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Floer homology and Gromov-Witten invariant over
integer of general symplectic manifolds - summary -

Kenji Fukaya∗ and Kaoru Ono∗∗

Abstract. In this article we give a summary of an improvement our earier
result [FO2] on Arnold’s conjecture about the number of periodic orbits of

periodic Hamiltonian system. In [FO2], we gave an estimate in terms of Betti

numbers. In this article, we include torsion coefficients. We also define an

“integer part” of the Gromov-Witten invariant.

§1. Introduction.

Let (X2n, ω) be a compact symplectic manifold and h : X × S1 → R be a
smooth function. We put ht(x) = h(x, t). Let Vht be the Hamiltonian vector field
generated by ht. Let Φt : X → X be the family of symplectic diffeomorphisms such
that

dΦt

dt
= Vht ◦ Φt, Φ0 = id.

We assume that the graph Graph(Φ1) of Φ1 ⊂ X ×X is transversal to the diagonal
∆X . The intersection ∆X ∩ Graph(Φ1) can be identified with the fixed point set
Fix(Φ1) of Φ1. Our main result is an estimate of the order of Fix(Φ1) in terms of
the Betti numbers and the torsion coefficients of X.

We define the universal Novikov ring Λ by

Λ =
{∑

ciT
λi

∣∣∣ ci ∈ Z, λi ∈ R, lim
i→∞

λi = ∞
}

.

Here T is a formal parameter. We remark that the modulo 2 Conley-Zehnder index
µ of elements of Fix(Φ1) is well-defined (see [F].) We put (for i ∈ Z2),

CFi(X,h) =
⊕

p∈Fix(Φ1), µ(p)=i

Λ[p].

The main result explained in this article is the following theorem, which is a version
of Arnold’s conjecture [A1],[A2].
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Theorem 1. There exist homomorphisms ∂i : CFi(X,h) → CFi−1(X, h) such
that ∂i∂i+1 = 0 and

(1)
Ker ∂i

Im ∂i+1
'

∑

i≡k mod 2

Hk(M ; Z) ⊗Z Λ.

Remark 1. If we replace Z by Q, Theorem 1 was proved by Fukaya-Ono[FO1,2],
Liu-Tian[LT], Ruan [R]. In case when X is semi-positive, Theorem 1 was proved
by Hofer-Salamon[HS] and Ono[O]. (They are generalizations of celebrated results
by Conley-Zehnder [CZ] and Floer [F].)

In this article, we show an outline of a proof of Theorem 1. The detail will
appear elsewhere.

§2. A brief review of Floer homology
and negative multiple cover problem.

It is known to experts that, if one can define the fundamental chain over Z of
the moduli space of pseudoholomorphic curves with appropriate properties, then
we can prove Theorem 1. We first explain it briefly. Let JX be an almost complex
structure on X compatible with ω. We put

Orb(h) =

{
` : S1 → X

∣∣∣∣
d`

dt
= Vht(`(t))

}

We can identify Orb(h) with Fix(Φ1). For `1, `2 ∈ Orb(h), we put

M̃(`1, `2) =





ϕ : R × S1 → X

∣∣∣∣∣∣∣∣∣∣

∂ϕ

∂τ
= JX

(
∂ϕ

∂t
− Vht

)
,

lim
τ→−∞

ϕ(τ, t) = `1(t),

lim
τ→+∞

ϕ(τ, t) = `2(t).





R acts on M̃(`1, `2) by the translation along R factor. Let M(`1, `2) be the quotient

space. For ϕ ∈ M̃(`1, `2), we define its energy by

Eh(ϕ) =
1

2

∫ (∥∥∥∥
∂ϕ

∂τ

∥∥∥∥
2

+

∥∥∥∥
∂ϕ

∂t
− Vht

∥∥∥∥
2
)

dtdτ.

We put

M(`1, `2; E) = {ϕ ∈ M(`1, `2)|Eh(ϕ) = E}.
Gromov’s compactness theorem [G] implies that M(`1, `2;E) is nonempty only for
E = E1, E2, · · · such that 0 = E1 < E2 < E3 < · · · , lim Ei → ∞.

The virtual dimension of M(`1, `2; E) depends on the component. Let M(`1, `2;E; k)
be the union of the components of virtual dimension k.

Suppose we have a “perturbation” of M(`1, `2;E; k) for k = 0, 1 with the
following properties.

(2.1) M(`1, `2;E; 0) consists of finitely many points. Each point ϕ of M(`1, `2;E; 0)
is given an orientation εϕ = ±1.
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(2.2) M(`1, `2;E; 1) can be compactified to an oriented one dimensional mani-
fold whose boundary is

⋃

E′+E′′=E

⋃

`3

M(`1, `3;E
′; 0) ×M(`3, `2;E

′′; 0).

We then put

∂[`1] =
∑

i

∑

`2

∑

[ϕ]∈M(`1,`2;0;Ei)

εϕT Ei [`2].

(2.1) implies that the coefficient of the right hand side belongs to Λ. Then (2.2)
implies ∂∂ = 0. We need some more properties to show the isomorphism (1). We
omit the discussion about it in this article.

There is a trouble to find a perturbed moduli space satisfying (2.1) and (2.2).
The main problem is the equivariant transversality at infinity, which we recall very
briefly here. (A bit more detailed summary is in the introduction of [FO2].)

Let us consider a divergent sequence ϕi ∈ M(`1, `2;E; 1). One possibility of its
“limit” is an element of M(`1, `3; E

′; 0) ×M(`3, `2;E
′′; 0). This is the component

of the boundary of a compactification of M(`1, `2;E; 1) described in (2.2). However
there is another possibility. Namely ϕi may “converege” to a map ϕ](ψ ◦ π). Here
ϕ ∈ M(`1, `2;E

′; ∗), ψ : S2 → M is a pseudoholomorphic map, and π : S2 → S2

is a degree k holomorphic map. (E = E′ + k([S2] ∩ ϕ∗ω).) We assume also that
ψ (S2) intersects with the image of ϕ. ] denotes the connected sum. The trouble is
especially serious in the case when ϕ]( ψ ◦π) has a nontrivial symmetry. If moreover
c1(M)∩ ψ (S2) is negative, we find that there is no perturbation, in the usual sense,
to make ϕ]( ψ ◦ π) transversal. This trouble is called the negative multiple cover
problem. We studied it in [FO2], where we used a multivalued perturbation and
hence we worked over rational coefficient. The purpose of this article is to explain
an outline of a way to overcome this trouble without using rational coefficient.

§3. Period-doubling bifurcation and Stiefel-Whitney class.

Let us describe a toy model which shows how the rational coefficient occurs in a
natural way. In this toy model, we consider a moduli space of maps S1 → Y in place
of Σ2 → X. Let Y be the Möbius band R × [0, 1]/ ∼ where (x, 1) = (fε(x), 0) and
fε(x) is a diffeomorphism of R such that fε(x) = −(1 + ε)x + x3 in a neighborhood
of 0. We consider the vector field Vε = ∂/∂y. (Here y is the coordinate of the second
factor.) Let Mε(2) be the moduli space of the solutions of

d`

dt
= Vε

whose homology class is 2 times the generator of H1(Y ; Z) ' Z. Mε(2) can be
identified with the fixed point set of fε ◦ fε divided by the Z2 action induced by fε

on it. Since

fε ◦ fε(x) = (1 + ε)2x − (4 + ε)x3 + · · · ,

in a neighborhood of 0, it follows that the fixed point set of fε ◦ fε consists of one
point for ε < 0 and of 3 points for ε > 0. Taking into acount Z2 action, we find that
Mε(2) consists of one point with multiplicity −1/2 for ε < 0, and of two points
with multiplicity −1,+1/2, respectively, for ε > 0. Hence the total multiplicity is
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preserved. (Namely −1/2 = −1 + 1/2.) At first sight, it seems impossible to keep
this independence of total multiplicity without introducing rational coefficient.

Figure 1

This phenomenon is called the period-doubling bifurcation and is famous in the
study of dynamical system. (Taubes [T] also discussed it in the context of pseu-
dohomolomorhpic tori in 4 manifolds.) Moreover period-doubling bifurcation can
occur repeatedly and multiplicity will become 2−m.

There is also a similar bifurcation related to cyclic groups of order ≥ 3. We
will discuss it later in §5.

Let us now go back to our problem. First we compactify M(`1, `2;E; k) by
adding isomorphism classes of maps from singular Rieman surfaces. (See [FO2]
§19, where it is called stable connecting orbits.) We denote by CM(`1, `2;E; k) the
compactification. Now the main technical result established in [FO2] is :

Theorem 2. ( [FO2] Theorem 19.14.) CM(`1, `2;E; k) has Kuranishi struc-
ture with corners.

The precise definition of Kuranishi structure is in [FO2] §5. We birefly recall it
here for reader’s convenience. CM(`1, `2; E; k) is said to have a Kuranishi structure
if, for each x ∈ CM(`1, `2; E; k), there exists an open subset Ux ∈ Rmx , a finite
group Γx (the group of automorphisms of x) such that Γx acts on Ux and the action
is linear. We also assume that there exist a Γx module Ex and a Γx equivariant
map sx : Ux → Ex, such that

s−1
x (0)/Γx ' a neighborhood of x in CM(`1, `2; E; k).

We need to assume various compatibility conditions for these deta, which are omit-
ted here. We call Ux the Kuranishi neighborhood, Ex the obstruction bundle and
sx the Kuranishi map.

The idea in [FO2] to find a Q chain is to perturb sx by using multivalued
perturbation. This method does not work for the purpose of this article. So we
first try to go as much as single valued perturbation goes. We then obtain the
following Proposition 1. To state it we need some notations. Let s′x be a (single
valued) perturbation of sx satisfying appropriate compatibility conditions. (See
[FO] §6.) We put

CM′(`1, `2;E; k) =
⋃

s′−1
x (0)/Γx.

We write it CM′ in case no confusion can occur. Let G be a finite group. We put

CM′(G) = {x ∈ CM′|Γx ' G},

G(G) =
⋃

x∈CM′(G)

Γx.

G(G) is a local system on CM′(G).

Proposition 1. The following holds for generic s′x.

(3.1) CM′(G) is a smooth manifold with corners.
(3.2) There exists two vector bundles E1(G), E2(G) on CM′(G). G(G) acts on
them. There exists also a G(G) equivariant bundle map sG : E1(G) → E2(G) between
them. (sG may not be linear in general.)
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(3.3) Let x ∈ CM′(G) and E1,x(G), E2,x(G) be fibers. We regard them as G
vector spaces. Then they do not contain trivial component. (Note that this condition
implies that sG sends zero section to zero section.)
(3.4) The intersection of s−1

G (0)/G(G) and a neighborhood of zero section in
E1(G) is identified to a neighborhood of CM′(G) in CM′.
(3.5) Moreover, for each x ∈ CM′(G), its Kuranishi neighborhood Ux is iden-
tified to a neighborhood of x in E1(G). The obstruction bundle is isomorphic to
E2(G) and the Kuranishi map is identified to the restriction of sG to Ux.

The proof will be given in [FO3]. Hereafter we write CM(G) etc. in place of
CM′(G) etc.

Remark 2. We remark that, to show Proposition 1, we need to use abstract
perturbation. In fact, the conclusion of Proposition 1 is not satisfied by any per-
turbation of the almost complex structure of M . The reason is that, if we perturb
only almost complex structure, then multiple covered spheres may not be made
transversal even in the case when its automorphism group is trivial.

Note the condition that the peudoholomorphic sphere is somewhere injective
in the sense of McDuff [M] is related to but is different from the condition that
pseudoholomorphic sphere does not have nontrivial symmetry.

We are going to show how we use Proposition 1 to avoid period-doubling bi-
furcations.

To clarify the idea, we first consider the simplest case. Namely we assume that
CM(G) is nonempty only for G = 1 or G = Z2. We put CM(1) = N , CM(Z2) = M .

We first remark that (3.3) of Proposition 1 implies that E1(1), E2(1) are trivial.
Namely N is transversal. In other words, the actual dimension of N is equal to
its virtual dimension. On the other hand, the dimension of M can be higher than
that.

We have Z2 vector bundles E1(Z2), E2(Z2) over M and sZ2 : E1(Z2) → E2(Z2).
(The local system is trivial in this case.) We write E1, E2, s in place of E1(Z2),
E2(Z2), sZ2 for simplicity. Note that the action of Z2 on the fibers of E1, E2 is ×−1.
((3.3) of Proposition 1.) Hence the leading term of Z2 equivariant map s : E1 → E2

is linear. So, by replaicing s, we may assume that s is linear in a neighborhood of
0 section. (This is not the case when the group G is more complicated.) We put

(4) Ξ = {x ∈ M |sx : E1x → E2x is not injective}.

By definition, it is easy to see that M ∩N = Ξ. Namely Ξ is the set of points where
period-doubling bifurcation occurs.

We can prove the following lemma by an easy dimension counting.

Lemma 1.

codim Ξ = rank E2 − rank E1 + 1.

Note the virtual dimension of our moduli space is dim M + rankE1 − rankE2.
Therefore

dimN = dimM + rankE1 − rankE2 = dimΞ + 1.

It follows that dim ∂N = dimΞ. In other words, N contains other boundary com-
ponents than those stated in (2.2).

To clarify the topological backgroud, we prove the following :
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Proposition 2. Let M be an oriented closed manifold, E1, E2 be oriented
vector bundles on it, and s : E1 → E2 be a generic bundle homomorphism. (s is
linear.) We assume that rankE2 − rankE1 is even. Define Ξ by (4). Then we have
the following :

(5.1) Ξ has an orientation and determines a cycle over Z.
(5.2) The Poincaré dual to [Ξ] is δy. Here

δ : Hk(M ; Z2) → Hk+1(M ; Z)

is the Bockstein operator associated to the exact sequence 0 → Z ×2→ Z → Z2 → 0,
and y is a polynomial of the Stiefel-Whitney classes of E1, E2.

Proof. First we define an orientation of Ξ. We put

Ξ2 = {x ∈ M | dimKer sx ≥ 2}.

It is easy to see that dim Ξ − dim Ξ2 ≥ 2. So it suffices to define an orientation
only on Ξ−Ξ2. (It is also easy to see that Ξ−Ξ2 is a smooth manifold for generic
s.) Let x ∈ Ξ − Ξ2. Choose an orientation of Im sx ⊂ E2,x. Take Vx ⊂ E1,x such
that sx : Vx → Im sx is an isomorphism. (rankVx = rankE1,x − 1.) The orientation
of Im sx induces one on Vx. This orientation together with the orientation on
E1,x determine an orientation of one dimensional vector space E1,x/Vx. Let ex be
the oriented basis of the complement of E1,x in Vx. We extend Vx and ex to a
neighborhood of x and denote it by V and e. Then s(e) determines a section e of
the bundle E2/s(V ). It is easy to see that the intersection of Ξ and a neighborhood
of x is e−1(0). Since the orientations of V and E2 determine the orientation of
E2/s(V ), we obtain an orientation of e−1(0) and of Ξ in a neighborhood of x.

We remark that this orientation of Ξ is independent of the orientation of Im sx

we have chosen. In fact, if we change the orientation of Im sx, then the orientation
of V will be reversed. Hence we need to replace e by −e. On the other hand,
the orientation of E2/s(V ) also will be reversed. Therefore, the orientation on
(−e)−1(0) = Ξ does not change.

It follows that we obtain a global orientation of Ξ − Ξ2.
Next we show the property (5.2). We choose a generic section t of E2. It induces

a section t of E2/s(E1). We remark that E2/s(E1) is a vector bundle on M −Ξ. We
put

Y = t
−1

(0) ∩ (M − Ξ).

Let Y be its closure in M . Since E2/s(E1) is oriented, it follows that Y is oriented.

Lemma 2. Y is a Z chain and satisfies ∂Y = 2Ξ.

Proof. Let x ∈ Ξ − Ξ2. Let U be an neighborhood of x. We choose Vx, V ,
ex and e as before. We then obtain an isomorphism E2/s(V )|Ξ∩U ' NΞM . (Here
N denotes the normal bundle.) Hence the restriction of E2/s(E1) ' (E2/s(V ))/e
to ∂NΞM is isomorphic to the fiberwise tangent bundle of ∂NΞM → Ξ. The fiber
is SrankE2−rankE1 . Hence the Euler number of the fiber is 2. (Here we use the
assumption that rankE2 − rankE1 is even.) t induces a section of (E2/s(V ))/e. The
induced section is close to constant on U . The lemma follows.

Lemma 2 implies that [Y ] is a Z2 cycle and that [Ξ] is a Bockstein image of
[Y ]. The proof of Proposition 2 is complete.
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The following figure illustrates the relation of Lemma 2 to the period-doubling
bifurcation. We remark that t is not Z2 equivariant. Hence it is a multisection in

the sense of [FO2]. Therefore t
−1

(0) has the multiplicity 1/2. t
−1

(0)/2 + N is the

Q cycle constructed in [FO2]. The orientation of t
−1

(0) changes at the point where

N intersect with it. Hence t
−1

(0)/2 + N becomes a Q cycle in a similar way as the
toy model we discussed before.

Figure 2

§4. Normally complex linear perturbation.

Proposition 2 suggests, to avoid period-doubling bifurcation, we need to lift
Z2 characteristic classes to a class defined over Z. This is impossible for general
oriented vector bundle. However, for complex vector bundle, any Z2 characteristic
class can be lifted to a class defined over Z in a canonical way, since the cohomology
group of complex Grassmannian is torsion free. In fact, we need to perform the
construction in the chain level in order to define Floer homology. (Compare [FO2]
§20.) For this purpose, we proceed as follows.

Let E1, E2 → M be complex vector bundles on an oriented manifold M . (We
do not need to assume that M has a complex structure.) Let s : E1 → E2 be a
generic complex linear bundle homomorphism. We put

Ξ = {x ∈ M |sx : E1,x → E2,x is not injective.}.

Lemma 3.

codimR Ξ = rankRE2 − rankRE1 + 2.

The proof is a simple dimension counting. We remark that the right hand side
of Lemma 3 is the right hand side of Lemma 1 plus 1. This is a good news.

Now we go back to the Kuranishi structure of Theorerm 2.

Proposition 3. [E1(G)]−[E2(G)] ∈ KO(CM(G)) is in the image of K(CM(G)).

We proved in [FO2] §16 that Kuranishi structure on the moduli space of stable
pseudoholomorphic maps is stably almost complex. (See [FO2] §5 for the definition
of stably almost complexity.) In case of the moduli space of stable connecting
orbits, the same is true. (We can reduce its proof to the case of closed Rieman
surface. We will discuss it in [FO3].) Proposition 3 is a consequence of this fact.

Proposition 3 implies that there exists a vector bundle F over CM(G) such
that E1(G)⊕F and E2(G)⊕F are complex vector bundles. In fact, we can choose
F so that if x = [Σ, ϕ] ∈ CM(G), then the fiber Fx is a subspace of Γ(Σ, ϕ∗TX ⊗
Λ0,1(Σ)). So the construction of Kuranishi structure in [FO2] implies that we may
change it such that E1(G), E2(G) will become complex vector bundles for the new
Kuranishi structure.

Now we modify s in a neighborhood of 0 section so that it is complex linear
there. (We can not change s outside a neighborhood of 0 section, because we need
to modify s so that its zero point sets can be patched with N .)

We remark that the modified s is also Z2 equivariant. The following lemma
then is an immediate consequence of Lemma 3.
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Lemma 4. We assume that the virtual dimension of CM is 0 or 1. We modify
s so that it is complex linear in a neighborhood of 0 section. Then Ξ is empty.

It follows from Lemma 4 that

N ∩ M = ∅.

We will write N(`1, `2; k;E), M (`1, `2; k;E) in place of N,M , in case they are
components of CM(`1, `2; k; E). We then have

]CM(`1, `2; 0;E) = ]N (`1, `2; 0;E) +
[M (`1, `2; 0;E)] ∩ e(E2(Z2)/s(E1(Z2)))

2
.

Here the left hand side is the fundamental chain of CM(`1, `2; 0; E) (which is a
rational number) in the sense of Kuranishi structure. ] in the right hand side is the
order counted with sign. e(E2(Z2)/s(E1(Z2)) is the Euler class of the bundle. In
fact, it is not precise to use this notation, since M (`1, `2; 0;E) may have a boundary.
So, to be precise, by using generic sectin t of E2(Z2)/s(E1(Z2)), we obtain

]CM(`1, `2; 0;E) = ]N(`1, `2; 0;E) +
](t

−1
(0))

2
.

We recall that the boundary operator we defined in [FO2] §20 is

∂old[`1] =
∑

`2,E

]CM(`1, `2; 0;E)T E[`2].

The coefficient in the right hand side is in Λ ⊗ Q. We define our new boundary
operator by

∂new[`1] =
∑

`2,E

]N(`1, `2; 0;E)TE [`2].

By applying Lemma 4 to N (`1, `2; 1;E), we can prove ∂new∂new = 0.
We thus explained the definition of the boundary operator in the case when

CM(G) is nonempty only for G = 1, Z2.
The following figure shows how the moduli space in Figure 1 will be modified.

Figure 3.

§5. Another example of bifurcation in the case of cyclic group.

Before discussing the case when the group G is general, we mention another
example of bifurcation. We consider the case when CM(G) is empty unless G =
1, Z3. We put N = CM(1), M = CM(Z3). Let dim N = virdim CM = 1, and
M = [0, 1]. Let us assume that E1(Z3) = E2(Z3) = M × C. We suppose also that
the generator of Z3 acts by × exp(4π

√
−1/3) on E1(Z3), and by × exp(2π

√
−1/3)

on E2(Z3). Let τ be the coordinate of M . We consider sτ : C → C such that

sτ (z) =

{
z τ = 0,

z2 τ = 1.

if z is in a neighborhood of 0 and sτ (z) = z2 if |z| > 1. sτ determines a Z3-
equivariant map s : E1(Z3) → E2(Z3). A neighborhood of M in CM is identified
with

{(z, τ)|sτ (z) = 0}/Z3.
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It is easy to see that this moduli space is described as in Figure 4 below.

Figure 4.

From this example, it is easy to see that, in the case when the group G is not Z2,
we may not be able to take s so that it is complex linear in a neighborhood of zero
section.

We also remark that, if we take s to be generic, then z 7→ cz is the leading term.
However we insist s to be holomorphic (or complex polynomial) at each fiber. For
example, in this particular case, we take z 7→ cz2.

§6. The general case.

We now go back to the study of CM. The proof of the general case is based on
the following Proposition 4. We need some notations. Let M be a manifold and G
be a local system of finite group. Let E1, E2 be complex vector bundles on which G
acts. We assume (3.3). We assume moreover that the action of G on E1 is effective.
Let D be a sufficiently large integer.

Proposition 4. Let s : E1 → E2 be a smooth bundle map such that sx : E1x →
E2x is a (complex)polynomial map of degree ≤ D for each x ∈ M at a neighborhood
is 0 section. We assume that s is generic among such maps. We put

N = {v ∈ E1|s(v) = 0, Iv = {1}}.

(Here Iv = {g ∈ Gx|gv = v.}, v ∈ Gx.) Then we have

dim(N − N ) ≤ dim M + rankE1 − rankE2 − 2.

Sketch of the proof. Let V1 = E1x, V2 = E2x be fibers. Let PolyD
G(V1, V2)

be the set of all G-equivariant polynomial maps P : V1 → V2 of degree ≤ D. There
is an evaluation map ev : PolyD

G(V1, V2) × V1 → V2. We put

V1free = {v ∈ V1|Iv = {1}.}
Y = ev−1(0) ∩ (PolyD

G(V1, V2) × V1free).

Lemma 5. If the action of G on V1 is effective, then, for sufficiently large D,
the space Y is a smooth manifold of dimension

dim Y = dimV1 + dim PolyD
G(V1, V2) − dim V2.

In other words, ev is a submersion on PolyD
G(V1, V2) × V1free.

Lemma 5 follows easily from the following sublemma :

Sublemma. Let p ∈ V1 and w ∈ V2. We assume Ip = {1}. Then there exists
a G equivariant polynomial map P : V1 → V2 such that P (p) = w.

Proof. We may assume that V2 is an irreducible G module. We put

W =
⊕

γ∈G

C[γ].

and define a G action on it by

g(
∑

cγ [γ]) =
∑

cγ[γg−1].
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Since W is a regular representation of G, there exists a surjective G linear map
Ψ : W → V2. We choose wγ ∈ C such that :

Ψ
(∑

wγ [γ]
)

= w.

Since Ip = {1}, there exists a (C valued) polynomial f on V1 such

f(γp) = wγ

for each γ ∈ G. We put

P (x) = Ψ

(
∑

γ

f(γx)[γ]

)
.

It is straightforward to see that P has the required property1.

We put X = Y − Y. The space X is an algebraic variety. We have :

dimC X ≤ dimC V1 + dimC PolyD
G(V1, V2) − dimC V2 − 1.

Two bundles E1, E2 → M induce a bundle PolyD
G(E1, E2) → M whose fiber is

PolyD
G(V1, V2). We also have a bundle X → M whose fiber is X . The projec-

tion X ⊂ PolyD
G(V1, V2) × V1free → PolyD

G(V1, V2) induces a bundle map

π : X → PolyD
G(E1, E2).

Since X is an algebraic variety, it has simplicial decomposition. Using it we can
find a section s : M → PolyD

G(E1, E2) which is of general position to π(X ). It follows
that

dimR{x ∈ M |s(x) ∈ π(X )} ≤ rankRE1 + dimR M − rankRE2 − 2.

(Note that dimension and rank here are real dimension and real rank.) s induces a
bundle map s : E1 → E2 which is a polynomial map on each fibers. It is easy to see
that

{x ∈ M |s(x) ∈ π(X )} ' N − N.

Proposition 4 follows.

We apply Proposition 4 to E1(G), E2(G), CM(G). We remark that rankE1 +
dim M − rankE2 is the virtual dimension of CM. We modify sG : E1(G) → E2(G),
so that it will be the bundle map constructed by Proposition 4 in a neighborhood
of 0 section. Then it is easy to see that N/G(G) is identified with the intersection
of CM(1) and a neighborhood of CM(G). Therefore, Proposition 4 implies

(6) dimR CM(1) ∩ CM(G) ≤ dimR CM(1) − 2,

for G 6= 1. (Note dimR CM(1) is equal to the virtual dimension of CM.)
We modify sG by an induction of the stratum so that (6) is satisfied.

1Our first idea of the proof of Theorem 1 was to show Lemma 5 under additional assumption

that G is abelian, and then use resolution of singularity to reduce the general case to this case.
After Theorem 1 had been anounced by the first named author in several conferences, we realized

that there is a simpler argument (which we gave above) without using resolution of singularity.

We thank Prof. Hambleton who suggested that Proposition 4 may hold without assuming G to

be abelian.
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Now let us consider the case when the virtual dimension of CM is 0 or 1. Then
(6) means that CM(1) is compact. Hence using it in place of CM, we obtain ∂
such that ∂2 = 0. This is an outline of the proof of Theorem 1.

§7. Gromov-Witten invariant.

Our construction in this article can be applied to the moduli space of marked
stable maps also. Then we obtain a homology class defined over integer. The result
can be summarized as in Theorem 3 below. Let X be an 2n-dimensional compact
symplectic manifold and β ∈ H2(X; Z). Let

GWg,m(X; β) ∈ H2m+2βc1+2(3−n)(g−1)(CMg,m × Xm; Q)

be the Gromov-Witten invariant. (Here g is the genus m is the number of marked
point. CMg,m is the Deligne-Mumford compactification of the moduli space of
stable curves.) (See [FO2] §17 for a definition of Gromov-Witten invariant.)

Theorem 3. There exists a decomposition

GWg,m(X ;β) = GWg,m(X;β)simple + GWg,m(X; β)multiple

with the following properties.

(1) GWg,m(X; β)simple is a homology class defined over integer.
(2) GWg,m(X; β)simple is invariant of the deformation of X (as far as it is
smooth).
(3) GW0,3(X ;β)simple defines an associative product on H∗(X; Λ).

Some of the other axioms by Kontsevich-Manin [KM] (see also [FO2] §23) may
hold for GWg,m(X;β)simple. The authors did not check yet which holds and which
does not hold.

Problem. Are there any universal formula to calculate GWg,m(X ;β)multiple

in terms of GWg′,m′(X ;β′)simple with g′ ≤ g, m′ ≤ m?

We remark that such a formula is known in the case when X is a Calabi-Yau
3 fold and g = 0. (See [Ma].)

Our method of this article can be used also in the case of moduli space of pseu-
doholomorphic disks. Combined with [FKO3], it gives applications to the problem
of Lagrangian intersection. We will discuss it later in [FO3].
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