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0. INTRODUCTION! - 1 -

In this article, we propose a project to construct a Floer cohomologies for fam-
ily of Lagrangian submanifolds. The author believes that to realize this project
will be an important step toward a proof of homological mirror symmetry conjec-
ture by Kontsevitch [Kol],[Ko2]. See [Fu4] §0 the statement of the version of the
homological mirror symmetry conjecture the author is working on to prove.

We first review a construction in complex geometry which is expected to be a
mirror of Floer cohomologies for family of Lagrangian submanifolds. Actually the
mirror object is classical in complex geometry.

Let # : M — N be a proper holomorphic map from a complex manifold M to
another complex manifold N. Let £ be a holomorphic vector bundle on M. (More
generally £€ may be an object of the derived category of coherent Opr module
sheaves.) The direct image sheaf Rw,€ is defined as an object of derived category
of coherent Opn module sheaves on N.

Let us recall how Rn, & is regarded as a family of sheaf cohomology groups. Let
p € N. We consider the fiber 77!(p) C M and restrict £ there. Then the sheaf
cohomology group

(0.1) H* (™ (p); )

is well defined. On a subset U of N where the rank of (0.1) is constant, we obtain
a holomorphic vector bundle whose fiber at p € U is given by (0.1).

In general, the rank of the vector space (0.1) jumps. However the alternative
sum

(0.2) P (1) B (7 (p): )

k

is well defined as an object of derived category of coherent On module sheaves
on N. This is our Rm,£. This construction goes back to Grotendieck’s idea on
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Grotendieck-Riemann-Roch theorem and was translated by Atiyah-Singer to C'™°
category (index theory of family of elliptic operators).

Let us consider the following variant of this construction. We fix a complex
manifold X. Let N be a subset of the moduli space of holomorphic vector bundles
on X. In an ideal situation, we have a universal bundle £ on M — N. Namely £ is a
vector bundle on M and M — N is a locally trivial fiber bundle in complex analytic
category, such that the fiber of M — N is isomorphic to X and the restriction of
& to the fiber of p € N is isomorphic to the vector bundle of X corresponding to p.

Let N’ be another subset of the moduli space of holomorphic vector bundles on
X. We define M’ — N’ and &' — M’ in a similar way.

Now let (p,p') € N x N'. We have two holomorphic vector bundles &|,-1(,),
E'|x=1(p1) on X. We then have graded vector spaces

(03) EXt*(5|ﬂ—1(p),(‘:/|,r—1(p/)).

The rank of (0.3) jumps when we move (p,p’) € M x M'. However, in a way similar
to (0.2), the family (0.3) is well defined as an object of derived category of coherent
sheaves on N x N'.

One may try to extend this object to one on an appropriate compactification of
the moduli space N x N'.

1. INTRODUCTION - 2 -

The target of our project is to construct a mirror of the construction we reviewed
in section 0. Let us make it a bit more precise.

Let (M,w) be a symplectic manifold. We take a closed two form B, which is
called the B field, and put Q@ = w — 2m/—1B. We let LAG™(M,Q) be the set of
all triples (L, £, V) satisfying the conditions below.

Condition 1.1.
(1.1.1) dim L = dim M/2.
(1.1.2) L is a line bundle on L, V is a unitary connection on it.

(1.1.3) The curvature Fy of V satisfies
Fy = 2nv/—1B.

The space LAG™ (M, Q) is of infinite dimension. We will define an equivalence
relation on it so that the quotient space is of finite dimension.

We first recall the definition of Hamiltonian isotopy. Let f: M x [0,1] — R be
a smooth function. We put fi(z) = f(z,t). Let X be a unique vector field on M
such that

(1.2) w(Xy,, V) =dfy(V)

holds for any vector field V on M. Xy is called the Hamiltonian vector field
generated by f;. We then obtain a family of diffeomorphisms ®; : M — M such
that :

Do(z) ==
(1.3) 0, ()
ot

It is well known that ®; preserves the symplectic form w. We call ®; the Hamul-
tontan wsotopy generated by f.

= X5, (®4(2))-
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Definition 1.4. Let (Lo, Lo, Vo), (L1,£1,V1) € LAG™ (M, ). We say that they
are Hamiltonian equivalent to each other and write (Lo, Ly, Vo) ~ (L1,£1, V1) if
there exists a function f: M x [0,1] — R, a (complex) line bundle £ — L x [0,1]
and its connection V with the following properties. Let ®; be the Hamiltonian
isotopy generated by f.

(1.5.1)  ®4(Lo) = L;.
(1.5.2)  (£,V)|rxgo} = (Lo, Vo), (£, V)|Lxq1y = ®1(£1, V).
(1.5.3) Fy =2n/—18*B. Here ® : Ly x[0,1] — M is defined by ®(z,t) = $4(z).

We denote the quotient space LAG™ (M, )/ ~ by LAG(M, Q).

We do not know appropriate definition of stability to modify the construction
of the moduli space LAG(M,(2) and obtain a Hausdorff space. (We remark here
that to define a Hausdorff moduli space of holomorphic vector bundles, we need to
restrict ourselves to stable or semi-stable bundles.) We do not discuss this point
here. (See [Fu5] §2.)

If we forget the difficulty related to stability and Hausdorffness of moduli space,
we can define a complex structure on LAG(M,Q) as follows. Let (L,L,V) €
LAG™(M,Q). We define

I :T(L;TM|p) = T(L; T*M|1) ® C

by

Let (L, L+, V¢) be a smooth family of elements of LAG™ (M, Q). We fix a family of
diffeomorphisms L = L;, which determine the embedding ¢; : L — M. We define
V el(L,TM|L) by

Oty
(1.6) V= o
We next fix a family of bundle isomorphisms £ = ®**£;. We pull back the con-
nections V; by this isomorphism and denote the pull back by the same symbol V.

We define ov
2my/—1u = 6tt

Here we identify u(1) = 27/ —1R. We now put

e T(L, T*L ® u(1)).

(1.7) I (%(Lt,ﬁt,vt)) =5L(V)+ 2/ —1u € I'"L;T*L) ® C.

Lemma 1.8. (1.7) induces an isomorphism

I:Tipy 2o v LAG(M,Q) — Hi, (L; C).

Proof. Since L is a Lagrangian submanifold, it follows that ReI;(V) = 0 if and
only if V is tangent to L. Hence the real part of (1.7) is independent of the choice
of the family of diffeomorphisms L = L;.
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If we change the family of isomorphisms £ = 7 £; then v changes by an exact
one form. So we may take any isomorphism £ = ¢} L to prove Theorem 1.8.

Let us study the imaginary part of (1.7). Let V be a vector field on a neigh-
borhood of L. We assume that V is tangent to L. We denote by exp(tV) the
one parameter group of diffeomorphisms generated by V. We consider the case
L; = exp(tV)(L) = L and the family of diffeomorphisms L = L; is exp(tV). We
take £ = L. We define £ = i; L as follows. Let p € L. s — exp(tsV)p is a path
joining p to exp(tV)p. The parallel transport along this path of the connection V
defines an isomorphism L, = Loy, 1v)p = (4 £1)p. We thus obtain an isomorphism
L =45 Ly.

We pull back the connection V by this isomorphism and write it as V; =
exp(tV)*V. Then Fy = 2n\/—1B implies

d
7 exp(tV)*V =1y Fy = $(2nv/—111).
t=0

Hence the family (L;, £;, V) is mapped to zero by I. We thus verified that (1.7) is
independent of the choice of the isomorphism 4; : L = Ly, £ = 7 Ly modulo exact
form.

We next check that the left hand side of (1.7) is a closed form. Let V be as

in (1.6). We may extend i; to a symplectic embedding in a neighborhood of L by
using Darboux-Weinstein theorem (see [AG] §4.1). By definition, we have

ivw = R(IL(V)).

We have
(]%(Il(V)) = d(?vu)) = —tydw + Lyw = 0.

(Here we use the fact that i; preserves symplectic structure to show Lyw = 0.)
We next consider the imaginary part. We first observe that, by the same calcu-
lation as above, we have

(1.9) dS(I,(V)) = —2r Ly B.

By assumption, the curvature of V; (which we regard as a connection on £ 22 i} L;)

is 2w/ —11; B. Hence

0
(1.10) d(avt

> =2nv/—1LyB

t=0

(1.9) and (1.10) cancel each other as required.
We next check that the differential of the family in an equivalence class of the

relation ~ will be send to an exact form. Let us use the notation of Definition 1.5.
We put is(z) = ®*(z) = ®(z,t), i1(Lo) = L. It is easy to show

Rel1(V) = iyw = dfy

where f is the Hamiltonian generating the Hamiltonian isotopy ;. Thus the real
part is exact.
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Let £; be the restriction of (£,V) to Ly x {t} = Li. We define bundle isomor-
phism ; £; = Lo by using parallel transport along the path s — (z,st). (We use
connection V to define parallel transport.) Then, by (1.5.3), we have

0
a'b:v-t == 27'('\/ —].'I,VB
t=0

Thus, for this choice of the isomorphism if £; ~ Ly, the imaginary part of I;(V)
vanishes. The proof of Lemma 1.8 is now complete. [

We remark that the right hand side of the isomorphism in Lemma 1.8 is a complex
vector space. Hence we obtain an almost complex structure on our moduli space
LAG(M, Q) on the subset where it is Hausdorff. It is easy to show that this almost
complex structure is integrable and hence determine a complex structure. We call
this complex structure the classical complex structure and write it LAG(M,Q).;.
(The construction above is a minor modification of one given in [Fu4] Chapter 1.
There the case of symplectic torus is studied in more detail.)

Let us consider the direct product LAG(M,Q)c x LAG(M,Q)c;. Our purpose
is to define an object of the derived category of coherent sheaves on it, which
gives the family of Floer cohomologies. Namely let ((Li,£1,V1),(L2,L2,V2)) €
LAG(M, ). We consider Floer cohomology

(1.11) HF((L1,£1,V1), (L2, £, V5))

which is a graded C vector space. (Actually there is a trouble related to point
(D) below to define Floer cohomology with C coefficient.) We move the pair
((L1,£1,V1),(L2,L2,V2)). Then we expect that (1.11) will be a holomorphic fam-
ily of complex vector spaces, the family of Floer cohomologies, and expect that it
will be a mirror of the construction of §0 in some case.

However one needs various modifications to define Floer cohomology for families
in a rigorous way. The author is unable to complete the construction in a rigorous
way in the general case at the time of writing this article. The main difficulties to
be overcome are as follows.

(A) Floer cohomology is not always defined.

(A.1)  We need a relative spin structure of Lagrangian submanifold for Floer
cohomology (1.11) to be well defined over Q, R or C coefficient.

(A.2) The obstruction class defined in [FOOQ] should vanish for Floer coho-
mology (1.11) to be well defined.

(B) Even in the case when Floer cohomology (1.11) is defined, it depends on
various additional choices involved.

(C)  We need additional data to define degree of the elements of Floer cohomol-
ogy.
(D) Even in the case when Floer cohomology (1.11) is defined, the boundary

operator is a formal power series whose convergence is not established yet.

(E) Even in the case when the boundary operator converges, the boundary
operator does not depend continuously on Lagrangian submanifolds. Hence it does
not give a holomorphic family of chain complexes in a naive sense.
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(F) Even if we can overcome the problem (E) by taking “holomorphic structure
including the quantum effect” the “holomorphic structure” on the family (1.11)
define an object of derived category of coherent sheaves not on LAG(M,Q)q X
LAG(M,Q)c but on LAG(M,Q)gm X LAG(M,Q)gm. Here LAG(M,Q)m is an
appropriate modification of LAG(M,2).; by quantum effect.

Among the above difficulties (A)(B)(C) are basically settled in [FOOO]. The
author is now working on (D)(E)(F). This article is a report on work in progress
on it.

The author makes it clear which part is already settled and which are not.
Especially the results stated as Theorem, Proposition, Lemma, are all rigorously

established.

2. INFINITESIMAL FAMILY - infinitesimal (algebraic)
deformation of Lagrangian submanifolds -

In this and the next sections, we review a part of the results in [FOOO] which
are related to points (A2)(B) above. Roughly speaking we will construct a family
of Floer homologies in an infinitesimal neighborhood of a point in LAG(M, ).

We first define the universal Novikov ring A,,,,. Let F' be a commutative ring
with unit. We put :

Anov,F = {Z a'iTAi

Anov,F 1s a complete valuation ring. Note the definition here is a bit different
from the preprint version of [FOOO], where one extra parameter was added. The

a; € F,)\z' € R,)\i < )\i-|-17 .liIn A= OO} .
i—00

definition in this article seems to be more appropriate for applications to mirror
symmetry. We define a subring Ag noy, 7 of Apoy r by

AO,nov,F = {Za'iTAi € Anov,F‘ /\1, > 0} ’

and its ideal Ay 00 F by

A-I—,'n,ov,F = {Z a'iT)‘i S Anov,F‘ Ai > 0} .

We remark
AO,nov,F/A-I-,nov,F = F.

Hereafter we will write Ayou, Ao novs At now in place of Aoy 0y Ao nowv,cy A now,C
respectively.
Let L be a Lagrangian submanifold of a symplectic manifold (M,w). We assume

Assumption 2.1.

(2.1.1) (M) =0.

(2.1.2)  The Maslov index 75 : mo(M,L) — Z (see [AG] Chapter 6) is zero.
Assumption 2.1 implies that the virtual dimension of the moduli space of the

pseudoholomorphic maps ¢ : (D*,80D?*) — (M, L) is independent of the homotopy
class of ¢ and is equal to n, the dimension of L.
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In the situation where Assumption 2.1 is not satisfied, the virtual dimension
depends on the component of the moduli space (or homotopy class of ¢) and we need
to add one more formal parameter to Ay, F or alternatively our Floer cohomology
has Zsy, grading instead of Z grading. (Here 2Xy is the generator of the image of
Maslov index.) We do not discuss this point. See [Sei].

Assumption 2.1 is satisfied for special Lagrangian submanifold in Calabi-Yau
manifolds.

Let S(L) be the chain complex of smooth singular chains in L. An element
of Si(L) defines a k-current and may also be regarded as a distribution valued
n — k form on L. If two elements of S(L) determine the same current, then we
say that they are equivalent to each other. Let S(L) be the quotient space by this
equivalence relation. We put

and regard g*(L) as a cochain complex. An element of g*(L) is a distribution
valued form. Hence the wedge product among them is not in general defined in the
usual sense. However we have the following :

Proposition 2.2. There exists a countably generated subcomplex C(L; Q) ofg* (L)
and a structure of A algebra on it, such that it s homotopy equivalent to the

differential graded algebra (I'(L; A*(L)),d, ), the De-Rham complex.

See [FOOO] Chapter 5, for the proof.
Let us review the definition of A, algebra. Structure of A, algebra on C(L;Q)
is by definition a series of operations

m: C[1)(L; Q) ® -+ ® C[1)(L; Q) — C[1](L; Q)

k times

k=1,2,... with the following properties. Here C[1]*(L; Q) = C**(L; Q).

my, is of degree +1.

o

(2.3.1)
(2.3.2)

E Mg —mge(z1, - o1, Mm—pg1 (e, )y Tg1, -+ 2g) = 0.
1<t<m<k

(See [FOOO] Chapter 6 for sign.) Hereafter we write

(2.4.1) BiC[1)(L;Q) = C1)(L; Q) ® - - - ® C[1](L; Q),
k times
(2.4.2) BCN](L;Q) = Y BrC[1](L;: Q).
k

We need also the notion of filtered A, algebra. We take C(L; Q) as in Proposition
2.2. Let C(L;Ag nov) be the completion of the algebraic tensor product

C(L, Q) ®Q AO,nov-
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Here we take the completion by using filtration induced by the valuation on Ag noo.
The structure of filtered Ao algebra on C(L;Ag nov) is a series of operations

myg : C[l](L7 AO,nm;) R C[]-](L, AO,nov) — C[].](L, AO,nov)

k times

for k =0,1,---, such that (2.3.1),(2.3.2) hold and that mj preserves the filtration.
Notes that mg is included for filtered A algebra but my = 0 for A, algebra.

BC[1])(L; Ao,nov) is defined in a similar way to (2.4). BC[I](L;AO’MU) is its
completion.

Now the main result of [FOOO] is :

Theorem 2.5. Let (L,L,V) € LAG™(M,Q). We assume that L has a relative
spin structure? in the sense of [FOOQ] Chapter 6. Then there exists a structure of
filtered A algebra my, on C(L;Ag nov) such that

mp =M mod Ay 4.

We remark that C(L; Ag n00) is independent of £,V. However m; depends on
Ej XV-e here give a rough idea of the definition of mg. The detail is in [FOOOQ)]. Let
Mi41(L) be the set of all (¢, z) where

¢ : (D?*,0D*) — (M, L)
is a pseudoholomorphic map and
7= (20, ,2p41) € (OD*)T1.
We assume that zg,--- , zx11 respects the counter clockwise order of D2,
The group PSL(2,R) = Aut(D?) acts on ./\;lk_H(L) in an obvious way. Let

Mi41(L) be the quotient space.
The evaluation map ev : Myy1(L) — L*t1 is defined by

(2.6) ev([p, Z]) = (p(20),- -+ s o(2k))-

We define functions E, B, H on My41(L) by
E(p) = / *w e R, B(yp) = / ¢*B e R,
D2 D2
H(p) = Holy(pp2) (L, V) € U(1) = S

Here Hol,pp2)(L£,V) denotes the holonomy of the connection V along the loop
¢(0D?).

2If L is spin then it has a relative spin structure.
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Lemma 2.7. exp(2mv/—1B(¢))H(p) Q TE(®) depends only on the homotopy class
of .
Proof. The independence of the absolute value of the coefficient and of E(¢p) is a

consequence of the fact that L is a Lagrangian submanifold and the Stokes’ theorem.
The independence of the phase factor follows from Fy = 27nv/—1B. 0O

Now we are ready to explain the definition of the operation my in Theorem 2.5.
Let 8 € mo(M,L). Myy1(L;3) denotes the components of Myy1(L) such that the
homotopy class of ¢ is (.

By Lemma 2.7, we may write

exp(2mv/—1B(B))H(B) ® TE®B)

Let P; be singular chains defining elements of C(L; Q). We now put

mg(Pr,- , Py) = Zexp(27r\/—_1B(,6))H(/6)
(2.8) B
(Mpy1(L;B) Xpr (Pr X +++ X Py)) ® TE®)

Here
Mig1(L; B) xpr (Pr X +++ X Py)

is a fiber product taken by using (evy,- - ,evy), where
ev = (evg,-++ yevg) : Mypy1(L;B) — LFTL,

We use evg to regard My41(L;3) Xprx (P1 X -+ X Py) as a current on L.

It is proved in [FOOO] Theorem 13.22 that (2.8) satisfies the required properties.
(Actually the case when flat line bundle is included is not discussed in [FOOO].
However by using Lemma 2.7 we do not need any other argument than those given

in [FOOOQ] to generalize it to include L.)

Let us explain how Theorem 2.2 is related to the study of infinitesimal moduli
space of Lagrangian submanifolds. (See [FOOO] Chapters 4 and 8 for more detail.)
Let us consider the dual C'(L;Q)* to C(L; Q). We denote by C(L;Ag nov)* the
completion of C(L; Q)* ® Ag nov,g- We shift its degree in the same way as before and
take free tensor algebra TC[1](L; Ag nov)*. Let TC[I](L; Ao nov)* be the completion
of TC[1](L; Ao, nov)*. Both TC[1](L; Ag,nev)* and TC[I](L; Ao nov)* are associative
(but noncommutative) algebras over Ag 0.

The dual of my is a homomorphism

my : C[1(L; Ao now)* — TC[L](L; Ao now)™.
We can extend mj uniquely to a derivation
Op : TC[I](L;AO’nm,)* — TC[I](L;AO’,,,M,)*.

The sum

§=> &
k
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converges as a Ay noy module homomorphism (derivation)
8 : TCI(L; Ao now)* = TCI)(L; Mg mow)*

We thus obtain a differential graded algebra (TC[I](L; Ao nov)*, s 3) . Its cohomol-
ogy

(2.9 (H@CMI(L: Ao )" 6). )

is an associative algebra. The result of [FOOOQ] Chapter 4 §15 immediately implies
that the algebra (2.9) depends only on the ~ equivalence class of (L, L, V).

Remark 2.10. Actually we proved in [FOOO] Chapter 4, that the weak homo-
topy type of filtered A, algebra (the definition of weak homotopy equivalence of
filtered A, algebra is in [FOOO] Chapter 4) in Theorem 2.5 depends only on the
~ equivalence class of (L, £, V). This statement is stronger than the independence
of (2.9).

In [EGH], a similar construction is proposed in the case of contact homology.
(Lo algebra appears in place of A algebra in that case. As a consequence the al-
gebra corresponding to (2.9) in their situation is graded commutative.) Eliashberg-
Givental-Hofer proposed to prove independence of the objects corresponding to
(2.9) of various choices involved, in their situation. In their situation also, one
can show the invariance of weak homotopy type of L., algebra. (Compare also

Chekanov [Ch].)

We now study a relation of our construction here to the infinitesimal structure
of the moduli space LAG(M,Q)4m. We consider an infinitesimal deformation of an
element [L,L£,V]in LAG(M,Q),. By Lemma 1.7, the deformation is controlled by
the cohomology group H'(L;C).

This is the first place where “quantum deformation” of the moduli space LAG(M, Q)
appears. Namely the deformation of [L,£,V] in LAG(M,Q)sm is controlled by
“Spec”, Spec(C(L; Ay nov), m) of the filtered A, algebra in Theorem 2.5. The au-
thor does not know the precise definition of the “Spec” of filtered Ao, algebra. (It
should be some kind of super analogue of formal scheme.) (See however [FOOO]
Chapter 8.) So, as its approximation, we consider the set of “Ag ,,, geometric
points”, which we can define rigorously as follows.

Definition 2.11. We denote by M'(M,,C,V) the set of all continuous maps
d) : TC[]-](L;AO,TLOU)* — AO,TLO’U

of degree 0 such that it s a ring homomorphism and ¢ o §=0.

The set /\;l'(M,[,,V) above coincides to one in [FOOO] Chapter 4. To explain
the later, let us consider the dual to ¢.
The dual ¢* to ¢ is a map

(212) Cb* : AO,nov — BC[l](L, AO,nov)-

Since ¢ is a ring homomorphism it follows that ¢* is a coalgebra homomorphism.
Using the fact that BC[1](L; Ao nov) s a free coalgebra, we can prove the following
easily.
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Lemma 2.13. Coalgebra homomorphism (2.12) is given by
pr(1)y=e", L=14+04+0b+---,
where b € C[1)(L; Mg nov,c). Its dual ¢ is given by
(' @ ®zF) =2 (b) - 2F (D).

Inorder e® =14+b4+bQb+--- to converge in the (non Archimedean) topology
induced by the valuation on A,,,, we assumed that

(2.14) b€ CI1)(L; At omoo)-

(In case b € C[1](L; Ao,nov), the infinite series e? may not converge.) We assumed
that ¢* is degree preserving. Therefore

b E C[]‘]O(L; A-|-7TL0’U,(C) = Ol(L; A-|—,TL0’U,(C)'

We now put
M(L,L,V) = {b € C11%(L; At nov,c)| 8(e”) = 0} :

The discussion so far implies that M(L, L,V) is identified to M'(M, L,V). We call
an element of M(L,E,V) a bounding chan. ./\;l(L,,C,V) is introduced in [FOOOQO]
Chapter 4.

Let us write the equation S(eb) = 0 more explicitly. We first put

b= byTY, by €C(L;C), i1 oco.

We next define my »; by

(2.15) mk(Pla"‘7Pk):ka,)\i(Pla"'7Pk)T)‘i7
where P; € C[1](L;C) and my, 5, (P1,--- ,Py) € C[1](L; C).

For a general filtered A, algebra such discrete set {A;, -+ ,Ag,-+-} may not
exist. We say that our A, algebra is strongly gapped if the operation m; can be
written as in (2.15). (Note that we assumed that the set {A1,--- ,\;,--- } appeared
in my, is independent of k and is discrete.)

In our case of the A structure in Theorem 2.5, the set {A1,--+ , A, -} is the

set of all E(3) € R>¢ where 8 € w1 (M, L) such that M(L, () is nonempty. The set
of such E(f) is discrete by Gromov compactness.
Now the equation d(e?) = 0 can be written as

mo.a(1) + Z ™17 (br))

Ay TAa)=A
(2.16) T > M2 30 (022 DA )
Ay FA@) T A=A
+ Z M3 Aoy ()1 02y s D2y ) + 0+ = 0.

A FAM) T A@) T A@=A
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Let us consider the case when mg = mg = my = --- = 0. In this case, our filtered
A algebra is a differential graded algebra (DGA). (Actually we need to modify
the sign of the operations to obtain DGA. See [FOOO] Chapter 4 Formula (13.4).)

Then, the equation similar to (2.16) in this case is
(2.17) db+bAb=0.

Equation (2.17) is similar to the equation of deformation of holomorphic structures
on vector bundles

(2.18) OB +BAB=0.

(Here B € T'(M; End(€) ® A%') and £ is a holomorphic vector bundle.) Equation

(2.17) is also similar to the equation
(2.19) Fp=dA+ANA=0

of the deformation of flat bundles.

We recall that the equation (2.18) is equivalent to
(2.20) (0 +BA) o (0+BA) = 0.

Here B B
Op =0+ BA:T(M;E€® A"F) 5 T(M; € @ AVFH1)

is the Dolbault operator with coefficient in the holomorphic vector bundle (£, 9y).
We can show a similar fact in our situation of A algebra. Let b € C[1]%(L; A 1oy)-
We put

oo 0o
mk-l—l-l—l ,b,.’B,b,--- ’b)
k=0 £¢=0
- k times £ times

for ¢ € C[1](L; Anow ).
Lemma 2.21. m!(z) omb(z) = 0 if and only if §(e®) = 0.

The proof is easy and is omitted. (See [FOOO] Chapter 4 Lemma 13.37.) We
can define m? in a way similar to m}. (See [FOOO] Chapter 4 Definition 13.39.)
By Lemma 2.21, we can define Floer cohomology

Ker mll’

(2.22) HF((L,£,V,b); (L, £, Vb)) =

bl

Imm

for b€ M(L,L,V).

We remark that our space ./\;i(L,[,,V) is too big to be an appropriate moduli
space of Lagrangian submanifolds. For example, in the case of its analogy (2.18),
we need to divide the set of its solutions by the action of gauge transformation
group, to obtain a moduli space of holomorphic structures on the bundle £.

In our case also, we need to define an equivalence relation and divide ./\;l(L, L, V)
by it to obtain a moduli space M(L, £, V), which is an infinitesimal neighborhood
of [L,L,V]in LAG(M,)ym. Let us now define a gauge equivalence on M(L, L,V).
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We take another formal parameter S. Let
CHI(L; Anow,c)(S)

be the set of all formal sums

X(8) =) X (5)T™

where Xy, (.5) is a polynomial of § with coefficient in C'(L;C) and A; T co. We also

remark that the degree of the polynomial Xy,;(S) may go to infinity as ¢ goes to

infinity. Hence X (.5) is a kind of formal power series with respect to S also. Note

however, if s € R, the value X(s) is well defined as an element of C[1](L; A,0y)-
Now let

b(S) € C[11°(L; Aow )(S),  ¢(S) € C[1]7H(L; Apow,c)(S)-

We counsider the equation

(2.23)

Note that the left and the right hand sides are well defined as elements of C[1]%(L; Apoy c)(S).
As we remarked above, b(0) and b(1) are well defined.

Definition 2.24. Let b,b' € M(L,£L,V). We say b ~ ' if there exists a solution
of (2.23) such that b(0) = b, b(1) = b'.

Proposition 2.25. ~ is an equivalence relation.

The proof of transitivity is not trivial. Proposition 2.25 is proved in [FOOO)]
Chapter 82.

Lemma 2.26. Let b(S), c(5) be a solution of (2.23). We assume b(0) € M(L,C,V).
Then b(1) € M(L,E,V).

Proof.
om(eb(S) 0
(675’) — E ﬁmk(b(s)a"' ?b(S))
k=0 .
k times
NN 9b(5)
- ZZ oMkttt | 0(S), -+, b(5), — = b(S),- -+, b(5)
k=0 £=0 k times £ times
b
=l (Z) = il o mle(5) o

More precisely, we proceed as follows : If m(eb(s)) is zero modulo S*~1, then
mll)(S) o mll)(S)

is zero modulo S*. O

is zero modulo S*~1. Hence the above calculation shows that m(eb(s))

3Chapter 8 is not included in the version of [FOOO] completed and distributed in December
2000. It will be included in the final version.
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Definition 2.27. M(L,L,V) = M(L,L,V)/ ~.

We can prove the following. (See [FOOQO] Chapters 4,8 for the proof.)
Lemma 2.28. If b~ b then

HF((L,L,V,b);(L,L,V,b) 2 HF((L,L,V,b');(L,L,V,b)).

Here we defined M(L, £,V) ounly set theoretically. However we can define it as
a formal scheme. Namely we have a formal map (the Kuranishi map) :
(2.29) Kura: H'(L;C) — H*(L; C) ® Ay nov
such that its zero set is mapped surjectively to M(L, L, V). (See [FOOO] Theorem
D and [FOOO] Chapter 8 for detail.)

We now explain a relation of M(L, L, V) to LAG(M,Q).

Let [b] € M(L,L,V). We counsider linearized equation of the defining equation
6(e?) =0 of M(L,L,V). Namely we differentiate

5(H9) = 0,
with respect to § and obtain :
(2.30) m} (Ab) = 0.
Here
b(S)=b+ SAb+---.
On the other hand, if b(S) ~ b(0) = b then there exists ¢(§) satisfying (2.23).
Hence, in case b(S) ~ b(0) = b, we have
Ab =m}(Ac).

Thus
(2.31) TiyM(L,L,V) = HF'((L,L,V,b);(L,L,V,b)).
(In case M(L, L, V) is singular, the left hand side of (2.31) should be regarded as

a Zariski tangent space.)
We next review a relation between Floer cohomology and usual cohomology. We
remark that we may write

o0
ho_ b
my = E my T
i=0

The first term mll’70 is independent of b and coincides with the usual coboundary

operator up to sign. Using this fact, we can construct a spectral sequence E2'? such
that .
Er = gry(HP(L; Ao,nov))

EP =~ grq(HFp(L,,C,V,b); (L,L,V,b)).
(See [FOOO] Theorem E, for precise statement.)

Roughly speaking, it implies that Floer cohomology is a quantum deformation of
the usual cohomology. The higher order terms mll’7i, ¢ > 1 give the “quantum effect”.
Those terms come from the existence of the nonconstant pseudoholomorphic disks.

On the other hand, as we remarked before
(2.32) Tr.c,v)LAG(M,Q) = H' (L; C)

Comparing (2.31) and (2.32), we find that M(L, L, V) is a quantum deformation
of LAG(M, Q) at least at the level of tangent space.
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3. INFINITESIMAL FAMILY - infinitesimal family of Floer homologies -

Now let us go back to our purpose, that is to construct infinitesimal family of
Floer homologies on the infinitesimal neighborhood M(L, L, V) in LAG(M,)gm
of [L,L,V]. In other words, we are going to construct an object of derived category
of coherent sheaves on the formal scheme M(L, L, V). See [FOOO] Chapter 8 for
detail on this section.

Let us recall the standard dictionary between geometry and ring theory. Let
[L,L,V] € LAG(M,Q). Its infinitesimal neighborhood is (roughly speaking) a
sub(formal)scheme of the affine formal scheme which is a spectrum of the complete
valuational (free noncommutative) ring TC [1](L; Ao,nov)*. The “ideal” defining

~

our sub(formal)scheme is given by the boundary operator d. Therefore the sheaf
on the infinitesimal neighborhood of ([L1,£L1,V1],[L2,L2,Vs]) € LAG(M,Q) x
LAG(M,Q) corresponds to “a module over a quotient ring of TC’[l](Ll; Aonov)™ ®
TC[1)(La; Ao mov)*”-

More precisely taking into account the noncommutativity of TC’[I](L; Ao nov)*sa
sheaf on the infinitesimal neighborhood of ([L1, L1, V1], [Ls, L2, V2]) corresponds to
a TC[I](Ll;A07nOU)*, TC[I](L2; Ao nov)* differential graded bimodule. Actually we
constructed in [FOOO] Chapter 4 §14.2 such differential graded bimodule. Namely

the following theorem was proved there.

Theorem 3.1. For each pair ([L1,L1,V1],[L2,L2,V2]) € LAG(M,Q)xLAG(M,Q),
we can associate a left TC[1](L1; Ao nov)* and right TC[1](La; Ao nov)* differential
graded bimodule D.

In the rest of this section, we explain an outline of the construction of D and
why it can be regarded as an infinitesimal family of Floer cohomologies.
We assume that L; is transversal to Ly. Then, as a A,,,, module, we put :

D = TC[1)(L1; Anov)* ® Ao oo @ Hom(L1p,L25) ® Aoy
(32) peLiNL>

®A0,nov TC[]‘](L2; ATLO’U)* °

Bimodule structure is induced by the ring structures of TC[l](Ll;Anoy)* and of
TC’[l](L2; Anov)*. The main point of the construction is the definition of the bound-
ary operator. It is a combination of the definition of the boundary operator of Floer
cohomology and the proof of Theorem 2.5.

Before explaining an outline of the construction of boundary operator, we con-
tinue our discussion based on the dictionary between ring theory and geome-
try. Let us consider the object © of derived category corresponding to the d-
ifferential graded bimodule D. (3.2) implies that the fiber D (4,1 p,]) of D at
([b1],[b2]) € M(L1,L1,V1) x M(L2,L2,V32) is a cohomology of the graded dif-

ferential A,,,, module
(33) Q([bﬂ,[bz]) = AO,nm; ®¢)b1 D ®¢)b2 AO,nov-

Here

(r{)bl : TC[]-](Lla Anov)* — AO,nov

is defined by :
P (2t @ ®at) = (by) - 2P (br).
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As A, ,» module, we find easily that

g([bl]v[bﬂ) = @ Hom(ﬁ:l,Pﬂﬁ?,p) ® Ano’U,C'
pELlﬂLz

Hence, as a Anyy module, D, 3, is independent of the choice of ([b1], [b2]).
However the boundary operator

Ope: @D Hom(LipLap) @ Anow =+ ) Hom(Lyp, Lap) ® Aoy

pELNL, pEL,NL,

does depend on ([b1],[b2]). Note that
81,171,2 =1§®1,

and is

abhbz(a) = an7f(b1a"' ablaaab2a"' ab2)a
k.

k times £ times

as we will define later in this section. We define :
Definition 3.4.

Ker Oy, b,

HF((L1, £1,V1,b1), (L3, £2, V2, bp)) & om0,

12

Let us explain how the discussion so far clarifies the troubles (A.2) and (B). The
moduli space M(L, £,V) may be empty in general. (Namely the equation (2.16)
may not have a solution.) For such (L, L, V), the obstruction class mentioned in
(A.2) is nonzero and Floer cohomology is not defined. If M(L, £, V) is nonempty
then Floer cohomology is defined. However it depends on the choice of the class
[b] € M(L,L,V). So (A.2) and (B) are reduced to the problem to determine the
moduli space M(L, L, V). This problem is not easy.

We conjectured (in [FOOO]) that mirror object exists only in case when M(L, £, V)
is nonempty and the infinitesimal deformation theory of the mirror object (see [GM
1,2] for example) coincides with M(L, L, V). Thus one possible approach to deter-
mine M(L, L, V) is to prove homological mirror symmetry conjecture in the above
sense and to use complex geometry.

Now we present an outline of the construction of the boundary operator : D — D
in [FOOO] §14. Actually we construct its dual. Namely we put

D* = BC[1](L1;Anov) ®hp,.. @ Hom(L1p,L2p) ® Ao
peL.NL,

®A0,no'u BC[]':I(LQ; Anov),

and will define d : D* — D*. We remark that BC[l](Ll;Anov) is a coalgebra.
Namely :

(3.5) A1 ® - ®zn) =Y (110 @2k) ® (k41 @+ ® ).
k=0
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(3.5) induces a bicomodule structure on D*. We remark that coalgebra structure
(3.5) is a dual to the algebra structure on TC’[l](Ll;Anou)*, and the bicomodule
structure on D* is dual to the bimodule structure on D. Therefore, in order to
construct a derivation on D, it suffices to construct a coderivation d on D*.

We remark that D* is a free bicomodule. Hence if we define

n:D" — @ Hom(ﬁl,p,£2,p) ® Ao
pELNL,

then bicomodule homomorphism d : D* — D* will be induced by

dx®a®y)=0x®a®y)+(1®n®1)(Ax® a ® Ay)

(3.6) .
+ (—1)terxtdeert(x @ a ® d(y)),
where a € Hom(L1,p,L2,p). ((3.6) is a bicomodule homomorphism and is a
coderivation automatically. We need to check that it is a boundary operator, name-
ly dd = 0.)

To define n, we use again the moduli space of pseudoholomorphic disks. Let
p,q € L1 N Ly. We counsider the following moduli space.

M(L1,Lo;p,q) ={¢:]0,1] x R = M | Condition 3.7 below.}.

Condition 3.7.

(3.7.1) ¢ is pseudoholomorphic.

(3.7.2)  ¢(0,7) € L1, ¢(1,7) € L.

(3.7.3) lm, o @(t,7)=p, lim, 4o p(t,7) =gq.

There is an obvious R action on M(Ll ,L2;p, q) induced by the shift of the second
factor of [0,1] x R. Let M(Ly, L2;p, q) be the quotient space by this action.

We divide M(L1, L2; p, q) according to the homotopy class as follows. Let 3 be a
homotopy class of a map satisfying (3.7.2),(3.7.3). We denote by M(L1, La;p,q;3)
the subset consisting of [¢] € M(L1, La; p,q) such that p € 3

We next define a weight function on M(L1, La;p, q). Let [¢] € M(L1,L2;p, q).
We put

Bo)= | pueR Bp)= [ ¢'Bekr
[0,1]xR [0,1]xR
We also define
H(p) : HOT’L(£1,p7£2,p) — Hom(ﬁlyqaﬁlq)a
by
H(p)(@) = hy(1yxm) (£2) 0 @ 0 b0y (£1) 7

Here h<p({1}X]R) (L2): L2 — L2,4 1s a parallel transport of (L2, V2) along the path
e({1} X R). hyqoyxm (£1) : L1, —+ L1,4 is defined in a similar way.

Lemma 3.8. exp(27v/—1B(p))H(p)(a) ® TE®) depends only on homotopy class
of .

The proof is the same as the proof of Lemma 2.7.



18 KENJI FUKAYA

We next recall that we assumed Assumption 2.1. It implies that there exists
1 : L1 N Ly — Z such that

dim M(L1, L2 p, q) = n(p) — n(q) — 1.

Here dim is a virtual dimension (in the sense of Kuranishi structure [FOn 1,2]).
(Note that Assumption 2.1 implies that the dimension is independent of the com-
ponents.)

We put dega =n —n(p) is @« € Hom(L1,p, L2 ). Now we define

noo: @ Hom(Lip.Lap) ®Anow— € Hom(L14.L2,4) ® Aoy
pELNL-> ge€L1NLo

mo(@) = > > )

(3.9) g, deg g=degp+1 B @EM(L1,L2;p,q;0)
+ exp(2mV/—1B(p)) H(p)(a) ® TZ).

Here @« € Hom(L1,,L2,). (We omit the definition of the sign. See [FOOO]
Chapter 6.) Gromov’s compactness theorem implies that the right hand side is
contained in
P Hom(Liy, L) ® Anow
geLNL,

(We need to work out transversality and perturb so that M(L1,La;p,q;3) is ac-
tually zero dimensional to define (3.9) rigorously. (M(L1,L2;p,q; ) is of virtual
dimension 0 by deg g = degp + 1.))

We will define ny 4 by combining the definition (3.9) and the construction in §2.
Here

Ng.e: Bkc[l](Lla AO,nov) ® @ Hom’(£1,p7£2,p) ® Anov
peLiNL-

® BgC[l](Ll, AO,nov) — @ Hom’(ﬁl,qaﬁlq) ® Anov-

geLiNL>

We consider the set of (¢, Z, %) such that

(3.10.1) ¢ € M(L1,La;p,q;3).
(3.10.2) Z=1((0,21),---,(0,2x)) where z; € R.
(3.10.3) @ =((1,w1), -+ ,(1,wy)) where w; € R.
We divide the totality of such triples (g,Z,w) by an obvious R action. Let
M(L1,Ly;p, q; k,0; 3) be the quotient space. We define an evaluation map :

ev:(evi1, e ,evi gy eva 1, evz g 08) t M(L1, Lasp, q;k,£) — LY x Lj

ev([p, Z,4]) = (p(21),- -+, p(we)).
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Let P ; be singular chains of L1 and P, ; be singular chains of Ly. We put

M(L1,La;p, gk, 5 Py gyeeeees sPri;Pai,ee  Pays B)
= M(L1,La;p,q: k, £; B) ew XLExLt Praxo-Prp X Pyg X oo Py

Now we define :

M (Pi1® Pir®a@QPr1 ® - Pay)

- 22 2.

geLNL: B [Lpazaw]EM(L17L2?paq?k7£§P1,17 """ 7P1,k§P2,17"'1P2,£§:@)
+ exp(2nV/~1B(p)) H(p)(a) ® TF ).

The first sum is taken over all ¢ such that the moduli space
M(L1, Ly;p, qs ko 5 Pryy-eee e s PrisPa, -, P B)

is of zero dimensional. (We omit the definition of the sign. See [FOOO] Chapter
6.) We finally define our operator n by

n= Z Ng.2-
k¢

Then we define d by (3.6). It is proved in [FOOO] that dis a boundary operator.
(Namely dod= 0.)

4. LOCAL FAMILY

In the last section, we discussed infinitesimal family of Floer homologies. How-
ever, we did not actually move Lagrangian submanifolds. The construction in §3.4
was carried out by using a fixed pair of Lagrangian submanifolds. In this section,
we begin to move our pair of Lagrangian submanifolds. The results up to the last
section is rigorously established in [FOOO]. Several parts of this and later sections
are not yet rigorously established. But those which is called Theorem, Proposition,
Lemma, are proved rigorously at this stage. Also many parts of the construction of
this article was rigorously established in the case of affine Lagrangian submanifolds
in simplex torus in [Fu4]. Actually the study of the case of torus was one of the
major sources of ideas described in this article.

Let us begin with describing the situation we work with. We need two Lagrangian
submanifolds to define Floer cohomology. To simplify the notation, we fix one of
them Lgy. Also we fix a complex line bundle £y together with a connection Vy on it
satisfying (1.1.3). We move another Lagrangian submanifold L(v) and a line bundle
L(0) together with its connection satisfying (1.1.3). To simplify notation, we denote
by L(o) a pair of a line bundle and a connection. Here (v,0) is a parameter in
R2 =~ HY(L(0);R) @ H(L(0); R).

We choose representatives (L(v), L(0)) € LAG(M,Q) as follows. By Darboux-
Weinstein theorem, a neighborhood of L(0) = L in (M,w) can be identified to a
neighborhood U of the zero section in the cotangent bundle 7% L(0). We fix closed
1 forms ey, , e representing a basis of Hp, (L(0); R). We define

L(v) = The graph of vie1 +---+vpep CU C M,
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for small v;.

Next we define £(o) on L(v). We remark that the restriction of the projection
T*L(0) — L(0) to L(v) is a diffeomorphism. Hence there exists a canonical dif-
feomorphism L(v) — L(0). Using this diffeomorphism, we pull back the complex
line bundle £ = £(0) and write it £(0) — L(v). As a complex line bundle, it is
independent of 0. We will define a connection V(o) on it.

We first define ¢ : L(0) x [0,1] — M by
o(z,t) =t(vier(x) + -+ +wvpep(z)) € U C M.

We then put
1
(4.1) V(o) = V(0) + 2m/-1 (alel + oot apen + / i%so*B) :
0

It is easy to check (1.1.3) by a direct calculation. Thus we obtain a map
V — LAG(M,Q).
Here V is a neighborhood of zero in H(L(0);R) & H'(L(0);R). We remark that

the complex structure on LAG(M, ). introduced in section 1, induce one on
HY(L(0);R) @ H*(L(0);R). In case when B = 0, the induced complex structure is
usual one where v € H'(L(0);R) is a real part and 0 € H'(L(0);R) is an imaginary
part. In case when B # 0 the induced complex structure is still linear but v, o are
no longer real and imaginary parts. Hereafter we use induced complex structure on
V.

We assume that L(0) is relatively spin. Then relative spin structure of L(0)
induces one on L(v).

We also assume that L(0) is transversal to Ly. Then, by shrinking V if necessary,
we may assume that L(v) is transversal to Ly. Note that we are studying local
family here. In case we are studying global family, we can no longer assume that
L(v) is transversal to Ly. We will discuss this point in §6.

Now we want to construct a chain complex of holomorphic vector bundles (C'F((Lg, Lo), (L(v), L(o)
(v,0) € V. We define the complex (but not yet holomorphic) bundles by

CF((Lo. Lo}, (L(0). £(@))c = € Hom (Lol » £(0)lyo) )
(42) pELGNL(v)

CF((L(),,C()),(L('U),E(O‘))) = CF((L()aL:O)v(L(U)v‘C(U)))C ® Anoo-

Note for each individual (v,s), the A,,, modules CF((Lg,Ly),(L(v),L(c))) are
members of the chain complex to define Floer homology HF'((Lg, Ly), (L(v), L(7))).

We will define a structure of holomorphic vector bundle on the members of the
complex (4.2). We need to assume the following for this purpose.

Assumption 4.3. There exists a Lagrangian submanifold L; (which may have a
boundary), and a complex line bundle L,; equipped with a connection, with the
following properties.

(4.4.1) The curvature of L, is 27/ —1B.
(4.4.2)  Foreach v, L(v) intersects with L, at one point. They intersect transver-
sally there.
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Example 4.5. Let M — N be a Lagrangian fibration. It is well known that the
fiber is a torus. We consider ReV C N and let L(v) be the fiber of v € ReV C N.

Let s : ReV — M be a section of M — N whose image is a Lagrangian
submanifold. Then L,; = s(ReV) satisfies Assumption 4.3. (We remark that we
may allow M — N to have a singular fiber. However we have more to work out
in case there is a singular fiber. Namely in case when there is a singular fiber,
it is inevitable to include quantum correction to the complex structure of moduli
space, (that is the point (F) mentioned in §0). We will not discuss it here and
leave them for future research.) This situation is one appeared in Strominger-Yau-
Zaslow’s idea [SYZ] to construct a mirror as a moduli space of special Lagrangian
submanifolds plus line bundles on it. (However in their situation the fibration has
a singular fiber expect the case of symplectic torus.)

We are going to define a holomorphic structure by defining a (holomorphic) chart
of the bundle (4.2).

To be a bit more precise, we are going to find a T' dependent family of holomor-
phic structures. (Here T is a formal parameter in the Novikov ring A,,,,.) Let us
explain this point first. We remark that the T appeared in the formula in the form
TE(®), Here E(¢p) is the integration of the symplectic form on an appropriate disks.
So replacing the symplectic form w by Cw is equivalent to replacing T by TC. In
mirror symmetry, we study the limit w — +o00 and compare it to the calculation in
the mirror. (The limit as w — 400 is called the large volume limit and its mirror
is called the large complex structure limit.) In case T < 1 the limit w — +oo
corresponds to the limit 7' — 0.

Note that B also appeared as exp(2my/—1B(y)) in the formula. Hence the factor

exp(27r\/—_lB(g0))TE(‘P)

will become €% if we put T = e~ L.

More precisely we proceed as follows. We study the following family of complex-
ified simplex structure. We first fix w,By. Let z € h = {z € C|Imz > 0}. We
put

(4.6) Q, =2nv—-1By — 27V —1zw.

Namely
1
B, =By — — Rezw
2r

is the our B field and 27 Im z w is our symplectic form. We remark that in case
when L is a Lagrangian submanifold with respect to w, the restriction of B, to
L coincides with By. Hence Condition 1.1 for B = B, is independent of z. The
functions E, B on Mj11(L) depend on z. We write them E,, B, respectively.

We now first put T' = ¢! then

(4.7) exp(27r\/—_le(go))TEz(‘P) = exp(2nV/—1By(p) + 2mvV/—12E(p)).

where E(p) is the symplectic area with respect to ¢. We then change our definition
of T' and put

(4.8) T = exp(27r\/—_1z)
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then the right hand side of (4.6) will be

(4.9) exp(27r\/—_130((p))TE(‘P).

This is actually the same weight function as we used before (by putting By = B)).
In this sense, we may regard the parameter T as one parametrizing the family (4.6)
by (4.8). (4.8) sends the neighborhood of +coy/—1 in §) to D(e)* an € neighborhood
of the origin in C minus origin.

Note that the map (4.8) z — T is not one to one. Actually if we regard (4.9)
as a function of complex parameter T' then it is multivalued. We discuss this point
later.

We suppose that there exists a family of complex manifolds (M, 2 z)/\ which are
mirror to (M, (2,).

Let us assume for a moment that [w] € H?>(M;Z). Then it is known in physics
literature that the mirror of (M, 2,) and of (M,2,41) is the same. (See for example
[As].) Thus we can take T' as a parameter in place of z. Hence there exists a family

(4]‘0) (M7 Q’log T/27'r\/—_1)/\ — M — D(E)*

One may try to extend it to 0 but the fiber of 0 will necessary be singular.
Suppose that one is given a Lagrangian submanifold L with some extra data
on M. Then we suppose that its mirror gives a family of sheaves on the fibers of

*

(4.10). In case € is infinitesimally small D(e)* may be regarded as a formal scheme

spec(Anoy)-

(Note D(€e) may be regarded as spec(Ag noy) in the same sense.) Hence I is
supposed to be a scheme over these formal schemes. The infinitesimal family we
constructed is an infinitesimal family of sheaves (objects of derived category of
sheaves) over ring A,,,. This is consistent with the discussion above. In (4.2) we
introduced a family of vector bundles whose fiber is vector space (module over C).
So it is not consistent with above and hence we need to work with A,,,, module.

Here we add a remark about the multivaluedness of (4.9). We recall that (4.9)
is the weight appeared in the definition of mg. The A, structure m; will turn
out to give the defining equation of the moduli space M(L,L,V). M(L,L,V) is
expected to coincides with the (infinitesimal) moduli space of a derived category
of objects on the mirror. As we discussed above, those moduli spaces are z de-
pendent family. Since we have a T' dependent family of complex manifolds as in
(4.10), it seems natural to have T' dependent family of moduli spaces M(L,L,V)
in place of z dependent family. This is a problem related to the multivaluedness
of (4.9). We may explain this point in the following way. Let us consider the case
when our Lagrangian submanifold L is (strongly) rational. Here we say that L is
(strongly) rational if there exists A € Q such that for each psendoholomorphic disk
¢ : (D*,0D*) — (M, L) the energy E(y) is in the submonoid AZ>. This means
that if we replace T by T? then my is single valued. In other words, our moduli
space M(L, L, V) is well defined as a family on D(e)*, where D(e)* is a finite cov-
ering of D(e)*. We remark that this kind of situation occurs naturally in complex
or algebraic geometry.

If we do not assume L to be rational, then we need to take infinite covering of
D(e)* to have a T' dependent objects. This seems to suggests that our mirror object
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is transcendental. Since the author does not have an explicit example to work out
what happens in such a case, he does not try to go further on this line of ideas.

Remark 4.11. We need to consider two different kinds of parameters of infinitesimal
deformations. Namely T parametrize the deformation of the complex structures of
the mirror as we explained above. On the other hand, we counsider also the formal
neighborhood of the moduli space of vector bundles. Namely the element b and the
defining equation 5(61)) = 0 of M(L,L,V) are formal power series not only of T
but also of the parameters in H'(L;C). In this section, we are trying to construct
a moduli space which is local (but not infinitesimally small) in H!(L;C) direction
but is infinitesimally small in 7' direction.

As we explained above, we will construct holomorphic structure of (4.2) depend-
ing on T'. We are going to construct a T' dependent frame for this purpose. The
idea to find such a frame is to choose one so that boundary operators will be as
close to be a holomorphic family as possible.

Our assumption that L(v) is transversal to Ly implies that the number of inter-
section points L(v)N Lo is independent of v. Therefore, by shrinking V' if necessary,

we may assumne that there exists pi(v), -+ ,pn(v) depending smoothly on v such
that
(412) L(0) 1 Lo = {p1(0).+ (o)}

(Thus (4.2) is topologically a trivial bundle.) Let us denote by pg(v) the unique
intersection point of Ly and L(v). We assume hereafter that our Lagrangian sub-
manifolds are all connected. We first choose and fix a frame

$;(0,0) € Hom (,C0| L(o)] ) =~ C.

pi(v) pi(v)

We choose a path £; o in L(0) joining po(0) (€ L(0) N Ly) to p;(0). We can then
find a smooth family of paths £; , in L(v) joining po(v) to pi(v).
On the other hand, there is a smooth family of paths ~; , in Ly joining p;(v) to
pi(0). Moreover there is a smooth family of paths ’71/'711 in L joining py(v) to po(0).
We may choose those families of paths so that there exists a smooth family of

disks 9, : D> — M such that O, (DQ) =4lioUli, UyinU ’yé’v. See Figure 1.

Figure 1

We next counsider the family of vector spaces

Hom <£st|p0(y) ’ ‘C(U)|po(v)>

parametrized by (v,0) € V and T'. This vector bundle on V' x D(e)* is trivial. We
fix a trivialization of it. Let

Vipo(v) € Hom <£St|1)o(v) ’ £(0)|P0(v)>

be a frame. Namely it depends smoothly on v and is nonzero. We may choose it
so that it is independent of . (Note our bundle £, as a complex vector bundle is
independent of 0.) We now put

$i(v,0,T) = exp (27T\/—].B(1/)U)) ® TEW) (hgw (L(o)) 0 v1

po(v)

(4.13) 1
0 huyt ((Lat) OVpy(0) © by, (£(0)) 0 5:(0,0) 0 k37 (Eo)) :
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Here h in the right hand side is the parallel transport of the connection, that is one
of £(0), L(v), Lo, Lst. For example h,yéyo(ﬁst) is a parallel transport along the path
i o of the connection L;. We can easily see that the right hand side is an element
of

(4.14) B Hom (Lol £@)y)) -

p(v)ELoNL(v)

We define a T' dependent family of holomorphic structures of the bundle (4.14) so
that s;(v,0,T) is a holomorphic frame.

Lemma 4.15. The T dependent family of holomorphic structures defined by us-
ing the holomorphic frame s;(v,0,T) is independent of the choices of the paths
03 lisos Yisws Vi, and the map ..

This lemma is proved in [Fu4] §5 in the case of affine Lagrangian submanifold of
a symplectic torus. The proof of the general case is similar and is omitted.

Now we defined holomorphic structures on vector bundles in (4.2). We defined
a boundary operator in the last section. We next discuss holomorphicity of the
boundary operator with respect to (v,0). Actually various holomorphic structures
are designed so that Lemma 4.18 below holds. To state the lemma we need some
notations.

Let o : D> — M be a map satisfying Condition 3.7 (3.7.2),(3.7.3) for Lo, L(0),
p(0),¢(0). We can then find a family ¢, : D> — M of maps satisfying Condition
3.7 (3.7.2),(8.7.3) for Ly, L(v),p(v),q(v). We consider

(4.16) exp(2mV/~1B(py)) H(00; 0)®T ) : Hom(Lo,p(u)s L1,p(1) (7))
—Hom(Lo,(n)>£1,9(0) (7)) ® Anow.
(We write H(g,;0) in place of H(p,) to emphasize its o dependence. The other
part of (4.16) is independent of ¢.) Lemma 4.18 asserts the holomorphicity of this
map with respect to (v,0). We remark that T is a formal parameter. On the other
hand, E(p,) does depend on v. So to state the holomorphicity, we need to clarify
what we mean by the differential of TF(#*) with respect to v. Also we need to
be careful about the multivaluedness of TE(#+), For this purpose, it is simplest

to proceed as follows. We consider the complexified simples structure 2, in (4.6).
Here T and z is related by (4.8). Instead of (4.16), we consider

exp(27r\/—_lBO(go,,) + 27TZ\/—_1E((p1,))H(g0U; o)

(4.17)
: Hom,(£07p(v),£17p(y)(a)) — Hom(£07q(u),£1’q(y)(0))

Lemma 4.18. (4.17) is holomorphic with respect to the complex structure on
LAG(M,S.), defined in section 1 and holomorphic structure on Hom/(Lg p(v)s L1 p(0) (7))
and on Hom(Lg g(v)sL1,4(v) (7)) by Lemma 4.15.

The proof is similar to [Fu4] Theorem « and is omitted.

In Lemma 4.18 we used (4.17) in place of (4.16). This was possible because the
map (4.16) obviously converges when we replace the formal parameter T' by some
explicit complex number. But when we go to the next step it becomes impossible
to do so and we need to work on formal power series such as (4.16). We do not try
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to rewrite here Lemma 4.18 in terms of formal power series. It is not so difficult
but cumbersome.

Now we remark that (4.16) is the weight we put on the boundary operator. So
Lemma 4.18 is related to the holomorphicity of the boundary operator with respect
to the parameters (v,0). But an important point here is that Lemma 4.18 does
not imply the holomorphicity of boundary operators with respect to the parameters
(v,0). This is the main point of this article and will be discussed in more detail in
the next section.

We here mention what will follow in case when the boundary operator 9, )
is holomorphic with respect to (v,0). More precisely the boundary operator also
depends on the bounding chain b. So we assume that there exists a family of bound-
ing chains b(v,0) depending smoothly on (v, ) such that the family of boundary
operators

(4-19) O(v,0) bv,0),z  CF((Los Lo), (L(v), £(7)))c = CF((Lo, Lo), (L(v),£(0)))c

converges (after replacing (4.16) by (4.17)) and is holomorphic with respect to
(v,0), for z € h¢ = {z € h|Imz > C}, and sufficiently large C'. Then we will have
a complex of holomorphic vector bundles on V x . This complex will then define
a (z dependent family of) objects of coherent sheaves on a subset V of (M,Q,)",
which we expect to be a restriction of mirror object of our Lagrangian submanifold
Ly. (Note according to Strominger-Yau-Zaslow [SYZ], the mirror of (L(v), £(0))
are skyscraper sheaves.)

As we mentioned above, our assumption (the holomorphicity of (4.19)) does not
hold in general. The reason is “quantum effect” which we will discuss in the next
section.

5. WALL CROSSING OF FLOER HOMOLOGY

We now explain why (4.19) is not holomorphic with respect to (v, o) in general.
Actually there are two points to be discussed.

(5.1.1) Can we take b(v,0) which is holomorphic with respect to (v,0) in an
appropriate sense ?

(5.1.2)  Is (4.19) holomorphic for such b(v, o) ?

Note b(v,0) € M(L(v),L(c)), which is a quantized version of the infinitesi-
mal neighborhood of the moduli space of the pair (L(v),L(c)). (5.1.1) is related
to the problem how this infinitesimal deformation space changes when we move
(L(v),L(0)). Various parts of this question is common with similar questions in
the study of the moduli spaces appeared in various related context. (For exam-
ple in the situation we mentioned in §0.) However there is one new point here.
That is the operators mj which depends on (v,o) and which is basic in the defi-
nition of M(L(v),L(0)) may jump. Namely my is not continuous with respect to
(v,0) in general. The other points on (5.1.1) can be analyzed in the frame work
of established general theory of deformations. Moreover this new point, that is the
discontinuity of my, is similar to other problems which appears in (5.1.2). So to
simplify the situation, we do not discuss (5.1.1) and concentrate on (5.1.2). By this
reason, we put the following rather restrictive assumption here.
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Assumption 5.2. For each v, there exists no pseudoholomorphic disk bounding
L(v) other than trivial ones. (Here by trivial pseudoholomorphic disk we mean a
constant map.)

As mentioned above, we may remove this assumption. But to do so we need to
work out a lot on general deformation theory.

Now Assumption 5.2 implies that the operation mj coincides to the operation
My, in Proposition 2.2. In particular we may put b(v,) = 0. From now on in this
section, we write 0, ») in place of Oy 4 b(v,0)-

Now we discuss holomorphicity of (4.16) under Assumption 5.2. Let us recall
the definition of J(, ») given in §3. In our case, we need only ng g since b(v,o) = 0.
Namely we have

a(v,a)(a(vva)) :ZZ Z

(5.3) i B peM(La,L()pi(v) 5 (0):h)
+ exp(2nvV—1B(¢))H(p;0)(a(v,0)) & TE(),

where

a(v,0) € Hom(Lo p,(v)s L1,p:()(7))-

The notations are as in (3.9).
Now Lemma 4.18 asserts that each term of (5.3) is holomorphic with respect to
(v,0). However :

Observation 5.4. The order §M(Lg, L(v);pi(v),p;j(v); 3) jumps as we move v.
We call this phenomenon wall crossing of Floer homology.

Remark 5.5. Wall crossing was discovered by Donaldson [D] in the case of Don-
aldson invariant (gauge theory) of 4 manifolds with bf = 1, where wall crossing is
caused by the reducible connections.

The wall crossing we are discussing here has various similarities to the case of
gauge theory. Also in both cases, wall crossing is closely related to indefinite theta
function. (See [GZ] for gauge theory case and [Fu4] for symplectic Floer homology
case.) The author does not know conceptional explanation of this similarity.

Observation 5.4 means that the family of operators (5.3) is discontinuous and
hence is not holomorphic.

An examples where wall crossing of Floer homology actually occurs is given in
[FOOO] Chapter 7 §28.

We discuss here an idea how to overcome this trouble and “define” holomorphic
object by putting some quantum effect. For this purpose, we study parametrized
version of the moduli space of pseudoholomorhic disks. We put

(5.5) M(Ly,L;i,5;para) = U M(Lo,L(v); pi(v),p;j(v)) x {v}

v

and 1
W(go,v) =v, m: M(LO,L;’I:,]';p(I,Ta,) N RrankH (L;]R).

Each component of the moduli space M(Lg, L;4,j; para) is finite dimensional. By
using the general theory of Kuranishi structure developed in [FOn 1,2] we can
handle this moduli space as if it is a manifold with corners, (as long as we are
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interested in its fundamental class over Q.) The moduli space is independent of o
parameter. So we add that direction as a direct summand. Namely we put

M(Lyg, L;i, j;para)tt = M(Lg, L;i, j; para) x H'(L;/—1R).
We define
M(Lg, L4, j; para) T+ — RT0H (LR o YL /ZIR) D V
using 7 and let M(Lg, L;i, j; para)t be the inverse image of V. We then have
(5.6) 7 : M(Lo,L;i, j; para)™ — V.

We next divide it into components as before. Namely we take a homotopy class
B of maps ¢ satisfying (3.7.2),(3.7.3). (We replace L1, L2, p,q in (3.7.2),(3.7.3) by
Lo, L(v), pi(v),pj(v).) Andlet M(Lqg,L;i,j;para;3)T be the subset of M(Lg, L; i, j; para)t
consisting of elements of homotopy class 3.
We consider the vector bundle on V whose fiber at (v, o) is Hom/( Lo |pi(v~) , L(o) |p,-(v))'
We denote it by & — V. We define £ — V in a similar way. We consider its pull
back 7*&; — M(Lg, L;i,j;para)t, and n* Hom(&;,€;). Then

(5.7) (¢,v,0) — exp(2rV—1B(¢))H(p; 0) @ TE®

is a section of 7*Hom(&;,&;) ® Anoy. We use this weight function and the funda-
mental chain of M(Lg,L;,5;para)™ to “define”

(5.8) B e W™ (ViHom(&,&) @ A" (V) ® Auoy) -

Here A¥(V) is a vector bundle of degree k forms, and W~ is the space of distri-
bution valued sections. Let us explain the definition of %ﬁj-
Let ¥ be a smooth n — k form of compact support with value in the dual bundle

Hom(&;,E;)* to Hom(&;,E;). (T is a test function.) We then define

(Bijis N ¥) =/
(5.9) /V ’ M(Lo,Lsi, jipara;B)+

(exp(2nv/=1B(p))H(p; 0), 7" T)

Note E(yp) depends only of 3 and v where v parametrize Lagrangian submanifold
L(v). So we write TF(#%) in place of L(p). Then

(5.10) BE =3B 55 @ TR,
2

Here the sum is taken over all 8 such that the virtual dimension of M (L, L; i, j; para; 3)*
is dim V' — k.

Note however that the function space such as W—>° (V; Hom(&;,&5) ® Ak(V) ® Anm,)
is not easy to define, since A,y is an infinite dimensional vector space. So we need
some work to make sense (5.10). We do not discuss this point here. This is the
(only) reason we put “define” in (5.8) and = in (5.10), in the quote.
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Roughly speaking, %ﬁj is dual to the current m.(M(Lo,L;i,7;para)™) times
the weight (5.7). We here remark that the moduli space M(Lg,L;4,5;para)™
may be noncompact, hence it does not have a fundamental class. (For exam-
ple there is a case where the moduli space is codimension one and the image
n(M(Lg, L4, 3;para; 8)1) is dense in V. Such an example is observed in [Fud].)
However, for each C, the sum of moduli spaces M(Lg, L; 4, j; para; ) for E(3,v) <
C is compact by Gromov compactness. Hence we may expect that (5.10) makes
sense as an asymptotic expansion.

Now we divide “k form” ‘Bk info the sum of 4, k—4 forms using complex structure

of V in an obvious way. Let ‘B * be the 0,k part of ‘B
We then “obtain” a dlstrlbutlon coeflicient multlphcatlon operator

BYUINA - @I‘VE@A“ —>®W (Vi€ @ A% TF ® Apoy).

. k .
By summing up %?’j A, we “obtain”

BA: P T(ViCF*((Lo.Lo). (L(v), £(a)))c ® A*)

a+b=c

- @ W(ViCF*((Lo.Lo). (L(v),L(e)))c ® A®) ® Anoy.
a+b=c+1

“Theorem 5.9”.
(0+ BA) o (04 BA) =0.

We remark that since 9B is distribution valued (and is a kind of asymptotic series)
we need to be very careful to iterate the operation 9+ BA twice. This is related to
the problem of transversality among the current realized by M(Lg, L4, j; para; 3)*
We can work on energy filtration on E(3) and use the theory of Kuranishi structure
in a way similar to [FOOOQO] Chapter 5 to settle this trouble. However we do not
provide the detail here. This is one of the reasons Theorem 5.9 is in the quote.

We remark that in [Fu4] a version of “Theorem 5.9” is proved and used to show
a part of homological mirror symmetry of torus.

The wall crossing mentioned in this section is related to the fact that ‘BO F for
k > 0 can be nonzero.

Now we come to the following convergence question.

Open problem 5.10. B converges as a current for small T. 9 + BA defines an

operator
9+ BA: @ T(ViCF*((Lo.Lo). (L(v),L(0)))c ® A*P)
a+b=c

- @ W =(ViCF*((Lo,Lo), (L(v), £(0)))c ® A”P).
a+b=c+1

(5.11)

To attach this problem directly, we need to estimate the volume of the current
7o (M(Lo, Lj4,j; para; 8)1) when E(8) goes to infinity. We remark that Gromov

compactness implies that

Y w(M(Lo, Lii,jspara; B)F)

E(B)<E
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is compact. If we can prove that

(5.12) Z Vol(m, (M (Lo, L;i, j; para; 8)1)) < C exp(CE)
E(B)<E

for some constants C, then B will converge as a current for small T'. Proving (5.12)
is an “open string version” of the problem of the convergence of Gromov-Witten
potential. This problem is very hard to solve directly.

On the other hand, in the case of affine Lagrangian submanifold in symplectic
torus, we know that the left hand side of (5.12) is of polynomial order in E. (See [Fu
4] §10.) Hence B converges for arbitrary T. We checked it in [Fu 4] based on the
explicit description of the moduli space. In the case of Gromov-Witten potential,
it converges for all the examples where Gromov-Witten invariants are calculated.
However so far no proof of convergence, which is not based on explicit calculation
of Gromov-Witten invariant, is known.

In [KS], Kontsevitch-Soibelman proposed to use rigit analytic geometry [Ber], [B-
GR] and homological mirror symmetry itself to prove convergence. In our context,
their proposal may be reinterpreted as follows. First, we construct an infinitesi-
mal family of Floer homologies as a formal power series of T'. We next show that
it will be a local family, where local means that in LAG(M, ), coordinate it
is well defined on an open set which is small but is of nonzero size, (it may on-
ly be a formal power series with respect to T'). We next might glue them in the
LAG(M,)gm direction. (See next section for some idea how to glue them.) We
next may compactify LAG(M,Q),n,. We then would have an object of derived
category of coherent sheaves of a proper scheme on formal power series ring, A, ;.
Then one might expect the convergence with respect to T' would be implied by the
GAGA of formal scheme and/or Artin type approximation theorem. (Here rigid
analytic geometry might be applied.) Since the author is unable to realize this part
of project at the time of writing this article, he stops talking on Open problem 5.10
here.

We finally explain how we will have a local family of Floer homologies as an
object of derived category, provided Open problem 5.10 is settled.

One further trouble to do so is the fact that B is singular (and is not a smooth
form). However we can settle this point as follows. We can construct a family of
smooth forms B; ;.3.6mooth such that if we define B,p,00¢n In the same way as B,
by using *B; j.8:smooth in place of B; ;, then we have

(5 + %smooth) 0 (5 + %smooth) =0

and that there is a (distribution valued) chain homotpy equivalence from 8 + B
to 0 4+ Bemooth- We can construct such smoothing of *B; ;.3 and chain homotopy
equivalence, by working on induction on E(3). (See [Fud]| Chapter 4 where a similar
construction is used.) Then we have a complex of sheaves

0+ Bumoon\ : €D T(ViCF*((Lo,Lo), (L(v). £(0)))c ® A™")
a+b=c

— D T(ViCF((Lo, Lo), (L(v), £(o))c ® A™).
atb=c+1

(5.13)
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(¢ = 0,1,---.) Note that (5.13) is a complex of Oy module sheaves. We also
remark that the complex (5.13) is elliptic and the symbol is the same as Dolbaut
complex with coefficient in vector bundles CF((Lg, Ly), (L(v),L(c)))c. Thus, by a
standard elliptic theory, the cohomology sheaf is coherent. Hence (5.13) will define
an object of derived category of coherent sheaves.

6. GLUING OBJECTS OF DERIVED CATEGORY

The discussion of sections 4,5 are local. There, modulo very serious convergence
problem, we gave an outline of the construction of the local family of Floer coho-
mologies. In this section, we discuss a way to glue them. To be specific, we consider
the following situation. Let @ : M — N be a fiber bundle. We assume that M is a
symplectic manifold and the fibers are Lagrangian submanifolds. For simplicity, we
put B = 0. For v € N we put L, = 77 1(v). According to Strominger-Yau-Zaslow
[SYZ], the mirror of M then is

(6.1) M" ={(v,0)|v € N,o € R(L,)}

where R(L,) is a moduli space of gauge equivalence class of flat U(1) connections
on the trivial bundle on L,. In case there is a singular fiber L,,, the discussion will
be harder. Namely we need to consider quantum effect which modify the complex
structure of M" C LAG(M,w).;. This is the point (F) mentioned in section 1. We
do not discuss it here. So it seems that the only case we can apply our argument
directly is M = T?". However the argument we present here may be a big part of
the building blocks to handle the general case.

We next assume that there is a global section s : N — M whose image is a
Lagrangian submanifold, Ls;. Let us take another Lagrangian submanifold Ly. We
consider (Lg, Ly) € LAG(M,w). We fix also by € A;I(LO,,CO). Our purpose here is
to consider the family of Floer homology

(62) 8(L07E03b0)(v,0) = HF((L07£0760)7(L('U)?ﬂ(a-)))

where (v,0) € M”. As in the last section, we are assuming that there is no
nontrivial pseudoholomorphic disks bounding L(v).
The main reason the author is interested in constructing (6.2) is

Conjecture 6.3. The mirror object of (Lo, Lg,bp) on M” is an object of the de-
rived category of coherent sheaves on M” given as the family of Floer cohomologies

(6.2).

This conjecture for example implies
(6.4) Ext(E(Lo,Lo,bo),E(L1,L1,b1)) = HF((Lo, Lo,b0), (L1, L1,b1)).

In the case of affine Lagrangian submanifold in symplectic torus, the isomorphis-
m, (6.4) which is functorial, is established in [Fu4], generalizing [Ko2],[PZ] which
discussed the case of elliptic curve.

In sections 4,5, we discussed a construction of £(Lg,Lg,bo)(v,») on a small open
set of LAG(M,w). In this section, we discuss how to glue them (in case we can solve
the trouble on convergence.) We remark that, we assumed that Lg is transversal to
L(v) in §4,5. This assumption is not so restrictive in case our construction is local
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on v. However, for the purpose of this section, this assumption is too restrictive.
Namely the assumption that L(v) is always transversal to Ly means that Lg is
a finite cover of N and nw : Ly — N is a covering map. There are many other
Lagrangian submanifolds which do not satisfy this assumption even in the case of
symplectic torus. (On the other hand in the case of symplectic torus the author does
not know any example of Ly transversal to the fibers other than affine Lagrangian
submanifolds.)

Example 6.5%°. Let us consider symplectic (T*,w). Note that T* is hyper Kihler.

So complex submanifold with respect to a complex structure I will become a La-
grangian submanifold of (T*,w), where w is a Kéhler form of another complex
structure J. We assume that (T%,1) is an Abelian surface. Then there are lots
of complex submanifolds ¥ of higher genus in (7*,I). We may take Lagrangian
fibration (T*,w) — T?. Then ¥ — T2 is a branched covering. At the branch point
v € T?, the fiber L, is not transversal to X.

The following lemma is easy to prove.

Lemma 6.6. There are finitely many (Lo ;,Lo;) € LAG(M,w) and there exists
a finite open covering UV; = N, such that (Lg;,Lo:) ~ (Lo,Lo) and that Lg; us
transversal to L(v) for v € V;.

We put M = n~1(V;) C M. If the construction of sections 4,5 works we will
have a family of Floer homologies

(6.7) HF((Loi, Loy bi), (L(v), L(0))) — M.
Thus our problem is as follows.

Problem 6.8. Let X be a complex manifold and X = U;X; is an open covering.
Let €; be an object of derived category of coherent sheaves on X;. Find a suffi-
cient condition for the existence of € such that € is an object of derived category
of coherent sheaves on X and that the restriction of & to X; is chain homotopy
equivalent to €;.

In the rest of this section, we give a sufficient condition and offer an argument
that (6.7) satisfies this condition. (The part that our condition is enough to give ¢
is rigorous. But since the construction of (6.7) still contains a gap (the convergence
question) the part to show (6.7) satisfies our sufficient condition is not rigorous.)

Let us first consider the case when X = X; U X5. In this case, our sufficient
condition is that &;|x,nx, is chain homotopy equivalent to &2|x,nx,. In fact, let

12 : €1 |x,nx, = €2 x,nxs

be the chain homotopy equivalence. We construct its mapping cylinder Cyl(€;, €3; p12)
as follows.

Cyl(€y1,E35012) = C1|x,nx, ® C2|x,nx, ® E1]x,nx,[1]

4The author thanks N.C. Leung who pointed out this example to the author during the con-
ference “Algebraic geometry and Integrable system related to String theory”.

In the conference (of which this volume is a proceeding), the author discussed this example
and mention how pseudoholomorphic disks will bifurcate at the singular fiber. The detail of the
discussion there will appear elsewhere. The approach taken in this section is different from the
approach discussed in the conference.
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as graded Ox,nx, module. We twist the differential and define
§(x1,ma,212) = (5561 + (—1)deg 12099, 019 + (—1)deg $12<P12($12),5($12)) .

Here ¢ in the right hand side are boundary operators of &;, €5 respectively.
Now we define € so that its germ €, is obtained by

€1 p ifpe X3 —X;NX,
¢ = €2 p ifpe Xy — X1 NXy
Cyl(€1 . €y 3 012) if p € X1 N Xo.

It is easy to see that & has required properties.

In case when X = X; U X5 U X3, we need first to assume the existence of
©12,023,013. (Here ;5 @ €;|x;nx;, — €j|x;nx, is a chain homotoy equivalence.)
We need moreover that ¢s3 0 12 is chain homotopic to @13 on X1 N X5 N X3.

Let us do it more systematically. We need to use A, structure for this purpose.

To describe our sufficient condition, we need some notations. Let (C;,d;), ¢ =
1,--+ ,m be chain complex. We assume that we are given degree zero homomor-
phisms

Py, yip - Ciq — Czk [2 — k]
foreach 1 <1 < o0 <o < m.

Condition 6.9.

(6.9.1) ©; = d;, the boundary operators of C;.

(6.9.2) @ij : Cy = C is a chain homotopy equivalence.
(6.9.3) For each 1 <i; < -+ <4} < m, we have :

k k—1
E (Pif7"'7ik o(pila"'7iz—1 + : :i(pi17""%[1”'7ik = 0'

We specify the sign in (6.9.3) later.
For example, in case k = 3, Condition 6.9 implies
d3 0 p123 & 123 0 03 & 23 0 P12 13 = 0.

Namely @a3 0 12 is chain homotopic to @13 with chain homotopy ¢123.

We are going to construct a multi-mapping cylinder Cyl(C1,- -+ ,Cp;@s) under
assumption (6.9.1) (6.9.3). (We do not assume (6.9.2) yet.)

We put

Cih'",ik = Cu[k - 1]7 Cyl(Ch e 7Cm;80*) = @ Cih..,’ik,
1<iy <o <ix<m

as an Abelian group. We define its boundary operator ¢ as follows. Let z € C;, ... ;,

then
6(z) = Z‘s’ih”',’iz (z) + 2521’...72”., Jin (=),
V4 V4
(6.10.1) 51'1’...71'1(213) = :l:(pi17...7i£(:13) € C¢£7...7ik.
(6.10.2) 8 @) =teeCy

We specify the signs in (6.10.1) and (6.10.2) later.

It is easy to see that the degree of 0 is 1. One can easily see
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Lemma 6.11. Condition (6.9.3) is equivalent to 66 = 0.

Actually multi-mapping cylinder is obtained by repeating the construction of
mapping cylinder.

Lemma 6.12. There exists a chain map
LU Cyl(C1,- ‘e ,Cm_1;(,0*) — Cn

such that Cyl(Cy,- -+ ,Cum; ) ts tsomorphic to a mapping cylinder of V.
Proof. Let © € C;, ... 5, CCyl(C1,--+ ,Cm—1;94). We put

qI(x) = (101.17"' 7ik7m($)'

We can check that (6.9.3) implies that ¥ is a chain map. It is easy to see from
definition that Cyl(C1,- -+ ,Cm;@s) is isomorphic to a mapping cylinder of ¥. [

Here we fix sign in (6.9.3), (6.10.1), (6.10.2). We have proved Lemma 6.11 and
Lemma 6.12 up to sign. It is easy to see that there is a unique sign convention so
that Lemma 6.12 holds together with sign. (Note the sign of the boundary operator
in the mapping cylinder is well established.) We thus fixed the sign. We do not try
to calculate the sign explicitly since we do not need it in this article.

Now Lemma 6.12 implies the following. We define I; : C; — Cyl(C1,--+ ,Cm; )
in an obvious way. (C; is a component of Cyl(C1,--- ,Cpnjipx).)

Lemma 6.13. I, : C,,, — Cyl(C1, -+ ,Cips) ts a chain homotopy equivalence.
The composition I;op;; s chain homotopic to I;. I; is a chain homotopy equivalence

if (6.9.2) is satisfied.

Proof. The first assertion is immediate from Lemma 6.12 and well known fact on
mapping cylinder. We put H(z) = =z € C;; C Cyl(C1,--- ,Crmipy) for z € C;.
Then we find easily that

50H:l:HO5=L’,:]:IjO(p1jj.

The second statement follows. The last statement is immediate from first two. O

We can generalize Lemma 6.13 as follows. Let 1 <143 < --- < 2 < m. We con-
struct multi-mappingcylinder Cyl(Ci,,--- ,Ci,;¢«). Since Cyl(Ci,, -+ ,Ci504) is
a sum of direct summands of Cyl(C1,--- ,Ch,;p4) there exists a chain map

(614) Il it Cyl(ciu e aCik;@*) — Cyl(01, e aCm;@*)-

15777

Lemma 6.13 implies that I;, ... ;, is a chain homotopy equivalence if (6.9.2) is sat-

7ik
isfied. Moreover the compositions of these chain maps are compatible.

Now the discussion so far implies the following :

Theorem 6.15. Let X = UX; s a open covering of a compler manifold. We put
Xiy o in = ﬂleXij. Let &; 1s a complexes of coherent sheaves on X;. We assume
that, for each 1 <11 < --+ <1y, < m, there exists a homomorphism

— eik|Xi1,m ; [2 — k]

'k

iy, in t Ciy |Xi

1o ig
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of coherent sheaves. We assume that they satisfy Condition 6.9. Then there exists
a complex of coherent sheaves € on X and a chain homotopy equivalence J; : €; —
¢|x; such that 3; o @i is chain homotopic to J; on X; N X;.

Proof. We define
(6.16) €, = Cyl(€iy, -+, Ciy504)p

ifpe Xi i — Usziy, o inXiy, o i, N Xy, We can show easily that (6.15) satisfy
the required properties by using Lemmas 6.11, 6.12, 6.13 and the compatibility of
(6.14). O

Thus we obtained an answer to Problem 6.8.

We next explain why we expect the family of Floer cohomologies to satisfy
the assumption of Theorem 6.15. Let us go back to the situation we mentioned
at the beginning of this section. We are going to construct a degree preserving
homomorphism of Opsr module sheaves

@ir,in HE((Lojiy s Lojiy > biy ), (L(v), £(0)))
- HF((LOJA ’ £07ik ; bi, )7 (L(U)v ‘C(U)))p - k]
The idea of the construction is as follows. It is proved in [FOOO] Chapter 4 that

Floer cohomology is invariant of Hamiltonian isotopy. This gives ¢;;. In a way

(6.17)

similar to the argument there, we can show that homotopy between Hamiltonian
isotopies defines a homotopy between chain homotopies. One can do a similar
construction for higher homotopy between homotopies, which proves that ¢;, ... ;,
satisfying Condition 6.9 exists.

Let us carry out this construction below. We first remark that we may take
our Lagrangian submanifolds Ly ; so that they are close to each other. We also
remark that the set of Lagrangian submanifold (plus other parameters, for example
perturbation, which we do not specify in the article) is locally contractible. Hence
we have a family of Lagrangian submanifolds which contains Ly ;. More precisely
we have the following Lemma 6.16. Let A™™! be the m — 1 dimensional simplex
and let vy,---,0,, be its vertices.

Lemma 6.18. There exists a smooth map ® : A™ 1 x Ly — M and a complex line
bundle Lo — A™ ! x Ly equipped with a connection, with the following properties.

(6.19.1)  For each © € A™™1, the restriction of ® to {z} x Lo is a Lagrangian
embedding.

(6.19.2)  For each path x(t) in A™ ™ the family of Lagrangian embeddings P 1a(4)1xLo
1s a Hamaltonian isotopy.

(6.19.3)  The curvature of Lo is 2m/—19*B.

(6.19.4)  The restriction of ® and Ly to {v;} X Ly coincides with (Lo ;,, Lo, )-

The proof is easy and is omitted. We use this family to construct (6.17). We
need one more lemma for this purpose. Let Q(v;,0;; A™71) be the set of all smooth

paths in A™™! joining v; to v;. Let Af;l
are v;,,++ ,9; . By composing the path we obtain

(6.20) Q01,055 A7 0 ) X Q02,03 APTE ) = Q01,03 AT,

;. be the k —1 simplex whose vertices
bl

(To be precise we need to discuss the way to put parameter for the path joining
two paths. We omit it since the way to handle it is classical in the context of A,
structure. (See for example [Ad].))
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Lemma 6.21. There exists m — 1 dimensional submanifold W (01, 0,,; A™ 1) with
corners in (01,0m; A™ 1) such that the following equality holds (using inclusion

(6.20)).

,m

k—1
OW (01,05 A™ 1) = | W(v1,05 A7 ) x W(og, 0307775
(6.22) !

o m

=1
E—1

Ul Wior,0m A2, ),
=1

Proof. We can find a Morse function g, on A™~! with the following properties.

(6.23.1)  The restriction of g, to AZ_}, ;, coincides with gj.
(6.23.2)  The critical point set of g, is the set of vertices {v1,---,v,,}. The

critical points are all nondegenerate.

(6.23.3) The Morse index of v; is ¢ — 1.

Let W(nl,nm;Am_l) be the set of all gradient lines of g, joining vy to v,,. It
is easy to check (6.22) by using (6.23). O

Now using the Lemma 6.21, we will “construct” the homomorphism (6.17). (The
reason we put “construct” in the quote is that we can perform the construction only
in the level of formal power series by the same convergence trouble as in the last
section.)

Let p(v) € ®({v1} x Ly) N L(v) = Lo1 N L(v), g(v) € ®({vm} x Lo) N L(v) =
Lom NL(v), £ € W(01,0,;A™ 1) (£ : R — A™™ ). We consider the maps u :
[0,1] Xx R — M with the following properties.

Condition 6.24.
(6.25.1)  w is pseudoholomorphic.
(6.25.2)  u(0,7) € ®({4(7)} x Lo). uw(1,7) € Li(v).
(6.25.3)  lim,_u(t,7) = p(v), im, 1o u(t, 7) = q(v).
We let M(Lg,L1(v);p(v),q(v); ®;¢) be the isomorphism class of such u. Let
a € Hom (Lo p(v)s £(0)p(v)). We put the weight

(6.26) exp(27V—1B(u))H (u; 0)(a) ® TE®,

Using this weight function and the moduli space

U M(Ly, L1(v);p(v), q(v); 23 £) x {(v,4)}

v, b

in the same was as the last section, we define (6.17). By comparing Formulas (6.22)
and (6.9.3) we find that ¢;, ... ;, defined in this way satisfies Condition 6.9. Hence
we can apply Theorem 6.15, if we can prove the convergence of the operators.

Thus the biggest problem left to construct family of Floer cohomologies is the
convergence, Question 5.10.
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To be continued somewhere someday.
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