , zk;β(·)). (We re-
mark that Mk+l,β(S) is Hausdorff.)

Definition 16. A system of objects as in (79), (80), (81) is said to be a G-
gapped filtered A∞ correspondence if the following holds.

(1) The following diagram commutes.

Mk+1,β1 ×Ml+1,β2 −−−−→◦i

Mk+l,β1+β2

π0×π0

�⏐⏐ π0

�⏐⏐
Mk+1(β1) ev0 ×evi Ml+1(β2) −−−−→◦m,i

Mk+l(β1 + β2)

(82)

(2) The inverse image

π−1
0 (Mk+l,β(S)) ⊂ Mk+l(β) (83)

of each such stratum Mk+l,β(S) of Mk+l,β is a smooth submanifold of
Mk+l(β). Its codimension is the number of singular points of S. We denote
(83) by Mk+l(β;S). Restriction of ev0 to each such stratum Mk+l(β;S) is a
smooth map Mk+l(β;S) → Mk+l,β(S). Diagram (82) is a cartesian diagram
as a diagram of sets.
(3) Formulae (39) and (40) hold.
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(4) The following diagram commutes.

Mk+l ←−−−−
π2

Mk+l(β1 + β2) −−−−→
π1

M∥∥∥ �⏐⏐◦m,i

∥∥∥
Mk+l ←−−−− Mk+1(β1) evi

×ev0 Ml+1(β2) −−−−→
π1◦pr2

M

(84)

(5) For each n the boundary of Mn+1(β) is a union of

◦m,i(Mk+1(β1) evi
×ev0 Ml+1(β2))

for various k, l, i,β1,β2 with k+l = n, i = 1, · · · , l, β1+β2 = β. They intersect
each other only at their boundaries.
(6) The identification in (5) preserves orientation.

Note the axiom (2) above is more complicated than the corresponding axiom
in Definition 4. This is because Mk+1,β is not Hausdorff and hence we can
not say the Diagram (82) being cartesian in the category of smooth manifolds.
One might say that the diagram (82) is cartesian in the sense of stacks. (The
author wants to avoid using the notion of stack here since he is not familiar
with it.)

We can define the notion of (G-gapped filtered) morphism between two
G-gapped filtered A∞ correspondences in the same way as Definition 8. The
homotopy between two morphisms are defined in the same way as Definition
11. We then have :

Theorem 11. G-gapped filtered A∞ correspondence on M induces a struc-
ture of G-gapped filtered A∞ algebra on a cochain complex representing the
cohomology group of M .

A morphism between G-gapped filtered A∞ correspondences induces a G-
gapped filtered A∞ homomorphism. A homotopy between two morphisms in-
duces a homotopy between G-gapped filtered A∞ homomorphisms.

The proof of this theorem can be extracted from [33] §30.

10 Kuranishi correspondence

To study correspondence, manifold is too much restrictive category of spaces,
since we can not take fiber product in general, for example. As a consequence,
composition of correspondences is defined only under some transversality as-
sumptions. We can use the notion of Kuranishi structure to resolve this prob-
lem. Moreover Kuranishi structure is a general frame work to handle various
transversality problem and to study moduli spaces arising in differential ge-
ometry, in a uniform way. In this section we define the notion of A∞ Kuranishi
correspondence and use it to generalize Theorem 11 furthermore.
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We first review briefly the notion of Kuranishi structure. (See [30] Chapter
1 or [33] Appendix 1 for more detail.) The notion of Kuranishi structure is
simple and elementary. The author believe that the main obstacle to under-
stand it is rather psychological. Actually the definition of Kuranishi structure
is very much similar to the definition of manifold.

We consider a space Z which is Hausdorff and compact.

Definition 17. A Kuranishi chart is a quintet (V, E, Γ, s, ψ) such that

(1) V ⊂ Rn is an open set and E = V × Rm. Here n, m are nonnegative
integers which may depend on the chart.
(2) Γ is a finite group acting effectively on V and has a linear action on the
fiber Rm of E.
(3) s : V → Rm is a Γ equivalent map.
(4) ψ is a homeomorphism from s−1(0)/Γ to an open subset of Z.

If p ∈ ψ(s−1(0)) we call (V, E, Γ, s, ψ) a Kuranishi neighborhood of p.
Sometimes we call V a Kuranishi neighborhood, by abuse of notation. We
call E the obstruction bundle. s is called the Kuranishi map. We remark that
in case Z is a moduli space s is actually a Kuranishi map in the usual sense.

A Kuranishi chart is said to be it oriented if there is an orientation of
ΛtopTV ⊗ ΛtopE which is preserved by the Γ -action.

Remark 8. Roughly speaking Kuranishi neighborhood of p gives a way to
describe a neighborhood of p in Z as a solution of an equation s(x) =
(s1(x), · · · , sm(x)) = 0. In case si is a polynomial, it defines a structure of
scheme as follows. (More precisely since the finite group action is involved
it gives a structure of Deligne-Mumford stack.) Let us consider the quotient
ring Rs of the polynomials ring R[X1, · · · , Xn] by the ideal which is generated
by the polynomials si(X1, · · · , Xn) (i = 1, · · · , m). Then we obtain a ringed
space Spec(Rs), that is the affine scheme defined by the ring Rs. By gluing
them we obtain a scheme.

If we try to apply this construction of algebraic geometry to differential
geometry (that is our situation), then we will be in the trouble. We can indeed
construct a sheaf of rings (of smooth functions modulo the components of s)
on Z and then Z becomes a ringed space (that is a space together with a sheaf
of local ring). However the structure of ringed space does not seem to hold
enough information we need. For example, since the Krull dimension of the
ring of the germs of smooth functions is infinite, it follows that the dimension
(that is n−m in case of (1) of Definition 17) does not seem to be determined
from the structure of ringed space. So it seems difficult to obtain the notion
of (virtual) fundamental chains using the structure of ringed space.

Therefore, in place of using the structure of ringed space, we ‘remember’
the equation s = 0 itself as a part of the structure and glue the Kuranishi
chart in that sense as follows.

Let (Vi, Ei, Γi, si, ψi) and (Vj , Ej , Γj , sj , ψj) be two Kuranishi charts.
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Definition 18. A coordinate change from (Vi, Ei, Γp, si, ψi) to (Vj , Ej , Γj , sj , ψj)
consists of a Γi-invariant open subset Vji ⊂ Vi, maps φji : Vji → Vj,
φ̂ji : Ei|Vji → Ej and a homomorphism hji : Γi → Γj with the following
properties.

(1) φji is an hji-equivariant smooth embedding.
(2) φ̂ji is an hji-equivariant embedding of the vector bundles over φji.
(3) hji is defined and is injective if Vji 
= ∅.
(4) sj ◦ φji = φ̂ji ◦ si.
(5) ψj ◦ φji = ψi on (s−1

i (0) ∩ Vji)/Γj.
(6) ψi((s−1

i (0)∩Vji)/Γi) contains a neighborhood of ψi(s−1
i (0)/Γi)∩ψj(s−1

j (0)/Γj)
in Z.
(7) If γ(φji(Vji)) ∩ φji(Vji) 
= ∅ and γ ∈ Γj, then γ ∈ hji(Γi).

Remark 9. We can state (7) also as hij((Γj)p) = (Γi)φij(p). (Here (Γj)p etc. is
the isotropy group.) This condition is assumed in [30] as a part of the assump-
tion that Vij/Γj → Vi/Γi is an embedding of orbifold. Therefore Definition 18
(including (7)) is equivalent to [30] Definition 5.3.

We say that coordinate change is compatible with orientation if there exists
a Γi equivariant bundle isomorphism

φ∗
jiTVj

TVji

∼= φ∗
jiEj

Ei|ji
(85)

which is compatible with orientations of ΛtopTVi ⊗ ΛtopEi and of ΛtopTVj ⊗
ΛtopEj .

Definition 19. A Kuranishi structure on a compact metrizable space Z is
((Vi, Ei, Γi, si, ψi); i ∈ I) with the following properties. Here (I,�) is a par-
tially ordered set.

(1) If and i � j, then we have a coordinate change (φji, φ̂ji, hji).
(2) If ψi(s−1

i (0)/Γi) ∩ ψj(s−1
j (0)/Γj) 
= ∅ then either i � j or j � i holds.

(3) If i � j � k and Vki ∩ φ−1
ji (Vkj) 
= ∅ then

φkj ◦ φji = φki, φ̂kj ◦ φ̂ji = φ̂ki, hkj ◦ hji = hki

on Vki ∩ φ−1
ji (Vkj).

(4) ψi(s−1
i (0)/Γi) (i = 1, · · · , I) is an open covering of Z.

We call ((Vi, Ei, Γi, si, ψi); i ∈ I) a Kuranishi atlas.

Note Kuranishi chart Definition 19 is called a good coordinate system in [30]
Definition 6.1. Hence by [30] Lemma 6.3 the above definition of Kuranishi
structure is equivalent to one in [30].
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Kuranishi structure is said to have tangent bundle and is oriented if the
all the coordinate changes preserve orientation and if we have a commutative
diagram :

φ∗
jiTVj

TVji
−−−−→ φ∗

kiTVk

TVi
−−−−→ φ∗

kjTVk

TVj

∼=
⏐⏐� ∼=

⏐⏐� ∼=
⏐⏐�

Ej

φ̂ji(Ei)
−−−−→ Ek

φ̂ki(Ei)
−−−−→ Ek

φ̂kj(Ej)

(86)

for i where the vertical arrows are as in (85) and horizontal lines are obvious
exact sequences.

We thus defined a ‘space with Kuranishi structure which has a tangent
bundle and is oriented’. Since the notation in the quote is rather lengthy we
call it oriented K-space from now on. More precisely when we say K-space,
we fix isomorphism (85) such that Diagram (86) commutes, as a part of the
structure.

We remark that by (85)

dimVi − rankEi (87)

is independent of i (if Z is connected). We call it the dimension of the Ku-
ranishi structure or K-space.

We next define a map from K-space to a manifold.

Definition 20. Let M be a manifold and Z be a K-space. A system f = (fi)
of maps fi : Vi → N is said to be a strongly smooth map if each of fi is smooth
and fj ◦ φji = fi.

f = (fi) is said to be weakly submersive if each of fi : Vi → N is a
submersion.

We remark that strongly smooth map induces a continuous map Z → N
in an obvious way.

We also define K-space with boundary and corners as follows. If we replace
the condition ‘V is an open subsets in Rn’ in (1) of Definition 17, by ‘V is
an n dimensional submanifold with corners in Rn’ it will be the definition of
Kuranishi neighborhood with corners. We then proceed in the same way as
Definitions 18, 19 we define (oriented) K-space with corners.

A point x of K-space is said to be in the codimension k corner if x = ψi(y)
with y in the codimension k corner of Vi/Γi. We can easily show that the set
of all codimension k corner of a given K-space Z has a structure of K-space
with corners.

For our purpose to study correspondence, the notion of fiber product of
K-space is important. Let Z and Z ′ be K-spaces with their Kuranishi atlas
((Vi, Ei, Γ

′
i , si, ψi); i ∈ I), ((V ′

i′ , E
′
i′ , Γi′ , s

′
i′ , ψ

′
i′); i

′ ∈ I ′), respectively.
Let (fi) and (f ′

i′) be weakly submersive strongly smooth maps from Z to
N and Z ′ to N , respectively. Here N is a smooth manifold. We first take a
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fiber product Z ×N Z ′ in the category of topological space. The next lemma
is in [33] §A1.2.

Lemma 6. Z ×N Z ′ has a structure of K-space.

Proof : We consider the fiber products

V(i,i′) = Vi fi ×f ′
i′

V ′
i′ .

By the assumption that (fi) and (f ′
i′) are weakly submersive, the above fiber

product is well-defined in the category of smooth manifold. We define E(i,i′) as
the pull back of the exterior product of Ei and E′

i′ . The group Γ(i,i′) = Γi×Γ ′
i′

acts on V(i,i′) and E(i,i′) as the restriction of the direct product action. Using
weakly submersivity of fi, f ′

i′ we can prove that this action is effective. We
put s(i,i′)(x, y) = (si(x), s′i′(y)). It is easy to see that

s−1
(i,i′)(0) = s−1

i (0) fi
×f ′

i′
s′−1

i′ (0).

Hence we obtain φ(i,i′). Thus we have a Kuranishi chart

(V(i,i′), E(i,i′), Γ(i,i′), s(i,i′), φ(i,i′)).

It is easy to see that we can glue coordinate transformation and construct a
K-space. ��

Remark 10. In the above construction, it may happen that i1 ≺ i2, i′1 ≺ i′2,
ψ(i1,i′2)(s

−1
(i1,i′2)

(0)) ∩ ψ(i′1,i2)(s
−1
(i′1,i2)

(0)) 
= ∅, but neither (i1, i′2) ≺ (i′1, i2) nor
(i′1, i2) ≺ (i1, i′2). In this case Definition 19 (2) is not satisfied. However we
can shrink Vi,i′ in the way as in Figure 14 below so that Definition 19 (2) is
satisfied.

In the situation of Lemma 6, we assume that we also have a strongly smooth
map g : Z ′ → N ′ such that f ′ × g : Z ′ → N × N ′ are weakly submersive.
Then, it is easy to see that g induces a strongly smooth map g : Z×N Z ′ → N ′

which is weakly submersive.
A few more notations are in order.
Let Z be a K-space with corner and p, q ∈ ∂Z. We say that they are in the

same component of ∂Z and write p ∼ q if there exists a sequence of Kuranishi
charts (Vi, Ei, Γi, si, ψi) (i = 0, · · · , l) such that

(1) p = ψ1(x1) ∈ ψ1(s−1
1 (0)/Γ1) and q = ψl(x′

l) ∈ ψl(s−1
l (0)/Γl).

(2) Either xi = φi(i+1)(x′
i) or x′

i = φ(i+1)i(xi). Here in the first case i + 1 ≺ i
and x′

i ∈ ∂Vi(i+1). In the second case i ≺ i + 1 and xi ∈ ∂V(i+1)i.
(3) x′

i and xi+1 can be joined by a path which is contained in ∂Vi+1.

A component of ∂Z is a closure of ∼ equivalence class. It has a structure
of K-space.
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Vi1

V ′
i′1

V ′
i′2�→

�→

�→
�→

V(i′1,i2)

V(i1,i′2)

Vi2

Fig. 14.

We say that ‘p and q are connected by a path contained in the set of
boundary points in the Kuranishi neighborhood’ if above condition is satisfied.

Let p, q ∈ ∂Z \ corner. We say that they are in the same stratum of ∂Z
and write p ∼′ q, if p and q are connected by a path which is contained in the
set of boundary points in the Kuranishi neighborhood and does not intersect
with corner points. A stratum is a closure of ∼′ equivalence class. It has a
structure of K-space.

We can define stratum of codmension d corner of Z in the same way. It
has a structure of K-space also.

Let M be a closed and oriented manifold. We assume that we have a
diagram

Mk+1,β�⏐⏐π0

Mk ←−−−−
π2

Mk+1(β) −−−−→
π1

M.

(88)

Here Mk+1(β) is a K-space and

(π0, π1, π2) : Mk+1(β) → Mk+1,β × Mk+1
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is assumed to be strongly smooth and is weakly submersive. We assume

dimMk+1(β) = dimM + µ(β) + k − 2. (89)

Definition 21. (88) is said to be a G-gapped filtered Kuranish A∞ correspon-
dence, if there exists a map

◦m,i : Mk+1(β1) evi ×ev0 Ml+1(β2) → Mk+l(β1 + β2). (90)

which identifies the left hand side with a union of finitely many stratum of the
boundary of the right hand side as K-spaces, such that the following holds.

(1) The following diagram commutes.

Mk+1,β1 ×Ml+1,β2 −−−−→◦i

Mk+l,β1+β2

π0×π0

�⏐⏐ π0

�⏐⏐
Mk+1(β1) evi

×ev0 Ml+1(β2) −−−−→◦m,i

Mk+l(β1 + β2)

(91)

(2) The inverse image

π−1
0 (Mk+l,β(S)) ⊂ Mk+l(β) (92)

of each such stratum Mk+l,β(S) of Mk+l,β is a union of strata of codimension
d corner of Mk+l(β). Here d is the number of singular points of S. We denote
(92) by Mk+l(β;S). Restriction of ev0 to each such stratum Mk+l(β;S) is a
strongly smooth weakly submersive map Mk+l(β;S) → Mk+l,β(S). Diagram
(91) is a cartesian diagram as a diagram of sets.
(3) The Formulae (24), (25) holds after replacing ◦i by ◦m,i

(4) The following diagram commutes.

Mk+l ←−−−−
π2

Mk+l(β1 + β2) −−−−→
π1

M∥∥∥ �⏐⏐◦m,i

∥∥∥
Mk+l ←−−−− Mk+1(β1) evi

×ev0 Ml+1(β2) −−−−→
π1◦pr1

M

(93)

(5) For each n the boundary of Mn+1(β) is a union of

◦m,i(Mk+1(β1) evi ×ev0 Ml+1(β2))

for various k, l, i,β1,β2 with k+l = n, i = 1, · · · , l, β1+β2 = β. They intersect
each other only at their boundaries.
(6) The identification (5) preserves orientations, with signs which will be de-
scribed by Definition 27.
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In the rest of this article we say Kuranishi correspondence sometimes in
place of G-gapped filtered Kuranish A∞ correspondence for simplicity.

Now, in a similar way as the Definitions 8 and 11, we can define morphism
between Kuranishi correspondences, and homotopy between morphisms. To
rewrite Definitions 8 and 11 to our situation is straightforward and hence we
omit them here.

As we mentioned before we can define composition of morphisms between
Kuranishi correspondences, as follows. Let

Mk+1,β�⏐⏐π0

Mk
i ←−−−−

π2
M

(i)
k+1(β) −−−−→

π1
Mi.

(94)

be Kuranishi correspondences for i = 1, 2, 3. Let

Fk+1,β�⏐⏐π0

Mk
i ←−−−−

π2
F

(ij)
k+1(β) −−−−→

π1
Mj

(95)

be morphisms between Kuranishi correspondences for (ij) = (12), (23). We
will define a morphism of Kuranishi correspondence (F(13)

k+1(β)) which is a

composition of (F(12)
k+1(β)) and (F(23)

k+1(β)) as follows.
In the same way as (64) we can define

Compβ0,β1,··· ,βl

k1,··· ,kl;k′
0,··· ;k′

l
: Fl+k′+1,β0

× (Fk1+1,β1 × · · · Fkl+1,βl
) → Fk+k′+1,β0+···+βl

(96)

where k′ = k′
0 + · · ·+k′

l and k1 + · · ·+kl = k. By a filtered analogue of Lemma
5, the images of (96) (for various l, ki, k

′
i, βi with k + k′ = n,

∑
βi = β)

decompose Fn+1,β .
Now we consider the fiber product

Fβ0,β1,··· ,βl

k1,··· ,kl;k′
0,··· ;k′

l
= F

(12)
l+k′+1(β0) ×M l

2
(F(23)

k1+1(β1) × · · · × F
(23)
kl+1(βl)). (97)

Here the map
Fk1+1(β1) × · · · × Fkl+1(βl) → M l

2

is (ev0, · · · , ev0) and
Fl+k′+1(β0) → M l

2

is (evk′
0+1, evk′

1+2, · · · , evk′
l−1+l). (See (65).) Now by a filtered analogue of

Lemma 5, we can glue spaces Fβ0,β1,··· ,βl

k1,··· ,kl;k′
0,··· ;k′

l
for various l, ki, k

′
i, βi with
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k + k′ = n,
∑

βi = β along their boundaries to obtain a K-space F
(13)
n+1(β).

Moreover we can define

π0 : F
(13)
n+1(β) → F (13)

n+1,β

such that (96), (97) commute with π0. Furthermore we can define π1 and π2

such that

Fk+1,β�⏐⏐π0

Mk
1 ←−−−−

π2
F

(13)
k+1(β) −−−−→

π1
M3

(98)

is a morphism between Kuranishi correspondences.

Definition 22. (98) is a composition of (F(12)
k+1(β)) and (F(23)

k+1(β)). We write
it as :

(F(13)
k+1(β)) = (F(23)

k+1(β)) ◦ (F(12)
k+1(β)).

It is easy to see that the notion of composition between morphisms are com-
patible with the notion of homotopy of morphisms.

Lemma 7. Composition of morphisms are homotopy associative. Namely, the
morphisms of Kuranishi correspondence

(F(34)
k+1(β)) ◦

(
(F(23)

k+1(β)) ◦ (F(12)
k+1(β))

)
and (

F
(34)
k+1(β) ◦ (F(23)

k+1(β))
)
◦ (F(12)

k+1(β))

are homotopic to each other.

Proof : We remark that in the definition of (66), the time allocation of the
component of the stable curve Σ′ which comes from the the first factor Σ
lies in [0, 1/2]. For the component which comes from the second factors Σi,
its time allocation is in [1/2, 1]. Hence by the same reason as the nonassocia-
tivity of the product in loop space (see §4), our composition is not strictly
associative. However by the same reason as the product in loop space is ho-
motopy associative, we can easily construct the required homotopy by using
the homotopy between parametrizations. ��
Definition 23. We define a category HAKCorrG as follows. Its object is a
manifold M together with a G-filtered Kruranishi correspondence on it. A
morphisms between them is a homotopy class of the morphisms of Kuranishi
correspondence. The composition is defined by Definition 22. It is well-defined
by Lemma 7. We call it the homotopy category of G-filtered Kuranishi corre-
spondence.
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We define a category HAlgQ
G as follows. Its object is a G-filtered A∞ al-

gebra with Q coefficient. The morphism is a homotopy class of G-filtered A∞
homomorphisms. We call it the homotopy category of G-filtered A∞ algebras.

Now the main theorem of this paper is as follows.

Theorem 12. There exists a functor HAKCorrG → HAlgQ
G.

The proof can be extracted from [33]. It is proved also in §12, §13 over R

coefficient.

Remark 11. In Definition 23, we take homotopy class of the morphism of Ku-
ranishi correspondence as a morphism of our categories. One of the reasons
we did so is the fact that the associativity holds only up to homotopy. On
the other hand, as we explained in the proof of Lemma 7, the way how the
associativity breaks down is the same as the way how the associativity of the
product in loop space breaks down. Therefore, it is very likely that we can
define an appropriate notion of ‘A∞ category’ (or ∞ category) in place of
taking the quotient by the homotopy. Note A∞ category as defined in [20] is
a category where the set of morphisms has a structure of chain complex. The
‘A∞ category’ above is different from that. Namely the set of morphisms do
not have a structure of chain complex. Its relation to the A∞ category in [20]
is similar to the relation of A∞ space to A∞ algebra.

On the other hand, there is a notion of 2-category of A∞ category. (See [48]
§7.) In particular, there is a 2-category of A∞ algebras. Since, in the world of
A∞ structure, we can define ‘homotopies of homotopies of . . . of homotopies
of . . . ’ in a natural way (see [33] §30.12), it is also very likely that we can
define ∞ category (or ‘A∞ category’) whose object is an A∞ category or an
A∞ algebra and whose morphisms are A∞ functor or A∞ homomorphism.

Then it seems very likely that we can generalize Theorem 12 to the exis-
tence of an ‘A∞ functor’ (or ∞ functor) in an appropriate sense.

11 Floer theory of Lagrangian submanifolds.

In this section we explain briefly how the general construction of the earlier
sections were used in [33] to study Floer homology of Lagrangian submani-
folds.

Let (M, ω) be a compact symplectic manifold and L be its Lagrangian
submanifold. We assume that L is oriented and is relatively spin. Here L is said
to be relatively spin if its second Stiefel-Whiteney class lifts to a cohomology
class in H2(M ; Z2). Moreover we fix relative spin structure. (See [33] §44.1 for
its definition.) For example, if L is spin, the choice of spin structure determines
a choice of its relative spin structure.
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We denote by µ : π2(M ;L) → Z the Maslov index. (See [3] or [33] §2.1
for its definition.) Since L is oriented its image is contained in 2Z. We next
define E : π2(M, L) → R by

E(β) =
∫

β

ω.

This is well-defined since L is a Lagrangian submanifold. We put

G+(L) = Im(E, µ) ⊂ R × 2Z. (99)

Note this does not satisfy the conditions of Definition 12.
We next take and fix a compatible almost complex structure J on M .

Let Σ be a Riemann surface (which may have a boundary). We say that
u : Σ → M is J-holomorphic if

J ◦ du = du ◦ jΣ

where jΣ is the complex structure of Σ. Now we define

G0(J) =

{
(E(β), µ(β))

∣∣∣∣∣There exists a J-holomorphic map

u : (D2, ∂D2) → (M, L) of homotopy class β

}
.

By Gromov compactness [36], the monoid G(J) generated by G0(J) satisfies
the conditions of Definition 12.

Now for β ∈ G(J) we define a moduli space Mk+1(β) as follows. Let us
consider an element (Σ; z0, · · · , zk;β(·)) ∈ Mk+1,β . Let Σ =

⋃
a∈A D2

a be its
decomposition. (See §9.) We consider a continuous map u : (Σ, ∂Σ) → (M, L)
such that

(1) u : D2
a → M is J-holomorphic.

(2)
(
E([u|D2

a
]), µ([u|D2

a
])
)

= β(a).

Let
◦
Mk+1(β) be the isomorphism classes of all such (Σ; z0, · · · , zk;β(·);u).

We can compactify it by including the stable maps with sphere bubble. Let
Mk+1(β) be the compactification. (See [33] §2.2.)

We define
(ev0, · · · , evk) : Mk+1(β;J) → Lk+1

by putting
evi(Σ; z0, · · · , zk;β(·);u) = u(zi)

and extending it to the compactification. We also define

π0 : Mk+1(β;J) → Mk+1,β

by putting
π0(Σ; z0, · · · , zk;β(·);u) = (Σ; z0, · · · , zk;β(·))
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and extending it to the compactification. We next define

◦m,i : Mk+1(β1;J) evi ×ev0 Ml+1(β2;J) → Mk+l(β1 + β2;J) (100)

as follows. Let

S = (Σ; z0, · · · , zk;β(·);u) ∈ Mk+1(β1;J)
S ′ = (Σ′; z′0, · · · ,′ zl;β′(·);u′) ∈ Ml+1(β2;J)

with

ev0(S ′) = u′(z0) = u(zi) = evi(S). (101)

We identify zi ∈ Σ and z′0 ∈ Σ′ to obtain Σ′′. By (101) we obtain a J-
holomorphic map u′′ : (Σ′′, ∂Σ′′) → (M, L) by putting u′′ = u on Σ and
u′′ = u′ on Σ′. We set.

(z′′0 , · · · , z′′k+l−1) = (z0, · · · , zi−1, z
′
1, · · · , z′l, zi+1, · · · , zk).

We now define :

(Σ′′; z′′0 , · · · , z′′k+l−1;β
′′(·);u′′) = S ◦m;i S ′ ∈ Mk+l(β1 + β2;J).

We thus defined (100).

Proposition 4. Mk+1(β;J) is a G(J)-gapped filtered A∞ Kuranishi corre-
spondence.

This is [33] Propositions 29.1 and 29.2. (We remark that the moduli space
Mk+1(β;J) here is denoted by Mmain

k+1 (β;J) in [33].)
Theorem 12 and Proposition 4 (together with filtered analogue of Corol-

lary 2) imply that H(L;ΛQ
0,nov) has a structure of G(J)-gapped filtered A∞

algebra, which we write mJ .
We next explain its independence of almost complex structure J . (We

remark that mJ may also depend on the various choices (other than J) which
we make during the constructions. However Theorem 12 implies that it is
independent of such choices up to homotopy equivalence.) Let J0, J1 be two
compatible almost complex structures. Since the set of all compatible almost
structures are contractible, it follows that there exists a path t �→ Jt of almost
complex structures joining J0 to J1. We denote this path by J . We are going
to associate a morphisms of Kuranishi correspondence to J . We define a set

G0(J ) =
⋃

t∈[0,1]

G(Jt).

Let G(J ) be the monoid generated by it. Again by Gromov compactness
G(J ) satisfies the conditions of Definition 12.

Now we consider (Σ; z0, · · · , zk;β(·); ρ(·)) ∈ Fk+1,β . Here we remark
(Σ; z0, · · · , zk;β(·)) ∈ Mk+1,β and ρ : A → [0, 1] is a time allocation. We
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decompose Σ as Σ =
⋃

a∈A D2
a. We consider a continuous map u : (Σ, ∂Σ) →

(M, L) such that :

(1) u : D2
a → M is Jρ(a)-holomorphic.

(2) (E([u|D2
a
]), µ([u|D2

a
])) = β(a).

Let
◦
Fk+1(β;J ) be the set of all isomorphism classes of such objects

(Σ; z0, · · · , zk;β(·); ρ(·);u). By adding the stable map with sphere bubble we
can compactify it and obtain Fk+1(β;J ). (See [33] §19.1.) (We remark that
Fk+1(β;J ) is denoted by in Nk+1(β;J ) in [33].)

Proposition 5. Fk+1(β;J ) is a morphism between two G(J )-gapped filtered
A∞ Kuranishi correspondences Mk+1(β;J0) and Mk+1(β;J1).

We remark that G(Ji) ⊂ G(J ). Hence every G(Ji)-gapped filtered A∞ Kuran-
ishi correspondence may be regarded as a G(J )-gapped filtered A∞ Kuranishi
correspondence.

Thus, using Theorem 12, we obtain a filtered A∞ homomorphism

fJ : (H(L;ΛQ
0,nov),mJ0) → (H(L;ΛQ

0,nov),mJ1). (102)

We remark that if β = β0 = (0, 0) then

Fk+1(β0;J ) = Fk+1 × L, (103)

since every J-holomorphic map u with
∫

u∗ω = 0 is necessary constant. Using
this fact and filtered version of Theorem 8 (that is [33] Theorem 15.45) we
can prove that fJ is a homotopy equivalence.

We next assume that there are two paths J and J ′ of almost complex
structures joining J0 to J1. Again since the set of compatible almost complex
structures is contractible, it follows that there is a two parameter family Ĵ
of almost complex structures interpolating J and J ′. Using it we can prove
that the following.

Proposition 6. There exists G(Ĵ ) ⊇ G(J )∪G(J ′) and a homotopy Hk+1(β; Ĵ )
of the morphisms of filtered G(Ĵ )-gapped Kuranishi correspondences between
Fk+1(β;J ) and Fk+1(β;J ′).

See [33] §19.2.
Thus, by Theorem 12 and filtered version of Corollary 2, we have the

following :

Theorem 13. For each relatively spin Lagrangian submanifold L of a compact
symplectic manifold M we can associate a structure of filtered A∞ algebra on
H(L;ΛQ

0,nov).
It is independent of the choices up to the homotopy equivalence. The ho-

motopy class of the homotopy equivalences is also independent of the choices.
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This is Theorem A of [33]. We remark that since m1,β0 = 0 on H(L;ΛQ
0,nov),

it follows that any homotopy equivalence between two filtered A∞ structures
on it is an isomorphism, that is filtered A∞ homomorphism which has an
inverse. In [33] it is also proved that the filtered A∞ algebra we obtain is
unital.

The structure obtained in Theorem 13 is highly nontrivial. We gave various
calculations in [34] §37 and §55. See [14, 15] for some other calculations. We
gave also various applications to symplectic topology in [33] Chapter 6, [34]
Chapter 8 etc.. Since, in this article, we concentrate on foundations, we do
not explain calculations or applications here.

12 Transversality.

In §12 and §13, we will prove Theorem 12. Once stated appropriately, this
theorem can be proved by the argument we wrote in §6 as a proof of Theorem
4 except transversality and orientation. So in §12 and §13 we focus these two
points. In this section we discuss transversality.

We first remark that, after 1996, the transversality problem (in the theory
of pseudo-holomorphic curve, for example) becomes a problem of finite di-
mensional topology rather than one on (linear or nonlinear) analysis. In early
days of gauge theory or pseudo-holomorphic curve theory, various kinds of
perturbations were introduced and used by various authors for various pur-
poses. In those days, the heart of the study of the transversality problem was
to find an appropriate geometric parameter, by which we have enough room
to perturb the partial differential equations so that relevant transversality is
achieved. Therefore the transversality problem was closely tied to the anal-
ysis of the particular nonlinear differential equation we use. This situation
changed since the virtual fundamental chain technique was introduced. We
now can reduce the problem to one of a finite dimensional topology in quite
general situation, including all the cases in pseudo-holomorphic curve theory.
So the main point to work out is finite dimensional problem. One of the main
outcome of the discussion of the preceding sections is a formulation of this
finite dimensional problem in a precise and rigorous way. (Of course finding
explicit geometric parameter for perturbation can be interesting since it may
give additional information on the algebraic system we obtain and may have
geometric applications.)

When our situation is ‘Morse type’ and not ‘Bott-Morse’ type, the transver-
sality can be achieved in general by taking abstract multivalued perturbation,
that is by applying [30] Theorem 3.11 and Lemma 3.14, directly. Here ‘Morse
type’ in our situation means that the correspondence we study is a correspon-
dence between 0 dimensional spaces (that are discrete sets). Thus in this case
the transversality problem had been solved by the method of [30].

In the ‘Bott-Morse’ case, the problem is more involved. Namely in case
we study correspondence between manifolds of positive dimension, we need to
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perform the construction of virtual fundamental chains more carefully. This
is the point we focus in this section. We refer [33] §30.2 (especially right after
Situation 30.7) for the explanation of the reason why Bott-Morse case is harder
to study.

As far as the author knows at the time of writing this article, there are
two methods to deal with Bott-Morse case, both of which works in all the
situations that are important for the applications to pseudo-holomorphic curve
theory. One uses a kind of singular (co)homology and the other uses de Rham
cohomology.

The first method was worked out in detail in [33] §30. As far as the author
knows, this is the only way which works over Q (or Z sometimes) coefficient,
in the general situation. The other advantage of this method is that singular
homology is more flexible and so is useful for explicit calculations. (See [34]
§56, §57 for some examples of calculations using singular homology.) The dis-
advantage of this method is that it destroys various symmetry of the problem.

The first method is summarized as follows. We first choose a countable
set of smooth singular chains on our manifold M (in the case of Theorem
4 for example) and perturb the moduli space Mk+1 etc. so that the fiber
product (43) is transversal for each (P1, · · · , Pk) with Pi in the set we choosed
above. We then define the operations by Formula (43). The trouble is that the
chain which is an output of the operation, may not be in the chain complex
generated by the chains we start with. So we increase our chain complex
by adding those outputs. We next perturb again the moduli space Mk+1 to
achieve transversality with those newly added chains. One important point is
that we need to perturb Mk+1 in a way depending on the chains Pi on M . We
continue this process countably many times and obtain a structure we want.
One needs to work out rather delicate argument to organize the induction so
that we can take such perturbations in a way so that they are all compatible
to each other. We omit the detail and refer [33].

The second approach, using de Rham theory, works only over R coeffi-
cient. It is however somewhat simpler than the first one. In fact, for example,
to prove Corollary 1 over R coefficient using de Rham theory, there is noth-
ing to do in geometric side. Namely de Rham complex has a ring structure
which is associative in the chain level. Therefore, by applying Corollary 2,
we immediately obtain Corollary 1 over R coefficient. The case of Kuranishi
correspondence is not such easy but is somewhat simpler than working with
singular homology. The method using de Rham cohomology is somewhat sim-
ilar to the discussion by Ruan in [59] and also to the argument of [27] §16.
It was used systematically in [33] §33 and in [29]. Another advantage of this
method is that it is easier to keep symmetry of the problem. For example we
can prove the cyclic symmetry of the A∞ algebra in Theorem 13 in this way.
We will explain this method more later in this section.

We remark that there is a third method which works under some restric-
tions. It is the method to use Morse homology [19] (see for example [60]) or
Morse homotopy ([20, 6, 23]). Let us discuss this method briefly.
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We first consider the case of Theorem 4. We take several functions fi on
M (in the case of Theorem 4 for example) so that fi − fj for i 
= j are Morse
functions and the gradient flow of fi−fj are Morse-Smale. We also assume that
the stable and unstable manifolds of fi−fj for various i 
= j are transversal to
each other. (Of course the stable manifold of fi−fj is not transversal to itself.
So we exclude this case.) We then regard the stable manifolds of fi − fi+1 as
a chain Pi and consider (44). Then we obtain an operator

mk : C∗(M ; f0 − f1) ⊗ · · · ⊗ C∗(M ; fk−1 − fk) → C∗(M ; f0 − fk). (104)

Here C∗(M ; f1−f2) is the Morse-Witten complex of f1−f2. (It is the complex
(19) for Morse function f = f1−f2. See for example [60].) More precisely, since
we need to squeeze our structure to the Morse-Witten complex which is much
smaller than singular chain complex, we need to combine the construction
above with the proof of Theorem 2 as is done in [45] §6.4. Then the structure
constant of the operation (104) turns out to be obtained by counting the order
of appropriate sets of maps from a metric rooted ribbon tree to M such that
each edge will be mapped to a gradient line of fi − fj . (See [20] §3,4 and [31]
§12, §13.) It satisfies the relation (33) and hence defines a (topological) A∞
category. Since fi = fj is excluded. It is difficult to define A∞ algebra in this
way, directly.

We can generalize this construction to the case of Theorem 13 under some
restrictions. In the situation of Theorem 13, operators

mk,β : C∗(L; f0 − f1) ⊗ · · · ⊗ C∗(L; fk−1 − fk) → C∗(L; f0 − fk) (105)

are defined by counting a map from the configuration as in Figure 15 below
to L. Here we put functions f0, . . . , fk on D2 \ tree according to the counter
clockwise order. The small circles in the figure are mapped to the boundary
value of a pseudo-holomorphic discs which bounds L. We assume that the sum
of the homology classes of those pseudo-holomorphic disc is β. If e is an edge
of the tree, then we assume that e is mapped to a gradient line of fi−fj . Here
e is between two domains on which fi and fj are put. (Figure 15.1 is copied
from page 429 of [23]. In [23] the case when the Lagrangian submanifold
is a diagonal of the direct product M × M of symplectic manifold M was
discussed. Y.-G. Oh [56] page 260 generalized it to more general Lagrangian
submanifold L in the case of m1, and also pointed out in [56] page 264 that it
can be generalized to higher mk in some case.)

An important point of this construction is a cancellation of the two poten-
tial boundary of the moduli space of such maps. One of them corresponds
to the shrinking of the edge, and the other is a splitting of the pseudo-
holomorphic disc into a union of two discs. (See Figure 16.) This point was
used for example in [32] page 290 for this purpose. (It was written there as
the cancellation of (A4.70.2) and (A4.70.4).) We need however to put a re-
striction on our Lagrangian submanifold L to make this argument rigorous.
Namely for general Lagrangian submanifold L for which m0 
= 0, we need to
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include tad pole (such as in the Figure 17 below). This causes some prob-
lem to rigorously define (104). In case when our Lagrangian submanifold is
monotone with minimal maslov index ≥ 2, we can exclude such phenomenon.
This fact was proved by Y.-G. Oh in [55] who established Floer homology
of Lagrangian submanifold under this assumption. Under the same condition,
Buhovsky [9] recently studied multiplicative structure of Floer homology using
Morse homotopy.

Now we will discuss transversality problem in more detail using de Rham
cohomology. We consider the situation of Kuranishi correspondence over M ,
that is the situation of Definition 21. Let Λd(M) be the set of all smooth d
forms on M . Using the correspondence (88) we want to construct a homomor-
phism mk,β : Λd(Mk) → Λd+1−µ(β)(M). Intuitively we might take

mk,β “=” π1! ◦ π∗
2 , (106)

where π2 is pull back of the differential form and π1! is integration along
fiber. We remark however that integration along fiber is not well-defined as a
smooth form unless π1 is a submersion. Therefore we need to take appropriate
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smoothing of the virtual fundamental chain to make sense of (106). We need
to perform smoothing in a way compatible with the operadic structure of our
K-spaces, which describes how they are glued. We explain this construction in
three steps. At the first step, we work in one Kuranishi chart. At the second
step, we work on each K-space Mk+1(β). Finally we explain the way to make
it compatible for various k, β.

Step 1 : Let V = (V, E, Γ, s, ψ) be a Kuranishi chart of Mk+1(β). We first
review the notion of multisection which was introduced [30] Definition 3.1,
3.2.

Let E = V × RnV . We denote by meas(RnV ) the space of all compactly
supported Borel measures on RnV . Let k ∈ Z>0. We denote by meask(RnV )
the set of measures of the form 1

k

∑k
c=1 δvc where δv is a delta measure on

RnV supported at v. The Γ action on RnV induces a Γ action on meask(RnV ).

Definition 24. A k-multisection of E is by definition a Γ equivalent map
s : V → meask(RnV ).

It is said to be smooth if, for any sufficiently small U ⊂ V , we have smooth
maps sc : U → RnV (c = 1, · · · , k) and smooth functions ac : U → R such
that

s(x) =
1
k

k∑
c=1

δsc(x) (107)

We say sc a branch of s.

We remark that we do not require sc to be Γ equivariant. Namely the Γ action
may exchange them.

Remark 12. The multisection is introduced in [30] in a slightly different but
equivalent way as above. The smoothness of multisection is a bit tricky thing
to define. Here we assume that the branch sc exists locally. This is related to
the notion liftability discussed in [30]. The liftable and smooth k-multisection
in the sense of [30] is a smooth k-multisection in the sense above.

In case each branch is transversal to 0 the inverse image of 0 of multisection
looks like the following Figure 18. (Figure 18 is a copy of [30] Figure 4.8.)
Since we assumed that (π0, π1, π2) is weakly submersive, it follows that

(π1, π2) : V → Mk+1

is a submersion.
Let WV be a manifold which is oriented and without boundary. We do not

assume WV is compact. (We choose that the dimension of WV is huge.) We
consider smooth k-multisection

sV : V × WV → meask(RnV )

of the pull back of E to V ×WV . The action of Γ on WV is the trivial action.
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Fig. 18.

Definition 25. We say that sV is strongly submersive if the following holds.
(1) For each (x, w) ∈ V × WV we may choose its branches sV,c (c = 1, · · · , k)
on a neighborhood U of (x, w), such that 0 is a regular vales of it.
(2) We put

s−1
V,c(0) ∩ U = {(x, w) ∈ U | sV,c(x, w) = 0},

which is a smooth manifold by (1). Then

(π1, π2) : s−1
V,c(0) ∩ U → Mk+1.

is a submersion.

Hereafter we say multisection in place of k-multisection in case we do not need
to specify k.

Lemma 8. We may choose WV so that for any ε there exists a smooth mul-
tisection such that each branch of it is in the ε neighborhood of s point-wise.

Proof : We first choose WV huge and find a single valued section sε : V ×WV →
RnV which approximate s and that 0 is its regular value. We then put

s(x, w) =
1

#Γ

∑
δγsε(γ−1x,w). (108)

It is straightforward to see that (108) has the required properties. ��
We take a smooth multisection sV which is strongly submersive. We next

take a smooth provability measure ωV on WV which is Γ invariant and is of
compact supported. We put

WV = (WV , sV , ωV).

We next choose an open covering Uα of V × WV such that sV has an
expression
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sV =
1
kα

kα∑
c=1

δsV,α,c
(109)

on Uα, and choose a partition of unity χα subordinate to Uα.
We regard ωV as a differential form of degree dimWV and pull it back

to s−1
V,α,c(0). We denote it by the same symbol. Now we define perturbed

correspondence CorrWV
V : Λd(Mk) → Λd+1−µ(β)(M) by

CorrWV
V (u) = ±

∑
α

1
#Γ · kα

∑
i

(π1+!)
(
(χαπ∗

2+(u) ∧ ωV)|s−1
V,α,c(0)

)
. (110)

Here π1+ : s−1
V (0) → M is a composition of projection with π1, and the map

π2+ is defined in the same way. The integration along fiber in (110) is well-
defined since π1+ is a submersion and ωV is of compact support. We do not
discuss sign in this section. See §13.

We remark that the right hand side of (110) is independent of the choices of
the covering Uα, decomposition (109), and the partition of unity, but depend
only on the data encoded in WV . So hereafter we write the right hand side of
(110) as

± 1
#Γ

(π1+!)
(
(π∗

2+(u) ∧ ωV)|s−1
V (0)

)
, (111)

for simplicity.
We remark that sV may be regarded as a family of multisections sV,w(·) =

sV(·, w) parametrized by w ∈ WV . The correspondence (111) is an average of
the correspondences by s−1

V,w(0) by the smooth probability measure ωV . The
technique of multisection uses finitely many perturbations and its average.
Here we take a family of uncountably many perturbations and use its average.

Step 2 : We next combine and glue the correspondence for the Kuranishi
charts in a given Kuranishi atlas of Mk+1(β). Let Vi = (Vi, Ei, Γi, si, ψi),
i = 1, · · · , I be a Kuranishi atlas. We may enumerate them so that i ≺ j
implies i < j.

We will construct WVi
by induction on i as follows. Suppose we constructed

them for each j with j < i. We define W0,i and WVi
inductively. We put

WVi =

⎛⎝∏
j<i

W0,j

⎞⎠× W0,i

By induction hypothesis, W0,j (j < i) are defined. We will define W0,i later.
We can extend sVj

uniquely to a section si,Vj
of Ej on Γi(ϕij(Vij))×WVj

so that it is Γi invariant. Note that we use Condition (7) in Definition 18 here.
We may regard it as a section on

Γi(ϕij(Vij)) × WVi (112)
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by composing it with an obvious projection. We next extend it to a tubular
neighborhood of (112) as follows. By (85) we can identify

ϕ∗
ijEi

∼= Ej ⊕ Nϕij(Vij)Vi,

where Nϕij(Vij)Vi is he normal bundle. A point in a tubular neighborhood of
ϕij(Vij) can be written as (ϕij(x), v) here v is in the fiber of Nϕij(Vij)Vj . We
now put

si,Vj ((ϕji(x), v), (wk)k≤i) = si,Vj (ϕji(x), (wk)k≤j) ⊕ v.

(More precisely we take branch of our multivalued section si,Vj
and apply the

above formula to each branch.)
We extend it by using Γi invariance. We denote it by the same symbol

si,Vj . By using induction hypothesis, the sections we constructed above for
various j, coincide at the part where the tubular neighborhoods of ϕij(Vij)
for different j intersect to each other. Thus we obtain a desired section on
a neighborhood of the union of the images ϕij for various j. Now we choose
W0,i and extend this section so that it satisfies the conditions (1) (2) (3) of
Step 1. Moreover we can choose

ωVi =
∏

ω0,j × ω0,i,

where ω0,j is a provability measure on W0,j chosen in earlier stage of induction.
We thus have

WVi = (WVi , sVi , ωVi).

Now we define

CorrWVi

Mk+1(β)(u) =
∑

i

± 1
#Γi

(π1+!)
(
(π∗

2+(u) ∧ ωVi)|Vo
i ∩s−1

Vi
(0)

)
. (113)

Here
Vo

i = Vi \
⋃
i≺l

(Vli × Wi).

We remark that precisely speaking the right hand side of (113) should be
written in a way similar to (110) using partition of unity and branches.

By construction, we have the following equality.

1
#Γj

(π1+!)
(
(π∗

2+(u) ∧ ωVi)|(Vij×Wj)∩s−1
Vi

(0)

)
=

1
#Γi

(π1+!)
(
(π∗

2+(u) ∧ ωVi)|(Tube(Γi·ϕ(Vij))×Wi)∩s−1
Vi

(0)

)
.

(114)

Here Tube(Γi · ϕ(Vij)) is the tubular neighborhood of Γi · ϕ(Vij). We can use
this fact to prove (113) is smooth.
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(114) also imply that when we apply Stokes’ formula, the boundary term
is the integral on the boundary of Mk+1(β).

Step 3 : Now we will explain the way how we perform the above construction
for various K-spaces, Mk+1(β) in a way so that they are compatible for various
k, β.

We first explain the reason why, by the method of continuous family of
perturbations, we can construct the compatible system of virtual fundamental
cochains inductively, in the situation where fiber product appears.

Let V = (V, E, Γ, s, ψ), V ′ = (V ′, E′, Γ ′, s′, ψ′) be Kuranishi neighborhoods
of p ∈ Z and p′ ∈ Z ′ respectively. We consider the diagram

M1
π1←−−−− V

π2−−−−→ M
π′
1←−−−− V ′ π′

2−−−−→ M2
(115)

of smooth manifolds such that (π1, π2) : V → M1×M , (π′
1, π

′
2) : V ′ → M×M2

are submersions.
We take WV = (WV , sV , ωV), WV′ = (WV′ , sV′ , ωV′) as in step one. Namely

we assume that (π1, π2) : s−1
V (0) → M1 × M is a submersion and we put a

similar assumption for (π′
1, π

′
2). Then, in the same way as (110), we obtain

homomorphisms

CorrWV
V : Λ(M1) → Λ(M), CorrWV′

V′ : Λ(M) → Λ(M2) (116)

by correspondences. The composition of them is obtained by a correspondence
which is a fiber product of V and V ′, as follows. We consider

V ×M V ′ = (V π1 ×π2 V ′, E × E′, Γ × Γ ′, s × s′)

and

(WV × WV′ , sV × sV′ , ωV × ωV′). (117)

We write (117) as WV × WV′ . We use them in the same way as Step 1 and
obtain CorrWV×WV′

V×MV′ . It is easy to see that :

CorrWV×WV′
V×MV′ = ±CorrWV

V′ ◦ CorrWV′
V . (118)

(We do not discuss sign in this section. See the next section.) The formula
(118) plays a crucial role to prove the A∞ relation for the operations which
we will define by the smooth correspondence as in (110). In order to use (118)
for this purpose, we need to choose the continuous family of perturbations
so that at the boundary of each of the spaces Mk+1(β), the perturbation is
obtained as the fiber product such as (117). Here we remark that by (5) of
Definition 21, the boundary of Mk+1(β) is decomposed to a union of fiber
products of various Mk′+1(β′). We thus proceed inductively and construct
continuous family of perturbations.

To carry out the idea described above, we start with defining the order by
which we organize the induction. The following definition is taken from [33]
Definitions 30.61 and 30.63. Let G be as in Definition 12.
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Definition 26. For β ∈ G, we put :

‖β‖ = sup {n |∃βi ∈ G \ {(0, 0)} β1 + · · · + βn = β} + [E(β)] − 1.

Here [x] is the largest integer ≤ x. We put ‖(0, 0)‖ = −1.
We define a partial order < on G×Z≥0 as follows. Let β1, β2 ∈ G, k1, k2 ∈

Z≥0. We define > so that (β1, k1) > (β2, k2) if and only if one of the following
holds.

(1) ‖β1‖ + k1 > ‖β2‖ + k2. (2) ‖β1‖ + k1 = ‖β2‖ + k2 and ‖β1‖ > ‖β2‖.
We will define the continuous family of perturbations on Mk+1(β) according
to the (partial) order < of (β, k).

We assume that we have a continuous family of perturbations for all
Mk′+1(β′) with (β′, k′) < (β, k) and construct a perturbation on ∂Mk+1(β).
Let x ∈ ∂Mk+1(β). We assume that x is contained in the codimension d
corner of Mk+1(β) (but is not in the codimension d + 1 corner of it). (Here
d ≥ 1.) We put

S = (Σ; z0, · · · , zk;β(·)) = π0(x) ∈ Mk+1,β .

Σ has exactly d singular points. Let Σ = ∪a∈AD2
a be the decomposition of

Σ. (Here #A = d + 1.)
For each a ∈ A, we define

Sa = (D2
a; za;0, · · · , za;ka

;βa(·)) ∈ Mka+1,βa

as follows. D2
a is the disc. The marked points of D2

a are singular or marked
points of Σ which is on D2

a. βa = β(a) and βa(·) is the map which assigns
βa to the unique component of D2

a. The 0-th marked point za;0 is defined as
follows. If z0 ∈ D2

a then za;0 = z0. If not there is unique D2
b such that a < b

and D2
b ∩D2

a 
= ∅. Here < is the order on A which is defined during the proof
of Theorem 5. (See Figure 19.) Then za;0 is the unique point in D2

a ∩D2
b . We

can use (1), (2) and (3) of Definition 21 repeatedly to find a unique element
xa ∈ Mka+1(βa) such that π0(xa) = Sa and that xa is sent to x after applying
◦m,∗ repeatedly. In fact S is obtained from Sa by applying ◦i several times.
We apply ◦m,∗ to xa in the same way as ◦i is applied to Sa. Then Definition
21 (3) implies that this composition is independent of the order to apply it.

We have

Lemma 9. (ka, βa) < (k, β) for each a.

The proof is elementary and is omitted. (See [34] Lemma 30.65.)
Now we fix Kuranishi neighborhood Va = (Va, Ea, Γa, sa, ψa) of xa for each

a ∈ A. Then by applying (3) and (4) of Definition 21 repeatedly, we find that
a Kuranishi neighborhood of x is obtained as follows.

V =
∏

a,Md−1

Va =

⎛⎝ ∏
a,Md−1

Va × [0, ε)d−1,
∏
a

Ea,
∏

sa,
∏
a

ψa

⎞⎠ (119)
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zb;0

zb;1

zb;2
zb;3

za;0
D2

a

D2
b

Fig. 19.

Here
∏

a,Md−1 Va is an appropriate fiber product of Va over Md−1. (See [33]
§29.1 for the detailed description of this fiber product.) The factor [0, ε)d

appears since the point x lies on the codimension d corner.
By inductive hypothesis, we already defined a continuous family of per-

turbations WVa = (WVa , sVa , ωVa) for each a. We then define WV =
∏

a WVa .
(Note that some of the factors WVa

coincides to each other. In that case we
repeat the same factor as many times as WVa

appeared in WV .)
We also define sV etc. by restricting the direct product of sVa etc.. to∏

a,Md−1 Va × {0}d−1. We thus obtain the required continuous family of per-
turbations WV on the set of codimension d corners of the Kuranishi neigh-
borhood of x. We can extend its to its neighborhood by composing with the
obvious projection of [0, ε)d−1 factor to {0}. We thus obtain a continuous
family of perturbations in a Kuranishi neighborhood of x.

By construction it is obvious that the system of family of perturbations
above is compatible with the way we glued them at the earlier stage of in-
duction using Step 2. So we obtain a continuous family of perturbations in a
neighborhood of the boundary. Then we use Steps 1 and 2 to extend it to the
whole Mk+1(β).
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Now since the continuous family of perturbations we constructed is con-
sistent with the decomposition of the boundary given in Definition 21 (6), it
follows from (118) and Stokes’ formula that the operations mk,β obtained in
this way satisfies the A∞ formula (33). We thus obtain a filtered A∞ structure
on the de Rham complex.

This is the transversality part of the proof of Theorem 12. (We discussed
only the construction of operations. The construction of morphisms and their
homotopies are similar.)

Remark 13. Actually there is another serious trouble to be taken care of in
order to rigorously establish filtered A∞ structure. This trouble is pointed
out in [33] §30.3, discussed in detail in [33] §30 and is summarized as follows.
We took continuous families of perturbations inductively. The zero set s−1

V (0)
should be in a small neighborhood of the original moduli space s−1(0), since
if it runs out of the Kuranishi neighborhood we will be unable to use Stokes’
theorem to prove A∞ formula. By taking the perturbation small, we can do
it without difficulty as long as we have only finitely many steps to work out.
However in an actual geometric situation, we will define an infinite number of
operations mk,β . This causes a trouble in the following way. Let us consider the
argument of Step 3 above. We first choose ε enough small so that s−1

V (0) which
we construct at first stage of the induction lies in an ε neighborhood of the
original moduli space. Then in the k-th step, the perturbation we find on the
boundary or corner is a fiber product of k perturbations of the earlier steps.
So the perturbation which is already defined is away from the original moduli
space by a distance something like kε. We remark that, in the fiber product
decomposition like (119), the same factor (which was already determined at
the first stage of the induction, for example) may appear many times. And
once we fixed the perturbation at some stage of the induction, we are not
supposed to change it later. Thus the zero set of the perturbed section runs
out of the Kuranishi neighborhood at some finite stage.

The idea to overcome this difficulty is as follows. For each fixed (n, K)
we can choose our perturbations so that we can continue the construction for
each (β, k) with (β, k) ≤ (n, K). (Here < is the order defined in Definition 26.)
We next define an appropriate notion of An,K structure. Then, in this way, we
can construct an An,K structure for any but fixed (n, K). We can also prove
that the An,K structure which is constructed above, is homotopy equivalent
to An′,K′ structure as an An,K structure, for arbitrary n′, K ′. We finally use
homological algebra to show that this implies that the An,K structure can be
extended to an A∞ structure.

The argument outlined above is carried out in detail in [33] §30. The same
trouble seems to occur frequently for the rigorous constructions of various
topological field theories by Kuranishi correspondence. The method we ex-
plained above seems to work in all the cases. (At the time of writing this
article, the author does not know any other way to resolve this trouble.) An
earlier example where a similar trouble appeared is the study of Floer ho-
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mology of periodic Hamiltonian system in monotone symplectic manifold. K.
Ono [58] resolved this difficulty in that case in a similar but slightly different
way, using projective limit. (This is the reason why the result of [58] is more
general than that of [38].)

In order to prove Theorem 12, we need to work out the same argument for
morphisms and homotopies. In order to carry it out in the case of homotopies,
we need to show compatibility of An,K homotopies between various different
n, K. This requires us to study the notion of homotopy of homotopies. Two
(rather heavy) subsections §30.12 and §30.13 of [33] are devoted to this point.

13 Orientation.

In this section we discuss sign or orientation. The problem of orientation
and sign appears in two related but different ways, in the construction of
topological field theory.

(1) To prove that the K-space of the appropriate moduli problem is orientable.
To find and describe the geometric data which determines the orientation of
the K-space.
(2) To organize the orientations of several fiber products appearing in the
construction in a consistent way. To fix sign convention of the algebraic sys-
tem involved. To prove that the system of orientations organized above is
consistent with the sign convention of the algebraic systems.

The point (1) is a problem of family index theory. (This observation
goes back to [17].) For example, in the case of the moduli space of pseudo-
holomorphic discs which bounds a given Lagrangian submanifold, it is proved
that the moduli space is orientable in case L is relatively spin, in [32] and [63].
We also remark that even in case we can prove that the moduli space involved
is orientable (in a way consistent with the fiber products as in Definition 21
(5)), it is a different problem to specify the geometric data which determines
the orientation. In other words, proving the existence of a coherent orientation
is not enough to complete this step. Actually there can be several different
choices of coherent orientations, in general. (See [13] for explicit example of
this phenomenon in Lagrangian Floer theory.)

Such phenomenon already appears in the classical Morse theory as follows.
Let M be a smooth manifold with H1(M ; Z2) 
= 0 and f : M → R be a
Morse function. To define Morse homology we need to specify orientation
of the moduli space M(p, q) of the gradient lines joining two given critical
points p, q. The system of orientations of them for various p, q are said to be
coherent if it is consistent with fiber product structure in Formula (17). We
can find such coherent orientation for each representation : π1(M) → Z2 and
different choices induce different homology group. So we need to find some
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way to distinguish trivial representation from other ones, to find a system of
orientations which gives the ordinary homology.

The point (2) is of different nature. At first sight, it might look rather a
technical problem that could be resolved by ‘patience’ and ‘carefulness’. (By
this reason the importance of this point is frequently overlooked.) Indeed,
in early days, when the structure involved was rather simple, one could fix
sign convention by hand once the point (1) was understood. However as time
going and as the structure to deal with becoming more advanced, it gets
harder to find a correct sign convention. Especially the work to check whether
it coincides with the sign or orientation of geometric origin becomes more and
more cumbersome. (It seems that the amount of the works to study sign grows
exponentially as the complexity of the structure we deal with grows.) Then,
one arrived in the point where fixing sign and orientation only by patience
and carefulness becomes impossible. We thus need some ‘principle’ to fix sign
convention and to show that it coincides with one of geometric origin. In other
words, studying sign is related to the procedure to ensure that the construction
is enough canonical.

In this section, we do not discuss point (1) since it is related to the ge-
ometric origin of the moduli space (or K space) and so is not a part of the
general theory we are building. Our focus in this section is point (2). The
major part of [33] Chapter 9 is actually devoted to this point. There we still
gave an explicit choice of signs and of the orientations of the moduli spaces
and its fiber products. Though there are some ‘principle’ behind each of our
choices, it is hard to state it in a mathematical and rigorous way, so it was
rarely mentioned explicitly. And the proof in [33] Chapter 9 of the consistency
of the orientation and sign was based on calculations.

The purpose of this section is to explain the way how we translate the
discussion of [33] Chapter 9 to the more abstract situation of this paper. (In
[33] Chapter 9 the situation of Lagrangian Floer theory is discussed.) On
the way, we state precisely the compatibility condition of orientations among
various spaces Mk+1(β). This point was postponed in Definition 21.

We first introduce some notations. Let Sk be the symmetric group of order
k!. We put M+

k+1(β) = Sk × Mk+1(β) on which Sk acts by the left multipli-
cation of the first factor. There is a one to one correspondences between the
set of orientations on Mk+1(β) and the set of orientations on M+

k+1(β) such
that the action of σ is orientation preserving if and only if σ ∈ Sk is an even
permutation. We hereafter identify them.

Remark 14. In the case when Mk+1(β) is the moduli space Mk+1(β;J) of
pseudo-holomorphic discs (which we introduced in §11), the space M+

k+1(β)
is regarded as a compactification of the set of (D2; z0, · · · , zk;u) such that
zi ∈ ∂D2 and that u is J-holomorphic map with (

∫
u∗(ω), η([u])) = β. Note we

do not require the points z0, · · · , zk to respect the cyclic order. The Sk action
is defined by (z0, z1, · · · , zk) �→ (z0, zσ(1), · · · , zσ(k)). The geometric meaning
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of the discussion below becomes clearer if the reader keeps this example in his
mind.

The map
(π1, π2) : (ev0, e1, · · · , evk) : Mk+1(β) → Mk+1

is extended to M+
k+1(β) by

evi(σ,x) = evσ(i)(x) (i 
= 0), ev0(σ,x) = ev0(x).

We extend ◦m,i to

◦m,i : M+
k+1(βi)evi

×ev0 M+
l+1(β2) → M+

k+l(β1 + β2)

by
(σ1,x1) ◦m,i (σ2,x2) = (σ, x1 ◦m,σ1(i) x2)

where σ is defined by

σ(j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1(j) j < i, σ1(j) < σ1(i)
σ1(j) + l − 1 j < i, σ1(j) > σ1(i)
σ2(j − i + 1) + σ1(i) − 1 i ≤ j < i + l − 1
σ1(j − l + 1) j ≥ i + l, σ1(j − l + 1) < σ1(i)
σ1(j − l + 1) + l − 1 j ≥ i + l, σ1(j − l + 1) > σ1(i)

(120)

M+
k+1(β) is a K-space whose boundary stratum is a union of the images of

◦m,i. Namely

◦m,i

(
M+

k+1(βi) evi
×ev0 M+

l+1(β2)
) ⊂ ∂M+

k+l(β1 + β2)

The compatibility condition of the orientations is defined as follows.

Definition 27. We say the orientations of Mk+1(β) for various k, β are com-
patible if the embedding

◦m,i : M+
k+1(β1)ev1 ×ev0 M+

l+1(β2) ⊂ (−1)(k−1)(l−1)+(dim M+k)∂M+
k+l(β1 + β2)

is orientation preserving for every k, l, β1, β2.

Actually this is a copy of the conclusion of [33] Proposition 46.2.

Remark 15. (1) We remark that, in Definition 27, the condition is put only
on the fiber product by ev1. Using the action of symmetric group, the com-
patibility of the orientations of other cases (namely the case when the fiber
product is taken by evi) are induced automatically. This is the reason why we
introduced M+

k+1(β1).
(2) Actually we need to fix several conventions to discuss signs. Especially we
need to specify the orientation of the fiber product. Here we omit them and
refer [33] Chapter 9.
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Now we consider chains (Pi, fi) on M . Here Pi is a smooth manifold and fi

is a smooth map Pi → M . Under the appropriate transversality condition
we consider the fiber product of them with Mk+1(β) and obtain a compact
oriented and smooth manifold. We define an orientation of it by

(−1)∗Mk+1(β) ×Mk (P1 × · · · × Pk) (121)

with

∗ = (dimM + 1)
k−1∑
j=1

j∑
i=1

(dimM − dimPi).

This definition is taken from [33] §48. Now we can translate the proof of [33]
Proposition 48.1 word to word to our more abstract situation and show the A∞
relation for the operations mk,β defined by (121), as far as the transversality
condition is satisfied. We remark that the notations of this section and one in
[33] Chapter 9 corresponds as follows :

M+
k+1(β) ←→ Mk+1(β), Mk+1(β) ←→ Mmain

k+1 (β).

In §12, to discuss transversality problem, we use de Rham complex. So the
orientation problem which is required to work out the proof of §12 is fixing
the sign of the operations defined by (111) etc. on differential forms on M . We
can reduce this problem to the problem about sign on the operations among
the chains (Pi, fi) in M as follows. (This is explained in more detail in [33]
§53.)

In §12 we constructed the operations by using continuous family of per-
turbations as follows. We took W a huge parameter space and consider cor-
respondence

Mk π2←−−−− V × W
π1−−−−→ M.

Here we have an obstruction bundle E over V and have a multisection s :
V ×W → E ×W . We fix a branch sc and took s−1

c (0) ⊂ V ×W . We also use
ω a top form on W . We pull it back to s−1

c (0) and the operation is defined by

u �→ ±π1!
(
π∗

2(u) ∧ ω|s−1
c (0)

)
, (122)

where u is a differential form on Mk. The other part of the construction such
as taking partition of unity etc. does not affect the problem of sign. Therefore,
we only need to find a way to define the sign ± in (122) so that the resulting
operation satisfies the A∞ relation.

To reduce this problem to the orientation of fiber product as in (121),
we proceed as follows. We can approximate our smooth form u by a current
realized by the product of chains (Pi, fi). So while discussing orientation prob-
lem we only need to consider the case u = (u1, · · · , uk) and ui is realized by
(Pi, fi). We next take generic w ∈ W . Then the fiber product
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(s−1
c (0) ∩ (V × {w})) ×Mk (P1 × · · · × Pk) (123)

is well-defined. (Namely the transversality holds.) For such w we can define
the sign by the same formula (121). In fact s−1

c (0) ∩ (V × {w}) is (an open
subset of) a perturbation of our moduli space Mk+1(β).

We next regard ω as a smooth measure. We remark that we need to fix an
orientation of W for this purpose. We did it already when we identify smooth
measure on W with differential form of degree dimW in §12.

Using this smooth probability measure we average the current which is
obtained by pushing out (123) to M by ev0. It is easy to see that the average
coincides with (122). Thus using (121) we can fix the sign in (122). A∞ relation
(with sign) of the operation given by (121) implies the A∞ relation with sign
of the operation defined by using (122).

This is the argument to reduce the problem of sign in Theorem 12 to the
result of [33] Chapter 9. We discussed only the case of construction of filtered
A∞ algebra. The orientation problem in the construction of filtered A∞ ho-
momorphism and homotopy between them can be reduced to [33] Chapter 9
in the same way. The proof of Theorem 12 is now complete.

We finally go back to a point mentioned before, that is the data used to
determine the sign of our A∞ algebra. Using the consistency condition as
in Definition 27, the orientation of the K-spaces Mk+1(β) is determined by
Mk′+1(β′) for other k′, β′ with (β′, k′) < (β, k). Here the order < is introduced
in Definition 26. So the choice of orientation of Mk+1(β) for which (β, k) is
minimal determines the orientation of the other Mk+1(β). (More precisely we
can slightly modify < to <′ so that (β′, k′) < (β, k) in and only if Mk′+1(β′)
appears in the boundary of Mk+1(β). <′ above implies < in Definition 26.
But the converse may not be true.) The minimal (β, k) is (β0, 2) and (β, 0)
where β0 = (0, 0) and β is a primitive element of G.

In the situation of §11, M2+1(β0) is L itself. We can fix the orientation of
it so that m2,β0 is induced by usual cup product as in Example 1.

The orientation of M1(β) is more involved. It depends on the geometric
data such as relative spin structure in the case of Lagrangian Floer theory.
We remark that in general we can not choose orientations of various M1(β)
with β primitive independently, because then the compatibility condition may
not be satisfied. In fact if β1 + β2 = β′

1 + β′
2 = β are decompositions of β

to different sum of primitive elements, then by looking the consistency at
M1(β), the choice of the orientations of three of M1(β1), M1(β2), M1(β′

1),
M1(β′

2) determine the orientation of the fourth one automatically. This kind
of phenomenon occurs since our monoid G may not be free.

If G is free (namely is isomorphic to Zm
≥0 for some m), then the choice of

the orientation of M1(β) for the generators β of our monoid G corresponds
one to one to the choice of system of orientations of all Mk+1(β) satisfying
the compatibility condition. In such a situation there is a simpler proof of the
existence of consistent system of orientations and signs. See [27] §7 for such
an argument.
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We remark that we choose G satisfying Definition 12, because of Gro-
mov compactness which is related to nonlinear analysis of pseudo-holomorphic
curve theory. The problem of orientation is related to index theory and to lin-
ear analysis. Therefore during the discussion of the sign, we can replace G by
a bigger monoid. Actually we can take G = G+(L) in (99). This can be a way
to reduce the problem to the case when G is free.

14 Variations and generalizations.

There are many directions we can generalize the construction of this article.
We mention some of them briefly below. Many of them are subjects of the
future research and the argument of this section is rather brief. Proof of none
of them are regarded to be completed except those which are proved in the
reference rigorously.

14.1 Unitality

There is a unital version of the notion of A∞ space and A∞ algebra. Usually
the unital version is called A∞ space in the literature. So the version in §4
should be called non-unital A∞ space. Let M be a space with a base point ∗.
Then we require

mk(a;x1, · · · , xi−1, ∗, xi+1, · · · , xk) = mk−1(a;x1, · · · , xi−1, xi+1, · · · , xk)

in addition to define the notion of a unital A∞ space. For A∞ algebra, its unit
e is an element of degree 0 (before shifted) such that :

mk(x1, · · · , xi−1, e, xi+1, · · · , xk) = 0

for k 
= 2 and
m2(x, e) = (−1)deg xm2(e, x) = x.

There is also the notion of homotopy unit. (See [33] §8. See also [61] §2 and
reference therein for various versions of unit or homotopy unit and the rela-
tionships among them.)

The singular homology of unital A∞ space is a unital A∞ algebra with 0
chain ∗ as its unit. It can be proved in the same way as Theorem 3.

The situation is different for Kuranishi correspondence. The candidate of
unit is the fundamental chain which is regarded as a degree 0 cochain by
Poincaré duality. In the case of de Rham theory which we worked out in §12,
it is a 0 form and is the constant function ≡ 1. This is actually the unit when
there is a map

forgeti : Mk+1(β) → Mk(β)

which is compatible with the map : Mk+1 → Mk forgetting the i-th marked
point and which is compatible with evj : Mk+1(β) → M . We can prove it
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in the same way as [33] Lemma 31.2. In this way we can prove that our A∞
algebra of Theorem 13 on de Rham complex of the Lagrangian submanifold
has a strict unit.

14.2 Module and Category

There is a notion of A∞ (bi)module and also A∞ category. See [33] §12 and
Chapter 15 for the bimodule and [26] etc. for the A∞ category. We can modify
Theorem 12 to include those cases, in a straightforward way.

14.3 Local coefficient

In the case of Bott-Morse theory, we constructed a structure (that is a higher
boundary operator ∂M) on the direct sum

⊕
a C(Ra;Θ−

a ) of chain complex of
singular chains on Ra with local coefficient. In order to include such a situation
in our machinery, we consider correspondence such as

(M, ΘM )k ev1←−−−− Mk+1
ev2−−−−→ (M, ΘM ). (124)

In this case, in place of assuming K-space Mk+1 to be oriented, we assume
that it has relative orientation. Namely we assume that

ev∗1 (ΘM ⊗ · · · ⊗ ΘM ) ⊗ ev∗2ΘM ⊗ ΛtopTV ⊗ ΛtopE (125)

has a trivialization. Here V is a Kuranishi neighborhood and E is an obstruc-
tion bundle. We also assume that the trivialization of (125) is compatible with
the coordinate change. Namely we assume it is compatible with Diagram (86).

This situation appears when we study Bott-Morse version of Lagrangian
Floer homology for a pair of Lagrangian submanifolds of clean intersection. See
[33] §12.5 and §51, for detail. The argument there can be directly generalized
to our abstract situation.

14.4 Family version

For a family of Lagrangian submanifolds L in M we can study family Floer
homologies. (See [25, 39].) An abstract version of this construction can be
formulated as follows.

We can generalize homotopy of Kuranishi correspondence (that is [0, 1]
parametrized family of Kuranishi correspondences) to a family parametrized
by an arbitrary manifold. Namely we can consider the following situation. Let
M → X

π→ B be a family of manifolds M parametrized by a manifold B. We
consider

Mk+1,β�⏐⏐π0

Xk ←−−−−
π2

Mk+1(β) −−−−→
π1

X.

(126)
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such that

(π1, π2)(Mk+1(β)) ⊆ {(x0, · · · , xk) ∈ Xk+1 | π(x0) = · · · = π(xk)} ⊂ Xk+1.

Then by replacing the fiber product Mk+1(β1) evi ×ev0 Ml+1(β2) over M (in
(1) Definition 21) by the fiber product over X we can generalize the Definition
21 to a B parametrized version. We call it the B parametrized family of
Kuranishi correspondence.

Let us briefly describe the corresponding algebraic object. Let B be a
simplicial complex. We define the notion of B parametrized family of A∞
algebra as follows. For each simplex σ there is a (filtered) A∞ algebra C(σ)
whose homology group is one of M . If σi is the i-th face of σ there is a linear
A∞ homomorphism

Eval∂i : C(σ) → C(σi)

which is a homotopy equvalence. Let σij be the set of all codimension 2 simplex
of σ. Then we require the existence of the following exact sequence

C(σ) →
⊕

i

C(σi) →
⊕
ij

C(σij).

See [33] Definition 30.68.5 for a similar exact sequence for rectangle.
We can associate B parametrized family of A∞ algebra to B parametrized

family of Kuranishi correspondence in a way similar to the proof of Theorem
12.

14.5 Group action and localization to fixed point set

In the study of Gromov-Witten invariant, localization to the fixed point set
plays an important role. Gromov-Witten invariant of a manifold M is a family
of numbers parametrized by homology classes of M and by homology classes
of the Deligne-Mumford compactification of moduli space of Riemann sur-
faces. The localization formula gives a way to reduce its calculation to the
study of neighborhood of the fixed point locus of the moduli space of pseudo-
holomorphic curves, when a group act on it.

A problem to extend it to our story, for example to the study of Lagrangian
Floer theory, lies in the fact that it is rather hard to find a correct statement of
the (expected) result. This is because the structure constant of the algebraic
system (which is the number obtained by counting the order of the moduli
space in an appropriate sense) itself is not well-defined.

The result of this paper gives a way to formulate such a statement.
Let us exhibit a way to do so by considering the special case where the

group is S1 and the action of it on M is trivial. Let Mk+1(β) be a Kuranishi
correspondence on M . We assume S1 acts on Mk+1(β) such that the structure
map and evaluation map is S1 equivalent. (We put trivial action on M and
on Mk+1,β .) We put
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(Mk+1(β))S1
= {x ∈ Mk+1(β) | ∀g ∈ S1 gx = x}. (127)

We will define a K-space (Mk+1(β))S1+ as follows. Let (Vi, Ei, Γi, ψi) be a
Kuranishi chart. Let V S1

i be the set of S1 fixed point of Vi. We fix suffi-
ciently small ε and take an ε neighborhood Bε(V S1

i ) of V S1

i . Here we use S1

invariant Riemannian metric on Vi. We identify Bε(V S1

i ) with an open subset
of the normal bundle. We consider the sphere bundle which is a boundary
of Bε(V S1

i ) and denote it by Sε(V S1

i ). Our group S1 acts on it so that the
isotropy group is finite. We take a quotient of Sε(V S1

i ) by the S1 action and
glue the quotient with Bε(V S1

i ) \ Sε(V S1

i ). We denote the resulting space by
PV S1

i . It is an orbifold. Our obstruction bundle Ei induces an orbibundle E′
i

on it. The Kuranishi map si induces a section s′i of E′
i. Let Zi = s′−1

i (0)/Γi.
We can glue them using coordinate transformation to obtain a space Z. By
covering Zi with open subset of Vi and using the restriction of E′

i, s′i there,
we obtain a Kuranishi chart for each points on Zi. We can glue them in an
obvious way to obtain a Kuranishi chart on Z. We thus obtain a Kuranishi
structure on Z. We denote the space Z together with the above Kuranishi
structure by (Mk+1(β))S1+.

Using the fact that the structure map and evaluation map of Mk+1(β)
S1 equivalent, we can show that (Mk+1(β))S1+ is regarded as a Kuranishi
correspondence on M .

In the next theorem we use R coefficient.

Theorem 14. The filtered A∞ structure associated to (Mk+1(β))S1+ by The-
orem 12 is homotopy equivalent to one associated to Mk+1(β).

Sketch of the proof : Let δ be a positive number sufficiently smaller than
ε. For each Kuranishi neighborhood Vi we consider Vi \ Bδ(V S1

i ). Since S1

action is locally free there the quotient space Vi\Bδ(V S1
i )

S1 is an orbifold. The
bundle Ei induces an orbibundle Ei on it. In the same way as §12, we can
take a continuous family of multisection Ei of this bundle and lift it to Vi \
Bδ(V S1

i ). We thus have a continuous family of S1 equivariant multisection on
Vi \ Bδ(V S1

i ) which are transversal to zero. Obviously we can do it in a way
compatible with the coordinate change. We can extend this multisection to
Bδ(V S1

i ) so that it is transversal to zero but is not necessary S1 invariant. We
use this continuous family of multisections to define the operators mk,β as in
§12.

Since evaluation map ev is S1 equivariant, we can show that the contribu-
tion of the part to Vi \ Bδ(V S1

i ) to mk,β is 0. Hence the theorem. ��

14.6 Other operad or prop

As we mentioned several times, the construction works for other operads or
props than A∞ operads. The argument of §12 can be generalized with littile
change. For the part of the proof we gave in §13, we need certain modification.
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The construction of appropriate differentiable operad or prop is also a
nontrivial problem. It seems to the author that claims in the talks [5], [70]
etc. can be reinterpreted as an existence of a differentiable prop associated to
the moduli space of higher genus Riemann surface. Namely master-equation
claimed in those talks are Maurer-Cartan equation (30), which is an important
part of the axiom of differentiable prop. (See Definition 2.)

14.7 Gravitational descendant

In the usual theory of operads, spaces P(n) (or Mk+1) are assumed to be
contractible. However in the situation of several ‘operads’ or ‘props’ appear-
ing in topological field theory there is a situation where they have a nontrivial
homotopy type. In the case of A∞ operad, Mk+1 is contractible. The impor-
tant case where nontrivial homotopy type appears is the case of higher genus
Riemann surface and/or the case where interior marked point is included.

We can modify our construction of the structure to include the nontriv-
ial homotopy type of operad or prop. Various related ideas are discussed by
various people (See for example [11].) mainly from the algebraic side.

An example of such a construction is as follow. We consider the direct sum

Λ(M) =
⊕

k

Λ(Mk+1)

of the de Rham complexes of our differential operads. We use Maurer-Cartan
axiom (30) to obtain a homomorphism

∆ : Λ(M) → Λ(∂M) → Λ(M) ⊗̂ Λ(M), (128)

by restriction. Here ⊗̂ is the tensor product in the sense of Fréchet-Schwartz.
space.

We call a sequence cm ∈ Λ(M) a multiplicative sequence ([37] §1) if c0 = 1
and

∆cm =
m∑

i=0

ci ⊗ cm−i, dci = 0. (129)

When a multiplicative sequence cm is given, we use it to replace (111) by

∞∑
m=0

± sm

#Γ
(π1+!)

(
(π∗

2+(u) ∧ ωV ∧ π∗
0cm)|s−1

V (0)

)
, (130)

where s is another formal parameter. We then obtain a formal deformation of
our structure parametrized by s.

Unfortunately in case of A∞ operad, the space Mk+1 is contractible.
Therefore there is no multiplicative sequence other than trivial one. However
in case we include higher genus Riemann surface and interior marked points,
non trivial example is obtained by using Mumford-Morita class. ([10].)
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14.8 Infinite dimensional M

In the situation of String topology ([12]) and the loop space formulation of
Lagrangian Floer theory ([29, 16]), the correspondence we use is slightly dif-
ferent from those discussed in this paper and can be described by a diagram
:

(ΩM)k (ev1,··· ,evk)←−−−−−−−− Mk+1(β) ev0−−−−→ ΩM. (131)

Here ΩL is the free loop space and is of infinite dimension. The structure map
is

Mk+1(β1) ev∗◦evi
×ev∗◦ev0 Ml+1(β2) → Mk+l+1(β1 + β2) (132)

Here ev∗ : Ω(M) → M is the map � �→ �(∗) and ∗ ∈ S1 is the base point. The
interesting new point (due to Chas and Sullivan) appearing here is that we
take fiber product over M and not over Ω(M).

We need several modifications of the argument of this paper to include
this case. We however remark that the method in [29] to realize transversality
in the case of loop space is very similar to one in §12 of this paper.

We may also consider the case of gauge theory (of 4 manifolds, for example)
where our M is an infinite dimensional space consisting of gauge equivalence
classes of connections. There seems to be much more works to be done to
extend the frame work of this paper to include gauge theory.
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stein and E. Zehnder, Birkhäuser Basel (1995) 123–183.

5. S. Barannikov Batalin-Vilkovisky geometry of Gromov-Witten invariants Talk
at ESI Workshop on Homological Mirror Symmetry (2006).

6. M. Betz and R. Cohen Graph moduli spaces and cohomology operations Turkish
J. Math. 18 (1994) 23–41.

7. J. M. Boardman and R. M. Vogt Homotopy Invariant Algebraic Structures on
Toplogical Spaces Lecture Notes in Math. 347 (1973) Springer-Verlag.

8. R. Bott Nondegenerate critical manifolds Ann. of Math. 60 (1954) 248–261.
9. L. Buhovsky Multiplicative structures in lagrangian Floer homology Preprint.

(2006).
10. T. Coates and A. Givental Quantum Riemann - Roch, Lefschetz and Serre

math.AG/0110142.



Kuranishi correspondence and Topological field theory 77

11. K. Costello Topological conformal field theories and Calabi-Yau categories
math.QA/0412149.

12. M. Chas and D. Sullivan String topology math.GT/9911159, (1999).
13. C.-H. Cho Holomorphic discs, spin structures and Floer cohomology of the Clif-

ford tori Internat. Math. Res. Notices (2004) 35 1803–1843.
14. C.-H. Cho Products of Floer cohomology of torus fibers in toric Fano manifolds

Commun. Math. Phys. 260 (2005) 613–640, math.SG/0412414
15. C.-H. Cho and Y.-G.Oh Floer cohomology and disc instantons of Lagrangian

torus fibers in Fano toric manifolds Asian J. Math. 10 (2006) 773 - 814.
16. K. Cieliebak and J. Latschev Symplectic field theory and string topology. work-

ing draft (2006).
17. S. Donaldson An application of gauge theory to the topoology of 4-manifolds J.

Differential Geom. 18 (1983) 269 - 316.
18. Y. Eliashberg, A. Givental and H. Hofer Introduction to symplectic field theory

Geom. and Func. Analysis special volume (2000) 560–673.
19. A. Floer Morse theory for Lagrangian intersections J. Differential Geom. 28

(1988) 513–547.
20. K. Fukaya Morse homotopy, A∞-categories, and Floer homologies Proc. of

the 1993 Garc Workshop on Geometry and Topology ed. H. J. Kim, Lecture
Notes series 18, Seoul Nat. Univ. Seoul (1993) 1–102 (http://www.math.kyoto-
u.ac.jp/∼fukaya/ fukaya.html).

21. K. Fukaya Topological field theory and Morse theory [translation of Sūgaku 46
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(2003).

47. J. Li and G. Tian Virtual moduli cycles and Gromov-Witten invariants of gen-
eral symplectic manifolds Topics in Symplectic 4-Manifolds (Irvine, CA, 1996).
First Int. Press Lect. Ser. 1 Internat. Press Cambridge, MA, USA (1998) 47–83.

48. V. Lyubashenko Category of A∞-categories math.CT/0210047.
49. M. Markl, S. Shnider and J. Stasheff, Operads in Algebra, Topology and Physics

Math. Surveys and Monographs 96 Amer. Math. Soc. (2002).
50. J.P. May The geometry of iterated loop spaces Lecture note in Math. 271

Springer-Verlag, New-York (1972).
51. J.E. McClure On the chain-level intersection pairing for PL manifolds Preprint

(2004) math.QA/0410450.
52. S. Novikov Multivalued functions and functional - an analogue of the Morse

theory Sov. Math. Dokl. 24 (1981) 222–225
53. H. Nakajima Lectures on Hilbert schemes of points on surfaces University Lec-

ture Series, 18, American Mathematical Society, Providence, RI, (1999).
54. H. Nakajima 22nd century geometry suggested by string theory: generating space

Suugaku seminar (1997) (in Japanese).
55. Y.-G. Oh Floer cohomology of Lagrangian intersections and pseudo- holomor-

phic disks I, & II Comm. Pure and Appl. Math. 46 (1993) 949–994 & 995–1012.
56. Y.-G. Oh Relative Floer and quantum cohomology and the symplectic topology of

Lagrangian submanifolds Contact and Symplectic Geometry ed. C. B. Thomas,
Cambridge Univ. Press, Cambridge UK (1996) 201–267.



Kuranishi correspondence and Topological field theory 79

57. H. Ohta Obstruction to and deformation of Lagrangian intersection Floer co-
homology Symplectic Geometry and Mirror Symmetry (Seoul, 2000) 281 - 310.

58. K. Ono On the Arnold conjecture for weakly monotone symplectic manifolds
Invent. Math. 119 (1995) 519–537.

59. Y. Ruan Virtual neighborhood and pseudoholomorphic curve Turkish J. Math.
(1999) 161–231.

60. M. Schwarz Morse homology Progress in Mathematics, 111 Birkhäuser Verlag,
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