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81 Introduction

The purpose of this series of papersisto define and study Floer homology of 3 manifold with
boundary. Inthispaper, weannouncethe mainanalytic resultsand show the basic constructions
based on them. The proof of the analytic results will be given in subsequent papers.

Our definition of Floer homology of 3 manifold with boundary givesan extension of topol ogical
field theory to manifolds with corners. (In usual topological field theory, manifolds with
boundary are studied.)

So we start with briefly recalling Atiyah's axiom of topological field theory [2] and its
generalization proposed by G. Segal [34]. The argument of this section is rather vague and
heuristic since its main purpose is to describe naive ideas behind the constructions of later
sections.

In topological field theory, we associate a number Z(M) to each oriented closed manifold
M of dimension n. Also, to each oriented manifold N of dimension n -1, we associate
a vector space H(N). For each compact oriented manifold M of dimension n, with
boundary dM = N, we associate Z(M) OOH(N). The axioms they are supposed to satisfy
are the following.

(1.1 Each H(N) hasaninner product, suchthat H(N) isaHilbert space.

(1.2 H(=N) is canonicaly isomorphic to the dual space of H(N). Here —N
denotes the manifold N equipped with opposite orientation.

(1.3 H(N, O N,) = H(N,) 0 H(N,). Here N, O N, denotesthe digoint union.

(1.9 Let M;, M, be n-dimensional compact oriented manifolds. Suppose that N

is a connected component of 0M; and —N isa connected component of oM,. Let M
be a manifold obtained by patching M; and M, aong N. If oM, =NON’,
oM, =-NON", then

n(z(M,) 0 Z(My)) = Z(M)

where M :(H(N) O H(N)) O (H(-N)OH(N") — H(N") O H(N") isobtained by contract-
ing H(N) O H(-=N) OH(N) OH(N)".

(1.5 Let M bean n-dimensional compact oriented manifold. Supposethat N and
—N are connected components of M. Let M™ be the manifold obtained by gluing M
withitself along N. Then

n(z(m) =z(M")

where M :(H(N)O H(-N)O H(N')) -~ H(N"). (Here 0M=NO-NDON'))

We do not intend to list up the complete set of axioms but only mention some of them.

The case we are mainly interested iniswhen n=4, Z(M) isthe Donaldson’s polynomial
invariant [4] and H(N) isFloer homology group [7].

In that case, we need to modify the axiom above a bit. Namely the Donaldson’s polynomial
invariant givesamap Sym(H.(M)) - Q instead of a number, also Floer homology group



isagraded abelian group instead of avector space. We do not mention necessary modification
here. The rigorous construction of relative version of Donaldson’s polynomial invariant is
known to experts for along time. (The full detail of the proof isavailablein [19].)

Our main concern in this paper is to generalize the definition of topological field theory so
that it includes also manifold ~ of dimenson n-2 and extend Donaldson/Floer theory
so that it satisfies this extended axiom.

A generalization of the axiom of topological field theory we discuss below isinspired by an
idea of G. Segal. (The author heard of it during Donaldson’s lecture[5].)

The generalization is as follows. For each oriented closed manifold ~ of dimension n-2
, We associate a category C(Z), such that the morphism between two objectsof C(Z) isa
vector space. If N isacompact oriented n—1dimensional manifold such that oN =2,
then we associate an objects H(N) of the category C(X). Thentheaxiomis

(1.6) Let ON, =%, ON,=-%, and N be aclosed oriented n-1 manifold,
obtained by gluing N, and N, along . Then

H(N) = Homgs \(H(N), H(N)).

We might consider also the casethat dN, =20 %', dN, =-X0Z", but we do not try to
doit. Alsothecase ON =2 [0 -2 X' might be discussed in asimilar way to (1.5).

The axiom which corresponds to (1.2) is that ¢(-%)=c(X)°, where ¢° denote the
opposite category, that is the category with the direction of arrows reversed.

It seems that there is an example of system satisfying similar axiomsin the casewhen n=3,
based on conformal field theory and Witten invariant of 3 manifolds [36]. In that case,
probably, C(S") isacategory of representation of an affine Lie algebra. It seems that thisis
theexample Segal hadin hismind. (Segal also mentioned apossibility to discuss Atiyah-Singer
type index theory (of linear elliptic operator) for manifolds with corners under a similar
framework.) However there seems to be no reference so far constructing them rigorously.
Our main purpose is to find such a system (with some modification) based on gauge theory
(or Donaldson/Floer theory) inthecase n=4.

A first candidate (more precisely the first approximation) of such a construction is suggested
by Donaldson [5]. Hissuggestionisasfollows. Let = beasurface. Then, the space

{¢ ‘(M) - U2)| homomorphism}
W(2)

RE) =

has a natural symplectic structure (Goldman [24] ). (Here SU(2) acts on the space of
homomorphisms by conjugation.) The space R(Z) issingular. This fact causes a serious
trouble for rigorous construction. So, in later sections, we replace it by the set of flat
connections of anontrivial SO(3) bundle. In this section, we do not concern with technical
point so we ignore the trouble caused by the singularity of R(Z).

We next consider the category C,(X) such that the objects of C,(X) is a Lagrangian



submanifold (with some additional condition, which we specify later.) The morphism
between two objects of C,(X) is, by definition, the Floer homology group of Lagrangian
intersection.

Here we recall that Floer [8] defined a homology group HF(L;,L,) for apair of Lagrangian
submanifolds L;,L, (satisfying some additional assumptions which we do not mention
here). Floer's construction is generalized by Oh [32] . Also it is pointed out in [32] , that
we need several assumptions L,L, for HF(L,L,) tobewell defined.

Oh did not discuss orientation problem and, as a consequence, his Floer homology group of
Lagrangian intersection iswith Z, coefficient. The author is planning to discuss orientation
problem in a forthcoming joint paper with H.Ohta and K.Ono . In this section, we do not
mention it and in later sections we work with Z, coefficient for preciseness.

Now suppose that there are three Lagrangian submanifolds L;,L,,L;. Donadson [5]
suggested a map

(1.7) HF(L, L) OHF(L,,Ly) — HF(L,,Ls).

We will discussitin § 2. (1.7) will be the composition of the morphisms in our category
Co(2). (Wewrite Cy(2) = Lag(RZ)) inlater sections.)

Donaldson proposed this category as the first approximation to the required one. Axiom
(1.6) thenisrelated to so called Atiyah-Floer conjecture, which we discuss here very briefly.
Let N beahandlebody. Weconsider R(N), the set of conjugacy classes of homomorphisms
from 1G(N) to U(2). Thereisamap res: R(N) - R(X) defied by restriction. It iswell
known that this map is injective and the image res(R(N)) is a (singular) Lagrangian
submanifold. Then one can try to put H(N) =req{R(N)). (We recall that H(N) is
supposed to be an object of the category C,(dN) and the object of C,(Z) isalagrangian
submanifold of R(X).) Axiom (1.6) isthen exactly Atiyah-Floer conjecture.

There are several papers (Yoshida 1992 [37], Lee-Lie 1995 [29]) which announce the proof
of the Atiyah-Floer conjecture. The author does not concern with Atiyah-Floer conjecture
directly in this paper. However this paper is closely related to it and its generalization.

As we mentioned before, the category C,(Z) whose object is aLagrangian submanifold isa
first approximation to but is not itself the category we are looking for. The reason is as
follows. For example, let us consider the case when = =S, Then, the set R(S?) isaone
point. Hence the category C,(Z) istrivial. On the other hand, to give a 3 manifold N
with N =S* isequivalent to give a closed 3 manifold. Sointhe casewhen £ =5 the
axiom (1.6) should give the description of Floer homology of connected sum of two closed 3
manifolds. Such a descriptionisgivenin [20], [30]. From them, it is obvious that we need
more information to describe Floer homology of N,;# N, than “Lagrangian submanifold” of
R(Sz) =point. There is a similar phenomenon in the case when X =T? with nontrivial
OB bundle. See[3].

So the object of the category C(X) we are looking for, should be a kind of mixture of
Lagrangian submanifold of R(X) and a chain complex. Our purpose in this paper is to
define such an object and use it to define Floer homology of 3 manifolds with boundary.
Another trouble is that the restriction map R(N) —» R(X) isin general an immersion and is



not an embedding even after perturbation, and Floer homology is not well defined for
immersed Lagrangian submanifolds.

The ideato define a category whose objects are akind of mixtures of Lagrangian submanifold
of R(X) and achain complex, is somewhat similar to the construction of K (Grotentick)
group or group completion. Namely we consider the category 2 whose objectsis a chain
complex. We then consider the set of all functors: Cy(X) — CA. This set can be regarded as
the set of objects of some category C(X) = Func(Lag(R(Z),Ch).

For example since R(SZ) is trivid, CO(SZ) is a trivial category. So
Func(Lag(R(X)),Ch) OCh. Therefore, relative invariant of 3-manifolds N with oN =5 is
a chain complex (or its homology group). This is consistent with the fact that to give a 3
manifold N with ON=S° is equivalent to give a closed 3 manifold.

On the other hand, if L isanobject of Cy(Z), (namely if L isaLagrangian submanifold
of R(X)), then we obtain an element of 7unc(C,(Z),Ch), which isafunctor represented by
L (82). Thus, inthe case of handlebody N, therelative invariant isafunctor represented
by the Lagrangian submanifold res(R(N)) 0 R(ON). An analogue of Yoneda's lemma (8
12, 13) implies that the set of morphisms between two functors represented by Lagrangian
submanifolds L, and L, ishomotopy equivaent to HF(L,L,). Hence Atiyah-Floer
conjecture will be Axiom (1.6).

To carry out this project, we need various kinds of results, one algebraic and geometric and
two analytic.

One of the analytic results we need is one about ASD (Anti-Self-Adjoint) equation on 4
manifold with corners (or equivaently on 4 manifold with product ends and with boundaries
which are diffeomorphic to the product of surfaces and R.) The equation and boundary
condition we study will be discussed in § 3. The construction and the study of the basic
properties of the moduli space of the solutions of this equation is stated in this paper. Some
part of it was written and distributed by the author in [13]. The complete proof of those
results stated in this paper will appear in subsequence papers.

The second analytic result we need is one about the moduli space of pseudo holomorphic
disks with Lagrangian boundary condition. In the case when there are two or less Lagrangian
submanifolds, such a problem is studied by Gromov [25], Floer [8] and Oh [32]. In the
case, when there are 3 or more Lagrangian submanifolds, we started its study in [22]. In
fact one of the most basic problems which did not appear in the case of 1 or 2 Lagrangian
submanifolds was already solved in[22] (see § 13 where they are applied). We announce in
this paper, the results on the moduli space of pseudo holomorphic disks we need in this
paper and prove it in subsequent papers.

We need also homological algebrato work out the story we mentioned above. The category
Cy(Z) we are going to construct is in fact not a category in the usua sense, since the
composition of the morphisms are not associative but is associative only modulo chain
homotopy. (Also the identity map exists only in a modified sense.) We use the notion A”
category and topological A” category introduced by the author [13], [15] for this purpose.
We need several algebraic arguments to establish basic properties we need to use A” category
for our purpose. We present it in Part 11 of this paper.

It seems very interesting to the author that those formal and rather complicated formulas in



homological algebra are directly related to the moduli space of ASD equation and/or pseudo
holomorphic disks (and its compactification). One of the main purpose of this paper is to
pursuit this analogy between algebra and analysis.

Donaldson [4] started to study this analogy by using cobordism argument to define an
invariant. The cobordism he used is the moduli space of ASD equations.

Floer went one step further by defining homology group rather than a number. He used
moduli space to define boundary operator and also to show various equalities basic for
construction.

On the other hand, physicists (like Witten [35]) had asimilar idea. They used degeneration
of Riemann surface, or, in other words, compactification of the moduli space of pseudo
holomorphic curves, to derive associativity law of quantum cohomology. (Thisideais now
arigorous mathematics.)

In this paper, we go one more step further. In place of relating anaysis to the algebraic
construction which already exists, we develop homologica algebra and analysis at the same
time and finds analogy between them. (In[21] another example of such astudy is presented.)
In order to develop topological field theory, it seems important to the author to pursuit this
analogy of homological/homotopical algebra and the compactification of moduli space. The
relation of homotopical algebra to (topological) field theory is discussed by various mathe-
maticians, ([28] seems to be one of the first papers mentioning it explicitly.) They however
are usually mixture of algebra, combinatorics and geometry. The point we want to emphasis
in this paper is to relate algebra to geometry and analysis (the study of the moduli space of
non linear partial differential equation).

The content of each section of this paper is asfollows.

In § 2, we define A”category and A”functor and give two examplesof A™ categories. One
is based on Morse theory. This A® category was constructed and discussed in detail in [22]
so we discuss it only briefly. The second example is one we use mainly in this paper. This
A”category is based on Lagrangian intersection theory. We consider here only simply
connected Lagrangian submanifold to exclude the trouble pointed out by Oh [32]. This
assumption seems too much restrictive for various applications. Especially to the applications
proposed by M. Kontsevitch to Mirror symmetry and D-brane [27], [26]. (In this proposed
application, our A” category Lag(X) is supposed to play a role in symplectic geometry
which the category of coherent sheaves playsin complex or algebraic geometry.)

Certainly we can relax this assumption somehow. (For example to monotone Lagrangian
submanifold in the sense of [32].) However it seems yet unclear to the author what is the
most natural assumption. So, in this paper, we work under this rather restrictive assumption
and defer generalizations to the future.

In fact, we need more results and notions concerning homological algebra of A”category
than those we gave in 8 1. We present it in Part 1. So the reader may need to see some part
of Part Il to read Part I. We arrange the material in this order since to read the formal
arguments of Part |1 without motivation does not seem to be a happy job.

In 8 3, we introduce a modified version of ASD (Anti-self-dual) equation which we mainly
use to construct Floer homology for 3 manifold with boundary. This equation is a mixture of
pseudo holomorphic curve equation to the representation space (of the surface group) and



ASD equation on 4 manifold. We describe in 8§ 3 main analytic results on the moduli space
of solutions of this equation.

In § 4, using the properties of the moduli space we described in § 3, we present a definition
of Floer homology of 3 manifold with boundary.

88 5, 6 and 7 are devoted to the discussion of the well definedness of the relative Floer
homology constructed in 8 4. Namely we provethat therelative Floer homol ogy isindependent
of the various choices involved. To state the well definedness, we need the definition of the
homotopy equivalences between two A” categories and A™ functors. They are given in
Part 11.

The well definedness is established in two stages. First, in § 5, we discuss the case when we
do not change the metric of the boundary (surface) and change the metric (and perturbation)
only at the interior of 3 manifold. In that case, the relative invariant is an object of the same
A" category C(Z) = Func(Lag(R(Z),Ch)) (equivalently they are A” functors from the same
A" category Lag(R(Z)) to Ch.) Then well definedness in this case means that the two A”
functors are homotopic (in the sense we define in § 12).

In 88 6,7, we consider the case when we change the metric etc. of the boundary (the
Riemann surface.) If we change the metric of X, the symplectic manifold R(Z) will be
the same but the Kéhler metric (and the complex structure) on it changes. Hence we first
prove that if we change the (compatible) aimost complex structure of a symplectic manifold
X, theresulting A”category Lag(X) doesnot changein the sense of homotopy equivalence.
Thispoint is proved in § 6 using analytic lemmata whose proof are deferred to the subsequent
papers. Then finaly, in 8 7, we show that relative Floer homology up to homotopy is
independent of the choice of the metric of the surface also.

In 8§ 8, we discuss Axiom (1.6). Unfortunately the author does not know the proof of it in the
genera case. (So (1.6) isyet a conjecture.) However we are going to construct a canonical
map CF(N) —» Homg ;) (HF(Ny), HF(N,)) which the author believe to be an isomorphism.
(Here CF(N) isthe chain complex defining Floer homology of closed 3 manifolds.) The
construction of this map and its propertiesarein 8 8.

In 8 9, we consider the case ~ x[0,1]. We can prove two results in this case. One is that
the relative Floer homology HF(Z x[0,1]) is an A™functor represented by a Lagrangian
submanifold of R(Z)x R(Z) and is the diagonal. Second is that the homomorphism
CF(N) - Homg 5 (HF(Z x[0,1), HF(N,)) in § 8 is a chain homotopy equivalence. These
two facts are regarded as a generalization of a result by Dostglou and Salamon [6]. Their
result may be regarded asthe case when bothof N, and N, are % x[0Q,1].

Part |1 is devoted to homological algebraof A”category.

In § 10, we define an A” category, fFunc(Cl,Cz) , whose object isan A” functor between two
A” categories.

In § 11, we define homotopy equiva ence between two A” categories which have an identity.

In § 12, we prove A” version of Yoneda's lemma. Usua Yoneda s lemma asserts that the
set of natural transformations between two functors represented by a and b isequal to the
set of morphisms from b to a. Our A” version asserts a similar conclusion but “equal
to” are to be replaced by “homotopy equivalent to”. Thislemmais used in this paper for two
purposes. First, in § 13, we use it to define weak homotopy equivalence of A” categories



which do not have an identity but have an approximate identity. This point is important
since our basic example Lag(X) does not have an identity. Second we useitin §9. (There
HF(Z x[0,1]) is an A” functor which is represented by a diagonal.) It is also useful to
simplify the study of A®™ category since it implies that any A” category with identity is
homotopy equivalent to one for which the composition of morphisms are associative.

In § 13, we define an approximate identity and generalize A™ Yoneda's lemma to the case
where there may not be an identity but there is only an approximate identity. Finaly we
discuss the existence of approximate identity of our A”category Lag(X).

Since we postpone the analytic detail to subsequent papers, we put * to the statements
which will be proved in subsequent papers. The rule is that any results of Part | follows
from statements with * which appeared before and during the proof of that statement.
Assuming those statements with * the proof is given in this paper. There is one exception to
thisrule. Namely statementswith * which arein 8§ 13 is used in the proof of Theorem 9.3.
On the other hand, results in Part |l are rigorously proved in this paper, except Theorem
13.13 and the statement appeared after that. To prove them we need statements with * in §
2,3,4and 8§ 13.

The basic idea of this paper was established around 1992 . Various parts of them had been
announced by the author in various occasions [15] , [18], [17], [14], [23]. There are various
reasons for the long delay of its publication.

First, the story is not yet complete since the key axiom (1.6) is in general a conjecture yet.
We remark that the author proposed an idea to attack to this conjecture based on two last
papers by Floer [10], [11], [3]. Thisideaisexplained in [15]. We made afirst step in this
paper to realize it by proving (modulo analytic detail) the isomorphism in the case = x[0,]]
in 89. Wedo not discuss the next step in this paper since it is not yet complete.

The second reason is that to work out the technical detail of analysis announced in this paper
is a quite heavy task The main part of the analysis was written and distributed in[13]. The
referee of [13] requested the author to write more technical detail so he is going to write it in
subsequence papers. Meanwhile to motivate those heavy analytic detail, it seems appropriate
to present applications of it first. And it isthe purpose of this paper.

Also, there used to be several points which had not been clear in symplectic geometry side of
the story. By mainly the efforts of Oh [31] [32], (and aso [22]) those points are now
became much clearer. So we are now ready to write up the story up to the point we have
attained.

A part of the idea in this paper is explained by D.Salamon in [33] § 3 following the idea of
[15], [13]. The main idea in [15], [13], which was used by Salamon there, is to use
Lagrangian submanifold of the representation space to set boundary condition. In [33] § 3,
Salamon said that his Floer homology of 3-manifolds with boundary is different from ours.
However it is different only because he proposed the different way to work out analytic
detail to set the boundary condition, (based on a conjecture which is still open). It is amost
certain that the resulting theory is the same. (Salamon described only a part of the structure
constructed here, but if his conjecture, (Conjecture 3.2 in [33]) iscorrect it seems that all the



structures in this paper can be constructed also in his way, though more analytic detail than
Conjecture 3.2 isto work out.)
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PART | GEOMETRY
82 A” category

It seems natural for our purpose to involve informations more precise than homology group.
Namely we work in the level of chain complex. For this purpose, we use the notion of A”
category defined in [18], [14]. In this section, we recall its definition and prove a few
properties of it. More definitions and resultsarein Part I1.

Definition 2.1 An A”category C consists of a set 06(C) (of al objects) a chain
complex C.(ab) (the set of morphisms) for each ab 06 and homomorphisms
Nk:C(@g, ) 0---0C(ay_1,8) —» C:(8,8) of degree k —2 (the k-th composition) for
each ay,---,a JOp such that the following holds.

@n)Oq O -0 %)

(21) = Z ink—j+i(X1D"'Dnj—i+l(XiD"'ij)D”'DXk)'

I<i<j<k

Here we do not discuss the sign since in later sections we work over Z, coefficient. Here

and hereafter wewrite (0 )(u) =0 (¢ (u)) £ ¢(du), d(u 0 v)=0u O v+ ul v unlessotherwise
defined.

Definition 22 Let ¢*,c? be A”categories. An A”functor from ¢'to ¢? isafamily
of homomorphisms R, :0b(c") — Ob(c?), F(ab):C'(ab) = c*(Fy(a), Ry (b)),

R(@, -8 C (8, 8) 0 --CH(aca) » C*(R(&) ()  satisfying the following
conditions :

(2.2.0) F. isof degree k —-1.
(2.2.1) F, isachanmap .
(22.2) (OR)(xOy)=2RN(x 0O y)) £n, (R(x) O K(Y)) .

0(Fy(x 0 %, 0%)) £ B0 (x 0 %, 0 x5)
= +F,(Na (X, 0 %) U X3) £ F5 (%, U np (%, U xg))
(223 N, (R (% 0 %) U F(X%3)) £, (Fi(x) U K00 U X3)).
+N5(F(x) O F(6) O F(%s))
R (N3(x U % U X3))

2-10
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(0R)(x O ---Txy)

(2.2k) = R O OOy O O - O X)) OO %)
1<i<<k
b 0, (0 0 0X) Ooee O By (2 0 0 %)
I'T!L+---+m/:k

The following isthe simplest example of A”category.

Definition 2.3  Ob(ch)=the set of al chain complexes. CA(a,b)=the graded abelian group
of all homomorphisms, (not necessary to be a chain homomorphism.) n,=the composition
of two homomorphisms. n; and higher isO.

Now, for an A”category ¢ and aJOb(C), we definean A”functor F*:C - Ch as

follows.

Definition 2.4 R =c(@b) FR(Y)=n,(yOx) ,0 xOc(bc) ,yOc(ab)

0 F*(® OHom(c(a,b),c(@c)m, -, R O OX)Y) = Neaa(y O % O---0 %)
Lemma2.5 F2:c - ch isan A”-functor.
Proof:

(OFR)(x 0 0x,)()
= Y #0n)(yOx 00 %)

1<i'<T<k
=1 .Ziknk+1+j—i(yD % O-njq(¢ 0 Ox) U0 x)
<i<j<
+1zkir]i+1(rlk—i(ymX1D"')§)D"'D %)
:1 Z ;kl;lgrj—i(xlm e (G OO0 %) 00 % )(Y)
<i<j<
+1Zkﬂ]k—i(|:ia(xlm X)) U X4q O-- 0 %)
:1Z%,;kij_img...nj_i(XiD---ij)DxiﬂD--'DXk)(Y)
<i<j<
+1<Zkir]2(|:ia()& O %) 0 R (X% OO %))
Using thefact that n;=---=0 in CA, we obtain the conclusion.

Definition 2.6 An A”functor from ¢ to ¢4 issaid to be representableif it is equal to

2-11
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the functor obtained above.

We define natural transformations between A™functors etc. in a similar way. We then
obtain an A”category Func(C,,C,) whose objectisan A" functor F:C; - ¢, andwhose
morphisms are pre natural transformations. See Part 11 for the definitions of them.

In this paper we use rather atopological A”category than an A” category.

Definition 2.7 A topological A”category C consists of atopological space 05(C) (of all
objects) a chain complex C.(ab) (the morphisms) for pairs a,b [JO6 in aBair subset of
06(C)x0b(C) and homomorphisms N, : C.(ay,&) U---0 Ce(a_1,8) - C«(&,a,) (K-th
composition) for (aoak) in aBair subset of OE(C)k,such that the following holds.

OnI0Oq U -0 %)= Z N (X OO N (6 OO %) O T X))

I<i<j<k

We can modify the definition of A”functor in astraight forward way and define a topological
A”functor.

There are two important examples MS(M) and Lag(X,w) of topological A”categories.
They are discussed in[22].
Let M beaRiemannian manifold. We have an A”category M5M) and cal it the Morse
category. Its object is a smooth function on a manifold M. For two objects
f,, f, OC”(M), the set of morphisms C.(f,f,) is the Morse-Witten complex of the
function f, —f;. (Weremark that Morse-Witten complex is well defined if grad(f, — f)
is Morse-Smale vector field. This condition is satisfied for (f;,f,) 1C”(M)® in a Bair
subset.) The k-thcompositionmapn,: C (fy, )0 ---0C (f_., f) - C (£, f.) isdefined
by using the moduli space of maps from atreeto M such that each edge is mapped to a
gradient line of an appropriate f; - f;. We do not discuss the precise definition here, since
we do not need it. See [22], [14], [18].
To define another basic example Lag(X,w), we start with a symplectic manifold (X, w) .
To simplify various discussions, we restrict ourselves to the following cases.

Assumption 2.8 (X,w) ismonotone. Namely c¢'(X)= Nw in H*(X;Z). Here c'(X)
isthe 1st Chern class of a compatible almost complex structure of (X, w).

We put

Definition 2.9 08( Lag(X,w)) istheset of all simply connected L agrangian submanifolds
of (X,0).

Remark 2.10 One may replace the assumption simply connectivity by a weaker one.

2-12
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For example by the monotonicity in the sense of Oh [32] .

We put C” topology on the set of Lagrangian submanifolds.

Now, following [32], [31], we can define Floer’s chain complex for generic pair of elements
of OB(Lag(X,w)). We recall the construction here since we need its generalization in later
sections. We fix an amost complex structure J on X which is compatible with the
symplectic structure w. Let A\, DOE(Laﬂ(X,oo)) . Weput D :{ZDC IE <1} .

For p,qUA;n A,, we consider the set of all maps ¢ : D - X satisfying the following
conditions.

(2.11.1) ¢ ispseudo holomorphic. Namely J¢(X) = ¢(IX).

(2.11.2) We put 9,0 ={z0o0 Imz>0}, 8,D={z00D{Imz<0}. Then ¢ is
extended to asmooth mapon DO dD such that q)(alD)D N, ¢(02D) OA,.

(211.3) o(-0) = p,¢(+1) =q.

Let M(X;A;,N\,;p.0) bethe set of al such maps. The following is proved in  [32],
[31]. Weassumethat A, istransversal to A,.

Theorem 2.12 There exists H: A N A, - Z/ZN such that, for each generic pair

AN, T0H( Lag(X,0)) , thespace M(X;A;,A,;p,q) isasmooth manifold anditsdimension
isgiven by :

dimaL(X; Ay, A i p,0) = W(P) ~ H(@) mod2N.

We define

Definition 2.13

C (X ALN,) = pD/EL/\QZZ Mp]

H(p)=K
0: G(XiALAR) = Ca (XA N),

olpl = #MOGALA ;AL

Following [32] weassume N=2.Werecal :
Theorem 2.14  (Floer [8], Oh [32]) d0 =0. The homology group H-(C.(X;/\,A\,),0)
is independent of the choice of almost complex structure and depends only on symplectic

structure. It isalso independent of the deformation of Lagrangian submanifolds.

In order to motivate the construction we discuss later, we here quote some results from [8],
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[32] which are basic in the proof of Theorem 2.14 .

Theorem 2.15 (Floer [8], Oh [32]) Let p,g0A;n A, besuchthat p(p)- u(qg)=2.
Then, for generic choice of A;,/\,, one dimensional component of f7t_{(X;/\1,/\2;p,q) can

be compactifiedto CM(X;A,/A\,;p,0) suchthat itisacompact one dimensional manifold
with boundary

UG AL AL pr) x MEOGAL AT, Q).
rip(r)=p(a)+1

Here (and in a similar situation later) M(X;A;,A,;p,r) and M(X;A,A,;r,q) denote
the union of its O dimensional components.

We next define the k-th composition. We put

. {(ao,-~-, a.)| @ 00D, &,--,a, respect the cyclic order of aD}
0,k+1 ™ .

{h:D - D|biholomorphic}

We consider counter clockwise order of dD. The group {h: D - D]|hi holomorphic} acts
on {(a0,~--,ak) |a, 00D, ay,---,a, respect the cyclic order of GD} by

h(ag, - &) = (N&),-,h(&)) .

Itis easy to see (and is proved in [22]) that 7y, isdiffeomorphicto R*™.
Now let (ay, --,a,) U7 ... Welet 9;D be the set of points of dD which lie between
a_4 and a;. Let p OA N AL ( poOA nA\) We define

M(X{(Ag Ao+, p)) to bethe set of al maps ¢ :D — X satisfying the following
conditions .

(2.16.1) ¢ ispseudo holomorphic. Namely J¢(X) = ¢(IX).
(2.16.2) ¢ isextended to acontinuousmapon DO AD suchthat ¢ (0, D) OA,.
(2.16.3) ¢(a)=p.

The proof of the following is similar to [32], [31] and will appear in a subsequent paper.

Theorem 2.17* For generic A;, the space M(X(Aq, A+ py)) is a smooth
manifold and its dimension is given by :

2-14



version 10/3/99 Floer homology for 3 manifolds with boudary 1 Kenji FUKAYA
k
dima (X (Ao, A i (Por+ 1)) = Y 1(R) = (po) + k=2,
i=1

Theorem 2.18* Let p, OA,_; n/\; be such that Z H(p,) —H(p)+tk—2=1. Then, for
generic A\;, the space M(X;(/\O,---/\k);(po,---,pk)) can be compactified to a compact one

dimensional manifold  CM(X;(Aq, A ):(Po,+,py))  whose boundary is a union of the
following 3 kinds of sets:

UM(X;(/\01"'Ak);(Q)1"" A-1 B Pisasr s P)) X MOGALA L P B

PIOA1 0 A
H@=p(p)-1
U MG (A g A (B, Pr - ) X MO Ao, Ay Po. Po)
PolA kN Ag
H(R)=H( )1
U M(X;(/\O,...,/\i,/\j AN (B2 Py Py Pjan s B))
P DN NA XM(X;(Ai!"'1/\j);(H,j!nf"!pj))

]
D u(p) —u(pij)+i-i-1=0

=i

Figure 2.19

The reader may wonder why the sign of p(p,) is — whilethesign of other p(p,) is +.
The reason is as follows : We regard p, UA, n A, and the index (Floer degree) of p,
regarded as an element of Ay n A, iS n minus the degree of it regarded as an element of
N n g

Using Theorem 217 we define a homomorphism n,:C(M;Ay,A;)D
O CGMA L NA) - C(M; A, A\) of degree k —2 by :

N([pd O+ OIpd) = D #M (X (Ao, - Ai (Poy++ PPl -

Using Theorem 2.18 in asimilar way to the proof of Theorem 2.14, we can prove :
Theorem 2.20

(On)(x O0--0Ox)= Z AN+ i OO N (6 OO0 %) O T %)

I<i<j<k

We thus obtained a topological A”category. We denoteit by Lag(X,w).

The category Lag(X) isstudied inthe case when X isacotangent bundle TM in [22],
whereitisproved that Lag(T M,w) contains MS(M) asafull subcategory.

Our main application of the category Lag(X) in this paper isthe case when (X,w) isthe
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space of gauge equivalence classes of flat connections of an SO(3) bundle on a Riemann
surface.

Let = bean oriented closed 2 dimensional manifold. We choose a complex structure on it
and hence a symplectic structure.

Let E- %2 bean SO(3 bundleon X such that its second Stiefel Whiteney class is
nontrivial on each connected component. (Such a bundle isunique.) Let R(Z;E) be the
space of all gauge equivalence classes of flat SO(3) connectionson E - . (See 8§ 3 for
the choice of gauge transformation group.) R(Z;E) has a symplectic structure. Moreover
the complex structure of % induces a Kahler metric of R(Z;E). We use this complex
structure of R(Z;E). This symplectic manifold R(Z;E) is monotoneand N =2. Hence
Floer homology has period 4 ([6]).

Remark 2.21  Since we did not perturb the complex structure of R(Z;E) the reader may
wonder that there might be a trouble to compactify the moduli space
M(X;(/\O,-u/\k);(po,-n,pk)). However, we know that there are no pseudo holomorphic
sphere ¢ :CP' . RZ;E) such that f &' <0 ([6]). Hence, in this case, we do not
have to worry about “negative multiple cover problem”.

The category we use to define Floer homology with boundary is Func(Lag(R(Z;E)),Ch).
Namely for a three manifold N and an SO(3) bundle E on it such that N =23,
EIZ = E, we are going to define an A"functor HF(N): Lag(R(Z E)) - A, that is an
object of  Func(Lag(R(Z;E)),Ch) andregard it as arelative Floer homology.

At the end of this section, we briefly mention another example of A” category SA(M).
Here M isacomplex manifold. The object of SA(M) isa coherent O,, module sheaf ¥

together with its injective resolution ¥ — %. For two objects 7 - %, G - G, the
morphism between them is

Ci(#,6) 00T (M; Hom( 7,6 ).
Thisis clearly a chain complex. The composition is defined in an obvious way and higher

compositions are all 0. It seems that it is expected that SA(M) is somehow related to
Lag(M") where M" isaMirror of M.
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83 ASD equation on 4 manifold with cor ner

We use a kind of “moduli space of ASD (Anti-self-dual) connections’ to define our relative

Floer homology. In this section, we define and describe the properties of it, which we need
for our construction.

We start with the following situation. Let M be an oriented 4 manifold with boundary and
ends, and E bean SO(3) bundleonit. We assume

Assumption 3.1

(3.1.1) There exist oriented compact 3 manifolds N_,N, with boundaries such
that M — (compact set) isdiffeomorphicto N_ x (—0,0] [0 N, % [0,0).

(3.1.2 There exists an oriented closed 2 manifold = such that ON_ [0oN, OX.
The boundary of M isdiffeomorphicto ~ xR.

(3.1.3) We assume that the restriction of E to each connected component of X
isnontrivial.

(3.1.4) w?(E) OH3(M;Z,) isintheimageof H?(M;Z).

We put E= élN , E= élz. In case no confusion can occur, we simply write E in

place of E or E. WetakeaRiemannian metric on M,N,,% suchthat:

(3.1.5) M — (compact set) isisometricto N_ X (—oo,0] I N, %[0, c0)
(3.2.6) A neighborhood of the boundary of M isisometric to X x[-11] xR
with Z x{I} xR being the boundary.

Figure 3.2

Let R(N,;E) be the set of all gauge equivalence classes of flat SO(3) connections of

E on N, and R(Z;E) be the set of al gauge equivaent classes of flat SO(3)
connections of E.

The definition of gauge transformation is the same as Floer used to define SO(3) version
of Floer homology. (Itisdescribedin[3], to which we refer for the detail.)
By (3.1.4), thereexistsaprincipal U(2) bundle R,,, such that

R Xy R>=E.
Here U(2) actson R? through U(2) - U(%(l) =3S0(3). Ontheother hand, U(2) acts
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on SU(2) by adjoint representation, and we put
AdE = R (5 Xyz) ().

Our gauge transformation group is the set of al sections of AdE. If the first homology
group of M, N, istrivia, it is the same as the set of SO(3) gauge transformations. In
generad it isasubgroup of finiteindex of it.

In our situation, where ~ is disconnected, the space R(Z;E) is the direct product

|_| R(Z;E) where X, areconnected components.

Let res, : R(N,;E) - R(Z;E) bethe map defined by restricting the flat connections.

The choice of Riemannian metric of 2, determines a complex structure on . It
induces a Kéhler structureon R(Z;E). Let w bethe Kéhler form. Itiswell known that
w is independent of the metric of % . For a technica reason we use the symplectic
structure —w and compatible complex structure —-J on R(Z;E).

We remark that the real dimension of R(Z;E) is Z(Gg —6), where g isagenus of

a connected component of . The following lemmaiswell known.

Lenma3.2 res,w=0.

In a“generic’ case, res,: R(N,;E) - R(%;E) isknow to be a Lagrangian immersion.
However the term “generic” may need to be precise. We will concern with this point later in
this section.

Let A be a smply connected Lagrangian submanifold of R(Z;E). In other word,
A 00b(Lag(R(Z,E))). Let a, OR(N,;E) suchthat res,(a,)OA.

We, for amoment, make the following assumption for ssmplicity.

Assumption 3.3

(3.3.1) A neighborhood of a, in R(N,;E) isasmooth manifold of dimension
Z(ggi _3)'
(3.3.2) res, aretransversalto A at a,.

As we mentioned in the introduction, the basic ideaisto use A and a, as the boundary
condition of the ASD equation. But if we do it directly, the resulting moduli space is of
“—co dimensional”. The reason is that requiring the connection to beflat on < xR aretoo
much. Therefore, we modify ASD equation as follows.
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Let us recall that a neighborhood of the boundary of M is diffeomorphic to
> x[-1,1] xR and the metric there is the product metric g, = g, 0 ds’ O dt?. We change

thismetric asfollows. Let X :[-11] - [0,1] beasmooth function suchthat x(s) =1 ina
neighborhood of -1, x(s)>0 if s isnegativeand x(s)=0 if s ispostive. Then we

consider the “metric’ g = X(s)’g,; 0 ds* 0 dt>. Of course this“metric” is degenerate in the

domain s>0. However we can still define the ASD equation as follows. Let 4 be a
connection of E. Then 4 =A+®ds+Wdt. Here A= A(s,t) isatwo parameter family
of connectionsof E and &,WOIMN(Zx[-11]x R,adé). (Here adE = Ri2) Xuz) SUW2).)
Thenthe ASD equationis

0A 0A
3.4.1 —-d¥Y+0— -d,®)=0
(34.1) 5 % E(as AP)
Do v O
34.2 P —— -[®, W]+ [F, =0
(34.2) x(S)Dat as[ I+ R

More precisely (3.4) is ASD equation in the case when x > 0 and hence we just regard
(3.4) as ASD equation also in our case where the metric is degenerate. Therefore Equation
(3.4) can be extended smoothly to M (as ASD equation).

Now, we consider Equation (3.4) in the domain s>0. Equation (3.4.2) in this case is
F,=0. Thus, we have two parameter family of flat connections, namely the map
[0 xR - R(%E). Equation (3.4.1) then means that this map [0] XR - R(LE) is
holomorphic. (See[6] for the discussion about it.) (We remark that Hodge * gives the
usual complex structureon R(Z;E) and we are using minus of it.) Thus, for this equation,

itis natural to assumethat itsvalueat > x{Z} xR iscontainedin A.

Keeping the above observation in mind, we define the moduli space M(M;A;&,&) as

follows. We fix a connection 4, on M such that A4, is flat on N_ Xx(-,R]
OON, x[Re) and coincides with a. there. We consider smooth connections 4 on M
suchthat 4 -4, isof L® class. (Under Assumption 3.3 we do not have to worry so much

about the norm wetake.) Let uswrite 4 M,Ea_,a,) thesetof al such 4.

Now we put
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A solves(3.4.1), (3.4.2), andisan ASD C
connectionon M —-[-11] xR x Z. E
The gauge equivalence class of the restriction E
of 4 to{(t,1)} x= belongsto A foreach t. E

M(M;Aa,a,) =1 OA4M,E;a_,a,)

D]]DQD]:II:I

We next divide it by gauge transformation group as follows. We remark that a, is
irreducible since the restriction of E to each connected component of X isnontrivia as
SO(3) bundle. Hencethe natural boundary conditionat t — +co for the gauge transformation

isthat it will converges to identity there. More precisely, since we assume that 4 - 4, is

of L* class, itisnatural to assumethat gauge transformation minus identity is of Lf class

(namely the L* norm of itsfirst derivativeisfinite) Namely we put

llo- idll_i < E

=
M,E) =g Or (M, Ad
7M.B) % ( © g issmooth E
Here Ad E =R Xy U(2).

To work out analytic detail, we need to study connections and gauge transformations
which is not necessary smooth but is in an appropriate Sobolev space. In the paper, we do

not concern with analytic point.

It is easy to see that (M, E) actson M(M;/\;&,&) as gauge transformations. We

use L? topology on #(M;A;a,a,), and L2, topology on ¢(M,E) for k large. Then

the actioniscontinuous. Let M(M;A;a_,a,) bethe quotient space.

Remark 3.5 We remark that if g is a smooth gauge transformation,
A0MM;Aa,a,),andif g2 OM(M;A:a_,a,) then g Og(M, E). Thisisaconsequence
of thefact that a, isirreducible.

We next discuss the transversality of our moduli spaces. We choose and fix a compact
subset of M which is digoint to R x[-L1]x%. We consider the set of al smooth
Riemannian metricson M which coincides with g outside this compact set and put C”
topology onit. We say, “for ageneric metric, --- holds’, if --- issatisfied for ametricin
aBair subset of this set of metrics.

We assume that Assumption 3.3 is satisfied for any element a, ORIN,,E) with
res,a, JA. Now the first result we need on our moduli space M(M;A;a_,a,) is as

follows.
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Theorem 3.6 There existsa map ui:{ai OR(N,,E) | resa, D/\} - %Z such that the
following holds for a generic metric.

M(M;N; a_,a,) isa smooth manifold of dimension u_(&)—u+(a+)+c(M,é) modulo
4. Here c(M,é) IS an integer depending only on (M,I%). (We remark that p, is

independent of M and depends only on (N,, I~E) )

The proof will be given in a subsequence paper. Theorem 3.6 is used in later section to
define and study various maps and operations of relative Floer homology.

In order to study Floer homology for 3 manifold with boundary, we consider the case
when N_ON, ON and M=NxR . Inthat case, aswasthe casewhen N isclosed [7],
[16], we need to take our perturbation invariant of R action by trandation. For this
purpose, we use perturbation using holonomy rather than metric. Werecall it here. First, let
V beaclosed 3 manifoldand E bean SO(3) bundleonit. Let A4V,E) be the set of all

connectionson V. Let /:S -~ M bealoopand ¢ :SO(3) —~ R be asmooth function

invariant of the conjugation. It definesamap @), :,4(V,I§) - R by

(37) @), (A) =¢ (Hol ().

Here Hol,(A) isaholonomy of the connection A aong the loop ¢. We can modify
), AV, E) - R by taking atubular neighborhood of ¢ and taking an average so that it
issmooth. (See [16] §2.) Let @, :,4(V,I~E) - R be the map obtained in thisway. We
consider the gradient vector field gra,, (A)= grad,®,, of it. (Weuse L* norm to define a
metricon AV, I%). We can check easily that gradient vector field iswell defined.)

Lemma 3.8 gra,, (A) depends only on the restriction of A to a small neighborhood
of ¢(S). The support of gra,, (A) OT,#4(V, I~E)=;4(V,I~E) is contained in a small
neighborhood of #(S).

The lemmaisimmediate from definition. Because of the lemma, we can define gra, , (A)

foraloop ¢:S - N_ON, ON andaconnection A onit.

In case we have severa (finitely many) loops ¢,:S — N.ON, ON and

5 O xS
' 03

-~ R, weobtain gra; (A) inasimilar way. (See[16] §2.)

2-21



version 10/3/99 Floer homology for 3 manifolds with boudary 1 Kenji FUKAYA

Now we perturb our moduli space of flat connections R(N;E;Z,q)) asfollows.

R(N;E; 7 d)):EA

aconnection on N[
UF, = gra, , (A E

Since graM(A) IS gauge invariant, IEQ(N;E;?,q)) isinvariant of the gauge transformations.
Let R(N;E;/,d) be the quotient space.

Lemma3.9*  We can find a finitely many loops ¢, : S — N such that R(N;E;?,c])) isa
smooth manifold of dimension > (39, -3) for generic . And
res: RIN;E;/,0) — R(Z;E) isaLagrangian immersion.

The proof can be done by a method which is now standard. But, since the author does

not want to include analytic argument in this paper, we postpone the proof to subsequent
papers.

Now for 7,:S" ~ N and ¢ :51)(3) ;)(3; 0(3)

- R, we modify equation (3.4.1) and

ASD equation as follows. We first remark that we may take ¢,:S — N so that its image

is outside X x[-L1ON. Therefore, we need no perturbation of the equation on
> x[-L] xR O NxR. Nextwerecal that the perturbed equation is

(3.10) F, +1F, - gra; , (a(t)) Ddt - Cora; , (a(t)) = 0.

(See[16].) Here 2 =A+aldt, T and L are Hodge star operator of 4 and 3 manifolds
respectively. Weremark that the support of gra; ¢(A(t)) iscontained inasmall neighborhood
of the union of ¢,:S - N and depends only on a restriction of A(t) to a small
neighborhood of the union of /,:S - N and use (3.4) a X x[-11]. So we can use
Equation (3.10) outside = x[-11] OO N. Using Equation (3.10), we modify the definition
of 9\7[(N xR;N\;a_,a,) as follows. Let a, DI-:{N;E;Z,q)) be connections such that
res,(a,) UA. We assume that res, istransversal to A a a,. (This assumption is
satisfied for generic A.) We define a connection 4, of E on M=NxR suchthat it
coincides with a, (resp. a) on NXx[Ro) (resp. Nx(-o,—-R]). Let
AN xR ,E;a,,a) be the set of all smooth connections 4 of E on NxR such that
4-24, isof L?-class. We put
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MNxR;Aa,a,;/,0)

A4 solves (3.4.1), (3.4.2), on ~ x[-11] xR
and (3.10) on NxR —-% x[-1]] xR.

The gauge equivalence class of the restriction
of 4 to Z x{(t1)} belongsto A for each t

OA4(NxR;a_,a,)

D]]Dgl:ﬂ:ll:l
M mrT i

Itisagaininvariant of (N xR,E). Let M(NxR;A;a_a,;/$) bethequotient space
by this action.
Now an analogue of Theorem 3.6 for this perturbation is as follows :

Theorem 3.11* There exist a finitely many loops /;: S -~ N_ON, ON such that, for
generic choice of thetriple (g,.¢,A), thefollowing holds.

Let g, isametricon N which coincides with the given one outside a fixed compact

30(3) x--- x O(I)
SO(3)

subset of N, ¢: - R, and A is a simply connected Lagrangian

submanifold of R(Z;E).

(3111)  R(N;E;/,0) isasmooth manifold of dimension  (3g, -3).

(3.11.2) res: R(N;E;¢,¢) - R(Z;E) istransversal to A .

(3.11.3) M(NxR;N\;a,a,;4p) is a smooth manifold whose dimension is
p(a ) -p(a,) modulo4.

The proof is given in a subsequent paper. If we take generic (g,4) then the set of A
satisfying (3.11.1) --- (3.11.3) is a Bair subspace of 0b(Lag(R(X)). The moduli space
M(NxR;A\;a,a,;¢0) has afree action of R induced by the trandation along R
direction. Let M(NxR;A;a_,a,;/,¢) bethe quotient space.

When we consider a 3 dimensional manifold M such that it is not a direct product and
that N, does not satisfy Assumption 3.3, we need to combine two perturbations we
introduced. (This argument is parallel to one we need to define Donaldson invariant for 4

manifold with boundary [19].)
We start with the situation of Assumption (3.1). We take (Zi,gi,d)i) on N, sothat

(3.12) holds for generic A . Let ustakeageneric A and a, DRNi;E;_éi,q)i) such that
res,(a,) A . Choose sufficiently large R and a smooth function  x, :R - [0,1] such
that
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if +t>+2R

t_EIl.
X*()_ED if +t <+(2R-1)’

We then modify the ASD equation as follows. Werecal M O N_ X (-, -R],N, X [R ).
We perturb ASD equation on (N_ -2 X [—Ll]) X (=00, —R] [ (N+ - X [—1,1]) x[R,) only.
The perturbed equation is

(312) F, +IF, -x.(t) grazlq)(a(t)) Odt— x.(t) Egram (at))=0 if &t=>=R.

We remark Equation (3.12) coincides with (3.10) if £t >+2R. We take a compact subset
of M digoint from (Zx[-11)xR ON_x (-e,-R]0O N, X[R,®) and consider the
perturbation of the metric of M supported on this set.

We then put

M(MA; a2, (0-.9-)(000.4))
Asolves (3.4.1), (3.4.2), on [-1]x X xR and (3.12) on E
(N-= 2x[-10) x (oo, -RIO(N, - Zx[-1Y)x[Reo)
O4M,E;a_,a,)|and isan ASD connection elesewhere. C
C
C
i

The gauge equivalence class of the restriction of 4 to
2 x{(t,1)} belongsto A for each t.

]
mml:lgl:ﬂ:ll:ll:l

which is invariant of the action of &(M,E). Let M(M,A;a_,a+;(£_,q)_), (7,0 +)) be the
quotient space. Then an analogy of Theorem 3.6 is as follows.

Theorem 3.13* Thereexistsamap 1, :{a, OR(N,,E)|resa, OA} —» &/, suchthat the
following holds for a generic metricon M.

M(MAa,a, (¢ .9_)(¢.0,)) is a smooth manifold whose dimension is

p_(a) - u+(a+)+c(M,|§) modulo 4. Here c(M,é) is an integer depending only on

(M, E).

We next discuss compactification of our moduli spaces. We discuss only the case when
moduli space is 0 or 1 dimensional. More precisely we need to consider the component
whose dimension is 0 or 1, since the dimension depends on the component. To simplify the

notation wewrite M(M,/\; a,a, ;(f_ b ) (€+,¢ +)) for the union of components of the minimal

dimension.
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Theorem 3.14* If p_(a)-p.(a,)=1 then M(NxR;Aa_ a;lp) conssts of finitely
many points for generic (9y.9.N). If  p_(a) —u+(a+)+c(M,é) =0, then
M(MAa,a,(0-.9_)(¢.9.)) consists of finitely many points for generic choice of
@A) (202 )-

Theorem 3.15* If p_(a) - p.(a,) =2then M(NxR;A;a_,a,;/,¢) hasacompactification
CM(N xR;A;a_,a,;/,¢) whose boundary isidentified with

UMNxR;Aa,bit,d) x M(NxR;A ba,;0,6).
b:p)=p(a)-1

Theorem 3.16* If p_(a) - p.(@,)+c(M,E) =1 then M(M,A;a,a {(¢_.9_).(¢..9.)) has
a compactification CM(M,/\;&,&;(E_ ) (£+,¢+)) whose boundary is identified with
the union of the following 2 kinds of spaces :

Us(M.Aa bi(e.9.).(¢..0.)) x (N xR;Ab,a,:.6)
b:pu(b)=p(a.)+1

UMNxR; A, bi,¢) x (M, A;bag;(¢_0).(¢.9.)).

bu(b)=p(a)-1

The proof is postponed again. The proof, in fact, follows the basic strategy established in
the definition of relative Donaldson invariant.

For the application in later sections, we need also to use the moduli space similar to and
more general than those discussed in this section. Namely the case when there are two or
more Lagrangian submanifolds. They are mixture of the moduli spaces discussed in this
section and the last section. We will introduce them at the stage when we need it.
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§ 4 Relative Floer homology

In this section, we use the moduli spaces discussed in 88 2,3 to define Floer homology of 3
manifold with boundary. Let usrecall what we want to construct.

Let N beacompact 3 manifold with boundary ON =%, and E bean SO(3) bundieon
N whose restriction to each connected component of 2 isnontrivial. We obtain R(Z;E)
, the moduli space of the flat SO(3) connectionson . We fix a Riemannian metric on
> and hence a complex structure of ~. Then R(Z;E) isaKahler manifold. Hence, by §
2, we obtain a topological A" category Lag(R(Z;E)). What we want to construct is a
topological A" functor HF(N,E): £agy(RZ; E)) - Ch associatedto N. For this purpose,
we fix a Riemannian metric g, on N which coincides with the product metric on
> x[-11, a neighborhood of ON =X in N. Also we choose /;: S . N,
~0(3) x--- x SO(I)
URCTE

A of 06(Lag(RE;E))).

We then have p:{aOR(N,E)|resadA} - £/ such that M(NxR;A;a.a,;40) isa
smooth manifold whose dimension is @) -mH(a,) modulo 4 for
a, D{a OR(N,E) | r%D/\} . We now put

- R sothat the conclusion of Theorem 3.11 holdsfor generic element

(4.) ((HR(N; 9. 2.00)0(1)), = ] Z,[4].

a{alR(N E) | resalA}: p(a)=k

Herewetake Z, coefficient since we do not discuss the orientation in this paper.

(41) is a Z, graded abelian group. We are going to define a boundary operator
01 ((HR(N:gw, £.0))o (M), —~ ((HF(N; G 2.6))0() ), .. Let
a, D{aDR(N,E)lreﬂaD/\} suchthat p(a,) =k -1, p(a_) =k. Then, by Theorem 3.11,

M(NxR;Na,a;l,p) is a space of dimension 0. By Theorem 3.14,
M(NxR;Na_,a;/,p) consistsof finitely many points. We put

{0a,a,) =#M (N xR;Aa,a,:0,0)

ola]=  3{oa,ajal
ap(a)=p(a)-1

Theorem 4.2
00

I
©

Proof:
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Thisfollows from Theorem 3.15 in exactly the sameway as [7].

We thus obtain a chain complex (HF(N;QN,Z,q)))O(/\). It gives a part of the structure
we need to define our topological A” functor HF(N,E): Lag(RZ; E)) - Ch.
According to Definition 2.2, other part of the structures we need to define a topol ogical

A” functor isamap

(HE(N; g, A0 DA+ A - CAg, AL T+ 0 C(A 1, A

4.3 - -
@3 - Hom{(HF(Nigy7:0))o(Ao), (HF(N; gy, 7. 0))o( )

for generic A, . To construct (4.3), we use a moduli space similar to but a bit different
fromonein§3. Let :

(4.4.2) a8 D{a OR(N,E) | resa OA,},
(4.4.2) a OA 0 A, i=1-k,
(4.4.3) a.1 O{aOR(N,E) [resa OA} .

We consider the set of multiples (4, (t;,---,t,)) suchthat :

(4.5.1) 4 isasmooth connectionof E on NxR.

(4.5.2) t, <--- <t,.

(4.5.3) 4-4, isof L’-class, where 4, isaconnectionof E on NxR whichis
equal to a, a Nx(-,—-R] andto a., a NXx[Ro).

(4.5.49) A satisfies Equation (3.4.1), (3.4.2) a ~ x[-11] xR.

(4.5.5) 4 satisfiesEquation (3.10) a NxR —(N -Zx[-1L1)xR.

(456)  [ALY)I=a.

(4.5.7) If t, <t<t,,,then[AQt)]UA,. Hereweput t; =—oo, t,,; =00,

Wedenote M(N xR; (g, Ay )@+ ac.e); £0) thesetof all (4, (k1)) satisfying
(45.1), -+, (45.7). Let M(NxR;(Ag, - A)i(8. 8 1); £,9) beits quotient by the gauge
transformation group. Thereisan R action on M(NxR;(Ag, -+, A)i(@y, - 8 )i 1.0)

induced by the translation dlong R direction. Let (N x R;(Ag, A Ji(8g, - 8i1): £.)

be the quotient space by this action.
Now an analogy of the resultsin 88 2,3 isasfollows.
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Theorem 4.6 For generic ‘, Oy, ® and A,, thefollowing holds.
(4.6.1)

M(N % R; (Ag, Ay Ji(@gr - 8,1); £,0) i @ smooth manifold of dimension

k
D H(&) =H(as) + k=1 modulo4.
(4.62)
If > H@&) (A +k-1=0, then
M(N % R;(Ag, Ay Ji(@g, a1 ); £,0) consists of finitely many points.
(4.6.3)
If > H@) ~ K. +k-1=1, then
M(NXR;(Ag, Ay Ji(@gr )i £.0) has a compactification

Cﬂl_/[(N X R;(/\O,---,/\k);(ao,---,akﬂ);ﬁ,q)) such that its boundary is a union of the following
5 kinds of spaces.

M(NxR;A;; 89,80 4,0) X
@

a3 R(N, E):resap N, 1t (3) =h(g)+ 1 AN xR; (Ao A )i(ad,8y B ) 40)
" PN X R; (Ao, Ay )i (B0r 18 B 1) )
s 1CR(N,E): resae; N W(8¢49)= M(ae) L XM(NXR; A 81,8150, )
(C) U _‘]W(NX R;(/\0,...,/\k);(a0’...’ai_1' a"aj+1...’ak+1);g’¢)
S TRD(AAYEa)
o U a(n ><R;(/\o,---,/\i,/\j,---,/\k);(ao,---,a_l,eu,,-,am---,am);é,cb)
a; NN A, XM(R(Z)1(A|’7AJ)1(a1]’a1 ...,aj);g,q))
-(]T/[ N x R;(A !"'l/\i ) aO""iahb;K!q) X

bOR( N, E): resb O/, M(N X R;(/\i 1"'a/\k);(b,ai...l,'",ak+1);f,¢)'

Here M(R(Z);(A 1, A):a.8) and ﬂT/[(R(Z);(/\i,---,/\j);(ai,j,ai~--,aj);£,q)) are the moduli
space introduced in 8§ 2.

Figure4.7.

Theorem 4.6 may look quite complicated. But it is a natural generalization of the results
in 88 2 and 3 and the proof issimilar. In fact, in Theorem 4.6, the 3 manifold N playsthe
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same role as Lagrangian submanifolds play in Theorem 2.18. See also Figure 4.7. The
proof is given in a subsequent paper.

Now we are going to use this moduli space to define (HF(N;gN,Zq)))k(/\O,---,/\k). Let

a beasin (44.1),(44.2),(4.4.3) and Z @) —H(a.,) tk-1=0. Weput

{((HF(N 9y 20N (2] O+ D3 ]) (8] [l
=#M(N % R; (Ao, A )i(80r 1 Ban )i £.0)

and then B
((HF(N: 9y, 2.0 )M ([ 0 -+ D & 1)) (@)
= 3 {{(HF(N; 64, 7.0 DAY (@] O+ O [ (o) [ o]
A1
Theorem 4.8
(HF(N;gN,Z,d)))k, k=0,1,2,--- isatopological A” functor.
Proof:

We need to verify Formulas (2.2). But it is an immediate consequence of
(4.6.3) and the fact that the order of the boundary of closed one dimensional manifold is
even. Infact, the spaces(a), ---, (€) in (4.6.3) corresponds to the terms

3((HF(N: gy, 2.6))(A) (&) O -+ Dla) (&)

(HF(N:gy, 40))(A)([a] 0 -+ D[a,])@la])
(HF(N: @y, 29 (A)([a] 0 - 0[]0 -+ O [a])([a])
(HF(N: G, 50y (A (@] 0O n([a] 0+ 0 [a]) O - O [a])([8])
((HF(N; 0 7.0 (A) (@ 1] O -+ T [a D) (HF(N: gy, £.6)), (A) (@] O -+ Oa]) (2]

respectively.

Thus we defined a relaive Floer homology as an A®  functor
HF(N,E): Lag(RZ; E)) - k.

Let us mention some of the invariants we obtain from Theorem 4.8.

First we fix a simply connected Lagrangian submanifold A . We then get a homology

group of the chain complex HF(N, gy, £,0),(A) whichwewrite HF(N,gy, £,0;A).
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Second, for two simply connected Lagrangian submanifolds A, A,, we obtain a map

0 :HFE(N, gy, 0,0, Ay) O HRE(RE); AL A,) = HE(N, O, 4,0, A ).

Here HF(R(X);A;,/\,) isthe Floer homology group of Lagrangian intersection.

Third, we have Massey type operation. Namely let xDHF(N,gN,Z,q))O(/\),
y OCF(A,A,), yUOCF(A,,Ag) such that

Ox =0y=0z=0
n,(x0y) =oda
no(yd x) =0B.

Here CF(A,A\,) isthe Chain complex giving HF(R(Z);A;,/A,) and n is the product
operator introduced in 88 2 and 4. We then put

w=n,@ 02z)tn,(x0P) tn;(xOyD 2).

Wehave ow =0 anditshomology classmodulo elementsof [x] O [+ [ Z] isindependent
of X,y,z intheir homology classes.

We can define higher Massey type products in a similar way. The results of § 5,6,7
imply that these structures are independent of various choices involved.
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§5 Wadl definedness |
E 0. SN, +:90(3)><---><SO(3)
Let N,E, 7, N, ¢, E)

metrics gy, on N and g,on £ =0N so that a neighborhood of 0N is isometric to the
direct product ¥ x[-1,1]. We then defined topological A” functors:

-~ R beasin 8 3. Weremark that we took

HF(N; Oy e 04) - Lag(R(2)) — Ch
HF(N; gy -, /-,0_): Lag(R(Z)) - Ch.

We write N, in place of (N,gy.). Sincethe A” category Lag(R(Z)) depends only on the
Kahler manifold R(Z), it isthe same for thesetwo A” functors. The main result discussed
inthissection isasfollows:

Theorem 5.1
The topological A”functor HF(N_,?_ ,0_) ishomotopic to HF(N+,Z+ 0.)

The definition that two A”functors to be homotopic is given in § 12. By Definition 11.8,
Theorem 5.1 is equivalent to say that two objects HF(N_,Z_ ,¢_),HF(N+,Z+ $,) of
Func(Lag(R(X)),Ch) are homotoy equivalent.

In this section, we give the proof of Theorem 5.1 modulo analytic detail.

In order to prove Theorem 5.1, we first define a natura transformation T(g) from

HF(N_,?_ $_) to HF(N+,Z+ ,0.). For this purpose, we take ametric g on N xR such
that

(5.2.1) g isaproduct metricon Z x[-11] xR.
(522) g=gy-U dt> on Nx (-,—R for asufficiently large R.
(523) g=gy.U dt> on N x[R,) for asufficiently large R.

Weput M=NxR, and use the moduli space M(M,A;&,m;(ﬁ_,¢_), (£,.0 +)) introduced
in 8 3. Here A isageneric simply connected Lagrangian submanifold of R(X) and
a, OR(N) such that res,(a,) OA. By perturbing the metric outside ~ x[-11] xR,
N X (-0,—-R, NX[R»), we may assume that transversality is satisfied for

(M3, (0 0-).(0,.0.).
We define

T(Q)o(N): HF(N_, 7_, _)(A) - HF(N,, /,.$.)(N\)
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by
(T(o(M))a] = ;#M(M, Nasa (0 0.)(..9.) ().
Lemma 5.3
T(9)o(/\) isachain map.
Proof: This follows from Theorem 3.16 in the same way, the proof of well

definedness of Floer homology of closed 3 manifolds[7] . (Weremark ¢(N xR,E) =0.)

Thus we constructed T(g),(A). We are going to construct  T(g),(Ag,---,/\¢). Let
a ON 4 n /N, ag OR(NL), &, OR(N,) suchthat res(a,) DA, res(a, ) OA,. (Here
and hereafter wewrite R(N_) inplaceof R(N_,E; Z_,q>_).) Imitating the construction of §
4, we define the moduli space. M(M,(Ag, A )G+ 8 1)i(£-0-).(€,.0,)) asfollows.
(Here and hereafter wewrite M inplaceof N xR in casewhen the metric we consider is
not direct product metric but the metric g.) We consider the set of multiples (4, (t,---,t,))

such that :

(54.1) A isasmooth connectionof E on M.

(542 t <--- <t.

(5.4.3 4-24, isof L*-class, where 4, isaconnectionof E on M whichisequal
to a, at Nx(-0,-R] andto a.,; a NX[R»).

(5.4.9) A satisfiesthe equation (3.4.1), (3.4.2) at 2 x[-1]] xR.

(5.4.5) A satisfiesthe equation (3.12) at N x (-0, —R] [0 N X[R ).

(546) 4 is ASDat M—((N- Zx[-11]) x (-o0,-R1 0 (N - = x[-11]) X [R,0)).
G547 [ALY]= 4.

(5.4.8) If t <t<t,, then[ALt)] UA,. Hereweput t, =-oo, t,,, =00.

We denote (M, (Ao, A)i(8 - 8e)i(£.0-) (4,,0.)) the set of all (4, (k)

saisfying (5.4.1), -, (5.4.8). Let M(M,(Ag, - Ai(@r 8w .0-).(¢...)) be its

guotient by the gauge transformation group. (We remark that we can not and do not divide
by R action.)

Lemma 5.5
For generic g, thefollowing holds.
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(5.5.1)
MM, (Ao A8, A )2 0-).(¢,.0,)) is a smooth manifold of

dimension ¥ u(&) —H(a.,) + k.
(5.5.2)

If > @) ~ k(g +k=0, then
M(M, (Ao A+ B )i 0-) (.9.)) consists of finitely many points,
(5.5.3)

If > H@) ~H(aa) +k =1, then
MM, (Ao A2 B )i 0-). (0.0.)) has a  compactification

CM(M,(/\O,---,/\k ): (80> > )i (¢_,0_), (£+,¢+)) such that its boundary is a union of the
following 6 kinds of spaces.

B (M. (Aow-+. Ak (Bor- Ber K10 ) (£ 8.)

ay 1 OR(N, E): res,b A, XM (N, XRGA 8 4, Byag)
M) =H(3 1) —1

M(N- xR Ag;89,80,0-,9_)

agOR(N, E): res_ag0A,, M(M ’(AO""’Ak); (aé""’akﬂ);(f—’q)—)' (£+’¢+))
H(ap)=H(ap)+1

U MM, (Ao A B8+, Bean)i(£- 0 ) (£0004))

FONn A X-(]V[( R(>); Ni_, I\ &, 31)
H(a)=p(a) -1

M(M(/\o"“’/\i’/\j1"'1/\k);(ao""aai-11a,j ,ajﬂ...,%l);(g_ ,¢_),(€+,¢+))
a0 N A xﬂT/[(R(Z);(/\i,---,/\j);aij,a,---,aj)

(M (Ao} - B0 (1 )
bCR(N,E): res,b0A, M(N,5(Ba 1, Bean)i (A A (£4,0.)

M(N. (2 3 )£ b))
bCR(N,E): resb A, 97[(|V|, (/\o,"',/\i );(b, a+1""’ak+1);(£— ,¢_), (€+’¢+)).

Proof of Lemma 5.5 is again a straight forward analogue of the proof of Theorem 4.6 and is
given in subsequent papers.

Using ¢(M, (Ao, A (8, 8 )i(2-0-).(¢1.6.)) we define

T(@kNgs s A) 1C(A, Ag) O -+ 0 C(A 1, )
- HOm(HF(N_)(Ao), HF(N)(AL))
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asfollows.

T@(Nor - A)([a] O O[a ])[&])
=3 #M(M, (Ao A (B0 B (£ 0 -) (€410 [ad]
Byl

The consequence of Lemma 5.5 is the following. (We write T(g), in place of
T(g)k(/\0|"',/\k) InthElemma.)

Lemmab5.6

3((T(@ ([a] O+ Dl ]))[20)))
HT(@«([al 0 O[a]))(@la])
+3 T@iea((@al 0 Ol HF(N-7_,0.) (a0 - Ol a])(ao)
+3 (T(@ (@] 0~ On(al 0O [a])0 -0 [a)(a)
+3 HF(N,, 7.0, ) (1. 0+ O[3 )(T(g) ([0 - O[3 1)([%]))
+> (T (a] 0 Dala]0-- Olal) (&)

=0

Lemma 5.6 means that pre natural transformations T(g) is a natural transformation

from HF(N_,7_,¢_) to HE(N,, 7, 0, ). (Definition 10.3).
Lemma 5.6 isimmediate from Lemma5.5. In fact the termsin the equality correspond to

the 6 kinds of spaces appearedin (5.5.3).
We next consider two metrics g, g' on N xR =M, which satisfy Condition (5.2).

Lemmab5.7 There exists a pre natural transformation
S:HF(N_, _,¢_) - HF(N,,7,,0,) suchthat dS=T(g)- T(g").

Proof: Let g,, ulJ0,1] beafamily of metricson NxR =M suchthat g, satisfies
Condition (5.2) and that g, =9, g, =g . Weput

Mpara( M. (Mor A )i (01w, B2 9-) (1002))
= UMM @), (Ao A (Bor s )i (02 0 ) (4404 ))°

uqo0,q

and define :
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(SMal =Y #M .M Aa,a) [a,]

a,
SNov- A (&l O-- Ofa]) (a])
:Mpara(M’(/\01""Ak);(ao""’akﬂ); (g—a¢—)’(£+1¢+)) [ak+1]

Then using a lemma* similar to Lemma 5.5, (which we prove in subsequent papers), we
obtain Lemma5.7.

Now the rest of the proof of Theorem 5.1 is quite similar to the proof of the well
definedness of Floer homology of closed 3 manifold.

Let h bethemetricon M =N xR obtained by pulling back g by the diffeomorphism
M- M, (Xt (x-t1). It induces a natural transformation

T(h): HF(N,, 7, ,0,) - HF(N_,7_,¢_).
We next take a sufficiently large R and define g#gh by

g(x,t+2R t<-R
O
(g#rN)(x,t) = gy, O dt? -R<t< R.
xt-2R) R<t

Lemma5.8 For sufficiently large R, T(g#gh) =n(T(h),T(g)). Here the right
hand side is the composition of pre natural transformation, defined in§ 11.

Proof: We can use Taubes' type gluing result to show the following equality*

M((M =) (Aor - AW (B0 Ben)i (0= 9 -) (€+’¢+))
:LiJM((M,g),(/\o,-~-,Ai);(ao,---,eu);(f-,¢-),(f+,¢+)) ,

XM((M 1h)1(/\| [ 1/\k)i(a 1T ak+l);(£+ 1¢ +)'(£— ’¢—))
for sufficiently large R. Hence the lemma follows from definition.
We can prove that T(gy . Ddtz) is the identity functor, (defined in 8 11), by using free
R action on moduli spaces appeared in the definition of T(gy U dtz) . Hence, by Lemmata

5.6 and 5.8, n(T(h),T(g)) is homotopic to identity. In a similar way n(T(g),T(h)) is

homotopic to identity. The proof of Theorem 5.1 (modulo analytic detail) is now complete.
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86 Wadl definedness||

In this section, we discuss how the A™ category Lag(X,w,J) changes when we change the
compatible almost complex structure J. It might be possible to study more general problem
namely to include the deformation of symplectic structure. It seems interesting to study the
functor { symplectic manifolds} — { A” categories}, X — Lag(X) anditsrelation to the
deformation of symplectic structure more systematically. (Since the language of A” category
Is suited to study the deformations.) However to discussit is out of the scope of this paper.
We will discussit in[12]. We study here only the change of almost complex structure. We
consider symplectic manifold (X,w) such that cl(X) = Nw], N=2. Let J;, J, betwo
almost complex structures compatible with w. Our mainresultis:

Theorem 6.1 Lag(X,w,J,) is weakly homotopy equivalent to Lag(X,w,J,). The
weak homotopy equivalence is canonical up to homotopy.

The definition of homotoy equivalence of A” category isin § 11, and the definition of

weak homotopy equivalence of topological A” category isin § 13.
To prove Theorem 6.1, we use parametrized versions of the moduli spaces introduced in

§3. Let | be amanifold with boundary (we use the case | =[0,1] and | =[0,1]* mainly
later). Let J,, ull beasmooth family of almost complex structures of X compatible

with symplectic structure w.
Let A; be Lagrangian submanifolds of (X,w), p,qUA;n A,, and M(X;A,N\,;p Q)

be the moduli space of pseudo holomorphic disks introduced in § 2. To specify the almost
complex structure we use, we write M ((X,J,);\,\,;p,0). Let 9\_/[((X,Ju);/\1,/\2; [oXs)]
be its quotient by the action of R. We put

M, (X Ag, A p,0) = UMK, IW)A LA p,0).

ull

For p, OA_; n /Ay, po OA NnA,, let 97[((X,Ju);(/\o,---/\k);(po,---,pk)) beasin§2 and
we put

M, (6 PNy A s (Bor = B = UMK 301 A0 A (Rov++, P)) -

udl

The following lemmata are straight forward analogue of Theorems 2.12 , 2,18 etc. Ther
proofs will be in subsequent papers.
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Lemma 6.2* For each generic pair A, A\, DOE(Laﬂ(X,oo)) , and generic family J,,
the space 9\_/[, (XA, A\,;p,9) isasmooth manifold and its dimension is given by :

dimat(X; Ay, A ; p,G) = H(P) - (@) +dim | mod2N.

Lemma 6.3* If u(p)— u(g) +diml =1, then 9\_/[| (X;A1,\,;p,q) consists of finitely
many points.
Lemma 6.4* If u(p)— u(g) +diml =2, then 9\_/[| (X;A\1,\,; p,q) canbecompactified

to CM, (X;A,\,;p,q) suchthat itisacompact one dimensional manifold with boundary
and its boundary is a union of

U (X 30 AN pr) xM(X, )M, At ,0)
r:u(p)>uD(|r)> Wa)
u

gT’[al (XALNA,PO) -

Lemma 6.5* For generic N, and generic family N the space
MI(X;(/\O,-~/\k);(g),~--, g<+1)) Is a smooth manifold and its dimension is given by :

k
dimat, (X (Ao, A (Por+ B)) = Y 1 (R) = H(po) + k=2+diml  mod2N.
=1

k
L emma 6.6* If ZLL(pi)—u(pO)+k— 2+dim| =0, then
Bi

M, (X;(/\O,m/\k);( Ros g<)) consists of finitely many points.

k
Lemma 6.7* If zu(pi)—u(po)+k—2+diml =1, then
=

M, (X;(/\O,--~/\k);( Po»e s |q<)) can be compactified to a compact one dimensional manifold

CM, (X;(/\0,~-~/\k);(p0,-~-, pk)) whose boundary is a union of the following 3 kinds of
spaces:

@ U U MOARO0 AR PR R)

ull gOA N A xM((X, )i N Nl R)
o (X 1) Por A A Rovees B B P )

PO A XM((X1 Ju);(/\i1""/\j);(n,j B pj))
(© My (X (Nor = A)iPor+ i) -
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We are going to use these lemmata to show Theorem 6.1. Let J;, J, be two amost

complex structures compatible with w. We take a path of almost complex structures J,,

ulL2] which are compatible with w. Our first task is to construct a topological A”
functor F(J,): Lag(X,w,) - Lag(Xw,J,).

Let = be afinite set of smply connected Lagrangian submanifolds of (X,w). Let
l, U[L,2] bethe finite subset with the following properties.

(6.8.1) If AN, 0=, pgOA; N A,, pzq, P - K0 =0, and if
9\_/[((X,Ju);/\1,/\2; p,q) isnonempty then u Ol .

(6.82) |If Ao, N\ O, Z u(p) —u(p)+k-1=0 and if
M((X,q,);(AO,---/\k);(p),---,pK)) is nonempty, then u Ol .

(6.8.3) For each u[l,, only one of the moduli spacesin (6.8.1), (6.8.2) is non empty.
The order of that moduli spaceis one.

Finiteness of such asubset 1, isaconsequence of Lemmata 6.3 and 6.6. By perturbing
thefamily J,, we can achieve (6.8.3). Let u, <u, <---<uy_; <uy beall the elements of

l,. Wechoose u; such that
1=Up <l <Up<Up <-o-<Uy-p <Uy-g <Uyog < Uy <Uy =2.

We consider the full subcategory C'(Z) of Lag((X,w,J,)) suchthat 06(C'(Z))==.

We are going to construct an A”functor F'(Z):¢'(3) - ¢'™(3).
These A” functors are identity map on the set of objects. Namely we put Foi(/\) =A.

We next define F{(2)(Ay,A,): Lag((X,@, J))(ALA,) — Lag((Xw, 3y Ay A,) by :

FEN AP = Y #My (6 AL A2 pa) [

We also define Fki O Nos N 1 Lag((X,0, 3y ) (Ng, \p)
O 0 Lag(X @, I ) A A) - — Lagl(X,00, 3y )(Ag. ) by :

ROWo - AJRI0 - 0IR]) = Y #My 1 (% Norr A (o, PN POl -
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We remark that, by (6.8.3), one of the following holds.

(6.9.2)

#M[u;,u:ﬂ](x;(/\o,-~-/\k);(p0,---, pk)) is nonzero for exactly one choice of
Nov N Do+, Py (Here we consider only M, o 1 (Xi(A g, A (Po. -+, ) which is of
zero dimensional.) #QT’[[Ui,u:ﬂ] (X;A,N\5; p,q) areal nonempty for p(a) = p(p), p#q.

(6.9.2)
Fki(E)(/\o,n-,/\k) aredl zerofor k=2. Thereexist unique A, A5, p,q,
p#d, Ko = u(p), suchthat #a, . ;(X;A, Az p,0) isnonzero.

We then have the following :

Lemma 6.10 F':c' - ¢c™ isan A functor

Proof: We use the symbol 9, for the boundary operatorsof Lag(X,J,).

Suppose  (6.9.1)  holds. Then by Lemma 64, we find that
Fli(E)(/\l,/\z) P Lag((X,, 3, D) (AAL) - Lag(Xw, Iy, ))(A,Ay) is identity and also that
#M, (XA, N5 p,0) for p(p)- u(g) =1 is dependent of uu,y,,]. Namely 9, is
independent of u O[uf,u,,]. Wewriteitas d. Then Lemma 6.7 implies that

ARG Nor - AN(PI OO [pd)
+3 tRENo, - AJ (RO 00 p]10--O[p])
(61)  +Y R G Nor - AIPd O+ 0N ([P O+ Opy]) O - O pyd).

i+l

(e O Opd) -ni(pd O -~ O [p)
=0

Here we write r]ik for the k-th composition in  Lag(X,J,). We remark that
N-ma (P10 -O[p,)) is equd to  n.(p,10--0O[p,]), in the case the term
A e m @A AP O 0N (P O+ O[p,]) O+ O[py])  is nonzero, because
of (6.9.1). Hence we simply wrote n,_.,([p,]0---0[p,]) in Formula (6.11). Formula
(6.11) meansthat F'(Z):¢' - ¢'™ isan A” functor.

The proof in the case when (6.9.2) holdsis similar.

Remark 6.12 In Lemma 6.10, we consider only the case when A; #A; for i#].
So it is a bit imprecise to say that Fi(E) isan A” functor. However, to define a

topological A” functor  F(J,): Lag(X,w, ) - Lag(Xw,J,), it isenough to consider this
case only.
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We now define an A”functor F(2):c°E) - ¢"E) by FE)=F (@)oo F°(E).
(We remark that the composition of A™ functors are associative by Lemma 11.12.)

By definition, it is easy to seethat, for =0 =', we have a commutative diagram of A”
functors

c°() o~ e
! !
c°(=) OB - V&)

Diagram 6.12

here the vertical arrows are natural inclusions. We remark that Diagram 6.12 not only
commutes up to homotopy but commutes exactly. It follows immediately that we obtain a
topological A”functor F(J,): Lag(X,w, ) - Lag(Xw,J,).

We construct the converse. We consider J;_,, which is ahomotopy from J, to J,.

We have:
Lemma6.13 F(X_,)oF(J) and F(J,)o F(J;_,) areidentity functors.
Remark 6.14 Lemma 6.13 asserts more that we need. Namely we show that

F(J_y)oF() and F(J,)o F(J;_,) areidentity functorsin place of showing them to be
homotopic to identity. One reason we can prove it is that the morphisms of Lag(X,w, J,)

and Lag(X,w,J,) are isomorphic as abelian group. The other reason is that the chain map
induced by F(J,) to the set of morphismsis filtered. (Compare [3] where asimilar factsin
the situation of gauge theory Floer homology is proved and applied. As a consequence the
chain complex of gauge theory Floer homology is well defined up to isomorphism (not only
up to chain homotopy), in the case when the set of flat connections are discrete and when
HY(M?®ad a) = 0 for all flat connections.) (We do no uses this fact in the proof.) However
the topological A” functor F(J,): Lag(X,w,J) - Lag(Xw,J,) itself does depend on the
choice of J, and only its homotopy class is well defined, as we will see below. It seems
that this additional fact that F(J,) isanisomorphism isnot so useful. However thanksto it,
we do not have to worry on the potential trouble caused by the fact that Lag(X,w,J) hasno
identity but has only an approximate identity.

Remark 6.15 By the same reason as Lemma 6.12, Lemma 6.13 is in a bit imprecisely
stated in the sense that F(J,_,)°F(J,) isonly atopologica A” functor. Especialy

2-40



version 10/3/99 Floer homology for 3 manifolds with boudary 1 Kenji FUKAYA

(F(3_ ) o F(I)) Ao A,) iswell defined only when A,,---, A, are mutually distinct.
The precise statement of Lemma6.13isthat F(J;_,)oF(J,) and F(J,)o F(J;_,) coincides
with the identity functor where it is defined. This statement however is enough to show that
F(J,) © F(Jsoy) : Func(Lag(X,d,),Ch) — Func(Lag(X,d;),Ch) is the identity functor. (We
remark that F(qj)* is not only an topological A" functor but also an A” functor.) This
fact, by definition, is enough to show that Lag(X,J;) is weakly homotopy equivalent to
Lag(X,J,). Our A" Yoneda's lemma (Proposition 13.7) implies that weak homotopy
equivalence implies that the operations (products and (higher) Massey products) we obtain
from A" structures are preserved by weak homotopy equivalence.

Lemma 6.13, in fact, immediately follows from definition of Fi(E) and Definition 12.8,

once we remark that it sufficesto work only on the small domain [u/,u;;]. Infact, F(J,)
and F(J;_,) restricted on this small domain coincides up to sign, (which we do not

consider in this paper).

To complete the proof of Theorem 6.1, we are going to show that the A” functor F(J,)

is independent of the choice of J, up to homotopy. (The definition of two A™ functors

homotopic to each other is given in 8 12.) We next prove the following Lemma 6.16. Let

Jy,1 and J,, be two paths of amost complex structures which are compatible with  w

andsuchthat J;;=J;, J; = J,.

We need to state Lemma a bit carefully since our A™ category Lag(X,w,J) do not have
an identity. The way to handle this case is discussed in § 13. Fortunately our functor are

identity on objects. Using this fact we can simplify the discussion.

Lemma6.16 There exists a natural trnasformations T, : F(J;) - F(Js,),
T, F(X,) - F(Jg1) such that the composition T, o T, and.Tyo T, coincides identity
transformation where it is defined.

We remark that 1F(Jsl): F(%;) - F(Js1) is not everlywhere defined. Lemma 6.16

means that it coincidesto T, o T,; when both are well defined. Thisis enouth for example

to show the composition

Rep(Lag(X,w,Jl))o - Lag(X,w,J) 0 Fi¥ Lag(X,w,J,) - Rep(Lag(X,w, J,))°
Is homotopic to
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Rep(Lag (X, 3)° - Lag(X,0,3) D & Lag(X,0,,) - Rep(Lag(X,w,3,))°.

Proof: We first remark that the set of all almost complex structures compatible to a
given symplectic structure w is contractible. (Gromov [25].) Hence we have a family
Juv (WV)O[L,2] x[L,2] extending J,;, J,, andsuchthat J,, =3, J,, =J,

Let = beafiniteset of objectsof (X,w). Let Lag(X,w,J)(=) beafull subcategory of
Lag(X,w,J) the set of whose objectsis =. Let C“Y(Z) be the full subcategory of
Lag(X,w,J,,) such that its objects are elements of =. It suffices to show that the

restriction of F(J,;) to C“Y(Z) is homotopic to the restriction of F(J,,) to
c*? =@ =c™ (=) by the homotopy compatible with the inclusionC“") (=) - c¥(=).
(We need to be careful to say that two functors are homotopic on C*?(Z) since C*V(3)
does not have the identity. We mean that they are homotopic in a similar sense as Lemma
6.16.)

Wefirst find finite subsets 1,15, 1;,1; of [L2] with thefollowing Properties 6.19.

Let L, betheset of all (uv) such that the moduli space of virtual dimension -2 of
the pseudo holomorphic disksin (X, J,,) isnonempty. Precisely (u V)L, if one of the

following holds :

(6.17.1) There exist A A, 0=, p,qUA;nA,, up)- 1@ =-1, such that
M((X,3,.); A, Ay p.G) is nonempty
(6.17.2) There exist Ay, A O=, > H(p) —K(p)+k=0, such that

M((X, 40NN (Por++ ) is nonempty.

Let L, bethesetof al (uv) such that the moduli space of virtual dimension -1 of the
pseudo holomorphic disksin (X, J,,) isnonempty. Precisely (uv)0OL, if one of the

following holds :

(6.18.1) There exist A A, 0=, p,q0OA; nA,, p£q, K(p)— K@ =0, such that
M((X,3y,); A Ay p.) i nonempty.
(6.18.2) There exist Aoy, A\ 0=, > W(P) —K(p)+k=0 such that
M((X, d, (A g+ A)i (R Py)) is nonempty.

Property 6.19
(6.19.1) LyOlyxI,.
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(6.19.2) Foreach (uv)OL, at mostonly one of the moduli spacesin (6.17.1) or (6.17.2)
isnonempty. And the order of that moduli spaceis one.

(6.19.3) Foreach (u V)L, at mostonly one of the moduli spacesin (6.18.1) or (6.18.2)
isnonempty. And the order of that moduli spaceisone.

(6.19.4) Weput 1y ={u, --,uy, lg ={up,---,u\} such that

1=Up <Up <Up <y <---<Uyp <Uy-g <Uyog < Uy <Uy =2,
Weput 1y ={u,---,uy, lIg ={up,---,uy} such that
1=Up <Up <U<Uy <-+- <Uy_p <Up_g <Uyg < Uy <Uy =2,
(6.19.5) We put
Do <L O U IV, | =T (v DUl X[ Vgl
(6.19.6) Wethen have,
#Ln [ )L N U] X[V, V4] <2

#lan | )L 0 [UYL ] X[V, V] <2

Figure 6.20

The existence of such 1,1, Iy,1; after perturbing J,, isaconsequence of Lemmata
6.3 and 6.6.

We put c"(Z) =c"1(3)". Weremark ¢")(Z) =Rep(c"(2),ch) and C"I(E) isa
full subcategory of Lag((X,u),\Liy}). Using families  J,, @ (uVv) {u} x[vj,vi4] ina
similar way, we obtain an  A”functor G : (=) - ¢"*(3). We aso use the family
Joo 0 (UV) O{u,u, 3 x{v} weobtainan A”functor F'':c"(3) - ¢"™/(2). Weremark

that

F(J,) = F"%0 0 F,
F(d,2) = F"™ oo P,
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Hence to prove Lemma 6.16, it suffices to show that (Fi’j * oGi'j)* is homotopic to
(¢*e FH).
Wedefine T /(AL A,): " I(ALA,) - CHFHALA,) by
Tli'j(E)(/\l’/\z)([ pl) = Z#ﬂ7[q’,u{+ﬂx[vj,v]+l](X;/\1’/\2; p.a) [d]
and T (Ag, - AY 1 CT (NG A O OC T (A1) — €T (AGA,) by
T Mo AR T O IP) = Y #Migoy 10 0.0 5 (Ao A R PN Pol.
Using Lemmata 6.4 and 6.7 we can prove that T gives a natural transformation from
G oF oG o F' asfollows,
In case Figure 6.20 (d) or (e), we find that
F* oG =G o FY =identity
T} =identity
=0 k=2.
In case Figure 6.20 (c) , we find that
F* oG =G o FY # identity,
T} =identity
T1=0 k=22.
In case Figure 6.20 (@), we find that

F'* e G 2G" o FY = identity

and T"! givesanatural transformation.
In case Figure 7.20 (b), we find that

F'* o G =identity# G/ o F'

and T" gives anatural transformation.

We aso find that (up to sign) the same map is a natural transformation from G

to G o F"l | and the composition induces an identity functors from (Fi’j * oGi'j) and
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(Gi+ljo Fi'j)* toitself. (To show that the composition induces identity functors, we remark

that we only need to consider Ag,---,A, which are mutualy distinct.) The proof of

Lemma 6.16 is now complete modulo analytic detail.
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8§87 Wdl definedness| ||

Now we combine the arguments of 88 5 and 6 to prove the independence of the relative Floer
homology of the choices of the metrics and perturbation in general

Let N,E, ¢,,:S - N, ¢i:50(3)x...xg)(3)
| O3

took metricg on N and g_ on Z =0N so that a neighborhood of ON isisometric to
the direct product > x[-1,1] with metric g5, U ds’. The metrics gs . On X determines
acomplex structures J, on R(Z). Weput J,=J_, J, =J,. Wethen have A” functors

-~ R beasin 8§ 3. We remark that we

HE(N; Oyl 0.) : Lag(R(2), ) — Ch,
HF(N; - (- 0-) : Lag(R(Z),3) — Ch.

Let gs, be aone parameter family of metricson % joining gs - and gs.,. The

metric g5, induces an almost complex structure J, on R(Z).

By Theorem 6.1 it induces an A” functor F(J3): Lag(R(Z),J) - Lag(RZ),J,) Our

result isthen :

Theorem 7.1 The  composition HF(N;gNi,Z+ PL)oF(3): Lag(R(Z),J,) -
Lag(R(Z),J,) — Ch ishomotopicto HF(N; gy _,/_,0_).

Remark 7.2 We remark that we use the variable t for the parameter of the family of
amost complex structures J;. This is because we will identity this parameter to the
coordinate of R, the second factor of NxR. This coordinate will turn out to be
identified to one of the coordinate of the doman of the holomorphic disk

¢ :[-L] xR - RZX). In 8 6, the parameter u is independent of the coordinate of the
domain of holomorphic disk.

To explain the origin of this difference we recall that, to the well definedness of Floer
homology in symplectic geometry, there are two kinds of proofs.

One [8] uses the parametrized version of moduli space of pseudo holomorphic curves and
the parameter is independent of the coordinate of the domain. The other (for example[9] )

identifiesthe parameter of thefamily of thealmost complex structures (or another perturbation)
to one of the coordinates of the domain.

In our situation, where we need also to show the well definedness of higher composition

operator, the author does not know how to work out the second method, (since it breaks the
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symmetry of the action of #o/(D?,J) = 9 (2,R) we need).

On the other hand, to study the well definedness in gauge theory side, it seems much
more natural to identify the parameter to one of the coordinate of 4 manifold than just using
one parameter family of metrics etc. on 4 manifold. (If we do it in the second way, we need

more difficult analysis including center manifold theory, though it is possible to do so.)

The reason is that since the order of the intersection r%(F{N,Z,d))) n A\ depends on the

perturbation Z,q) . (Inthesituation of § 6, theintersection A n A" is(of course) independent
of the aimost complex structure.)

So we used both of them. (The first onein 8§ 6 and the second onein 8 5.) This mixture
causes a small technical trouble but it can be handled in the way we are going to explain

during the proof of Theorem 7.1.

The proof of Theorem 7.1 is a combination of ones of Theorems 5.1 and 6.1.
We first remark that we can change the parameter of the holonomy perturbation

ARERSVPIRECLELEC

- R without changing the metric on the surface,

using Theorem 5.1. Hence we may assume that ¢, =/_ and ¢,=¢_. So, for the rest of
the proof, we omit these parameters.
We next divide the interval [1,2] in a similar way to 8§ 6 as follows. We consider the

moduli space

M, (RZ); AL A p.0) = JM(R(Z), 1) A1 A5 p,0) -

tal

M, (RE): (Novr A (R ) =UM((RE), )i (Ao, Ao, )
ta
for 10[L2]. Let = be afinite set of simply connected Lagrangian submanifolds of
R(Z). ThenLemmata 6.3 and 6.6 again imply that we have afinite subset 1, [J[1,2] with
the following properties.

(731  If ALA D2, W) - @) =0, pzq andif M((RE),I)iALAL;p.G) is
nonempty then t Ul .

(7.3.2) If Noy- N O=, H(p;) — U(py) +k—-1=0 and if
M((RE), 3); Ao A )i(Po,++, P)) i nonempty, then t Ol .

(7.3.3) For each s[Il, only one of the moduli spacesin (7.3.1), (7.3.2) is nonempty.
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Such a finite set 1, exists for generic =. Let t,<t,<---<ty_; <ty beadl the

elementsof |,. Wechoose t/ such that
1=ty <E << <oty <ty <ty <ty <ty =2.

We consider the full subcategory C€'(=) of Lag((X,.w,J,)) suchthat 06(C'(Z))==.

In § 6 an A” functor F'(3):C' (3 - ™=  was constructed and
F(J): Lag(R(Z),J) - Lag(RZ),J,) isacomposition of them on CO(E).

We remark that for each t; <t <t,,, thefull subcategory C(z,t) of Lay((X,w,J)) is
canonically isomorphicto ¢'(Z).

In fact, the sets of objects are both = and the set of morphisms as an abelian group are

clearly isomorphic to each other. Moreover (7.2.1) , (7.2.2) and Lemmata 6.4 and 6.7,

imply that the boundary operatorsand (higher) composition operators (which givethe structure
of A” category) exactly coincide.

For each i wechoose t° suchthat t <t <t' andthat t -t~ issmaller than a
number we specify later. By the above remark c(Zt”) and C(Zt,,) are canonicaly

isomorphic to each other and to Ci(E). Hence we identify them.

Let gy, beafamily of metricson N suchthat therestrictionof gy, to Zx[-11]] is

isometricto gy, O ds’. Wehavean A” functor HF(N; gy, ) :C(E1) - Ch.
We first show :

Lemma 7.4 HF(N;g,-): C'(Z) - ¢4 is homotopic to HF(N;g,,- ): (@ - ch.
Hereweidentify c(Et)=c(Et.)=C'(3).)

The proof of Lemma 7.3 is a straight forward generalization of the proof of Theorem 5.1.
We first extend family gy, tO[t",t,] So that it is constant outside [t,t,]. We then

get ametricon NxR. We modify this metric so that it is degenerate at = x[0,1]x R.
Then using this degenerate metric we construct the “moduli space of ASD connections’ in
the same way as 8 5. Then the required homotopy is constructed by the same formula as
8 5. (7.3.1) and (7.3.2) can be used to show that boundary of this “moduli space of ASD
connections”  behaves in the same way as the case when the metric at the boundary is
constant.
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To complete the proof, we need to compare the A” functors HF(N; O ) Ci'l(E) - Ch

and HF(N;g,,+): C'(Z) - Ch. Infact we prove

Proposition 7.5  If t -t~ is sufficiently small then HF(N;gNt__):Ci_l(a - Ch is
equal to the composition HF(N;g, .)oF ™":C' () - ch.

To prove Proposition 7.5, we again construct the moduli space of ASD connections as

follows. For each fixed f OJt,t'] we consider the direct product metric Oy U dt?> on

NxR. (Here f isafixed number and isindependent of t, the coordinate of R. Thisis

confusing but isinevitable. Werecall that t isidentified tothe R coordinate in Lemma
7.4.)

We modify it so that it is degenerate a& < x[0,]]x R. Then, using this degenerate
metric, we construct the “moduli space of ASD-connections’ in the sameway as8 5 and

obtain : M((NXR,gN’f);/\;eL,aL) and M((N><R,gle);(/\0,---,/\k);(a0,---,ak+1)) asin

§3 and &4.

We divide them by R action. (We remark that we are using direct product metric hence

the moduli spaces are in variant of R action.) We obtain 9\_/[((N X R,gN’f);/\;a_,a*),

97[((N X R’QN,E);(/\O""’/\k)i(ao,"',akﬂ)).

We then put

Moa(NXRiN a8 ) = QT/[((N x R,gN,f);/\; &,a+)

0t ]

M para (N R )i (Mo A (Borr )

) ‘tEH_ng[((N XR’ng);(AO""’A"); (ao,---,ak+1))

We then have the following :

Lemma 7.6* For generic family of metrics gy, thespace M ,.(N*R;A;a,a,)
isa manifold of dimensionis p(a_)—p(a,) modulo 4.

For generic family of metrics On it the space
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Mpara((N xR ,gN,t);(/\O,---,/\k);(ao,---,ak+l)) is a manifold of dimension

> H(@) — (8 +k modulo 4.

This lemma is a straight forward analogue of Theorems 3.13 and 4.6. We again use
transversality to show the following :

Lemma7.7* We can choose the family gy, generic so that the following holds.

If wa)-u(a,)=0and a, za_, then ﬂ((NxR,gN,;);/\;aL,m) is empty.

It Y 1(@) ~1(aer) +k then F{(N xR gy J(Ao-- A (oo, aca)) isempty.

We remark that the virtual dimension of the moduli space in Lemma 7.5 is =1 since we
fixt =t,. Therefore Lemma7.7 isaconsequence of the usua dimension counting argument.

Now we use Lemma 7.7 and obtain :

Lemma?7.8 We can choose t -t sufficiently small so that the following holds. If
W@ )-p@)=0and a, za then M, (NxR;A;aa,) isempty.

Iy @) ~1(@e) +k=0 then 31((NxR,gy, (Mg A (80, acs)) isempty.

We next consider the boundary of the moduli spacesin Lemma 7.6 in the case when the
dimensionis 1. Most of the candidate of the boundary components do not appear by virtue
of Lemma 7.8. It will turn out that we find Proposition 7.5. To be precise we have the

following :

Lemma 7.9* If M@ )-H(a,)=0 then one dimensional manifold
M ra(NXR;A;a,a,) has a compactification CAM ,,(NxR;A;a,a,) such that its
boundary is identified with the union of

€) U U(QV[((N x R,gN’f);A;&,b)) ><(9\7[((N xR, gN|{);/\;b,a+))

f01t7,§7 b

(0 N xR g, a8,
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oy A- C
(© M N><R,gNﬁ+ ,/\,a_,a+[.

We remark that (b) and (c) gives the boundary operators of the chain complexes
HF(N;g,,-)o(A), HF(N;g,.+)o(/\) respectively. On the other hand Lemma 7.8 implies

that (a) isinfact empty. Hence HF(N;g, ,-)o(A) = HF(N; g, ﬁ+)0(/\).

We next have :
Lemma 7.10* If Zu(ai)—u(q(+1)+k:0 then one dimensional manifold
Mpara((N xR ,gN’t);(/\O,---, /\k);(ao,---,ak+1)) has a compactification

CMpa,a((N xR, Gx ) (Por - A ) @00, ak+1)) whose boundary is identified with the union
of thefollowing 7 kinds of spaces :

F((N*R,g ¢ Aoi(20. ) x

@ U U

O IORN) (N R, g J (Ao A (8,207 )
M g - e (ay---,a,,a,,
o U U (N R.gy ) _/\k) (B0 8 8an) | %
R (RN {CRENNN
o (N xR g @02 D) Aoy A )) x
C
(I 1R 91_/[((N X R,gN’f); (b a1, Aca)i (A A ))

Ry TN Y
£00, 6 Jag DA, 10 A, XM ((R(Z), )N, 1, Ny, ay)
h(@)=n(a) 1

M((N X R’gN,f);(/\01""/\Z’/\m""Ak);(ao""1a,€—1’a/i,m’am+1""ak+1))

© U U

FR 1A 0 A (R, 9N A )
) 9‘7&'\' xR’gN,u‘);(/\o""’/\k)i(ao,-~-,ak+1)E
(9) ﬂaNxR’gN,f');(AO""1/\k);(a01"'aak+1)E.

The proof is again a straight forward analogue of the proof of Theorem 4.6. By Lemma

2-51



version 10/3/99 Floer homology for 3 manifolds with boudary 1 Kenji FUKAYA
7.7, (8),(b),(c) are empty. The order of the spaces (f) and (g) give HF(N; g, - )« (Ag,-++, Ay)
and HE(N; g o (Mo s A),  respectively.  On the other hand, the space

M((R(Z), J:),A\,_\,, &,a,) isnonempty only for { =t; and the order of thisset at { =t,
gives FOi of our A”  functor Fi(E):Ci > - C”l(E). Finaly
ﬂT/[((R(Z),Jt),/\K~-,/\m,aﬁym,a€,---,an) gives F,L_W Thus Lemma 7.10 implies Proposition
75

The proof of Theorem 7.1 is now complete. (Modulo analytic detail which we will
present in subsequent papers.)
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§8 Gluing homomorphism

Let (Z,E) asin&4. Let (N_,E), (N,,E) besuchthat (N, E)=(%E). Wetake
metrics on them as in 8§ 4. To save the notation, we assume that transversality is satisfied
without introducing perturbation based on holonomy, which we discussed in § 3. (The
modification we need to include perturbation by holonomy is an obvious analogue of the
argumentsin 8 3.)

Let N=—-N_0O; N,. Let CF(N,E) be the Floer's chain complex which defines the Floer
homology HF(N) [7]. (The SO(3) version we are discussing hereisin [3].) The purpose
of this section isto construct achain map Glue:CF(N) - FundHF(N_), HF(N,)).

For this purpose, we construct a 4 manifold M as follows. We take N_ x(-%,0] and
N, x[0,0). N, has a color diffeomorphic to X x[01]. We glue Zx[01x{C}
ON_x{0} and Zx[-11x{G ON, x{CG}. We then obtain a 4 manifold with corner
> x{0} x{@ . We smooth this corner and obtain a4 manifold. It has aboundary component
diffeomorphicto N. We remove it and obtain an oriented 4 manifold M such that

(8.1.1)
M= xR.

(8.1.2)
M —(compact) = (N_ x (~e0,0)) O (N, x (0,e0)) x (=N x (~e0,0)) .

Figure 8.2
Thebundles E; and E areextendedto M. Wetakeametricon M such that

(8.3.1)

A neighborhood of the boundary of M isisometricto = x[-11] xR .
(8.3.2)

The diffeomorphism (8.1.2) is an isometry.

We now define a moduli space similar toonein 8 3. Let a beaflat connectionon N,
and a, beaflat connectionon N,. Let A beageneric element of 06(Lag(R(Z))). We

assumethat res,(a,) OA.
We assumed that the set of flat connections on N is discrete and Hl(N, ada) =0,

(since we assumed that the transversality holds without taking perturbation by holonomy.)
Let 4, be aconnectionon (M,E) which coincidesto a, a, respectively outside a
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compact sets. Let 4 M,Ea;a_,a,) bethe set of al smooth connections 4 on (M,E),

suchthat 4 -4, isof L°-class. Let us consider the space

il Asolves (3.4.1), (3.4.2), andisan ASD C
A connectionon M -3 x[-11] xR. E
MMAga.8,) = Bﬂ HAM:&a.a,) The gauge equivalence class of the restriction E
H of 4to= x{(t,1)} belongsto A foreach t. E

We consider the set of gauge transformations g of (M,E) suchthat g-—identity isof

Lf class. This group acts on M(M;/\;a; a_,a,). Let M(M;N\;aa,a,) bethe quotient
space.

In away similar to the other analytic results announced in earlier sections, we can prove
the following theorem. Let p(a) be the Floer degree of the flat connection a. And let

M(N;a b) be the moduli space used by Floer [7] to define boundary operator of Floer
homology of 3 manifold N. Namely it is the moduli space of the solution of ASD equation
which isasymptoticto a and b as t — Feo. Here we remark that our convention of the
Floer degreeis

M(N,a b) = p(a) - u(b) -1
and the definition of the boundary operator in CF(N,E) is

ofa] =5 #M(N;a,b)[b].

Theorem 8.4* If we take the metric on M and the simply connected Lagrangian
submanifold A generic, then the following holds.

(8.4.1) M(M; N\, g a,a,) is a smooth manifold of dimension p(a.)-pu(a,)+p(a)
modulo 4.

(8.4.2) If pa)-p(a,)+u(@ =0, then M(M;N\; aa_,a.) conssts of finitely many
points.

(8.4.3) If p@)-u@)+p@ =1, then M(M;A;aa.,a,) has a compactification
whose boundary isidentified to the union of

M(N;a b) x M(M;Asbia_,a,).
M(N_ xR;Asa,al ) xM (M;Agal ,a,).
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M(M;A g a,a)) x M(N, xR;A;a;,a,).

The moduli spaces M(N_ xR;A;a_,a’), M(N, xR:A;a’,a,) wasintroduced in § 3.
Using Theorem 8.4, we define

Glue(a), : HF(N_)(A) - HF(N,)(AN)

Glue(a)o([a])= ) #M(MA; ga,a,)[a].
a,

In order to define Glue(a),, we use a similar moduli space as § 4. Let

A; 00b(Lag(R())) are generic  elements, a ON 4 n A, i=1---k,

2 D{a OR(N_,E)|resalAg}, a., O{aOR(N,,E)|res alA}. Let AM,Eaa,,a)
be asabove. Weconsider (4,(t,---,t,)) such that

(85.1) 4 isasmooth connectionof E on M.

(85.2 t <--- <t.

(8.5.3) 4-24, isof L*-class. Here 4, isa connection which coincides with a,a,
outside a compact set.

(8.5.4) A satisfies Equation (3.4.1), (3.4.2) at < x[-11] xR.

(8.5.5) A satisfies Equation (3.12) at N x (=0, —R][J N x[R ).

(85.6) 4 is ASDa NxR —((N-Zx[-11])x (-0, -R] O (N - Z x[-1,1]) x[R,)).
857  [ALY)]=a.

(8.5.8 If t <t<t,,, then[AQLt)]OA,. Hereweput t, =—oo, t,, , =0o.

Let ﬂlA/[(M;(/\0,---,/\k);a;(ao,---,ak+1)) be the set of such (4,(t,---,t)). Wedivide it by
gauge transformation group to obtain M(M;(/\0,---,/\k);a;(ao,~-,ak+1)). Then, in asimilar
way to Theorem 4.6, we have the following :

Theorem 8.6 For ageneric metricon M and A,, thefollowing holds.
(8.6.2)

M(M;(/\O,m,/\k);a;(ao,--~,ak+1)) is a smooth manifold of dimension

> H(&) ~ K8 +H(@) +k.
(8.6.2)

If > H@E) ~H(ge) +H(@) + k=0, then
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M(M,E;a;(aL,al,---,ak,a+);(/\0,---,/\k)) consists of finitely many points.
(8.6.3)

If > @) —H(a.) +u@ +k=1, then
M(M;(/\O,---,/\k);a;(ao,ai,---,ak,akﬂ)) has a compactification

CM(M;(/\0,~~,/\k);a;(ao,a1,~~,ak,ak+1)) such that its boundary is a union of the following
7 typesof sets.

@ M(N;a,0) x M(M;(Ag,+ A ) b9, 8 ))
(b) MN_ XR; A3 30,86) X M(M; (Ao, A )i (8, 8-+, 8, Bcan))
©) M(M; (Ao A )i (8,180 1)) % MIN, XRA B, Beay)
UM(M;(/\O’...’/\i);a;(ao’...ai’b)) X
bOR(N, )
(d) res, (b) A,

M(N % Ri(A+ A (0,810, Bee))

M(N_ XR;(/\O""’/\i);(aO!"'q’b))x

© U
res, (B)ON MM (A AR, 8ca))
(f) Um(Mi(Ao A )@ (8o, 80 8 )) x MIRE)A LA 8 &)
NN/

UM(M;(/\O*""Ai ,/\j,-'-,/\k);a;(aoy"'ai—liai,j’aj+1”'ak+1))
@ MY |
xf?\_/[(R(Z),(/\i,"',/\j);(ai,pai T, ))

Now we put

Glue(@)([a] 0 - O[al([a) = Y #M(M;(Ag, - A)a (g, ) 8-
A1

The main theorem of this section is:
Theorem 8.7 Glue:CF(N) - FundHF(N_),HF(N,)) isachain map.
Proof: Let us verify Glue(0a), = (9Glug(a)), . This follows from (8.6.3). In fact (a),

(b), (c), (d), (e), (), (g) corresponds to

2-56



version 10/3/99 Floer homology for 3 manifolds with boudary 1 Kenji FUKAYA

(@ Glue(da), ([a,] 0 -+ O [a])([a))
(b) Glue(a),(la,] 0 -+ 0[a])@[a]).

© 0(Glue(a)([a,] O+ O [ad)([a]).

(d) (Glue(@) . (1,210 -~ Dl ])(HR(N)([a,] O+ O [a])([&D),
C) (HR-i(N)(a 210 - Oa,])(Glue@)([a] 0 -+ O [a 1)),
(M) Glue(@),([a] 0 -+ 0 d[a] O+ O[a])(8]),

) Glue(@),_j (] O+ 0n; (8] O+ DO[a]) O-[a]) (@),

respectively. Theorem 8.7 then follows from definition.

Theorem 8.8 The chain homotopy types of Glue:CF(N) - Fund(HF(N_),HF(N,))
is independent of the metricon M.

This theorem and similar well definedness statements of the map Glue follows in a
way similar to §85,6,7.

Unfortunately the following is yet a conjecture.

Conjecture 8.9 Glue:CF(N) - FundHF(N_),HF(N,)) Is a chain homotopy
equivalence.

We next prove the following functoriality of our homomorphism. This functoriality is
suggested by Donaldson [5].

Let (N;,E) becompact oriented 3 manifolds such that (aNi ,Ei): (z,B) for i=123.
We assume that the restriction of E; to each connected component of % isnontrivial. Let
N; be closed 3 manifolds obtained by gluing —N, and N; aong Z . There exists a 4
manifold M,,; with boundary such that dM,,3 =—N;, 0 —N,g [ N5.

Figure 8.10

Relative version of Donaldson’s polynomial invariant defines a map
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(8.11) Q(Myp3) : CF(Ny,) OCF(Ny) » CF(Ny,),

which iswell defined up to chain homotopy. On the other hand, we constructed maps

(8.12) Glug : CF(N;) — Fund(HF(N,), HF(N;)).
We then have :
Theorem 8.13 The following diagram commutes up to chain homotopy.
CF(Ny,) O CF(Ny;) ODRYE . CF(Np)
| Glue, OGluey, | Glue,

Func(HF(Ny), HF(N,)) O Func(HF(N,),HF(N;)) O~ gunc(HF(N,),HF(N,))
Diagram 8.14
Here ®, isthe compositionin A” category Func(Lag(Z),Ch). Let us prove Theorem

8.13 modulo analytic detail which will appear in a subsequence paper.
Let M; be 4 manifolds with boundaries and ends which we used to define Glue.

Namely :
(8.14.1) A neighborhood of the boundary of M;; isisometricto = x[-11] xR.
(8.142) M minus a compact set is isometric to

(N; x(=0,0))0 (N; %(0,00)) % (-Ny; x(~20,0)).

We remove boundaries from M,,; and write it by the same symbol. We next take and

fix a metric on M;,; such that M;,; minus compact set is isometric to

(N % (=00,0)) O (Nyg X (=20,0)) T (Ny3 X (e9,0)).

We remark the following

Lemma 8.15 There exists a diffeomorphism

M, DN2 My UMyp3 U N3 M.
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The proof is obvious from the following figure.
Figure 8.16

We put M =M, Oy, Mpz OMyps Oy, Mgz and take a family of metrics g, on M

with the following properties.

(817.1) Foru<-R, (M,g,) containsasubsetisometricto M,; x(-u,u). Thecomplement
(M,g,) - (M3 x (u,—u)) together with its metric is independent of u<-R and isisometric
t0 (M = Nyg % (0,00)) 0 (~Myg x (=0,0)).

(817.2) For u>R, (M,g,) containsasubsetisometricto N, x(—u,u). The complement
(M,gu)—(N2 ><(u,—u)) together with its metric isindependent of u>R andisisometricto

(N12 -N, x(0a°°)) O (N23 =N, x (—00,0))-

Let ¢, OR(Ny,) and c,3 OR(N,). We take dso A, D06(Lag(R(Z)) 1 =0,---,k,
a ON 4 n /N for i=1---,k. Wechoose furthermore a, OJR(N,) with res(a;) DA, and
a . OR(Ng) with res(a, ;) OA,.

For each u we construct a moduli space M((M, g, ); (Mg, A )i (G121 Co3)i(@0++ Acst))

as follows. Let 4,(M,c,,C3,8y,8.,) be a connection on M which coincides to

C12,G3,89,8 4 outside acompact set. We consider (4, (t;,---,t,)) such that

(8.18.1) 4 isasmooth connectionof E on M.

(8182 t;<---<t,.

(8.183) 4-4, isof L’-class.

(8.184) A4 satisfiestheequation (3.4.1), (3.4.2) at ~ x[-11] xR.
(8.1855) A4 sdtisfiestheequation (3.12) at N, X (—o0,—R I N3 X [R ).
(8.18.6) 4 is ASD with respect to themetric g, at other part of M.
(8187) [ALY)]=4a.

(8.18.8) If t, <t<t.,,then[AL)]UA;. Hereweput t, =-o, t,,,=00.

Let M((M,gJ); (/\0,---,/\k);(clz,czg,);(ao,-u,q(ﬂ)) be the space of Gauge equivalence
class of such elements (4, (t,---,t,)).
Using M((M,gJ); (Ao,---,/\k);(012,(:23);(30,---,a\m)) in exactly the same way as before,

we obtain a chain map
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QM, g,) : CF(N,) DCF(Ny) - Func(HF(N;),HF(N;)) .

Using an argument similar to 88 5,7, we find that Q(M,g,) up to chain homotopy is

independent of u.
We then use Taubes' type gluing argument based on (8.17) and prove the following :

Lemma 8.19*  For sufficiently large u, we have QM,g,) = ®, (Glue, 0 Gluey).
For sufficiently small u, wehave Q(M,q,) = Glug; o Q(M,;,3) .

This complete the proof of Theorem 8.13 modulo analytic detail.
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89 Thecase N=Xx[0,1]

Let AOREZ) x RX) bethediagonal.

Theorem 9.1

HF(Z x[0,1]) O Fund Lag(R(X) x RX)),Ch) is homotopy equivalent to an
A" functor represented by A O 04(Lag(R(Z)” x RY)).

Theorem 9.2
Let ONy=20-%. Weglue N, with >x[01] to obtain a closed 3
manifold N. Then CF(N) ishomotopy equivalent to HF(Z x[0,1])(4).

Theorem 9.3

Let No,N be an in Theorem 9.2. Then the chain map,
Glue:CF(N) - FundHF(Zx[0,1]),HF(N,)) definedin 88 isachainhomotopy equivalence.

We give a proof of them modulo analytic detail. We consider X x[-5,5] rather than
> x[0,]] for the convenience of the notation. We choose a cut function X :[-55] - [0,]]
such that :

0] s<—4

1 [[-33
X(S):g) Z>[4 ]'

EX0) sO[-4,4]

We consider the degenerate metric g, = °X(s)°gs +ds’° on ¥ x[-55. We use this
degenerate metric and define a moduli space of ASD connections in the same way as 8§ 3 as
follows.

We consider simply connected Lagrangian submanifolds A; 0 R(Z) x RZ). Let
@-a.) 0N N A, (8,80) DA N Ay, ad (8sy,8) DA NA. (Here k=012,

We remark that A = R(Z xX[-5,5]). We use these date to fix a boundary condition. On the
other hand the equation we useis

0A 0A
9.4.1 —-dY+{— -d,®)=0
(941) W —d,0)
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202 0P _ 0¥ _ H _
(9.4.2) €°X(s) B " s [CD,HJ]D+ [F, =0.
We fix a connection 4, on Xx[-58xR such that 4, is flaa on
2 x[-55 x (-0, R0 X x[-55] x[Ro) and coincides with a,, a,,; there. Let
A4 M,Eay,a,,,) bethe set of all smooth connections 4 on % x[-55 xR such that

4- 4, isof L* class. Then the moduli space we study is

4 solves(9.4.1), (94.2). [

) 0
M(Z x[-5,9,&;\g;89,8) = =8
(= x[59.&A80.a) DDZ[ HA(M.Eia,3) [A-SDLIAGY]) OA, E

We divide it by the set of smooth gauge transformations g suchthat g-id[ Lf.
Let M(Zx[-5,5;¢;\;89,8) bethequotient. We furthermore divide it by the R
actionand let M(Z x [-55],&;\;84,8) bethe quotient.

We next consider (4, (t;,---,t,)) such that

(9.5.1) 4 isasmooth connection on 2~ x[-55 %xR.

(952) t;<---<t.

(953) 4a-4, isof L*-class.

(9.54) A4 satisfiestheequation (9.4.1), (9.4.2) .

(955) [A(s5t)]=4a ..

(956) If t_;<t<t,then[A(-51),(A5t)]TA,. Hereweput t, =—oco, t,,; =c0.

Let M(Z ><[—5,5_|,s;(/\0,--~,/\k);(ao,~-,a(+1)) be the set of all gauge equivalence classes
of such (Aa,(t,--.5)). We again divide it by R action to obtan
EJT/[(ZX [—5,5],5;(/\0,---,/\k);(ao,---,ak+1)). We use these moduli spaces in the same way as
§4togetan A”functor : Lag(R(Z) x RZ)) —» Ch. This A"functor is HF(Z x[-5,5]) and
its homotopy typeisindependent of € >0.

For € =0, our moduli space is one of holomorphic disksin R(X) x RX). We first

assert :

Theorem 9.6* For sufficiently small € the moduli spaces M(Z x[-5,9;€;/\;;a4,8)
and M(Zx[-55,&(A - AJi(aga.y)  ae  diffeomorphic  to

M(E % [-5,9;0;A;80,8), M(Zx[-55,0,(A,A)(@, - au1)) respectively in case
thedimensionis O.
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The proof isaminor modification of the argument by Dostglou-Salamonin [6] combined
with the proof of theoremsin 8 3. The detail will be given in a subsequent paper.

We next study m7(2>< [—55],0,(AO,---,/\k);(aO,---,ak+1)). We use a kind of reflection
principle.  Let (4, (- 4)) OM(Zx [-55,0 (Ao, A (B0, 801)) . We  define

h:[0,5]XR — RZ)” xR(Z) by

h(s,t) = ([A(=st)].[A]) -

We remark that Equation (9.4.2) for € =0 impliesthat A(st) isaflat connection.
Hence h defines a map :[0,5]xR - RZ) XR(X). Then (9.4.1) implies that h is
holomorphic.  We next remark that h({Q xR)OA by the definition and
h({3 xR) O Ay O--- OA,. Hence using the notation of § 2, we have

h OM(RE)™ x RE)(B, Ao A )i (Bor - 8sn))-
(We use abiholomorphic map (0,5 xR D for thisidentification.) Thuswe proved

Lemma 9.7 M(Z x[-5,9,0;(Ag, A (8 e 1)) is homeomorphic  to
M(RE) ™ x RENBAG A (B, 18a)).

Combining Lemma 9.7 and Theorem 9.6, we obtain Theorem 9.1.

We next turn to the proof of Theorem 9.2. Let N, beasin Theorem 9.2. We define a
metric on it so that it isisometric to (Z 0-X)x[-1,1] xR near the boundary. We glue
N, with = x[-5,5 equipped with metric gy, = (@-u’x(9%)gs +dt’. We then obtain a
manifold N with metric g ,. For u<1 this metric is smooth and hence we can use it to
define Floer homology of N. For u=1, the metric g, Iis singular on
> x[-3,3 0% x[-55]. However we can use the same method as 8§ 3 to construct moduli
space of ASD connections on (N,gy,). For a_,a, ORN), let M((N,gy,).a.,a,) be
the moduli space of ASD connections on NxR  with metric gy, Odt?, which is

asymptoticto a_,a, as t - Foo. (Wedivide it by the gauge transformation group and R
action.) (We again assume that transversality is satisfied without perturbation, for simplicity
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of notation. The modification to include perturbation by holonomy is an obvious analogue

of theargumentsin § 3.)

Theorem 9.8 M((N, Gy ).a,a,) isdiffeomorphicto M((N,gy,),a,a,) if 1-u is
sufficiently small and if p(a) — p(b) =1.

The proof is again a minor modification of the argument of [6] combined with one we
use to prove theoremsin § 3, and will be given in subsequence papers.

We next prove the following lemma.
Lemma 9.9 M((N, On ) a,a,) isdiffeomorphicto 9\_/[(N0; Na_,a,).

We recall notations in Lemma 9.9. We recall a_,a, JRIN). We remark aso that

R(N) ={a0RN)| resa DA DR(E)” x R5)} Hence a,a, 0
{aDR(NO)| resa DA 0 R(Z)™ % R(Z)}. Thus 37((N, gy o).a.,,) is one defined in §3.

The proof of Lemma 9.9 is in fact easy. Let 9/((N, Ony)-a,8,). Wecut N a
Zx{O0Zx[-33 toobtan N,. On N, xR, the connection 4 gives a solution of
(3.4) whose boundary value at (- 0 Z)xR is contained in A. Hence we obtain an
element of 97[(N0; Aia_,a,). Itiseasy to seethat this map gives a diffeomorphism required

in Lemma9.9.

Theorem 9.8 and Lemma 9.9 imply that HF(N,),(4) isisomorphic to CF(N). Thus
we established an isomorphism CF(N) = HF(N,),(A) as achain complex in the case we

use the metric gy, with 1-u small. Theorem 9.2 then follows.

We next are going to prove Theorem 9.3 (modulo analytic detail). We remark that
Theorems 9.1, 9.2 and Lemma 13.28 imply that there exists a homotopy equivaence :
CF(N) = Func(HF (Z x[-5,5]),HF(N,)).

We however still need to show that this homotopy equivalence is realized by the map
Glue:CF(N) - FundHF(Zx[-519)),HF(N,)) constructed in § 8. (We want to prove it
since the map Glue in 88 isdefined in other cases also and enjoys various functoriality. So
proving Theorem 9.3 can be expected to be afirst step toward the proof of Conjecture 8.9.)
To prove it we proceed as follows. (The analytic detail again will appear in subsequent
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papers.)
We take the 4 manifold M we used to construct Glue:CF(N) -

Func(HF(Z x[-5,9]), HF(N,)) . Inthiscase, we have :

(9.111) A neighborhood of the boundary of M isisometricto (-= 0 %) x[-1,1] xR .
(9.11.2) M —(compact) =(Z x[-5,5] x (-,0)) O (N % (0,)) x(~N x (-e0,0)) .

We take a flat 2 manifold W asin Figure 9.12 such that >~ xW isembeddedto M by
Isometry.

Figure 9.12

We remark that > xW contains 2 x[-2,2] xR, where one end of it is identified with
> x[-2,2] % (—0,—100] and the  other end is identified with
> x[-2,2] x[100,00) [0 =N X (—00,-100] .

We consider asubset W [0 W with flat metric such that

W =[-5,5 x (=00,-100] O[-2,2] xR O[-5,-3] xR 0 [3,5 xR .

We choose W OW, 0O[-55] x (-,-200] U [-L1] xR O [-5-4] xR O [4,9 xR, such
that W, has asmooth boundary.

Figure9.13

Let x':W - [0, be a smooth function such that x'=0 outsde W and

X1 = W,. We use also the function X introduced at the beginning of this section. We

consider afamily of degenerate metrics gy, on M by
Iux (X (1) =X(s1)? (1— )\2)(’(s,t)2)gZ 0 ds” O dt?
on (st) O(-5-3 0[35)xROW and

g (% P =(1-2°X(P)?)9z O g

on pOW-([-5,-3]0[35]) xR . (We do not change the metric outside = xW .)
We remark  that 9mo is the metric we wused to define
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Glue:CF(N) - Fund{ HF(Z x[-55]), HF(N,)) . So by the same argument as 8§ 5,6,7, we
find tha we can use ma s A<1 dso to define

Glue:CF(N) - Fund{ HF(Zx[-55]), HF(Ny)). To be more precise, we define a moduli
space M((M,gm); (/\0,---,/\k);a; (ao,---,ak+1)) as  follows. (Here

A, D06(Lag(R(Z)” xRE))),  aOR(N), (apa) AN Ly, & =(a,a)0A4nA,
a1 UR(Ng), resa ., OA,.) Weconsider (4,(t,---,t)) such that

(9.14.1) 4 isasmooth connection on M.

(9.24.2) t,<---<t.

(9.143) a-24, isof L? class. Here 4, isa connection which coincides with a, a,,
a.,, outside acompact set.

(9.14.4) A isan ASD connection with respect to the degenerate metric g, , -

(9.14.5) [A(z5t)]=3,..

(9.24.7) If t_, <t<t,then ([A(-51)],[A5G)])TA . Hereweput t, = -, t,, , =00.

We consider the set of all such (4,(t,---,t,)) and divide it by the gauge transformation

group. We then obtain M((M,gM,A);(/\0,---,/\k);a;(ao,---,am)). We can use

MM, G0 )i (Nor - A Dias(B . B ) to define
Glue:CF(N) - Fund HF(Z X [~5,5], HF(N,))) for A < 1.

Incase A =1, our metric is degenerateon X xW,. We can handle the new degeneration

in a similar way and define M((M ,ngl);(/\O,-~-,/\k);a;(ao,---,ak+1)). We need a bit care to

construct M((M O 1); (/\0,---,/\k);a;(ao,---,ak+1)) as a smooth manifold of finite dimension

since the boundary of the domain where the metric is begin to degenerate is now % times a
curve and the curve is not straight. However the basic ideato handle it is the same asonein
§ 3 and isgiven in a subsequent paper.

We then have :

L emma 9.15* If 1-A is small, then M((M,gM’A);(/\0,---,/\k);a;(ao,---,ak+1)) is
diffeomorphic to M((M,gM,l);(/\O,---,/\k);a;(ao,---,ak+1)) in case dimension is 0.

The proof is again by a combination of [6] and the proof of the result of § 3 andisin a
subsequence paper.
We thus may assume that
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Glue(a),((a] 0 - O[a])(a]) = Y #M((M,Gy1): (Ao A i (a0, Bra)) [Ba]
By

Now we study the moduli space M((M,0y.1); (Aor+ A i@ (@0, 18 1)) . We remark
that there exists asubspace = x[-11] xR O (M,g,,,) Wwith degenerate metric. We cut it at
>x{0 xR toobtain (Mg, gy,). Wefindthat dMy=0M O(- x Z)xR . To distinguish
(-ZxZ)xR =0M; -0M from (-Z x ) xR = M, wewriteitas (-Z' x Z') xR .

We remark that M, is diffeomorphic to (N, xR)-((Z0-2)x{0}). (Here
5 0-Z0N.)

We then find that (M, gy 1); (Ao, A):a(ag, 8 .4)) isidentified to the following

moduli space. We consider (4, (t;,---,t,)) such that

(9.16.1) A4 isasmooth connection on M.

(9.16.2) t;<---<t,.

(9.16.3) a4 -4, isof L*-class. Here 4 isapull back of the connection 4, to M.
(9.16.4) A isan ASD connection with respect to the degenerate metric gy, .

(9165) [A(#5t)]=4,..

(9.16.6) If t_; <t<t,then ([A(-51)[AG]) OA. Hereweput | t.= -
(9.16.7) Let us consider the redriction of 4 (X' xX')xR. It gives a map

2pointsxR - RZ), or equivaently the map R - R(X) xR(X). We assume that its
image isin the diagonal.

Let M((M{,, Oy ); (A,/\O,---,/\k);a;(ao,---,ak+])) be the space of gauge equivalent classes

of such (4, (t;,---,t)).
We find that

MM, ;Mo A (B0, Bn)) = MM, G (D Agrro- A (B - B )).

We next compare M((M{),g,vB);(A,/\O,---,Ak);a;(ao,---,ak+1)) with
M(No XR; (AN, A (a8g,++ 8.1))- We recal tha to  define

97[(N0 XR;(A,/\O,-~-,/\k); (a,ao,---,ak+1)), we used product “metric” which is degenerate at

the neighborhood of the boundary of N xR . We are going to construct a family of metrics
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joining (Mg, gy,) and N xR with product metric.

We put W, =W OW, , where W," is the intersection of W, with the part where
+s>0. We may assume that the reflection of W,™ by the t axisis W, .
Let W, =W, OW; isasmall open neighborhood of the closure of W,. There exists a

unique biconformal map ¢ : Int(W;") — (4.5,5) xR such that

o({0 xR)={8 xR_
(9.17) o({3*xR)I{3 xR,
lim ¢(st) = (5,0).

Figure 9.18.
¢ induces ¢ :Int(\W; ) — (—4.5,-5) xR by reflection. We then obtain adiffeomorphism

®:3x Int(W,) {0 xR 0% x (-5-45 xR [ £ x(4.55) xR
Let usdefine f :W, -~ R,, by
(9.19) o (ds’ O dt*) = f g,
here g,, istheflat metricon W. We then find that
®.(gy,) = (X ) g, 0o ) (o 0 c?).

Weremark that f ispositivein aneighborhood of the closure of W,. So we find open
sets Up,U, with W, OU, 00U, 0U, andametric gy, on Mg suchthat gy, =gy, in
U, and

®.(gy) = (x" o) g; 0 (05 O dt?) outside D(U,).

We can usethismetricin place of g,,, todefine Glue(a). Namely we may assume

Glue(a),([a,]0 ---O[a])([&])

(9.20) = z #M((Mé, gf\,B);(A,/\o""’/\k);a;(ao""7ak+1)) [3..]"
A1

2-68



version 10/3/99 Floer homology for 3 manifolds with boudary 1 Kenji FUKAYA

Wemay find f' such that
®.(gy) = (x o) g O(F7 0 0 (d? D ct?).
We then define a one parameter family of metrics gy .rx On Ny xR asfollows.

(9.21) e =X +K(X'°¢_1Xf'°¢_l))ziz .
Ofk(fe 73 +(1-x)) (ds? O o)

Using this family of metrics, we define afamily of moduli spaces as follows.
We consider (4, (t;,---,t,)) such that

(9.22.1) A4 isasmooth connectionon N, XR .

(9.22.2) O<t, <---<t,.

(9.223) 4-4, isof L’-class. Here 4, isaconnectionon N, xR which coincides
with a, a,,; outside acompact set.

(9.22.4) A isan ASD connection with respect to the metric gyyg -

(9.225) [Agy,]l=a.

(9.22.5) [Apxl = a.

(9.226) If t_;<t<t, then [Ayy]OA;. Here we put t,=-o, t; =0, t),; =,
Ny=A.

Let M((N ><R,QJNOXR,K);(A,/\O,---,/\k);(a,ao,---,ak+1)) be the moduli space of gauge

equivalence classes of such(4, (t;,---,t,)) -

We then obtain the following :

M{(No XR, Gy (B A0+ A )38 8y s

Lemma9.23 :
=M((Mé,gw):(A,/\o,---,/\k):a:(ao,---,am)) [8y.4]

This lemma is in fact clear from definition. Therefore by an argument similar to 88
5,6,7, we may assume that

Glue(a), ([a,] 0 ---O[g 1) ([&])

= 3 #{(No R, Gy o) Ao+, A (@ 80,7+, Byt [Bya]
81
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On the other hand, we have:

M((NO XR,ngR’O);(A,/\O’...,/\k);(a'ao,...'akﬂ))

Lemma 9.24 _ :
= M((No XR,gy, U dtz);(Ay/\o""'/\k); (a’ao""!ak+l))

Here the right hand side is the moduli space we use to define HF(Ny)(A,Ag,---,/\y) .

Lemma 9.24 is obvious from definition. Therefore, up to homotopy, we have

Glue(a),([a,] U ---Oa]([&])

9.25)* '
(9:25) = HF(No)(A Ao, A (@ Dlag] O [ay]0 - Ofay])

By the proof of Lemma 12.28, we find that the right hand side is the map obtained by

Theorems 9.1 9.2 and Lemma 12.28. The proof of Theorem 9.3 is now completed modulo
analytic detail.

PART Il HOMOLOGICAL ALGEBRA

8§10 Func(Ct,C?)

In part 11, we discuss basic propertiesof A” category. First we define anatural transformation
between A”functors. Let c',c* be A” categoriesand F':c* - ¢?, F*:c*' - ¢® be
A” functors.

Definition 10.1 A pre natural transformation T:F' - F?
of degree d, consists of T,(a) JC;(F(a), R (a)) for each alos(c,),

and T 04 0+ 0 %) OCq4, 5 4(Fo(8) Fy(@) foreach x 0Ce(3-1,8), 1 =1k, such
that T, are homomorphisms.

Wewrite T, inplaceof T,(a) when no confusion can occur.

For each pre natural transformation T:F' - F? of degree d, we define its boundary

oT asfollows. 0T isapre natural transformation of degree d-1: F - F? defined by :

(10.20) (aT),(8)= 3(To(a)).

(10.2.1) (aT),(¥) = 1, (R () O To(a)) £ Nx(To(8) DR (X)) £0(T(¥) £ T,@x)  for each
xCy(ap,a).
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(10.2K)

(aT), (% O--- 0 %)
= (R0 0x)) (RO 0 0x))
+ 3T 00N g0 00 x) OO %)

1<i<j<k
1 1
+ Z zink1+k2+1(Fél(X1 0---0 x(l) 0---0 kal(xfl’f"*fm-ﬁl ---0 X€1+m+[kl)
ky, ko
DTm(X£1+--+zkl+1 a---0 X[1+...+fk1+m) D

F20% we s omet 0 0 Xy emen) O O R (20 ))

Here ) > means the summations over al kyky, £y, 0, ,mny,---n, such that
ke ko

(it t o +mtn++n =k (>0, m >0 But m=0 isalowed. Inthat case

To(x; O ---0X;4) means Ty(a).)

Definition 10.3 A pre natura transformation T:F' - F?> is said to be a natural
transformation if T = 0.

Remark 10.4
Let F:C > Ch, i =12 be A® functorsand T: F! . F? beanatura

transformation. Then (0T), =0 means that Ty(a): Fé(a) - Foz(a) is a chain map.
(0T); =0 meansthat if x[C(aya) and 0x =0 then the following diagram commutes

up to chain homotopy T,(X).

Fr@) OO®. FRi(a)

LR LR®

Ri@) 0B R
Diagram 10.5

Formula (10.2.k) looks rather complicated. Lemma 10.7 gives a motivation of this

definition.

Definition 10.6 Let b,c006(c) and y0OcCy(c,b). b,c determine A™ functors
FPFC:c-chi by FR(a)=c(ba) ec (§ 2) Usng y we define
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TY(@) Och(F°(a),F°@@)), T2(x O 0x) OCh(R (3), RS (a,)) asfollows.
(10.6.0) T (@)@ =n,(yO 2), where zO Fob(a) =C(ba).

(106K) TXx0-0x)@ =Ny(yOzO% 0--0x%), where zOR(@,) = C(bay),
x0C(@1,a), i =1 k.

TY isaprenatura transform of degree d. We have:

Lemma 10.7
oTY =T .

Proof:
Wefirst verify (10.2.1). Weuse 0 on, =+n,00d andobtain :

e = slre):ves
= 29(n,(yD 2)£n,(yD 07)
= Hon,)(yO 2n,0y0 2)

= 1@
Let usverify (10.2.2) . We calculate

V(2 = ny0y0z0x)

= Hong)yOzOx) +0(ns(y 0z 0O X)
;(yOozO x)£ng(y D zO0xY

= #,(n(y0 20 x)£n,(y Ony(zOx))
(1))@ * T (0)(2)

= #,(TY 0 RM)D +n,(F() 0T)@
+0(TY(0))(2) £ TY(@)(2)

asrequired. (10.2Kk) for genera k follows from the following calculation.
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T 0-0%)@ = #N,0y0z0% 0--0x)
= 20Ny Dz0 % O---0 %))
Niso(YO 0z0 % O--- 0 %)
Mie2(yO 200 (% O -0 %))
HoN.2)(y 0 zO X O -0 %)
= (WO 0x))@ (W@ 00 %))
e an+2—j+i(yDZD X O Onjsa(x O Ox) O 0 X).

I<i<j<k

* zr]k+2—i(yD Mi+1(zO--0x)0---0 %)

I<i<k

* Xnk+1_i(ni+z(yD zO---0x)0---0x)
0<i

= (WO 0%))@ (O 00 x))2)
t ZTk—i+j(X1D 0Ny (0---Ox)0---0 Xk)(z)

1<i<j<k

£ 3 N(RP0q T+ 0 %) DT (g O+ 0 %))@)
I<i<k

£ 30,1 06 0+ 0 %) 0 R0 00 %)@
I<i<k

We next prove the following :

Proposition 10.8
0(dT) =0 for any pre natural functor T.

Proof
(00T), = 0 isimmediate from. (10.2.0).

(80T),(x) = #n,(F(x) 0(aT), ) £n,((T), O R2(x)) £8((aT),(x)) +(aT),0X)
= 41, F(%) 00(T)) £n,(0(T) 0 R2(x))
+0(n, (FL () 0 To)) 20, (To 0 F2(x))) £00(Ty(%) £ 8(T, @)
4N, (FAOX 0 Ty ) £n,(T O F2 @) + (T, (0)) + T,(89x)
=0

since n, isachainmap. Let usprove (90T), =0. Wecalculate

(10.9)
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(00T), (X, O+~ 0 %)

= ia((aT)k(Xl g-.-o Xk)) i(aT)k(d(xlm .0 Xk))
+ Zi(aT)k—nj()&D"'Drlj-i+1(xi D...ij)D...ka)

I<i<j<k
+zz+nk+k+1(|: (XlD DX()D DF (X/+ +/ +1D DX/+ +()
00T) (Ko 01 07 DXy vy am) O

an(xél+-~-+zkl+m+1D”') O...0 Fnz&("'D Xk))

To caculate Formula (10.9) in this way, seems to much complicated. So we use a

symbolic notation and write (10.9) as:

+0 ((aT)(---)) + z +(OT)(---0x--)) + z +@TY---nC-)-)

(10.120) L 1 ) ) -
+Z n(F(-)---F(-)0O (6T)(-~-)DF (--)---OF4(--9)

Namely we omit index L in T, FDi, Ng, etc. and we omit x if it isnot of the form

0x. Weasoomit 0 when no confusion can occur. We use this notation frequently in the
rest of this paper. Using thisnotation, Formulae (2.1), (2.2.k), (10.2.k) are

(2.1 Z H(--nC-)--)=on(-) + Zin(...ax...)),
(2.2k) a(F()) + ZiF(---aX---) = z iF(I‘]()) + zin(F()F()),

OT)(+)= 20(T())+ Y £T(+0x-)+ 3 £T(-n(+)-+)

(10.2k) » - L,
+zin( (- -FY-)T()F2(-)--F (...))

respectively. Using (2.1),(2.2.K), (10.2.k), we calculate (10.10) and obtain
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Z 40 (T(---0x--)
+3 23(T(-n(-)-+)
ST
+z +0(T(---0x-"))

+ZiT(---n(---6X---)---)

+Z +T(--n(--)---0x--)

+Z ir](Fl--- FL(- 0%+ |:1T|:2...|:2)

+y il’](Fl---FlT(---GX---)FZ---FZ)

3 ir](Fl---FlTFZ---Fz(---ax---)---F2)
+Z id(T(---r](---)---))

+z +T(--0X---n(--)-+")

+z +T(--0(N(--))+)-)

+Z +T(---n(-)---0x-)

+Z £T(--nE--NnC-)--))

+y ir](Fl---Fl(~-~r] (-~-)~--)---F1TF2~~-F2)

+y in(Fl'--FlT(---r](---).--)Fz'--Fz)

3 in(F1~--F1TF2-~-Fz(--~r|(-~-)--~)-~-F2)
+z H)(F---F(T(--))F?---F?)

+> H(F - FIT(ox - )F? - F2)

+ziﬂ(Fl“'FlT("'r]("')"')Fz“'FZ)

+z ir](Fl---Flr](Fl---FlTFz---FZ)FZ---FZ)

here we write F' etc. in place of Fl(---) etc. By applying obvious cancellation and
applying (2.2.1) once, thisisequal to
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z id(n (Fl---FlTFZ-..FZ))

+z_

3 in(Fl...FlTFZ...F2(...ax...)...F2)

=
—
M
[

F(--0x-- ) FITF2... |:2)

(10.11) ~-Fl(-~-r](~--)-~-)~--FlTFZ---Fz)
~-FlTFZ---F2(~-r](--~)-~-)~--F2)
~F(T(--))F?---F?)

. Fr](Fl-~- FITE2... |:2)|:2...|:2)
We use (2.2.k) to find that (10.11) isequal to

S @(n(FFTF--F))

(10.12)

-5 (e
+y J_rr](Fl~~
+Ziﬂ(Fl"‘
+y in(Flm
+y #n(F-
+> (F*---

(L. |:1)...|:1T|:2...|:2)
Q(FY-)---FHF2... |:2)

|:1T|:2...rl(|:2...|:2)...|:2)
FITF2...9(F2(-- ")) |:2)

Flo (T(--~))F2 --F?)
|:1r](|:1...|:1-|-|:2 |:2)|:2 - F?)

In view of (2.1), we find that (10.12) is zero. The proof of Proposition 10.8 is now
complete.

Definition 10.13
Let c',c® be A~ caegories and F':c' - c?, F%:c' = c® be A”
functors. We write C(F',F?) the graded abelian group of all pre natural transformations
between them. ¢(F, F?) isachain complex by Proposition 10.8.
A natural transformation T
transformation T' .

is said to be exact if T=0T' for some pre natura

Two natural transformations T, T2 are said to be homotopicif T- -T2 isexact.

By Lemma 10.7 we have a chain map
(10.14) c(cb) — Func(F F°)

which plays an important role in our application. We discuss in 88 12, 13 a sufficient
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condition for (10.14) to be achain homotopy equivalence (together with higher compositions)

We next define (higher) compositions of pre natural transformations

Definition 10.15
Let F':c' - ¢? i=0,--,h be A”functors and T : F* — F' be pre
natural transformations. Then their h-th composition r]h(T1 0-.-0 Th) isdefined asfollows.

(1016.0) (1 (T 00 T") (@) =na(To@ 0 0 T3(@)).

(0 0T™) 4 0-0x%)
= Zir](Fo---FOTlFl---F1T2---Fh_l---Fh_lThFh-th).

(10.16.k)

More precisely (10.16.K) is:
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(1 (T 00 ™), 04,++1%)

— 0 0
= kozkz His sl + F@(x_ 0-..0 x/f) 0.0 5% §usf) o1 O...0 x(%___wk%E
=&

1
DTml @41()+"'+f80+1 0---0 Xz‘{+~~+4,‘20+mlﬁm

1
Fé%(@%--wfﬁo +m+1 0---U Xﬁg+---+(|90+m‘+(%ﬁm

1
O lekz %ﬁf+---+f%+ml+ zi+-..+zlkfl+1 O O Xél) +...+4ﬁ0+n1+é}+~--+€1klm

2 =
DTmz %(kf+~-+éﬁo+ m+£}+---+/1k1 +1 0. X/(f+--.+(|90+n1+(}+-..+ /,kll +mQED
[
[
o
O O
h 0
U, 61 & o 0.. th_lkiéi+ -
0 0
h
th h-1k . h o th—lki . h hDD
tH s s d+3sme1 5 34+3mi
i=0j=1" i=1 i=0j=1° i
0 O
DF‘EMEIK—M(J S _1/h1D--Dthi/i ; %
+ + + / +
D |=sz=1J iglm jgl : |§0j=lJ Elm |:|

(Weremark that m = 0 isallowed in Formula (10.16.k) .)

The main result of thissectionis :

Theorem 10.17 Func(C*,c?) isan A”category. Herethe object of Func(C*,C?) isan A”
functor, morphisms of it is a pre natural transformation, and the (higher) composition map
isasin Definition 10.15.

Proof:

We are going to verify Formula (2.1). We use @, to denote the h-th
composition in Tunc(Cl,Cz) and n,, for h-th compositionin c*,c?, inorder to avoid the
confusion.

We are going to verify
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Z +®O(T---TO(T---NT---T) = a(GJ(T---T)) + zqu(T---T(aT)T---T)).
Here and hereafter we omit theindex i in Fi, T'. Theformula

> HO(T - TO(T--T)T---T)) () = Ho (®(T---T))) (@) + Y £(N(T - TET)T---T))), (a)
isimmediate from (10.16.0) and (2.1) for ¢*,c?. Henceit suffices to show

Z i(CD(T---T¢(T-~-T)T~--T))k(---)

(10.18) (DT T)), () + T HOT--T@NT---T))), ()= 0

We calculate the first term of (10.18) according to the definition and obtain

z i(CD(T...TCD(T...T)T...T))k(...)
(10.19) =Zir](F---FTF---FCD(T---T)F---FTF---F)
= zirl(F'“FTF'“FH(F"'FTF"‘FTF"'F)F"'FTF"'F)

We remark that in the right hand side of (10.19) the summation is taken over all choices so

that the number of T'sin n(F---FTF---FTF---F) isnot smaler than 2 and smaller than
k. We next calculate the second term of (10.18) and obtain
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(O(@(T---T)), ()
=0(N(T---T)(-+))+ z +P(T---T)(---0%--")
+z #(T---T)C-nC--)--) + Zirl(F...FCD(T...T)F...F)
=% +0(n(F---FTF---FTF---F))
+Z #(F---FTF---F(---0X---)---FTF---F)
+z #(F---FTF---T(---0x--")---FTF---F)
+Z #)(F---FTF---F(---n(--)---)---FTF---F)
(10.20) +Z H\(F---FTF---T(---n(---)--*)---FTF---F)
+z #(F---Fn(F---FTF---FTF---F)F---F)
= Zia(r](F---FTF---FTF-~-F))
+Z H\(F---FTF---n(F---F)---FTF---F)
+z #(F---FTF---0(F(--")---FTF---F)
+z M(F---FTF---T(---0%--)---FTF---F)

"‘Z"—ﬂ(F"'FTF"'T("'W('“)"')"'FTF"'F)
+Z #(F---Fn(F---FTF---FTF---F)F---F)

We next calculate the 3rd term of (10.18) and obtain

S HO(T - TE@NT - TH),(+)
= Zir](FmFTF~--((6T)(~--))-~-FTF-~-F)
= zi-r](F---FTF---O(T(---))---FTF--~F)
+z H)(F---FTF---T(---0X---)---FTF---F)
+Z +n(F---FTF---T(---n(---)--)---FTF---F)
+Z #(F---FTF---n(F---FTF---F)---FTF---F)

(10.21)

Therefore (10.19)+(10.20)+(10.21) isequal to
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Zﬂ](F~--FTF---Fr](F--~FTF--~FTF--~F)F~--FTF~--F)
+Zi0(r](F-~FTF--~FTF~--F))
+zi'r](|:"'FTF"'W(F"'F)"'FTF"'F)

(10.22) +Zir](F---FTF---O(F(---))---FTF---F)
+ziﬂ(F'“FVI(F"'FTF"'FTF"'F)F"'F)
+z irl(FmFTF--~0(T(---))--~FTF---F)
"‘ziﬂ(':"'FTF"'H(F"'FTF"'F)"'FTF"'F)

(10.22) vanishes by (2.1). The proof of Theorem 10.17 is now complete.

For an A”category C, we define its opposite category C° by 06(c®) =06(C),
c°(a,b) =c(b,a). Hence we can define and prove results similar to those we showed in this

section on contravariant functorsin place of covariant functors.
Our final task in this section is to extend Definitions 2.4, 10.3, 10.6 and Lemma 10.7 and

to construct an A”functor ¥ :c° - Func(C,Ch). The definition is asfollows.
For alos(C), %(a) JO6(FundC,Ch)) is an A”functor :C — Ch such that for
b 0os(C)

(10.23) (% (@),(b) = c(a,b) Dob(ch)
For x Oc(b_,h), zOC(ab,) O(%(a), () weput

(10.24) (@), (% +%) OHom(c(a,ky).c(ah,))
((% (@), 00 %) )2 =N e 2@ %)

Wewrote %,(a) as F? inDefinition 2.4. Lemma2.5impliesthat itisan A”functor.

We next define 7, (y;--y,) OFunc(%(2,), %(a)) for each yOC(a,8-) =C"(a_1,a),
a dos(c). Namely 7,(y;---y,) isapre natura transformation : % (a,) - %(a ). For
b Oos(C), we define

(10.25) (7 (y--Y,)),(b) THom(C(ay,b),C(a;,b)) = CA(( % (ay ) (b).(F:(a0)) (1))
(7 4+ ¥0) @)D =0, a-+¥,2). (20C(a,0)).

Nextfor x Uc(h_.,h), zOc(aby) D(?O(a))o(bo) we put :
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(70h-y), O+ Xy) OHOM(C (89, y).C(a, . b))
(10.26) (7 0y 0 X)) D) = M B2 ).

In Definition 10.6 wewrote %(y) =T”. Thefollowing is ageneralization of Lemma 10.7.

Proposition 10.27
F:C° - Fune(C,Ch) defined aboveisan A”functor,

Proof:

Weuse @ for the compositionin Func(C,Ch). In fact, since n, =0 for
k=3 inch) itfollowsthat ®, =0 for k=3. Thus again using symbolic notations, we
areonly to verify

0= (0 (- MA@+ S H(F(y--ay---N)-))@)
(10.28) +3 (7 Iy Dy X))@
+y (@, (7Y I N)))@

The first term of (10.28) is

@(ry- M@ + 3 £((F(y---9)--0x--)) @
+Z i((ﬂY"'Y)('"'1("')'“)))(2)
+3 £(D( %0 F(y-- )2+ (S(F- W) O Fo)(--))(@
= (v ) @) £ ((Fy--y)--))@2)
(10.29) +Zin(y--~yz---6x--~)+ Z-I_-n(y...yz...r](...)...)

On the other hand, the second term of (10.28) is

(10.30) z H(y---(Qy)---yz-).

The 3rd term of (10.28) is
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The 4th term of (10.28) is

It isimmediate from (2.1) that (10.29)+(10.30)+(10.30)+(10.31)=0. The proof of Proposition
10.27 is now compl ete.
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§11 Homotopy equivalence

In this section, we define and study homotopy equivalences between two A" categories, two
A”functors, and two objects of A”categories. This was essential in 88 5,6,7, where we
discussed well definedness of the relative Floer homology.

Definition 11.1 An A”category C is said to have an identity if there exists an element
1, OcCy(a,a) such that

(11.1.1) a1, =0.
(11.1.2) n,(, OxX)=x, n,(ydl) =y, forevery xUc(ab), yOc(b,c).
(11.1.3) Ny O0---Ox 01, 0% 0---0x,)=0fork+¢22.

The discussion in 8§10 can be generalized to the topological A™category with minor change.
(We remark also that Func(C,Ch) is an A”category if C is atopologica A”category.
Namely composition of two topological pre natural transformations is always well defined.
Thisis because intersection of finitely many Bair setsisaBair set.)

However we need to modify Definition 11.1 in anontrivial way to generalize it to topological
A”category. In fact, in our basic example Lag(X,w), the chain complex C.(a a) isnever
well defined. This is because the Lagrangian submanifold is never transversal to itself. We
will discussthispoint in 813.

Definition 11.2 Let F:c' - ¢? bean A”functor. We assumethat €2 has an identity.
We then define theidentity transformation 1o from F toitself by

(112.1) (1p),(a) =1,
(1122) (1:),(x)=x
(11.2.3) (1) (% O--0x) =0, k>1.

Lemma 11.3
01 = 0.

Proof:
(61F)0 = (61F)1 =0 isimmediate from (11.1.1). For k >1, we have:
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(016) (% O -0 x,)
= Z zin|(1+k2+1(|:(x1) a-.-0 F(Xkl)

ky +k o + =k

D(:I'F)m(xk1+l O---u Xkl+m) O F(Xli+ m+1) a---0 F(Xk1+ o+ m))
Z Zi— r]Ii+ k2+1(F(X1) 0. F(Xkl) D:I'a O F(Xkl+ m+1)D SN I:(Xk1+ o+ m+1))
m k

k. ko
k +ky+ mEk

0

Definition 11.4 Let F':c' - ¢?, i =12 be A®functors. We assumethat c? has an
identity. A natural transformation T:F' - F* of degree 0, is said to be a homotopy
equivalence if there exits another natural transformation T':F? - F' such that
N(TOT)-1, and ny(T'0T)-1_, isexact. Wesay that F' is homotopy equivalent to
F2 if there exists ahomotopy equivalence T: F' - F2.

We remark that the composition n,(T'0T) of two natural transformations is again a
natural transformation by Theorem 10.17.

It is easy to see from Theorem 10.17 that the composition of homotopy equivalences is
also ahomotopy equivalence.

We recall that achain map ¢ :C -~ C' issaid to be a chain homotopy equivalence if
there exists a chain map ¢ :C' - C and a homomorphisms H:C - C, H:C' - C
suchthat ¢'odp =1+0H, ¢ o¢p' =1+0H".

Lemma 115

Let F':C — ¢h, i =12 be A”functorsand T:F' - F? be a homotopy
equivalence. Then for any object a of C, themap T,(a) induces a chain homotopy
equivalence T,(a): F'(a) — F*(a).

The proof isimmediate from the following :
Lemma 11.6

Let F':C - Ch, i=12 be A”functorsand T,TT?:F' - F? arepre
natural transformations.

(11.6.1) If 9T=0 then T,(a): F'(a) -~ F?(a) isachain map for any object a of
C.
(11.6.2) If T'-T%=0T, 0T =0T°=0, then T,(a):F'(a) -~ F*(a) isachain

homotopy from Ta(a): F'(a) - F*(a) to TZ(a): F'(a) - F*(a).
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Proof : Immediate from definition.

We furthermore find the following :

Lemma 11.7
Let F':C - Ch, i =1,2 be A”functorsand T:F' - F? be a homotopy
equivalence. Then, for any A”functor F:C — CA, we have a chain homotopy equivalence

Func(F, FY) - Fund F,F?),
Func(F2,F) - Func(F*,F).

Proof:  Wedefine T: Func(F,FY) - Func(F,F?) by

(9 =n,(SOT).

Then it isachain map since dT=0. We can construct  7": Func(F, Fz) - FundF, Fl)
from 7':F? - F' in Definition 11.1. Using the fact that n,(TOT)-1. and
Na(T'0T)-1_. isexact, wecan proveeasily that 7'o 7 and 7o7" are homotopic to the

identity. We can prove that ﬁmc(Fz, F) - Func(F ! F) isachain homotopy equivalencein
asimilar way.

Definition 11.8 Let a,b 00s(C), xOcC(ab). Wesay that x isa homotopy equivalence,
if F(X): F°  F? isahomotopy equivalence. We say that a,b DOA(C) are homotopy
equivalent to each other if there exists a homotopy equivalence x C(a b).

Remark 11.9

Theorem 12.2 implies that if F® is homotopic to F°, then a is
homotopy equivalentto b.

We next define homotopy equivalence between A”categories. For this purpose we

define composition of A”functors.

Definition 11.10
Let F:c' - c™, i=12 be A”functors. Its composition F2oF' is
defined by

(12.10.1) (F* o FY) (a) = R7(Ry(@)) D06(C%), for aDOA(C*).
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(11.10.2)

(F*eF) u00x)= 3 +F(RA0q 00 %) 00 Fn (X g O+ 0 %)

nl+...+mﬁ:k

™ >0
for x 0C'(a1,a).
Lemma 1111 F2.F! isan A®functor.

Proof:

= %iFZ(Fl...(apl)...Fl) +ZJ_r|:2(|:1...r](|:1...|:1)...|:1)
+y tn((Fz(Fl--- Fl))...(FZ(Fl... Fl)))

= Zi|:2(|:1...(|:1(...ax...))...|:1)+ Zi|:2(|:1...(|:1(...n(...)...))...|:1)
+z H2(F.n(F-FY- P

+z +F2(FL...n(Ft---FY)---Fh

£y in((pz(pl... Fl))...(Fz(Fl... Fl)))

Lemma 11.12 F30(F20F1) :(|:3O |:2)O =
Thislemmaisimmediate from definition

Lemma 11.13 Let G:ct - c? be an A functor. It induces an A functors
G : Func(C?,0) -~ FundC',C), Gy Func(C,CY) » Func(C,C?) for any A”category C.

Proof:

An object of Func(C,c') is an A%functor F:C - C'. We put
Gy(F)=GoF. Let F':Cc - ' be A*functorsand T' O FundF' ", F'). (Namely T' is
apre natura transformation.) We put

(Gu(T 00 T") (2)=G\(To@ O+ D T(@),
(X(T---T)()= ZiG(F...p||_...|_||_...|_||_...|:)
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more precisely the later formulais:
(Gu(T D 0T"), 04 %)

) kozkziq%+..+lﬁq+ F/(l)(xl O---o Xff) U0 Ff% ﬁ(zg+...+€80_l+lm U X€8+"+/*90E
K

1
DTmi §<68+--~+490+1 0---0 X£°+ Ry +MED
1
715 TR Bt P o
1
.o D lekz %(£O+ +f0 +nl+[1+ +Zk1 1+1 |:| |:| X@+...+£O+nl+€%+---+é‘1k1[|

o

2
DTmz %(éf+---+(f80+ rrl+/%+---+[1kl+1 O---0 X/1+ +(ko+m1+(l+ +/k +m2DD

=

l

[
[
o
O O
OTh ég 0..-Ox U
my -1k i.+h_1 . h-1ki /i+2mﬁ
i:zoglkl i:zl el ZOJ% =1
O O
Fhﬁ%lk. . h a- th 1kj . h %D

sz'+2m+l ZZ/+Zm+/

i=0j=1 i=1 i0j=1 i=l

0 0
DFL‘ Lk w1 OeOXpe o » %
0

a M+1 '
D .20121’ +.21m+ 20" n20121/J+|21m

(Weremark that ¢! canbe 0 in the above formula. But m > 0.)

Then
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(@(G(TO0--0M)), @
=0(G(To+To))
= ziG(-IEJ ---O'I[)---Té()
+z iG(To"'n(To"'To)"'To)
+Z i'rl((G(To"'-lf)))”'(G(-lb"'To)))

> HG(TO---00T---0 1)) (a)
= ziG(-lbl"'a-B“'T(l)()

Zi(Gu(T"‘rI(T"'T)"'T)) (a)
=3 +G(Ty---(N(T-- )+ To)
=S #6(T-n(T- R)m
z i((D(GD(T ...... T)---Gy(T-- T)))O(a)
- Z ﬂ]( G(T+r ) @)-(G(T+--- T))O(a)) _
= > (&To-To)-O(To o))

Hence

((GyT--M)), + > HGAT 0T D),
+Z + GD(T...n(T...T)...T))O
+Z iﬂ((Gc(T'"T))"'(GEKT"'T)))O =0

For higher k,wecalculate(weuse ® for (higher) compositionsof prenatural transformations.)
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(B(GD(T .. -T)))(- )
= ((C:‘D(T---T))(---))
+Y HG(T--T))(+0x--)
+z G(T-+- TN+

+Z i’ﬂ( GoF)---(G OF)((GD(T...T))(...))(G oF)---(GoF))
=0(3 +(G(F--FTF - FTF---F)))
+Z¢(G(|:...|:T|:...|:D F(---0x---) O |:...|:))

+Z +(G(F---FTF---FOT(-+-0x--) O F---F))
ziG --FTF---FOF(---n(--)--) O F---F))
+Z_( F---FTF---FOT(-n(-)--)OF- F))

+z -_|-r](G(F---F)---G(F---F)G(F---FTF---FTF---F)G(F---F)---G(F---F))
Zi(GD(T---OT---T))(---)
= ZiG(F---FTF---FD (aT)()D F---FTF---F)

= ziG(Fu-FTF---F DG(T(-~-))D F---FTF---F)
+ZiG(|:...|:T|:...|: OT(--0x--)) 0 F--FTF---F)
+ZiG(F---FTF---F OT(-n()--)) 0 F--FTF---F)
+ZiG(F---FTF---FDr](F---FTF---F))D F---FTF---F)

z -_F(GD(T---CD(T---T)---DT))(---)
= ZiG(F---FTF---FD (CD(T---T))(---)D F---FTF---F)
= ZiG(F---FTF---F On(F---FTF---FTF---F)O F---FTF---F)

zi(CD(GD(T---T)---G[(T---T)))(---)
= Zi‘r]((GoF)---(GoF)GE(T---T)(GoF)---(Go F)GD(T---T)(GoF)---(GoF))
= zir](G(FmF)~--G(F-~-F)G(F-~-FTF-~-FTF--~F)G(F-~-F) '

-~-G(F~-~F)G(F--~FTF~-~FTF~-~F)G(F---F)~~-G(F--~F))

Therefore, using the fact that G, F' are A”functors, we obtain :
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G(GD(T~--T))+ Z +G(T---0T---T)

+z +G(T---T(T---T)T---T)
+z iCD((GD(T---T))---(GE(T---T)))

=03 *G(F - FTF---FTF-F))
+z +G(F---FTF---FO F(---0x---) O F---F)
+z +G(F---FTF---FOF(--n(--)--)OF---F)
+Zir](G(F~~F)---G(F-~-F)G(F---FTF-~-FTF--~F)G(F---F)--~G(F---F))
+y +Q(F---FTF---FOO(T(-) O F---FTF---F))
+ziG(F---FTF---Fr](F---FTF---F))F---FTF---F)
+z iG(F---FTF---Fr](F---FTF---FTF---F)F---FTF---F)
+Zin(G(F---F)~--G(F---F)G(F---FTF---FTF--F)G(F---F)

...G(F...F)G(F...FTF...FTF...F)G(F...F)...G(F...F))

=9( Y +G(F - FTF--FTF---F))
+ZiG(F---FTF---FD6(T(---))D F---FTF---F))
3 +G(F---FTF---FOO(F(--)) O F---FTF---F))
+Z +G(F---FTF---Fn(F---F)F---FTF---F))

+Z ﬂ](G(F...F)...G(F...F)G(F...|:T|:...|:T|:...|:)G(|:...F)...G(F...F))
+z +G(F---FTF---Fn(F---FTF---F))F---FTF---F)
+z +G(F---FTF---Fn(F---FTF---FTF---F)F---FTF---F)

+z iﬂ(G(F"'F)“'G(F"'F)G(F"'FTF"‘FTF"'F)G(F"'F)

~-~G(F-~-F)G(F-~-FTF-~-FTF-~~F)G(F-~-F)--~G(F~--F))
=0

The proof for G : ﬁmc(Cz,C) - func(Cl,C) issimilar. The proof of Lemma 11.13 is now
complete.

It follows immediately from Lemma 11.13 that :

Corollary 11.14
Let F':c' - c?, i=12 be A”functors. We assumethat € has an
identity. Let a natural transformation T : F' = F® bea homotopy equivalence.
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(11.14.1) Let G:c® - ¢® bean A”functor. We assumethat C> has an identity
and G sendsidentity to identity. Then G(T) isahomotopy equivalence from Go F! to
Go F.

(11.14.2) G:c® - ¢' bean A”functor. Then G,(T) isa homotopy equivalence
from F'oG to F%G.

We now define homotopy equivalence between A”categories with identity. We first
introduce some trivial notations.

Definition 11.15
Let C be an A”category. We define an A”functor 1.:C - Chby
(1)@ =a, (1), =x, (L) O 0x%)=0, k>1. Wecall it theidentity functor.

Definition 11.16

Let F:c* - c? i=12 bean A”functor. We assumethat c*,c* have
identities and F preserves identity. We say that F is a homotopy equivalence if there
existsan A”functor F':¢? - ¢! suchthat F'oF, FoF' areboth homotopic to identity
functors.

We say that two A”category with identities are homotopy equivalent if there exists a
homotopy equivalence between them.

The following lemmata can be easily proved from what we already proved.

Lemma 11.17 The composition of two homotopy equivalences is a homotopy equivalence.

Lemma 11.18 If F:ct o c? iIs a homotopy equivalence. then
F @ Fund(C?,C) - Func(Ch,C), Fy: Func(C,CY) - Func(C,C*) are homotopy equivalences.

Lemma 11.19 If F:c' - c?isa homotopy equivalence then for each a,b Dos(c)
Fl:Cl(a, b) - CZ(FO(a),FO(b)) is a chain homotopy equivalence.
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8§12 Yoneda slemma

One important result in category theory is Yoneda s lemma, which enables us to embed a
category C to acategory of functors from C (to the category of abelian group for example
in the case of additive category). The purpose of this section isprovean A”version of it.

Definition 12.1 Let ¢ bean A" category and =0 04(C). Thefull subcategory C(Z) is
the A” category such that 06(C(Z)) == and morphisms, boundary operator, (higher)
compositions are the same as C.

We define a full subcategory Rep(C,Ch) of Func(C,Ch) such that Ob(Rep(C,Ch)) is
the set of all representable functors.

Theorem 122 Let ¢ be an A%category with identity.  Then the A®functor
F:C° - Rep(C,Ch) constructed in Theorem10.17 is a homotopy equivalence.

We remark that 3rd and higher compositions are zero in  Rep(C,Ch). Hence Theorem

12.2 implies the following corollary, which simplifies the study of A”category.

Corollary 12.3 Any A category with identity is homotopy equivalent to an A” category
whose 3rd and higher compositions vanish.

We remark that there is an analogue of Corollary 12.3 for A” spaces based on Bar
construction. See[1].

Proof of Theorem12.2: We are going to construct an  A”functor G : Rep(C, Ch) — c°® such
that GoF and ¥oG arehomotopic to identity.

Themap G, :06(Rep(C,Ch)) — Ob(C) isobvious.
Weconstruct G, : Rep(C,CA)(F™, F™) — c(b, k). Let TORep(C,CA)(F™, F®). (Namely

T:F>  F2 isapre natura transformation.) We put

(12.4.3) G1(T) = To(1y,) LC(by, ).

(Herewerecall To(hy): F (k) - F*(bp) and F®(ky) =C(by, k), F™(y)=C(by,by).)

G, 1 Func(F™,F®) = c(b,k,) isachain map, since
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G,(@T) = (0T) o(d5,) = 3(To(Ay,)) = 8(6(T))

Next, let T' O %ep(C, CA(F, F™). Wedefine G, (T" 0 ---0T%) Oc(by,by) , by induction

asfollows:
(124.2) G,(T",7%) = (T2(6.(T™)) ) Do, ).
Gk+1(T1 a---0 Tk+1)
(12.4k+1) = ( G (M0 0T 00 6, (T 00T Jay).
g+ w
DC(bk+1’bl)
Lemma 12.5

G :Rep(C,Ch) — C° isan A” functor.

Proof:
We are going to verify that G, satisfy (2.2.K) by induction on k. We
already verified (2.2.1). To simplify the notation we write (12.4k+1) as

GTH - TH = 5 {T NG+ T) 6T+ )y
Now we calculate :

A(G(T - TH)+ 3 ag(-0T T £ (0T
+3 2G0T, T T + 5 26( - BT TE)
+> an(G(T - T)--G(T---T))
= a(zi(Tk”(g(T-“ﬂ“'G(T"'T)))(lbk))
k+1(g(T---T)---g(T---OT---T)---Q(T---T)))(lbk)
T g TG (T M) (L)
T GT+ T)- T+ B(T,T)--T)--G(T-+-T)))(Ay, )
(o T GT T T T )
#n(G(T--T)---G(T-T)

T
&
A
4
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= (Y (TGN G(T-T)))(dy)

Zi(T'”l G(T-T)e-G(T 0T+ T)--G(T- T)))(lb)

( +(TE (T"'T)"'Q(T"'T)))(lbk))

¥y (Tk’fl(g( ---T)---Da(g(T---T))D---g(T---T)))(lbk)
Z¢(Tk+1(g( ---T)---Dn(g(T---T)---g(T---T))D---g(T---T)))(lbk)
'y (-I-k+1(g( ---T)---g(T---'I')))(FbK(g(T---T)---g(T---T))(lbk_l))
+y (|: T --~T)-~-g(T~--T)))(Tk+1(g(T--~T)-~-g(T~-~T))(1hH))

+3 {TY G T)- D 6T ST, T)-T) O (T T)) )
+y i(-|-k+1 g(T---T)---g(T---'I')))(G(T"'T))
+Zm(g(-|-...-|-)...g(-|-...-r))

_ Zi(T"*l(g(T---T)--Dg(T---aT---T)D-“G(T"'T)))(lbk)
+3 T GT--T)- DO(G(T -~ T) - G(T--T))L,)
+3 T GT - T)-- On(G(T--T)e - GT-+-T) O GT -+ T))) (%, )
+y i(Tk"l(g(T---T)---G(T---T)))(G(T"'T))
+Zﬂ‘ G(TT) - G(T-+-T))
+3 T ( “YG(T---T)--G(T--- B(T,T)---T)---G(T-- T)))(lb«)
+2_(-|-k+1 g(T---T)---g(T---T)))(g(T---T))
+zi'f](§(T"'T)"'§(T"'T))

=0

Wethus proved that G isan A”functor.

We next prove that Go¥ and #oG are homotopic to identity. It is easy to see that
G o istheidentity functor. (Weremark that G (7(--)---#(---) = 0 for k=2.)
We are going to find a natural transformation 7 from the identity functor to 7. G and

provethat 7 isahomotopy equivalence.

Observing that (FoG),:06 — 06 istheidentity, we put 7, = identity map.

Let T' O FundF*,F?). x 0c(@-,8), zOF®(ay) = C(by,a,). Wedefine:
(7))@ = (R @), ) OF (@),
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(™), 0 %)) = (T %)) 1, D P2 @)
Let usverify (07), =0. Wefirst calculate
(67),(™),@
= (O{(Lccanh (1) DT F)) @ £ (@1 P 0 (7 9)T)), @
(12.6) +(0(%(™)), @ £ (z0TH),@

=T (729),(TY) @+ (%), @)
+(T02)a,) + (07), @),

On the other hand, we have
(7o 6)™) (2 = r,(Tol(lbo) 0 z) .
Hence, (12.6) isequal to:

1@ £n(Ts(1,) 0 2) £o((T 2)a,))
+(1162))(1,) +3((T@)ds,) £ (T702) 4s,)
+T3((R2(2)1y)) £ 2@ (T30y)

We next calculate
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((07), ™), w0)@
= 4{(o(z.(™), -0} 22 ((nET), 6c-x0)2)
i((qD(Tl 0 TO(Fbl)))h(x---x))(z)
2 of(F) 0 (72.6),(7)), ¢ 0 )
=3[ (), 0c-00) @) (™), 0<-)e2)

(12.7)
+Zi((“fl(Tl))h(X“'aX"'X))(Z)
+Z i((ifl(Tl))h(X"'n(X"'X)"'X))(Z)
+Z i((Tl(Tl))(x- - x))((Ftb (X X))(Z))
PR GREED (LIl
i((aTl)hﬂ(zx...x))(%) i(Thl(x...x))(z) +(((7 oG)l(Tl))h(x-..x))(z)
We have

(72 6)Th), 0x- 0} =n(T1y) D 20% T -0 %,).

Hence (12.7) isequal to

= 0((Tha(2x--0))4y) % (Tha @20 x-))(3)
+Zi('l}]1+1(zx---ax---x))(lqj)+ Zi(Thlﬂ(ZX'“ﬂ(X"'X)"'X))(loo)
+y i(Tl(r](zx- X)X X))(lbo) + n((Tl(zx- .. X))(lbo) O x.- x)

19 (T2 0)Ly) £ (@2 D x-30)2,,)
+ZJ—“(-|?11+1(ZX'"aX"'X))(ltb)+ zi(-lﬁlﬂ(zx“'ﬂ(x"'X)'-'X))(lbo)
+Z iTl(r](z---)---)

i(Thl(x...x))(z) + Ziq((Tl(zx...x))(lbo) 0 X...X)

H) (Tol(lq)) 0 zx-~-x)

T %)) £n(Te,) O 2¢-¥)
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Wethus verified (87), =0.

We next put
(7T 07%),(2)
= (126 0 2)ay) (), (5.),@)
= (T2(T3) 0 ) (1) + (T2((F2) 2 2s)
(7m0 1), 0x00)2
=(T2,(G(™ 0z0% 0 0x%))a,)
+i T2 (BT, 00 ))@ D300 %)) 1)
= (12,5 (T ,) 0 20 % 0 0 ,))8,)
io N ((NCRS) E N TS| oy

For general k,h, wedefine 7,,, by induction :
(T (T 0D T) (2)

+-Dk+‘£1(gk1 kol Tk) ...
m>0
120

06, (T™0--0T™%) 07, (T'0 O Tm)o(z))(l)

(Tea(T' 0D TY) (.00 %,)(@)

z fk;\lﬂ(gkl(-rk—klﬂ 0...00 Tk) 0...0 g&(Tm+1D DTm+k(/)

07,(T' 00 Tm)i(xlﬂ 0%)2) 0%,y 00 xh)(l)

Lemma 12.8
7:1- FoG isanatural transformation. (Namely 07 =0.)

Proof:
We prove by induction that (87),,, =0. We already proved the case
when k=-10. Weuse ® to denote the compositionin Func(C,Ch) and W to denote
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the composition in  Fund Func(C,Ch), Func(C,Ch)). We calculate

((a¢)k+l(T1- LTk 1)) (2)

((Tk+1(Tl k+1)) (z)) + (‘Tk+1(T1---Tk+1))O(62)

+ k+1¢(¢k+1(T1 AT Tk+1))0(z)+(Tk+l(T1---6T"+1))O(z)

W,

(12.9)

+

{7 y(Th o 0T TY) (2

=

+(T (T (T O TY)) (2

3 iw((lfunc(ﬁmﬂ (com,gunteom) (T 0 (Tk(TZ B 'Tkﬂ)»o(z)

iZk

+Z i-W((‘T(T---T)) O (7o g)(T...T))O(Z)

izk

The sum of 1st, 2nd, 3rd and 5th terms of (12.9) is

5 (TG0 T(T-T),))
+z i-l-k+1(g___g [ Cr(T---T)o(az))(l)
+y ATY G- G(-0T- )-GO 7(T--T), (@)D
+3 £TY g g0 T(--0T-), @)D
+3 £TG G- B(TT)--)-- GO T(T---T)y(2)(D
+y T GG OT(-D(TT)-), D)D)

(12.10)

The 4th term of (12.9) is
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S HoT (GG O T(T-T)o(2)D)
= 3 (TG OT(TT),@))
b SR 0 g6 DT(T-T)(2)D
+y T GG DO(T(T - T)(2)))
(12.12) +y TG On(g--6) O+ D 7(T---T)o @)D
+z iTk+1(g"' O n(G--'G O T(T"'T)O(Z)))(l)
+3 +0(F(Q) O T (g6 0 7(T-T), ))®
sofe(z(r-14) ) 7))

+3 20T g--) OF(G--6 0 7(T--T)y(2))®

(Weremark that F(y;---Vy, )@ =0 for k=>2.) The 6thterm of (12.9) is

Y+ (T O TG gOT(T-T)o(D)D
(12.12) =3 TG g0 7(T- T)o(@)(T G 6)D).
+3 #5166 DT(T-T)o(2))0)

The 7th and 8th term of (12.9) is

(12.13) Z iTk’“l(g...g 07 (T--T) 0(161(2)))(1)

+y (GG 7(T--T)(2)

We next use the induction hypothesis to calculate the term

S+ g 0a(T(T-T)y(2))(®) in (12.12). Then (12.11) is equal to
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S (T g---g0T(T---T),(2) D)
+zﬂk+1(g...ag...gg T(T...T)O(z))(l)
+3 TG0 T(T---T)(02))
+Zﬂk+1( G0 T(T-+-dT---T) D)D)
+zﬂk+1(g...gm T(T - ®(TT)---T),(2) (@)
+ziTk+1(g...gD LIJ(T1D(‘T(T---T))) (Z))(l)
+zﬂk+1(g...gg W(Z(T--T) D (7 =G)T---T), (Z))(l)
+3 4T g 0n(g-6) -G 0 7(T--T)y(2))(1)

+2¢T"*1(g--- On(g-+ 60 ‘I(T---T)O(Z)))(l)

+y J_rT""l(g---g O 'T(T"-T)O(Z))(g)

iT0k+1(Tk(Tl- : T")O(Z))

+3 (T (G--G)D) 0 GG O T(T---T)y(2)

© S

(12.14)

We remark that, by (12.4), we have

z +TN G (T2 1) G(T-- TN = g(T?--- T
(12.15) > ATHGT® - T) (T T D) = 6T TY).

Therefore most of the terms of (1210)+(12.12)+(12.13)+(12.14) cancels and this sum is
equal to:

T(';+1(T'<(g...gD T(T--T),(z )))
+zﬂk+1( —-gOT(T---T) (Tl(Z)))(l)
+ZHK+1( G0 (TP O (T T)o )2 )(1)
+zﬂk+1(g...gg Y((T--T)) O (Fog)T---T)), (2))(1)
+y J_;|-k+l(g... 0 n(g~--T(T-~-T)o(Z)))(1)
£ TH(G-6 D T(T-T)o(9))

(12.16)

It is easy to seethat (12.16) is zero. We thus proved ((69‘ )|(+1(T1--~Tk+l))0 =0. The proof
that ((97),,,(T"T*)) =0 for h>0 issimilar and henceis|eft to the reader.

We next define anatural transformation 7': ¥ oG — 1 asfollows:
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(12.17.0) T, =73,
(12.17.1) 7, = +7;
(1217.2) (T' 0 T?) (@ = £ (T (1) D 2)2,)
B(T'0T?) (% O 0 %)@ = £T7%(T () 0 20 %, 0+ 0 %,) (%)
(1217h) T, (TP 00T @ = ST (G(T--T) 0+ 0 6(T--T) 0 2)(1,)
‘Tk'+1('|'1 g---0 T""l)h(x1 00 %)@
= 3T G(T-T) O 0 6T T) D z0x O -0 %)y )

Lemma 12.18 7': FoG - 1 isanatural transformation. Namely 07" = 0.

Proof:
The proof of (87'),=0 and (97'), =0 is the same as the proof of
(67),=0 and (87), =0. Wecalculate

(07T T). @
- a(( %1(T1_“Tk+1))0 (Z)) N (‘Tli+1(T1"'Tk+1))o(az)

+ zJ_r(fz]gﬂ(Tl---aT‘---T"”))O(Z)+(Tlé+1(Tl"'aTk+l))o(Z)

izk +1

(12.19) +z -_F(‘Z/“k'ﬂ(Tl---(IJ(Ti DTi+1)~-~Tk+l))O(Z)

izk

i(frk; (T o ot 1)))0(2)

+5 Y (Fo6)T--T)O(A(T---T))), @

izk

DX ‘P((T(Tl al k)) . (1fum(fm(acﬁ),fum(acﬁ»)l(T k+l))o(z)

ik
The sum of 1st, 2nd, 3rd, and 5th terms of (12.19) isequal to

5 ia(-|-|<+1(g...gz)(l))
+Z iTk+l(§"'g 0 0z)(1)
+5 £ GG (--0T--)-- (D)
+3 AT GG TG

(12.20)

The 4th term of (12.19) is
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S #H{oT*)g - 62))
=3 +0(T“(g- @2))
+z f|-k+1 g---ag---gz)(l)
+y £ T G- g D oz)()
+z +T"+1(g~--r1(g--~g)---gz)(l)
+3 TG n(G- @)D
+3 20(F(6). T Y(g-62)(®)
+y (T (g-6). F(g--63)®

(12.21)

The 6th terms of (12.19) is

z iTk’fl(g .. gz)(T k(g ) g)(]_))

(12.22) -
+3 T TH(G--62)D)

The sum of 7th and 8th terms of (12.19) is

> +Tg--gn(g--G2) D

(12.23) .
+3 TG 62)D)

Using (1215 , we find (12.20)+(12,21)+(12.22)+(12.23)=0. We proved
((6‘]")k+1(T1...T"+1))0=0. The proof that ((97°),,(T*+-T*")) =0 for h>0 issimilar
and henceis|eft to the reader.

To complete the proof of Theorem 12.2 we are only to show the following :

Lemma 12.24 W(7O7T')=1 W(7 07)=

Func( FundC ,Cﬁ)}’rw(f[ﬁ)

We remark that to show that 7 is a homotopy equivalence we need only to show that
Y7 aO7') and W(7'0O7) are homotopic to identity. But in fact we can prove that it is
equal to identity.

Proof:
W(7 0 7"), =identity isobviousfrom definition. We have

W(T O 7'),(T) =+ B(7(T) O Tg) £ N7, 0 7'(T)) = 0.
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For higher k, we calculate

W7 0O ‘I’)k+1(T1...Tk+l)
= icD(Tk +1(T1.. -Tk+1) H ‘T(;) + CD(‘TO 0 q~kr+1(-|-1_._-|-k +1))

+i S(T(TL T O T,y (T T
=

k
= i‘Tk_,_l(Tl...Tk) + q~kr+l(T1...Tk+1) + ZCD(‘Z(TlTI) 0T, (TI +1.“-|-k+1))
i=1

We then have

(WET D T)nn (T4 T) (2)

=5 2T GG OT(T--T)y(2))0)
(12.25) +Z ﬂ—k+1(g_._g 0 Z)(l)

k .
+;i-|—k+1(g...g Og(Th T )O (z))(l)
We remark that
Y #1560 T,@)®) =Y 156 0 2(1).

Hence (12.25) implies (WO 7"y (T T") (22=0.  The proof of

(W@ DTy (T TE) =0 issimilar. Wethus proved W(T 07) =4,

Fune( Fund(C Ch ), Func(C Ch)) '

We turn to the proof of W(T UT)=1,;. WY(7' O 7T), =identity and
WY(7'07T), =0 iseasy toshow. We have

W(T' O Tpuy(TH- T
= 2O(T (TH- T O Tp) £ O(Tg O Ty o (T TH))

+i CD(Q}'(Tl"-Ti) H Tk+1—i(Ti+l"'Tk+1))
=1

k
= 37y (TH T £ G (T T 4 3 O (T T) O Ty (T TH)
=1

We are going to prove
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£ (Th T £ 7y (T T4

(12.264) FS AT T O Ty (T TH) = 0
=1

by an induction on k. The case when k=0 isaready proved. Suppose that (12.26.
k —1) iscorrect then we have

(W' 0 Da (T T) (2)
=5 2 Tg-g 0 T(T--T)y(2))
+y TG~ 02)(D)
(12.27) +ZiTk”(g~-g 0T (T---T)o(‘fi '(Tl---Ti ))))(l))

i>0

— ZiTk+l(§-" g N ‘Ti(Tl"'Ti)O (Z))(l)

i>0

+3 g g (T 1), @)

i>0

+i>zo +T k+1(g,..g 0 q-}(-l-i+1'_.-|-i+j )0(‘Ti,(-|-1“_-|-i ))))(1))
>0

We use induction hypothesis and find that (12.27) vanishes. The proof of
(VT O D)y (T T) =0 issimilar.

The proof of Lemma12.24 is complete. The proof of Theorem 12.2 is now complete.
We finally prove the following lemmaused in § 9.

Lemma 12.28 Let ¢ bean A" category with identity, a J06(C), F OFundC,Ch) . We
assume that F preserves identity. Then, Func(F® F) is chain homotopy equivalent to
F(a).

We define

(12.29) T:Fa) - FundF*F)

as follows. Let yOF(a). We define pre natural transformation 7(y) : F* - F. For
zOF%(by) OC(ahy) weput

(12.30) T()@ =(R@)(y) OF(by).
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For x UC(b_,hh), weput
(12.31) (T) (% %)@ = (Feaa @ %))y) OF(D).

Wefind

(TW)I@)

= 3 #0((Feaa@-)) + ¥ #(Feea 020 3 X,)XY)
+3 HReg (20 0x-)0) + 3 £(F@ D)) ()
+5 #F@(z) )+ ZiF(--')(F(Z-")(Y))

By (2.2Kk) thisisequal to T (--)(2. Thuswe constructed a chain map (12.29). We define
O: Func(F*,F) ~ F(a),
by
(12.32) o(T) = (Ty(a))(1,) D Fa).
Wehave ©o T =identity. Toseethat 7-® ishomotopic to identity, we take a short cut

by using Corollary 12.3. Using it, we may reduce to the case when higher compositions in
C aretrivia. Inthat case © isobviousy anisomorphism, which complete the proof.

We remark that, in fact, we do not need to introduce 7 for the proof of Lemma 12.28
itself. But we need explicit formula (12.31) in the discussion of § 9. Namely we use the
fact that Formula (9.25) coincides with Formula (12.31). See Remark 13.17 also.
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§ 13 Approximateidentity

Our purpose in this section is to describe a modification we need to handle the case of
topological A category which does not have an identity. We use the notion, approximate

identity for this purpose. We also discuss the existence of approximate identity for our
example Lag(X,w).

Definition 13.1 Let ¢ beatopologica A” category. We say that ¢ has an approximate
identityif for each a [JO6(C) there exists an open neighborhood U, of a in 04(C) and
anelement 1., OCy(ab), 1, OCy(b a) for each element b inaBair subset V, of U,,
which have the following properties.

Let n be an positive integer. Let n®©

be the set of all subset = of order n of
06(C). Thenforany = inaBair subset of n” | there exists V,(Z) which is a Bair

subset of an open subset U, (=) of U,, such that the following holds for each b OV, (Z).
(13.2.1) 01y, =0, 01, =0.

(13.2.2) If cd=, then n,:c(c,b)d Aaba) - c(c,a) and
N,:ccaDc@b) ~ cch)  ae well defined and  ny(n,(x01y,) D)= x,

rlz(r]z(X' 0 ]a;b) O J;;b) =x', for xOc(c,b), x' Oc(c,a).

(13.2.3) If c =, then n,:c(b,a) 0 c(ac) - c(b,c) and
n,:C(a,b) 0 c(b,c) - C(a,c) are well defined and nZ(J;;b Dnz(la;b [ y)) =y,

No{Las ONo(Lyp D))=y for yOc(b,c), y' Oc(ac).
(13.2.4) If ¢, 0=, k=0,¢20, k+/=3 then

Ny - C@, &) O+ 0 C(ag—y, &) U C(a,b) U C(b a)
Oc(@,ay41) 0 C(as1,842) - 0 C(@s 1,844 ) —» Cay, 8c4p)

r|k+z+1 : C(a:L’ 32) -0 C(ak—l’ 6&) H C(ak!a) O C(a, b)
Oc(b,a.1) O C(ay1,82) 0 C@s 1,8 0) = C(8g,844y)

are well defined. (In case k =0 the target is C(b,a,,,) and C(aa,,). If ¢=0 the
targetis C(a;,a) and C(a;,b).)

(13.2.5) In the situation of (13.2.4),
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N (X OO %, 0L, Oy O---0y,_1) =0,
N (X O -0 % UL, Oy O -0y, 1) =0.

Remark 13.3

In Definition 13.1, we assumed that U, isaneighborhood of a. In case
we will try to include non simply connected Lagrangian submanifolds (in future), this
assumption seems not appropriate. Thisis because if A’ is C' closeto A butisnota
Hamiltonian perturbation of it, then HF(A',A) has no natural identity element in general.
Sincewedo not consider nonsimply connected L agrangianin thispaper, we put that assumption
here.

Let ¢ beatopologica A® category with approximate identity and =0On%) be a
generic subset of 06(C) order n. Wedefinean“ A” category C(Z)” asfollows. (Infact
C(Z) isnotan A" category aswe will soon explain.) The set of objects of C(Z) is =.
By choosing = generic, we may assume that for each a U=, a #a; (i#j), the k-th

composition

Nk C(ag,a) 00 C(a-p,a) - C(ag,8),

iswell defined. We choose i(a) OV,(=-{a}), foreach a=. (Wetake = genericsuch
that V,(=-{a}) exists) We define

c(=)(aa)=c(@a) if aza'.
c(=)(a,a) =c(ai(a)).
We now define k-th composition n" in C(3). If @& #a (i#]), then

Ni: C((ag,a) O DC(E) @ 1a) ~ C(E)(a,8) isequa to ny.
The k-th composition n(x, O--- O %) is defined only for x OC(a_;,8&) such that

thereisno iy,i,,i; with a =g =4a_ . (Thus C(Z) isnotan A” category.) In that case

the definition is asfollows.
Weput X =n,(1,4),%) If 1=, and X =x otherwise. We put
(13.4) Ni(Xq OO %) =N (X, O--- 0 X,)

Wealso define 1, OC(S)(gaa)=C(aa’) by 1,=1,,.
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Lemma 13.5
If thereisno iy,i,,i; with & =a, =a_ then n' satisfy Formula (2.1) for
xUc(@-1.8).

Proof:
We calculate

Zir]’(xm Dn’(xx)DD X)
= 3 (& 00N, (10N’ (x++x)) 00 %)

G41=G-2
G-17Ci2
= YMERO-00' (A0 %)0--x) 00 %)
G-17G-2
+ Zi-r](x D---DI’]'(Xi---X)D---DX)
G-17Ci2

- Ziﬂ(XD"'Dn(X'”X)DWD X)

The lemmathen follows easily.

Lemma 13.6
1, satisfiesconditionsin Definition12.1. More precisely :
(13.6.2) If , azb xOc(=)(a,b) wehave
Ny, 0%) =X, Ny(x0 )= X.
(13.6.3) If % UOC(=)(a_;,8&) and if non of the three elements among a,,--,8,,a

coincides then we have
rl'k+1(X1 g..-0 X qu DXi+1 g..-o Xk) =0
for k=2.

The lemmafollows easily from definition.
We can then repeat the proof of Theorem 12.2 and obtain the following. Let
Rep(=)(C,Ch) Dbe the full subcategory of Func(C,Ch) such that the set of its objects is the

A” functors represented by elements of =.
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Proposition 13.7

For every generic finite sst =0n”), there existsan “ A® functors’
F:c(2)° - Rep(=)(C,ChR), G :Rep(Z)(C,Ch) - Cc°(Z) such that Go# is an identity
functor and oG ishomotopic to identity.

Remark 13.8

Since higher composition of (=) is not defined somewhere, G is not
defined somewhere. Thisis the reason we write “ A” functors’ in Proposition 14.6. The
precise statement will become clear during the proof.

Proof:
The proof is similar to the proof of Theorem 12.2. So we only gives
necessary change.

We define

F: C(E) — Rep(=)(C,CH)

in the sameway as 8§ 11, using composition n' namely :

(F O Oy OO X)) =" (O Oy 020 % 00 Xp)

This is well defined if y,0C(b,hb_,), X OC(a_;,&), zUC(by,a,) and non of the three
elements among by, a; , coincides.

We define

G Rep(S)(C,Ch) - C(3),

again in the same way. Namely T Dy’unc(Th‘l,Tb‘). We put

G (T =n (1bo;i(bo) O Tol(lbo;i(bo) )) Hc(by,by) =C(=)(by, k),

if b, #b,. Otherwise it is not defined. G, defined by the same induction formula as in
§12. G (T--T%), T' OFundT™,T") iswell definedif b, areall distinct.

Then Go# is identity functor. However it is not everywhere defined. Namely
(Go 7). (O Oy) isdefinedonly if y; OC(ly,h_,) and b, areall distinct.

We next consider FoG. We remark that (((grog)k(-rl...T"))h(x1 ag---0 xh))(z) is
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defined if T' O FundT%,T), x 0C(g_p,a), z0C(by,a,), by are al distinct and if non

of the three elements among b;,a;, coincides. Therefore, if b, are al distinct, then

(?og)k(Tl---Tk) is well defined as a topological A™ functor. Hence it is a morphism in

Rep(=)(C,Ch).
We define 7:1 - FoG and 7':¥oG -1 by the same formula as the proof of

Theorem 12.2. Then 7, =7, =identity map isdefined and 7 (T*---T), Z:(T--T) is
defined if T' O FundT*,T%) and b aredl disinct. W(707')=1, W(T' O7)=1 is
proved in exactly the same way. Note that (W O7'))(T---T)=0 and

(W O7))(T--T*)= 0 holdsonly for T' O Fund(T**, T”) with b, areall distinct.

Definition 13.9 Let ¢, ¢’ be topological A”categories with approximate identity. Let
F:C - C' beatopologica A”functor. Wesay that F preserves an approximate identity,
if for each a Jos(c) in aBair subset, there exists an open neighborhood U, O U, of a,
where U, isasin Definition 131, suchthat F(l,,) =1¢ ¢ @ ad F(ip) =150 F,m
foreach b inaBair subset of Uj].

Let ¢, C' betopologicad A" categories with approximate identity. Let
F:C - C' beatopologica A”functor. We say that F is aweak homotopy equivalence, if
it preserves an approximate identity and if there exists F':C' - C such that if
F(2)= Rep(2)(C,CH)° - CT - €' - Rep(F(I))(C',Ch)° and
F'(): Rep(S)(C,CR)° - O - ' — Rep(F(Z))(C',cA° are homotopy equivalences for
every finiteset = of objects.

The following is an immediate corollary to Proposition 13.7.

Lemma 13.10
Let F:C - C' beaweak homotopy equivalence. Then we have

(13.10.1) Fs:C(ay, &) — C'(F(ay),F(a)) isa chain homotopy equivalence for (a,,&)
ina Bair subset of Ob(C)?.

(13.10.2) The following diagram commutes up to chain homotopy for (a,,8;,a,) inaBair
subset of Ob(C)®.
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C(ayg,a) U C(ay,a,) OcF - C(ap,a,)
| FOF I F

C(H(&).F(a))
Oc(F(a).F(a,)) O - C(F(&).F(ay))

Diagram 13.11

Remark 13.12 Thereisone point in which our discussion so far on approximate identity is
unsatisfactory. Let a and V, asin Definition 13.1. It seemsthat it is not automatic from
our definition of approximate identity that chain homotopy type of C(a,b) isindependent
of the choiceof b in V,. However this fact holds (and seems important) in our examples.
In fact, in the case when C = MS(M), this facts means that chain homotopy type of
Morse-Witten complex is independent of the choice of Morse function. In the case when
C = Lag(M,w), itimpliesasimilar well definiedness of Floer homology.

It should also be possible to show that C(a,b) is chain homotopy equivalent to
Func(F%,F%) if bOV,. (Weremark that the chain complex Func(F®, F*) iswell defined
while C(a,a) may not be well defined.)

These points are related to the problem of transversality along diagonal and may be

essential. There might be away to find a good axiom from which they follow automatically.
Since the author could not find it, we do not discuss this point in this paper.

Now we consider the case of our basic example Lag(X,w) and construct the approximate
identity of it (modulo analytic detail).

Our basic tool isa method of proof of [22].

Let X be asymplectic manifold with ¢'(X)= N[w], N=2, and A be asimply
connected Lagrangian submanifold in X. A neighborhood of A can be identified to a

neighborhood of zero of the cotangent bundle T'A of A. HenceaLagrangian C'-close
to A isidentified with agraph of aexact oneformin A . Therefore aneighborhood of A

in 06(Lag(X,w)) isidentified to aneighborhood of zero of C”(A).
For f OC"(A) let A; denote the corresponding element in  06(Lag(X,w)). We
remark that Lag(\,N\;) isisomorphicto MS(f) asan abelian group.

We remark that the 0-th homology of Morse-Witten complex MS(f) has a canonical
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generator, that is z[p]. Welet thiselementbe 1, , . Also Lag(A,A) OMS(=f) hasa
u(p=0

canonical generator, whichweput 1) . .

Our main resultis:

Theorem 1313 If N=2 for X then 1, , , 1) o, areapproximateidentity.

Outline of the proof:

Let us verify (13.2.2), (13.2.3) and (13.2.5). Let A’ be another smply
connected Lagrangian submanifold. We may assume that they are transversal to A. Let
.0, =An/A". By choosing f enough smal, we may assume that A' is aso
transversal to A; and that there is a canonica one to one correspondence
AnNOAnAN.Let ¢,--,q, =A; n A"

Next we remark that the union of stable manifold &, of p for p(p)=0 isdensein

A . Hence we may assumethat ¢, O UStp. Wethen have:
H(p)=0

Lemma1314 n(ix,, 0la])=[9], nq] OLys,) =[g].

This follows from Theorem 13.15 below and the same statement with A and A

exchanged.

Theorem 13.15
Let p beacritical pointof f with p(p) =0. Then, for sufficiently small

f wehave:

MN (AN PG, ) =0 if i # ]

MA AN G ) =0 if g OS(p)

MN NN pq,d) ={onepointt if g US(p).
Sketch of the Proof:

The first equality iseasier. Infact supposethat M(A( ,AA';pq,q) #0 for f, - 0.
Then we have a pseudo holomorphic disk which bounds A O A" and contains g; and g

on the boundary. We remark that p(q;) =H(q;). Hence using the assumption of simply

connectivity of A, A’ and N=2, wefind that this pseudo holomorphic disk belongs to
the moduli space of dimension > 4. Thisisimpossible since we are considering the limit of
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theelement M(A ( ,A,A';p q,q;) whichisof Odimensional.
The construction part of the third equality follows the method of [22]. But we need to
modify a bit. First we need to construct a gluing dataat ¢,. In aneighborhood of ¢, we

scale everything then 3 Lagrangian submanifolds A, A, A" look like atriple of linear
Lagrangian submanifoldsin C". Namely A=R", A; OR"+.-1V. Here V isthe
gradient vector fieldof f at q. Usingthefact that A" istransversal to A wecanfind

a linear holomorphic disk in C" whose boundaries are in these three linear Lagrangian
submanifolds and which is (tV,s/=sv) (sD[0,1, tO(-w,~R]) outside a compact set.
Uniqueness of such aLagrangian submanifold isimmediate since our equation together with

itsboundary valueislinear.
So we can use this pseudo holomorphic disk as gluing data around g .

The other gluing date is constructed by using gradient line which goesfrom ¢, to p in

exactly the same way as [22].

The method to glue them is again the same as [22].

The proof that there is no other solution and the proof of the second equality is the same
as the uniqueness part of the proof of [22] Part |. This complete the outline of the proof of
Theorem 13.14. (The detail will be in the subsequent paper.)

We continue the proof of Theorem 13.13 Lemma 13.14 implies (13.2.2), (13.2.3).
(13.2.5) is aconsequence of the following Lemma 13.16. Let A; be asimply connected

Lagrangian submanifold such that A; are transversal to each other and to A. Let
X ONi_yn ;. Hereweregard Ay =A, A, =/N\;.
k+1
Lemma 13.16* Let 2p(><i)+(k+ D-3=0 and p(p)=0. Then for generic A, and
i=1
small f, M AN NG P Xy %) = O

Sketch of the proof:

Let X, UOAN A, bean eement closeto x.,0A, nA;. Then by
dimension counting, we have M(A, Ay, A Xy, X Xpsp) =0 . Lemma 13.16  then
follows from the limit argument similar to the proof of the first equality of Theorem 13.15.
The detail will be in a subsequence paper.

Lemma 13.16 implies
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M) 0 Ol X O LRI O [% 10+ O [ %o [X]} = 0.

(13.2.5) follows immediately. We thus gave a sketch of the proof of Theorem 13.13. The
detail will appear together with other analytic detail of the symplecitic part of the story of
this paper.

Remark 13.17 We remark that we used Lemma 12.28 in the proof of Theorem 9.3. To
generalize it to the situation we need we have to show the following :

Theorem 13.18*
Let N, E, ¥ beasin§ 3. Then the topological A” functor
HF(N, E) : Lag(R(Z),Ch) preserves approximate identity.

The proof of Theorem 13.18 is similar to the proof of Theorem 13.13 and will be given in
a subsequent paper.

We finaly remark one consequence of Theorem 13.18. Let A, A, LOb(Lag(X,w)). We
first remark that

Proposition 13.19*

If A, isa Hamiltonian perturbation of A, then the topological A”
functor represented by A, ishomotopy equivalent to the topological A”functor represented
by A,.

The proof issimilar to the Floer’ sresult on the independence of the Lagrangian intersection
Floer homology by Hamiltonian perturbation. We remark that Theorem 13.18, Proposition
13.19 together with Lemma 12.18, imply the following :

Theorem 1320 Let Ay,A, ob(Lag(R(Z,E)), andlet A, isaHamiltonian perturbation
of A\,. Then HF(N, E)(/,) ischain homotopy equivalentto HF(N, E)(A,).
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