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8 0 Introduction

In this paper, we study mirror symmetry of complex and symplectic tori as an example
of homological mirror symmetry conjecture of Kontsevich [24], [25] between symplectic and
complex manifolds. We discussed mirror symmetry of tori in [12] emphasizing its “noncom-
mutative” generalization. In this paper, we concentrate on the case of a commutative (usual)
torus. Our result is a generalization of one by Polishchuk and Zaslow [42], [41], who
studied the case of dlliptic curve.

Themainresultsof thispaper establishadictionary of mirror symmetry between symplectic
geometry and complex geometry in the case of tori of arbitrary dimension. We wrote this
dictionary in the introduction of [12]. We present the argument in a way so that it suggests a
possibility of its generalization. However there are various serious difficulties for the general-
ization, some of which we mention in this paper.

In this paper, we will define a new family of theta functions on complex tori, which we
call multi theta function. It is a generating function of the numbers obtained by counting
holomorphic polygons in tori and describe various product structures (Y oneda, and Massey
Y oneda products) of the sheaf cohomology group on its mirror.

We recall that one famous application [7] of mirror symmetry is that a generating
function of the number counting rational curves in a Calabi-Yau manifold is equal to the
Y ukawa coupling, a product structure of sheaf cohomology, of its mirror. In the case of
complex tori, there is no rational curve. Hence the statement above is void. However, if we
include Lagrangian submanifolds on symplectic side and coherent sheaves in complex side,
we can derive many nontrivial consequences of mirror symmetry. Exploring them is the
purpose of this paper. Namely we find relations between counting problem of holomorphic
polygons (O loop correlation function of topological open string) and product structures of
sheaf cohomology in its mirror. We remark that including Lagrangian submanifolds and
coherent sheaves correspond to including branes. $So it is naturally related to the recent
progress of string theory. (See for example [40].)

L et us describe the results of this paper.
In § 1, we show a way to construct a complex manifold which is a moduli space of
Lagrangian submanifolds (plus line bundles on it) of a symplectic manifolds (M ,w) , together

with B field B, (that is a closed 2 form). (We put Q:oo+\/—_18 .) This complex
manifold is expected to be components of the moduli space of coherent sheaves (more
precisely objects of the derived category of coherent sheaves) of the mirror (M ,Q)D. A
component of this moduli space which isto correspond to the moduli space of the skyscraper
sheaves is the mirror manifold (M ,Q)D itself. Thisis an idea by Strominger-Y au-Zaslow
[47] . There are various troubles to make this construction rigorous in the general situation.
In the case of atorus, we can make it rigorous and define amirror torusin thisway.

In 8§ 2, we show away to associate an object of the derived category of coherent sheaves
of the mirror (M ,Q)" to a Lagrangian submanifold of (M ,Q)”. There are again troubles
to make this construction rigorous in the general situation. We make it rigorous in the case
of affine Lagrangian submanifolds of tori. Namely we construct a holomorphic vector
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bundle HL,H of (T2”,£2)D for each pair (L, of an affine Lagrangian submanifold L
of (T?",Q)" andaflatlinebundle £ on L.
Sections 3 and 5 are devoted to the proof of :

Theorem 3.1 H*(T?",9", 7L, 9) OHF*((Lg,0),(L,1).

Here Ly is the Lagrangian submanifold of (TZ”,Q) which corresponds to the
structure sheaf of (T*",Q)" and HF is the Floer cohomology of Lagrangian intersection.

(11], [38], [17].)

We prove also in § 6 an isomorphism

Theorem 6.1 Ext“(E(L,, £,), B(L,, £,)) OHF*((Ly, £,),(Ly, £,)) -

In 83, 86, we also give explicit isomorphismsin Theorems 3.1 and 6.1 in case k=0,
by using the relation between theta function and product structure of Floer homology. (We
give explicit isomorphismsfor higher cohomology in 8§ 11.) We also prove the commutativity
of the following diagram (Theorem 6.5.)

HF(L, 4).(L,, £) OHF(Ly, 5) (L &) —  HF((L,4).(Ls, %))
! !

Hom(H(L,, 4), HL,, L)) O HOM(HL,, 5); AL, L)) - Hom( AL, 4), AL3, L))

Diagram A

Here the vertical arrows are the isomorphism isin Theorem 6.1. The horizontal arrow in the
first lineis the product structure m, in Floer homology. (See 8 3.) The horizontal arrow in
the second line is the composition of homomorphisms.

In § 7, we study a moduli space fM(I:) of the pair (L,5 and show that it is a
component of the moduli space of vector bundles on the mirror (TZ”,Q)D. We aso
construct a universal bundle ® - M(L)%(T?",Q)". Namely the redtriction of 2 to
{(L,9} x(T*. Q)" is HL,r). We aso discuss holomorphicity of the maps m, with
respectto (L,2).

In 8 8, we study the case when pairs of affine Lagrangian submanifolds L,, L, are not
transversal to each other and generalize Theorem 3.1 to this case. We aso discuss the case
of disconnected Lagrangian submanifold. When several components coincide, we find an
example of the phenomenon called enhanced gauge symmetry.

In 88 9,10,11,12 , we study higher products m,, k =3. This operators m, are defined
by using multi theta functions. Multi theta function is a generating function of the counting
problem of holomorphic polygons in C" with affine boundary conditions. (The author
would like to thank M. Gromov who introduced the problem counting holomorphic polygons
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in C" to the author.) The number counting holomorphic polygonsin C" is the simplest
nontrivial case of “open string analogue” of Gromov-Witten invariant. By the same reason
as Gromov-Witten invariant, there isatransversality problem to define this number rigorously.
In the case of open string version, the problem is more serious. Namely the methods
developed to define Gromov-Witten invariants rigorously are not enough to establish its
“open string analogue” rigoroudly. In fact, in the most naive sense, this number is ill-defined.
Oh [38] discovered this trouble in arelated context of Floer homology theory of Lagrangian
intersections. Thebasicreasonissimilar to thewall crossing problem discovered by Donaldson
[8] to define Donaldson invariant of 4 - manifolds with b, =1. In our case, this problem is
related to the fact that Massey product is well-defined only as an element of some coset
space. Donadson introduced a chamber structure to study this ill-definedness of Donaldson
invariant. For our problem of counting holomorphic polygons, we need also to study a
chamber structure. In our case, the wall (that is the boundary of the chamber) may also be
ill-defined. Namely the point where the number of holomorphic polygons jumps may also
depend on the perturbation. (This problem is pointed out in [12] § 5.) We will find that the
“homology class of the wall” is well-defined, and will determinesit. Figures 10 - 15in § 10
are examples of the combinatorial structure of the chamber we found. The homology class of
wall in turn contains enough information to determines m, modulo homotopy equivalence
of A” category. (See[15] for its definition.) Our way to determine the coefficients of m,
is constructive. Namely there is an algorithm to calculate it. More precisely, we formulate
Axioms (Axiom I,11,111,1VV) which the number counting holomorphic polygons is expected to
satisfy. We then prove the following :

Theorem 10.17  There exists a coefficient function . satisfying Axioms I,11,I11,1V.

(Here the coefficient function is one which is supposed to be the number counting holomorphic
k + 1 gons and which will be a coefficient of the multi theta series we introduce.)

Theorem 10.18 Let G, ¢ be two coefficient functions satisfying Axioms I,I1,111,1V.

Then ¢ ishomologuesto ¢.

Using the coefficient functions ¢, obtained in Theorems 10.17, we define multi theta
series by

©.1) ZQ[Vl V1 Ve T Vil eXp(_ZT[qvl Y1 Vi * Vieer)
| "'2”\/__120‘i(ﬂi+1‘ n—li))

Here v parametrize the affine Lagrangian submanifoldin C" parallel to agiven one. The
sum is taken over all (y,,::,Yx+1) Whichrunin certain latticein R k-2) Qv Vierr)
is the symplectic area of the k + 1-gon bounding the union of affine Lagrangian submanifolds

parametrized by v, and is aquadratic form of index k-—2. a; isaflat connection on the
affineLagrangian submanifoldand p;,, isthepoint wheretwo affine L agrangian submanifolds
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(i-thand i + 1-th) intersect. (See 8 9 for precise definition.)

(0.1) gives a usua theta function in the case k=2. (Incase n=1 this fact was
observed by Kontsevich in [25].) Incase k=3, (0.1) is an indefinite theta series which
looks similar to those used by Goétche-Zagier [21] to study Donadson’s polynomial invariant
inthecasewhen b, =1. Incase k=>4, it seemsthat (0.1) isanew family of theta series.

Using these multi theta functions as matrix elements, we obtain maps

m,tHF((L, 4),(Ly, 5)) O OHF((Ly, )5 (L1 Lesr))

0.2
(0.2) - HF((Ly,4),(Lys1, Lesn))-

If wemove L;, 4 then m, moves. Thuswemay regard V,, -,V 10, Q4 8S
variables also.

Let us explain Axioms I,I1,111,1V we put to coefficient function ¢ briefly. The
essential part of Axiom | asserts that QV;,--,V,,) IS positive if G[vy, -, Vieq]l IS
nonzero. It implies that (0.1) converges. On the other hand, it is a consequence of the
positivity of the volume of holomorphic disk.

Axioms 1,I11 are equivalent to Maurer-Cartan or Batalin-Vilkovisky master equation :

(£) (L)  (£2) _
(0.3) dg '+ zi G, ' °G,” =0.
0+l =041
kq +ko=k+1

Here qE/“)) is a generalization of ¢ and is adegree ¢ current valued version of it.

(qﬁo) =g isalocaly constant function.) d is the De-Rham operator with respect to v,
variable.
Inthecase ¢ =-1, (0.3) reducestothe A® formulae

(0.4) > £m eom,, =0,
ky+ Ky =k

introduced in [45],[13]. Theoriginof (0.3) and (0.4) in symplectic geometry isadegeneration
of holomorphic polygons.

We remark that a differential equation (0.3) appears in many literatures recently. (See
[1], [46] , [3], [28], [44] etc.) The L™ version appears mainly in those literatures. (0.3) is
an A” version. (Here L standsfor Lieand A for associative.) We use (0.3) to prove

(074) o

(0¢;) _
K =0.

mk2

Theorem 10.49 5m&0/‘) + z +m
0+l 41
kqy +ky=k+1

Here we use qﬁ/‘) inthesameway as G to define mé”, that isadegree ¢ current whose

value isin the homomorphism bundle (0.2). mlﬁoe) in Theorem 10.49 isthe O/ part of it.

In the case when k=2, (0.3) will be dcﬁ” =0. Hence cy) define a De-Rham

cohomology class of certain space. Axiom IV assertsthat this cohomology classisagenerator.
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Using Morse homotopy [16] of quadratic function and [18], we prove that the counting
function of holomorphic polygons satisfies Axiom IV. (Theorem 10.15.)

In § 11, using m, we define isomorphisms in Theorems 3.1 and 6.1 explicitly in the
case of higher cohomology (Theorem 11.28). (The proof of Theorem 3.1 and 6.1 in 88 3,5,6,
are based on Riemann-Roch's theorem and is not constructive in case k >0.) We remark
that in our situation, Floer cohomology HF"((Ll ,4),(L,,L)) iseasy tocaculate and has a
natural basis. Hence the isomorphism in Theorems 3.1 and 6.1 gives a canonical basis of
sheaf cohomology. Using thisisomorphism, we generalize Diagram A to

HF (L, 4). (L, £)) OHF (L, £).(Ls ) —  HF'((Ly,4).(Ls, L))
! !

Ext“(HLy,4), AL, L)) OExt (KL, L) KLy, L)) -  BExt*" (AL, 4) HLs L))

Diagram B

(Theorem 11.18.) Wealso provethat m, will become the triple Massey-Y oneda product in
sheaf theory. (Theorem 11.23.) We can prove a similar results for higher Massey-Y oneda
product. But it is rather hard to state it, because higher Massey product is defined only on
certain subset and is well-defined only as an element of certain coset space. Theorem 12.5is
a better way to stateit.

In 88 1 - 11, we considered semi-homogeneous sheaves in the sense of [32]. In § 12,
we consider more general sheaves, using its resolution by semi-homogeneous sheaves. Let
X;; OHF((L;, 4),(L;,4)). We consider equations of the form :

(0.5) z tmk(xiOil 'Xik_lik)zo

Kio =T i =j
foreach i,j. (See 8§12 for precise notation and sign.) We prove:

Theorem 12.5 There exists a family of the objects of derived category of coherent sheaves
on (T2n Q)" parametrized by the solution of (0.5).

Note that (0.5) is a polynomial of x; and its coefficients are special values of multi
theta functions. Roughly speaking, the object in Theorem 12.5 is the cohomology sheaf of

the modified Dolbeault operator d =0 + Zim(k”(-,x---x). Theorem 10.49 and (0.5) imply
000 =0. Theorem 12.5 seems to be related to the monad or quiver description of the
moduli space of stable sheaves. (See Example 12.30.)

We next calculate the conomology of the sheaf obtained in Theorem 12.5. Namely we
show

Corollary 12.25 The cohomology group of the objects in Theorem 12.5, is isomorphic to
the vector space of the solutions of the following linear equations (of §.)
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imk(51 Xigiy ’Xik_lik)
K, iy ST =

imk(xiliz "X ’%) =0.
K,iq =1, =]

We prove a similar results for an extension of two objects in Theorem 12.5. (Theorem
12.23)

We explain in § 12 that a mirror of the system satisfying (0.5), is a smooth Lagrangian
submanifold obtained from Lagrangian tori L, by Lagrangian surgery. Thus, in various
cases, a mirror of a sheaves which is not semi-homogeneous, is a Lagrangian submanifold
which is not affine. Then Corollary 12.25 and Theorem 12.23 provide a way to calculate
Floer homology between Lagrangian submanifolds in tori.

A conjecture of Mukai implies that every sheaf on (T2",Q)" isobtained asin Theorem
12.5. (See Conjecture 12.27.) Thus, if we assume Mukai’s conjecture, Theorem 12.5 and
Lagrangian surgery will give a correspondence between Lagrangian submanifold and objects
of derived categories, that is the homological mirror conjecture of tori.



8 1 Moduli space of Lagrangian submanifolds
and construction of a mirror torus

In this section, we construct a mirror torus of a given symplectic torus (T*",Q) such as

n
T =C ”/ (Z -1z ) , Q ON{(T?). (Note that the complex structure of the torus T>"

will not be used below. We use it only to set the condition Q OA™(T>").) Asin some of
the other sections, we first give an idea which the author expects to work in more general
situations. We then will make it rigorous in the case of atorus.

Let (M,Q) be a symplectic manifold (M,w) together with a closed 2 form B on
M. Hereweput Q =w +/-1B. (Note -B+~=1o isusedin many of the literatures.)

Definition 1.1 Lagf (M,Q) isthesetof al pairs (L,£) withthefollowing properties:

(1.2.2) L isalagrangian submanifold of (M,w),
(1.2.2) £ - L isaline bundle together with a U(1) connection O“ such that
F.=2n/-1H, .

We put the C” topology on Lag™ (M,Q). This space is of infinite dimensional. We
will divide it by the group of Hamiltonian diffeomorphisms. The quotient space is a finite
dimensiona manifold. Let f:M x[0,1] - R be a smooth function and we put
f.(X)= f(x,t). Let X;, denotethe Hamiltonian vector field associated to f (X). Itinduces
aone parameter family of symplectic diffeomorphisms ¢ : M x[0,1] - M by :

d
(13) OO =X, Z(x1) =X, ().
Weput ¢,(x) =¢(x1). Thediffeomorphism ¢, iscalled aHamiltonian diffeomorphism.

Definition1.4  Let (L £),(L',£)0Lay (M, Q). Wesay that (L, £) isHamiltonian
equivalentto (L',£") if thefollowing holds. There exists f :M x[0,1] -~ R such that the
map ¢ :Mx[0,1] - M solving (1.3) and satisfying ¢,(L)=L'. Also there exists a
connection 0 on T, £ — L x[0,1] with the following properties.

(1.5.1) F,=2n/-1 B,

(15.2) O, =0°

(1.5.3) There exists an isomorphism (L, O(L',0) covering ¢, .

Lx{l})

It is easy to see that Hamiltonian equivalence defines an equivalence relation on
Lag™ (M,Q). Let Lag"(M,Q) denote the quotient space with quotient topology.

Remark 1.6 In[47], Strominger-Y au-Zaslow proposed closely related but abit different
moduli space. Namely they proposed the moduli space of the pairs of special Lagrangian
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submanifolds and flat line bundles on it. It seems that, by taking a specia Lagrangian
submanifold, we take a representative of Hamiltonian equivalence. However one needs to
study some open questions to clarify the relation between two moduli spaces. Let us mention
some of them.

Problem 1.7 Let L,L" bespecia Lagrangian submanifolds of a Kéhler manifold M.
Suppose that there exists a Hamiltonian diffeomorphism ¢, suchthat ¢,(L) =L'. When
doesitimply L=1L"'?

Problem 1.8 Let L bealLagrangian submanifold in a Kéhler manifold M. When
does there exist a Hamiltonian diffeomorphism ¢, suchthat ¢ (L) isaspecial Lagrangian
submanifold ?

There are examples where the answer is negative for Proposition 1.8. The moduli space
of the pairs (L,£) of specia Lagrangian submanifold L in a Calabi-Yau manifold and a
flat U() bundle £ has acomplex structure. In a similar way, our moduli space has a
complex structure as we will soon define. (In our case, we do not need to assumethat M is
a Calabi-Y au manifold and can start with a general symplectic manifold.) However, in fact,
we do not know whether it is a manifold, since we do not know whether £ag"(M,Q) is
Hausdorff or not.

Problem 1.9 Whenis Lag"(M,Q) Hausdorff ?

In fact, it is more natural to consider a local version of Problem 1.9. Let
(L, £)0Lag™(M,Q). By Darbout-Weinstein theorem, aneighborhood U of L in M is
symplectically diffeomorphic to aneighborhood of the zero section of T L. We denoteit by
P:U - T'L. Let o isthestandard symplecticformon T'L and B beaclosed 2 form
on T'M which coincideswith .B in aneighborhood of zero section.

Condition 1.10 ¢ induces a homeomorphism from an open neighborhood 7  of
[L,£] OLag"(M,Q) toan open neighborhoodsof [L, L] DLaj(T*L,oo’ +J-1B).

Furthermore, the following holds. For each € there exists 7. a neighborhood of
(L £) in Lag"(M,Q), suchthat if (L,.),(L,L,)0U, and if they are Hamiltonian
equivalent to each other, then the function f in Definition 1.4 can be chosen so that its C'
normissmaller than €.

The reader who is familiar with symplectic geometry may find that Condition 1.10 is
closely related to the flux conjecture. (See[26].)

Proposition 1.11 Let KO Lag (M,Q). We assume that Condition 1.10 holds for
each [L,£] OK. Then a neighborhood of K in Lag"(M,Q) hasa structure of complex
manifold.
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Proof: Let [L,£]OK. We are going to construct a chart on its neighborhood. Let
{0, beloops representing a basis of H,(L,Z) and [L',£'] bein aneighborhood of
[L,£]. By Condition 1.10, we may assumethat L' is C' closeto L. Hence we may
assume that it isa graph of aclosed oneform u on L. Weput L'=L, =graphof u. We
define @ :S x[0,1] -~ TL by @(st)=tu(/,(). Weput

(112) h(L',£) = b, o () exp(-2[6 Q).
Lemma 1.13 h, defines a map froma neighborhood of [L,4 in Laj(M,Q) to C.
Proof: Suppose [L',£']=[L",£"]. We need to prove h(L',£)=h(L",£"). To

save notation, we assume (L",£") =(L,L£). Wemay assumealsothat L'=L, =graphof u.
Using Condition 1.10 we find that u is exact and that the function f in Definition 1.4 can

be chosen to be independent of t. Moreover u=df . Therefore exp(—J'cpi*m)=1. We put
0° = d/ds+ads, 0° =d/ds+ Bds where sO[0,2r1] is the coordinate of S' and a,p
are u(l):\/—_lR valued functionson S'. Then (1.5.2) and (1.5.3) imply

21 21 21 1
#] ads—#] Bds:%] déjl] dt Fp.
0 0 0 0

Therefore we have

hpi(u)(ﬂ)eXp(_zn‘/__lﬁp?B) = h&mm)(L)'
Lemma 1.13 follows.

By Lemma 1.13, h=(h,--,h,) 1is a map from a neighborhood of [L,4 in
Lag"(M,Q) to C". Then again Condition 1.10 impliesthat h isinjectivethere. Wetake
h asacoordinate around [L, 4 . It isstraightforward to verify that the coordinate change is
biholomorphic. We thus proved Proposition 1.11.

We now consider the case of a simplex torus, (T>",Q), where Q=w+,-1B isa
complexified symplectic form. We assumethat Q ishomogeneous. We put V = T2 the
universal cover. V isa2n - dimensional real vector space. In this paper, we are studying
the commutative case. It means that weassume the following :

Assumption 1.14 There exists an n- dimensional linear subspace I:pt of V such that
Q- =0 andthat ' n L, 0Z".
pt

We write I:pt since this will correspond to the points (skyscraper sheaves) in the

n
mirror. As we remarked in [12], this assumption is satisfied if T =C ”/(Z + \/—_12 )
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and Q is of 1-1 type. Let M(I:pt) be the set of all [L,£] DLag+(T2n,Q) such that the
universal cover of L isparale to I:pt. It is easy to see that Condition 1.10 is satisfied for
this K:M(I:pt). We also observe that M([m) is a connected component of Laj(TZ“,Q)

We are going to describe the complex structure we obtained on M (I:pt). We put
V' =Hom(V,R). Let xOV. Wedefine | :VOV - C by

(1.15) L.(v,0)= Q(x,V) +/-10 ().

It is easy to see that there exists a unique complex structure on VOV~ such that
| :VOV - C iscomplex linear for each x OV .

Let L be a Lagrangian linear subspace of (V,Q). Then there exists a natural R -
linear surjection: VOV _.V/LDL where L —HomR(LR) It is aso easy to see that

there exist a unique complex structure on V/ LOC such that the map
VOV - V/LOL iscomplex linear.

Let (v,c)DV/I:IOt O fpt. We obtain an affine subspace I:pt(v) = I:pt +v and its
quotient L (V) OT?. On the other hand, © is regarded as a flat connection [J; on the
trivial bundle on L (v), by the isomorphism R Ou(l), o - 2r/~1o. Let 40) denote
the pair of trivial line bundle and the connection ;. Hence (L(Vv),0) =(Ly(\V),L0)) is
anelement of Lag ™ (T7,Q).

Weput I =1 (T*") and

(1.16) (r n Em)D :{uDE*pt| OyOrnl, wy) 0z } .

Itiseasy toseethat (L,(Vv),0) isHamiltonian equivalentto (L (V),0") if and only if

~ ~ \O
v-v O/ n Ly, o—o'D(I' n Lpt) . We define

v/[ptmlf‘pt

Definition 1.17 M(I:pt) = . -
(r/r n Lpt)D(I' n Lm)

It is easy to see that the complex structure we defined by using (1.15) coincides with
one by Proposition 1.11 in this case. Now we use Strominger-Y au-Zaslow’s ideato define:

Definition 1.18 Amirror (T*",Q)" of (T*",Q) is M(L,).

We remark that M(I:pt) may depend on the choice of I:pt. Hence there are many
different mirrorsof (T*",Q).

Remark 1.19 In Definition 1.1, we assumed  Fj :2n\/—_18|L. On the other hand, in

the case of atorus we assumed F; =0, qL =0. Note that there exists aline bundleon L
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satisfying the condition Fj :21'[\/—_1B|L if and only if [B|L] OH 2(L,Z). Therefore, if we
change B by adding a harmonic form B, representing an element of H*(T?",Z), and if
wereplace £ by L0 L0|L, where £, isacomplex line bundie on T>" with connection

suchthat F, = —2r[\/—_180, then we have F; =0, QIL =0. Thus, in our situation, we may
assume F; =0, QIL =0 instead of Fj; =2Tt\/—_1B|L without loosing generality.

Before studying the case of a torus more, we return to the genera case and add a few
remarks. In fact, the moduli space £ag"(M,Q) we defined above, istoo big for our purpose
in the general case. For exampleif L isany compact Lagrangian submanifold of C" then
it is automatically contained in any M as a Lagrangian submanifold. We want to avoid
such a“local” Lagrangian submanifold. Inthecaseof M = T?, [42] avoid a Lagrangian
circle which is homologous to zero. One way to do so is to restrict ourselves to special
Lagrangian submanifolds. Certainly Lagrangian submanifolds of C" are not minimal and
hence not special. However there are cases we do not want to restrict ourselves to special
Lagrangian submanifolds. For example, in the case when M=%, a surface of higher
genus, there is only one spacial Lagrangian submanifold (closed geodesic in this case) in
each homology class. As a consequence, the moduli space of pairs of special Lagrangian
submanifolds and flat line bundles on it, is odd (one) dimensional. In the case of Calabi-Yau
manifold however such a phenomenon never happens by [30].

The way we are proposing here is to restrict ourselves to the Lagrangian submanifold
for which Floer homology is well-defined. We discuss well-definedness of Lagrangian
intersection Floer homology in[17]. We define there a series of obstructionsin H®"*(L Q)

Using it and constructing generating functions in a similar way as the definition of the
boundary operator 0 , we “obtain” elements of H®*(L,C). (However there are troubles
to establish the obstruction theory in this way. What we prove in [17] is somewhat weaker
than that. ) Formally (namely modulo convergence problem) this class gives a holomorphic
map from Lag"(M,Q) (if we include appropriate quantum correction of the complex
structureon Lag"(M,Q)). It seems reasonable to expect that Condition 1.10 is satisfied for
the Lagrangian submanifold for which Floer homology is well-defined.

Conjecture 1.20 Condition 1.10 is satisfied if the obstruction classes defined in[17] vanish
for (L,0.

It might be possible to use Floer homology to solve Conjecture 1.24 in a similar way as
[39], [26].

We remark that in the case when H, _..(L.Q) - H, . (M,Q) is injective, the
obstruction classes in [17] are automatically 0. Here, in our case of affine Lagrangian
submanifoldsin atorus, the obstruction class vanishes automatically.

Remark 1.21 The relation between Problem 1.8 (the existence of a specia Lagrangian
submanifold in a Hamiltonian diffeomorphism class) and vanishing of the obstruction classes
of [17] ismysterious also.
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We recall that Becker-Becker-Strominger [4] found a relation between D-brain and
calibrated geometry by studying the condition for D-brain to preserve supper symmetry. Our
conditionin [17] isonesothat d0 =0 holds after modification. These two conditions may
be related to each other. We remark that speciality isalocal condition while the vanishing of
obstruction class is a global one. This might mean that, after adding appropriate correction
terms, the BRST symmetry (00 =0) is not broken in perturbation theory and soliton effect
only can break it.

We denote by £ag(M,Q) the subspace of £ag"(M,Q) consisting of the elements
represented by the pairs (L, £) such that the obstruction classes vanish. We used this
notation Lag(M,Q) intheintroduction of [12].

We remark that there is one very important point which is not mentioned above. Namely
the author does not know how to compactify the moduli space Lag(M,Q). In the case of a
torus, we do not need compactification, since our component of Lag(Tz“,Q) is already
compact. (Seehowever §8.) Ingenera, we need to include singular Lagrangian submanifolds
for the compactification. A related serious trouble is how to define Floer homology between
such singular Lagrangian submanifolds.

We remark that the complex structure discussed in this section seems to be the same one
as [47], [31],[20]. One needs some “quantum correction” to obtain a complex structure of
the mirror in the case when one needs a compactification, we do not discuss it here since in
the case of tori we do not need it.



14

8 2 Construction of a sheaf from an affine
L agrangian submanifold

We next construct a sheaf from an affine Lagrangian submanifold. Again we first
present an argument which might work in more general situations than the case of tori.

Let (M,Q) beasymplectic manifold with complexified symplectic formasin§ 1. We
assume that there exists a component of Lag(M,Q) which is isomorphic to the mirror
(M,Q)". Weremark that this assumption is rather restrictive. A more realistic assumption is
that an appropriate compactification of Lag(M,Q) isamirror ( M,Q)D. Since the author
does not know the way to work in this generality, he discuss only this restrictive case in this
paper.

Let (L,£) be another element of Lag(M,Q). We are going to find an object of a
variant of the derived category of coherent sheaveson (M,Q)". Let usfirst explain what we
mean by it. Let X beacomplex manifold. We consider a system, (ui,fi’,q;”.) such that :

(2.1.1) X =(_JU, isan open covering.

(2.1.2 Foreach i, % isacochain complex of coherent sheaveson Ui .

(2.1.3) For eech i,j with U nU;#0, ¢;; is a morphisns of sheaves
OfF - F< Such that 8% =¢{78" and that ¢{; induces an isomorphism
Of . H(F) > #*(%) of cohomology  sheaves. (Here we  put
H4( 7)) = Kerd [ 1ms 1)

(2.1.4) 0 ob . isidentity.

(2.1.5) 0, 00K =0, on U nU;nU,.

Two such systems are said to be equivalent to each other, if there exist chain maps of
sheaves which are compatible with ¢;;’s and induce isomorphisms on cohomologies. We
say an equivalence class of such a system (Ui,jﬁ',q)ij) an element of OWD(X)), the
derived category of the sheaveson X. This definition may be a bit different from the usual
one, since usually one considers global chain complexes of sheaves. The problem to
determine when our definition coincides with the usual one is delicate and is not discussed in
this paper. Morphism between two objects is defined in the same way as the usual derived
category. (See[22].)

Remark 2.2 In(2.1.4),(2.1.5), we assumed that the maps ¢ j arecompatiblein cohomology
level. In order to introduce A” structure ([15]), it seems necessary to assume higher
compatibility. Namely we need to assume: ¢ ; o¢;, ischain homotopicto ¢/, by achain
homotopy H; ;, : the composition H ;> ¢; , ischainhomotopicto ¢;;°H;,, : andso
on. Then the equivalence relation we need is also more strict. We will obtain A™ category
rather than derived category in thisway.

Now we sketch the way how an element (L,£) of Lag(M,Q) defines an element of
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OKD((M,9)")). The argument here is sketchy since the author does not know how to make
it rigorous in the general situation. We will make it rigorous in the case of an affine
Lagrangian submanifold in atorus later.

The basic idea is to use a family of Floer homologies. Let x O(M,Q)". We identify it
withapar (L,L£,). (Moreprecisely theequivalenceclassof (L ,£,) is X.) By changing
the representative L, if necessary, we may assume that L, istransversal to L. We
choose a small neighborhood U, of x in Laf(M,Q) and also smooth family of
representatives  (L,,£,) for y[U,. Wemay assumethat L, istransversal to L. Now

we define vector bundles UyEU CFk((L,L),(Ly,[y)) - U, asfollows.

k -
(2.3) CF (L. L).(L,, L) = p[LDm LyHom(Lp,Lyp).
e(pFk

Here k 0Z2/2Z and g(p) is 1 if T LOT,L, OTM isorientation preserving and is -1
otherwise. L, isthefiber of thebundle £ a p and L, isthefiber of thebundle £, at
p.

Since L, istransversal to L for each y, itisobvious that (2.3) defines a complex
vector bundleon U,. We need to define a holomorphic structure on this bundle to obtain an
element of OWYD((M ,Q)D)). A problem to do so is “gauge fixing”. Namely there is a
trouble to choose a representative £, in an equivalence classes, since £, has a nontrivial
automorphism U(1). This problem, in fact, already appears to define (2.3) as a vector
bundle. (See Remark 2.10.) Thisis adelicate point and will be discussed later in the case of
atorus.

Next we use Floer’ s boundary operator with local coefficient (together with Kontsevich’s
modification) to define

(24) 8" CFY((L,9.(Ly.5)) » CFY((L,D.(L,.4)).

Roughly speaking (2.4) is defined as follows. Let p,qUL n L, suchthat &(p)=k+1,
€(q) =k. We consider the moduli space of pseudoholomorphic disks ¢ :D? -~ M such
that ¢ (6,D*) 0L, ¢ (3,0 0L, ¢(-1)=p, ¢ (@ =q. Here 9,D* (resp. 9,D*) isthe part
of oD* satisfying Imz=0 (resp. Imz<0). Thenthe Hom(Hom(Z,,£,), Hom(Z,, L))
component o, , of (2.4) is

(2.5) 8q.p8= Y iexp(—ZT[J'cI)*Q) P,(0,D%)o aoPLy(alDz) .
[

Here  alOHom(L,,ZL,), P.(0,D%): L, L, s the paralel transport dong the path
¢(61D2)D L and PLy(azDz):Lyq -~ L, is the parallel transport along the path
¢(62D2) 0 Ly. Thesign + isdefined by the orientation of the moduli space of pseudohol-
omorphic disks. The same argument as Floer’s [11], [38] “proves’ 46 =0.
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Figure 1

The argument here is not rigorous since we do not know the convergence of (2.5).
Moreover, in fact, we need to modify the coboundary operator & sothat &0 =0 issatisfied
and this modification can be done only in case when (L, £,) U Lag(M,Q) . (See[17].)

Our definition of complex structure on Laf(M,Q) isdesigned so that & will become
holomorphic if we put an appropriate holomorphic structure on CF* (L £),(L,,L)). Thus
we have a cochain complex of sheaves (holomorphic vector bundles) on U, .

We remark here that the chain complex we obtained is Z, graded rather than Z
graded. Wewill define Z grading later in the case of atorus.

We thus constructed (2.1.1) and (2.1.2). The construction of the chain homomorphism
(2.1.3) isroughly asfollows. Let U, nU, #0. Weput V=U, nU, . Foreach yOV,
we have two representatives (L, j, 4 ,), (L,,,L,,). Here (L., 4,) iscloseto (L,,%,)
and (L,,,£,,) iscloseto (L,,L,). Weremark that (L, ,,% ;) isHamiltonianequivalent
to (Ly,,% ). Werecal that the Floer conomology of Lagrangian intersection is invariant
of Hamiltonian diffeomorphism. (See [17] for the proof.) Namely there exists a chain
homomorphism

(2.6) ¢, CF((L, L), (Ly1 £, ) » CF((L L), (L, L))

which induces an isomorphism to the conomology. (The construction of (2.6) is not rigorous
because of a convergence problem. In [17], we go around the convergence problem by
introducing a formal power series ring, that is the Novikov ring [37].) The proof there
“implies’ that we cantake¢ , so that it depends smoothly on y. Moreover it isholomorphic
if we define holomorphic structurein an appropriateway. (2.1.4) and (2.1.5) are consequences
of the standard argument in Floer theory, which shows that (2.6) is canonical modulo chain
homotopy. (See [11].) Thus we sketched an idea of a construction of an element of
OoD((M ,Q)D)). (In fact this object is the dual of one we associate to (L,£). This will
become clear from the remarks we will give later in this section.)

Now we make the above idea rigorous in the case of a torus. Let I:pt be as in
Assumption 1.14. In fact we need another Lagrangian linear subspace also. Namely we
assume::
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Assumption 2.7 Ly isan n-dimensiona linear subspace of V such that Q|L~S =
Mnl, 02" andthat Ly n L x(0) isonepoint. Here Ly =Ly/LynT.

We write Ly sinceit will correspond to the structure sheaf of the mirror. The reason

we need to fix I:SI will be explained later. It is easy to see that such I:St exists (if I:pt
exists), but is not unique.

Now let LOV be another n-dimensiona linear subspace such that QlL =0. We
assume dso that LnT OZ". We take an affine space L paralel to L and put
L= L/Ln M. L isa closed Lagranglan submanifold of T*". Let o DHon‘(L R) andwe
regard it as a connection of atrivial bundleon L. Hence (L) is regarded as an element
of Lag(T ,Q). We assume, for simplicity, that L istransversal to L . (Weremove this
assumptionin §8.) We first construct a smooth complex vector bundleon (T°",Q)".

~ ~ O ~
We will define a (F/I‘ N Lpt)D(F N Lpt) action on the trivial bundle HL,a) on

V/L,OL,. Let (vo)OV/L,OL,. Weput Ly(v) =Ly +v andlet Ly(v) OT™ be
itsquotient . We put

Z(l—,a)(v,cr )~ pDLnDI_m(v)C[ Pl
Let yD(F/I’ N [pt). Itiseasy to seethat L(v) =L(v+Yy). Therefore, by definition,
%(L,G)(V’O) coincides with i(L,a)(yWYG). Thus we defined an action of l‘/l‘ N I:pt on
HL,0).
~ ad ~ ad
We next define an action of (I‘ N Lpt) . Let uD(I‘ N Lpt) . K isahomomorphism

from I:pt to R. Weregard it asagauge transformationon L, (v) asfollows. Wetakethe
(unique) point X,(V) DI:pt V)n Lst. For xE]I:pt (V) weput:

0,0 () = exp(2rTy/=Ip(x - xo(V))).

g,v isaU( vaued map and hence is a gauge transformation. Since p(y)JZ  for

yar n Est, it followsthat g, , inducesamap L, (v) - U(1). Wedenoteit by the same
symbol. Then we define

(2.8) u(cpl) =g,,(p) clrl,

where pOL n Ly(v). Here we remark that we regard the right hand side as an element of

NﬂL’B)(V,p+0‘)'

~ ~ \O -
Lemma 2.9 The actions of yD(F/F N Lpt) and uD(F n Lpt) on HLa)ys), We
defined above commute to each other.
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Proof: Weremarkthat #L4 n L (0) =1 impliesthat (I' N I:pt)D(F N I:g):l' . Hence

wemay regards y LIN n I:ﬂ. Then, by definition, we have g, .., /(x+y) =g, ,(X). Lemma
2.9 follows from the definition.

~

~ O ~
Thus we defined an action of (F/I‘ N Lpt)D(I‘ N Lpt) on E(LB). Let
£(LB) - (T?",Q)" bethe quotient bundle.

Remark 2.10 In the above construction, we used Ly to regard elements of

~ O
(F nL pt) as gauge transformationson L (V). Namely we require that the gauge transfor-

mation is identity a Ly n Ly(v). Thisisthe way we kill the authomorphism group U(1)
of theflat bundleon L, (v).

We next are going to construct a holomorphic structure on Z(L,3). It suffices to
construct its local (holomorphic) frame for this purpose. We use a term of a theta series for
this purpose as follows. Let (v,0) DV/Lpt O Ept. Wetake p UL n Ly(v). We will define

aframe e; whosevauea (v,0) is [p. Here P isaliftof p to ﬂpt(v). Let
(v,0')DOV/L, O L, beinasmal neighborhood of (v,0). Wefind p'OL n L,(V) and
itslift p’ whichliesinasmall neighborhood of p and p respectively. We define

e _(V,0')=ex %Tt Q-
ha ( ) P .[D( PXo(W,Xo(v'), )

21tJ=1(0 (%(V) = B) + 0" (B' = %(V)) +a (P - B)))

(2.12)
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Fa

Figure 2

Here  D(P,X,(V),%(V),p) in (211) is the union of two triangles A, ), v, ad

A, ypp- Hereafter wewrite
(212) Qabed)= [, ..o

Using Stokes' theorem we can prove ({a,b,cd) =Qb,c,d,a). We put
(213) 50 (V.,0) =€, (V,0)[ P].

Lemma 2.14 below implies that e;; is a section of HL,a) in a neighborhood of
(v,o) O(T*",Q)". If wetake P for each pOL n Ly(v), then ez, pOL N Ly(v) isa
local frame of the bundle Z(L,[(3).

~ ~ |
Lemma 214 If y D(I‘ N Lpt) and uD(I’ N Lpt) , then there exists a holomorphic

function g(v,0') suchthat e;;(V,0) =gV,0)€5.y 54, (V,0' +H).
Proof: Weput g(V,0') =€;,(v',0")/€s,,(V,0'). By (2.11), we have

(2.15) loge;., (V,0") —loge;(v,0') ==2ml (V -Vv,0" —0).
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Here I, isasin(11.5).

Fot) B By L)
%(¥) P By Lo 09
£¢ ) L+
Figure 3

By Lemma 1.17 and the construction of complex structure, (2.15) impliesthat Vv ,0') isa
holomorphic function of (v',c'). On the other hand, we have

o+ (V.0 + 1)/ 85, (v.0") zexpl2m/=1( T ~xo(¥) = P+ xs() ) = 0, (B, (B
Hence u(eqic(v’ ,0’)) =g, (Peqo+p(V,0'+ ). Theproof of Lemma2.14isnow complete.

Lemma 214 implies that there exists a unique holomorphic structure on
Z(L,B)q(TZ”,Q)D such that e isalocal holomorphic section. We thus constructed a

holomorphic vector bundle HL,B) - (T*",Q)".

Proposition 2.16 If (L,a) is Hamiltonian equivalent to (L',a') then HLa) is
isomorphicto HL'a').

Proof: We suppose (La)=(L(w),a), (L'a)=(L(w+¢&),a +0). Here
e0(r/rnl) ad ¢OfnL). sne Lw+E=Lw) it follows tha
E(L(w),a) OFL(w+¢),a). Choose and fix yOL(w). Let pOL(W) n Ly (V),
POL(W) N Ly (v). Welet § bealiftof y in L(w). Wedefine

(217) P(p1(LW),0)) = (expl2r/ 7L (5~ ) Pl (L(W,0)).
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Here ([ pl,(L(v),0))O %(L(W),G)(V’G ) Itis straightforward to see that (2.17) is compatible

~ ~ O
with the actions of (I'/F N Lpt)D(F N Lpt) and is independent of the lift y. Wecan aso

verify easily that W define an isomorphism W: HL(w),a) - AL(w),a +{). Hence Prop-
osition 2.16.

We will prove a converse of Proposition 2.16in 8 7.

Before going further we add several remarks on our construction. First the way we
constructed the bundle AL ,a) isa consequence of the dictionary between symplectic and
complex geometry itself. To see this, we first recall that, by the construction of Strominger-
Yau-Zaslow, the pair (L, (v),0) is to correspond to the skyscraper sheaf at the point

(L(v),0) D(TZ”,Q)D. (We write it HL(V),0).) Namely an n-brane (L,(V),0) in
(T",Q) corresponds to a O- brane in (T7",Q)”. Let (L) 0LagT>",Q) be another
element. Suppose that it correspondsto asheaf L) on (T,Q)". Then our dictionary
implies

(2.18) HF((L.a),(Lx(V),0)) OEX (AL a), HL x(V),0)) .

Inour case, HL,a) isavector bundle. Hence we can identify Ext(HLa), AL (V),0))

to the dual vector space of the fiber of HL,a) at (L(Vv),0) D(TZ”,Q)D. This was the way
wedefined Z(L,a).

We next explain the reason why we need to fix I:s[ to define ALa) - (TZ”,Q)D. Our
purpose isto construct a functor

(2.19) Lag(T*",Q) - D((T™,)")

so that the Lagrangian submanifolds parallel to I:pt are mapped to the skyscraper sheaves.
Note that the automorphism group of the category D((TZ”,Q)D) is rather big. Mukai
constructed (see [33], [34]) a symmetry, called Fourier-Mukai transformation. In fact, we
can see such asymmetry from mirror symmetry itself. Namely the*mirror” of aFourier-Mukai
transformation (or S-duality) is realized by a symplectic diffeomorphism of (TZ”,Q). This
phenomenon, that is S-duality will become easier duality in the mirror, is observed by
physicists in more general situations and is called the duality of duality.

So there can be many possible ways to construct the functor (2.19). The ambiguity is
described by Fourier-Mukai transformation which sends skyscraper sheaves to skyscraper
sheaves. If we see such transformation in the mirror (TZ”,Q), they are (linear) symplectic
diffeomorphisms which preserve I:pt. For example, if we consider the case when n=1,
then the group of linear symplectic diffeomorphisms of T? is an extension of T2 by
9(2,Z). Thisgroup S(2,Z) will become the S-duality group of the mirror 22, The

A nC
element of 9.(2,Z) which preserves R [0 C isamatrix of the form H) 1E. To kill this

symmetry we need to fix a direction transversal to R. This is equivalent to fix the
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Lagrangian submanifold which becomes the structure sheaf of the mirror tori.

We remark that here we put the trivial bundle on Ly . But we can in fact put any flat
line bundle on L, instead. The change of the choice of the flat bundle on Ly (and
changing L4 to another affine Lagrangian submanifold Ly(v) parallel to Lg) corresponds
to the connected component of the automorphism group of D((TZ”,Q)D) (that it the group

(T2",Q)" itself) . We defined an action of (r n Ept)D to HLoa) insuchaway that the
bundle £(Ly,a) is trivial as a complex vector bundle. Also the construction of the
holomorphic structureon HL o) isdesigned so that £(Lg,0) isatrivial as aholomorphic
bundle. (Namely s,(V,a')=1 inthat case)

We next define alift of Z ,- degree of the Floer cohomology to Z . We first recall the
following fact which we mentioned in[12] 8 4. The Floer degree n(p UZ of pOL, nL,
is not well-defined in the general situation. In general, only the difference n(p) —n(q) is
well defined, (modulo twice of the minima Chern number See [38].) In the case of a pair
of mutually transversal affine Lagrangian submanifolds Ll, L2 inatorus, n(p —n(q) is
always zero. But we do not have a canonical way to define r](Ll,LZ) n(p asan mteger
(n(p Oz, iswell defined.) However, for three affine Lagrangian submanifolds L the
Maslov index (Kashiwara class, see [23]) iswell- deflned asfollows. We choose acomplex
structure J on V and aLlagrangian linear subspace L0 such that L0 JL0 are transversal
to L1 L2 Ls Using J, weregards V=T L0 (Herewe regards JL0 astheflber) Then
Ij., i =1,2,3 are graphs of exact 1 forms dV(L0 L) Here V(L0 L) IS a quadratic
functions on I: Let r‘]*(I:i ,L) be the index of the quadratic form V(LO,L ) - V(LO,Ll)
Then we define

(2.20) (2L o) =20 =( (L. )+ (Co B+
and can verify that (2.20) isindependent of I:O J.

Remark 2.21 In the general case, r](l;l:zlia) (more precisely r](plz, ng,pe,l) where
p; 0L n L;) iswell-defined modulo twice of the minimal Maslov number. In fact, it isthe
minus of the virtual dimension of the moduli space of pseudoholomorphic triangles. In our
case, minimal Maslov number is0 since T, (T>",L)=0. Hence n(l;,l;,lis) is well-defined
as an integer.

In our situation, we aready fixed two Lagrangian linear subspaces I:pt and I:st Using
them, we can define Z grading of the Floer homology HF((L,0),(L,)). Namely we
define so that HFk((Lst,O),(L,a)) isnonzero only if :

(2.22) k=n"(LL)

(when L istransversal to I:St and I:pt) and
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Definition 2.23 N (L L) =n(Lg, LL,).

We are here using the conomology degree r| which is related to the homology degree n

by n=n-n. Let L L2 be apair of mutuallytransver&al affine Lagrangian submanifolds.
We assume also that they are transversal to L and LSt

Definition 2.24 n'(L,L,) =n"(Ly,Ly) —n"(Ly, L) +n(ly. L, L) .
Lemma 2.25 o o . o

(2262)  n(L,L)+n (L) =n (L. L)+n(L.L.L).

(22620  n'(CL)+n (LL)=n.

Proof: By definition we have

(2.27) n (Li,L2~)+~r1 (LZ,L~3)—~r1~(L1,L3)~ o
=n(L. L, L) +n(Lg L, L) —n(Lg, Ly, Ly).
(2.20)and A°(L;,L;)=n-A"(L;,L;) implies:

(2.28) r](lzstil:bl:z) +r](|:st1|:2’|:3) :rl(l:pl:z,l:s) +r](|:st’|:l’|:3)'

(2.27) and (2.28) imply (2.26.1).

To prove (2.26.2) we recall
(2.29.1) n(Ly,L,,0p) =2n —(r‘]*(I:S,El) +77 (L, L) + r‘l*(iz,lzg)),
(2.29.2) n(Ly,C,p.Lp) =2n —(r‘]*(I:S,Ez) 7 (L,L) + ﬁ*(lzl,lzg))-

(2.29), (L ,L J)—n M (L;,L;), and definition imply

n*(LlJ—z) +r]*(|-2’|—1) =n(Lg.Ly,Ly) +n(Lg,Ly,Ly) =n.
The proof of Lemma 2.25 is complete.

Let us explain the reason why we defined n’ (I:1, I:Q) asin Definitions 2.23 and 2.24. It
again comes from our dictionary. The dictionary requires:

(2.30) HF ((Lg.0),(L(\),0)) OEXt “(0, KL 4 (1),0)).

Here @ isthe structure sheaf and HL (),0) isaskyscraper sheaf. It is easy to see that
the right hand side of (2.30) isnonzero only for k =0. Therefore, we need to choose

~ ~

(2.31) n(LyL,)=0.

pt
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On the other hand, since AL ,a) islocaly free (in the case when L istransversal to
L), it followsthat HF*((La),(Ly(¥),0)) DExt“(AHLa), AL 4(V),0)) is nonzero only
for k =0. Therefore we choose

(2.32) n (L,L,)=0.

’ pt

We aso require (2.26.2). ((2.26.2) isthe mirror of Serre duality. (See Remark 3.3.) )

Definitions 2.23 and 2.24 follow from (2.26),(2.31) and (2.32).

We remark that the mod 2 degree of Floer homology is canonically defined provided the
Lagrangian submanifolds are oriented. We have chosen orientations of I:St and I:pt So
that the intersection number Lge L, (v) isplus 1. For third Lagrangian subspace L we
choose its orientation so that the intersection number LeL(v) is postive. Hence
n. (I:, I:pt) =0 isconsistent with mod 2 degree of Floer homology.

The vector bundle we constructed in this section is a semi-homogeneous vector bundle
in the sense of [32]. In fact, it is obtained from a line bundle by push forward. (See § 4.)
More general bundles and sheaves will be discussed in 88 8,12.
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8 3 Sheaf cohomology and Floer conomology 1
(Construction of a homomorphism)

Theorem 3.1 HFY((Lg,0),L.0)) OH*(T? .9 "L a)) if L is transversal to
LgLy-

In 88 3,5, we are mainly concern with the case when k:q(ii,i,ipt) =0. Inthat case,

we will construct an explicit map HF°((Lg,0),(La)) - H(T?",Q", "L a)) in this
section and will prove that it is an isomorphism in 85. The main idea of the proof is again to
use our dictionary itself to associate a section of the bundle HL,a) to each element of

HFO((Lst,O),(L 0)) . Wefirst remark that (2.26.2) implies
CF*(La),(L" ")) OCE" (L' a"),(La)).

The boundary operators are zero in our case. But in fact it will be dua in the genera
situation. Hence we have a perfect bilinear pairing (3.2) which will be denoted by ()

(3.2) HEX(La),(L'a")) OHFE" (L a"),(La)) -~ C.

Remark 3.3 In B-model, the pairing (3.2) corresponds to Serre duality asfollows. Let % g
be two locally free sheaves on a Kahler manifold M. Then we have a perfect pairing :

Ext“( 7,9 OEx" (G FOO\"TM)) - C

Here &(A"TM) is the sheaf of holomorphic n- forms. If we assume that M is a

Calabi-Yau manifold then &A"TM) s trivial. Hence we have a pairing similar to (3.2).
They correspond to each other by mirror symmetry. We will prove it in the case of tori in 8
11. (Theorem 11.40).

Werecdll that [p], pULg n L isabasis of HFO((Lst,O),(L,G)). So we are to going
to define asection s, O ((T*",Q)”, AL @)) foreach pOLgn L. Let [v,o] O(T™.Q)".
We will define the value s (v,0) DL ,a), Here Z(La),,, isthefiberof HLa) at
(v,0). By definition we have:

vo]*

(34) E(L,a)y 0 = HF'((La),(Ly(Y),0)).
Here * denotes the dual vector space. Hence s (v,0) D(HFO((L,O(),(Lpt (v),o)))*.

We recall that two Lagrangian submanifolds Ly and L (V) intersect to each other at
aunique point x(v) OT*". Hence we have a canonical element
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(3.5 [X(¥)] DHF (L (v),0),(Ls,0)) DHF®((Ly,0), (L, (v),0)) -

S,(v,.0) = my((x(V)L.[p]) OHF((L, (M),0),(L.a))
DHFO(('—!G)!(Lpt(V)!O-))* DZ:(I-ia)[v,cr]'

Definition 3.6

The map m, : HF'((L, (v).0);(Ly.0)) 0 HF°((Ly,0),(La)) - HF"(L,(v).0),(La)) in
Definition 3.6 is the product structure of Floer homology which will be defined later in this
section.  The more precise statement of Theorem 3.1 in the case k=0 is the following
Theorems 3.7 and 3.8.

Theorem 3.7 s, defined in Definition 3.6 isholomorphic.

Henceweobtainamap HF°((Lg,0),(La)) -~ H((T?",Q AL A)) [ - s,. which
we denoteby @ ).

Theorem 3.8 The map D) IS an isomor phism
HF((Lg,0),(L.a)) OHO((T*", Q" ®L a)) incase n(L,L, L,)=0.

To prove Theorem 3.7, we begin with the definition of m,. The definition is similar to
the proof of [12] Theorem 4.37. We need a modification since weinclude aline bundle. Let
L,, L,, Ly be three mutually transversal affine Lagrangian submanifolds and I:i OV be
connected components of there inverse images. Let {&} =L, nL,, {Ej} =L, n Lj,
{c} =L;nL,. Let 4 beaflatlinebundleon L;. Wefind

HF((Ly, £)(Lz. £)) = DHOM(4 5, £ 5)
(3.9) HF((L;, L), (L3, L)) = o Hom(L, 5.4 5)

HF((Ly, 4),(Ls. £)) = DHOM(4 ¢, 23 5,)
where 4 ; isthefiberof 4 a . For yOZ "=m(Ly), let {a(y)} =Ly n Lyy),
{oy)} = L(y) n Ly. Wechoose L, L, suchthat {@ =L, nL; m(9Q=5. (Figure4)
We put

(3.10) Qa,b,g :IAam((n+J—_].B)

where A, isthe geodesic trianglein C " whose verticesare a,b,c.



27

£y
By L
o Ee.
L
Figure 4.
Definition 3.11

ZyL Lol (i D) = S rexl—2nQay) by), 0) P, £, oy ey (M2 0 Vao)-
m(a(y)) =3
m(b(y))=b;
Here v, DHOM(4 5,4 5), Vo3 U Hom([zyk-Jj ,13,51_) . We explain the sign later during
the proof of Theorem 3.16. We define
P

(L1 .L2, La),ijky

PHOM(L, 5, L, 5) D HOM(L g, L;p ) » HOML g, Lgp, )

below. Let v, THOM(4 5, L,5), Vos DHOM(L, 5 , £ 5) . We choose path 7, such that

7,00,(y), £,0L (i=13) andtha 7,,7,,7, joinsc to ay), ay) to Hy),and
k(y) to c respectively. (SeeFigure4.) Weput ¢, =Tto /,. Then ¢,,(,,(, joins § to @,
3 to by, and b to G respectively. Wenow define:

(3.12) Pl cca),iiky (Vip U V) = P, ,oVseP, ., oV0P, .
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Here P, , L4z — 43 istheparale transportation of the flat bundle 4 aong the path
Cy. The definitionsof P, ., P,_, aesmilar. (A similar but a bit more complicated
construction is used in [14] 8 1. In fact, the one we are discussing here is the genus O
version of the construction there.) We thus explained the notation of Definition 3.9. We aso

remark the following lemma.
Lemma 3.13 If n(L,,L,,L3) =0 then the right hand side of Definition 3.11 converges.

The proof is similar to the proof of [12] Theorem 4.12. (Note that the difference
between the construction in this section and one in [12] § 4, is only the phase factor, that is
multiplication of complex numbers of absolute value one.)

By Definition 3.9 and (3.7) we obtain

(3.14) m, i HF((Ly, 4), (L2, 5)) O HF((L,, 5),(L3, L)) - HF((Ly, 4).(Ls, &),
inthecase L; aretransversal to each other. We state the following basic propertiesof m,.

Theorem 3.15 Let x; UHF((L;, 5),(L;,5)) then

M, (X2, M (X235 X34)) =My (My(X15,X53), X34) -

The proof is the same as the proof of [12] “Theorem 5.1", which is rigorous in the case
of atorus.

Theorem 3.16 Let x; OHF((L;, 4),(L;,£)). If degxy, +degxy +degxs =n then
we have

( 1) (deg X1+ degx23)deg X31/ m2 (X 31 IX12) X23>

= ( 1) (deg X1 + degx 12)deg X23/ m2 (X 23

<m2(X12 X23) X31>

Xa1), X12>.

The proof is the same as the proof of [12] Theorem 4.8. Let us explain the sign here.
We choose L0 and J, such that L0 and JL0 aretransversa to LI We then regards L

as a graph of dV(LO,LJ) where V(LO,Lj) is a quadratic function and put
V(I:i,L) V(LO,L) V(LO,L) We fix an orientation of unstable manifold U(LI, ])
(negative eigenspace) of V(L;,L). Wefind that U(L,L,) n U(L,,L,)n U(L,,L,) is {G.
Orientations of U(L,, J) and one of V  determines a sign of the intersection

U(L1 L ) N U(Lz, Lg)m U(L3 L1) This sign by definition is the sign in Definition 3.11. (We
discussthe sign morein 8 10.) Thesignin Theorem 3.16 is then immediate.

We now start the proof of Theorem 3.7. For this purpose, we write more explicitly the
map in Definition 3.11 in the case when (L, 4)=(Lg,0), (L,,5)=(La),
(L3, L) =(Lx(Vv),0). Weremark that Ly n L,(v) ={x(v)} consists of one point. Hence
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thereisonly one choiceof k thatis k=1. (Namely weput c=x(Vv).) We are considering
pULgnL.Weput p=3;. Toprove Theorem 3.7 weonly need to study s, locally. We
fix qOL,(v) n L. Thenforeach w closeto v, wehave ¢ UL (w)nL closeto g.
We recall Z(L,or)[”]:DXmLm(v)nLC[x]. Using this basis we put :

(V.0 =8, o(IV.o)[a] +:--

and study s, ,([V,0']). Here we regards spDHF”((L(v),T),(L,a)) and regard [q’]* as
the dual basis of the basis [q] of HF°((L,a),(L(v),1)).)

We fix a component L of theinverseimageof L in V. Let F(I:):F/F nL. (I:
Is the linear subspace of V paralel to I:.) For yDF(I:), we put I:(y):I:+y and
(BN} =Ly n Ly) . Sat

Mo(D) ={y Or (D | (i) = p. @) =0} -

Here m:V o T2 isthe projection. We remark that m(qg'(y)) =g for yDI’O(I:).
Definitions 3.6 and 3.11 imply (See Figure 5)

V.00 = Y exp(-2nQhy) §(¥) Xo(v)) +
(3.17) Yolo (L)
2o (o) ~ ) +a @) - B))
Let zysp,q(\/,o’,y) be the right hand sides of (3.17). We put

(3.18) g(v,0') =logsy(V,0',y) —logs,, (v,0.y) —2mloge;(V,0').

Here e,(V,0') isdefined by (2.11).



30
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H Y
Figure 5

Lemma 3.19 g,(vV,0') isaholomorphic function of (v',0").

Proof: By definition and (2.11), we have:

g(v.0) = 2mAX(V),%(V),G'(v),a(y))

~2m=1{o(x(4) ~8y)) + 0" (@ (1) ~Xo(v))
 (§) - (1))
~loge; 5 (V,0')
= -2m,(V -v,0' -0)

Here QX (v),%o(v),0"(y),A(v))) is as in (212 (see Figure 5), and
vy=08(y)-9=q()-q . Lenma3.19 follows.

Lemma3.19, (3.17),(3.18) and the definitionsimply that s, isholomorphic. The proof
of Theorem 3.7 is compl ete.
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§ 4 |sogeny

In this section we use the idea of Polishchuk and Zaslow in [42] 85.3 to reduce the proof
of Theorems 3.1 to the case of line bundles. Let (L) beasin 8 3. We remark that the
rank of the vector bundle HLa) is LeL,(v). Hence there exists a finite group
G(L)OL,(0)OT* with the following property :

(4.1.2) Theorder of G(L) is LeLy(V).
(4.1.2 L is G(L) invariant.
(4.1.3) G(L) actstransitivelyon L n L (V).

Let G be asubgroup of G(L). Weput (T2",Q)/G=(T>,Q). Weuse L ,OV=
the universal cover of T°" to defineamirror (T2",Q)"”. Let G” = Hom(G,U(1)) bethe
dual group.

Lemma 4.2 G"” actson (T2",Q)" such that (fzr‘,ﬁ)D/GD =(T*",0".

Proof: The universa cover of (T2",Q)” s identified to the universa cover
V/I:pt O I:*pt of (T>",Q)”. Weremark that I'" =m,(T*",Q) contains I =m(T*,Q) as
anindex #G subgroup. Itiseasy to see I"/I" N I:pt DI’/I‘ n I:pt, Mn ﬂm/r N I:pt 0G.
Hence (I’ n [pt)D/(F’ n [pt)m =G". Lemma4.2 follows.

By (4.1.2), there exists a Lagrangian submanifold L =L/G of (T*",Q). Thereisa

flat connection @ on L suchthat & =a. Here m:L — L is the covering map.

(41.3) implies that |CeC,|=#G(L)/G. Hence rank £(L,@)=#G(L)/G. Let

i (T2",Q)" - (T?",9)" bethe G covering constructed by Lemma 4.2.

Proposition 4.3 There exists an isomorphism T[*(Z(E,(T)) OHLa). Here 1 isthe
push forward of the bundle.

Proof: We put
(4.9) A(a)= {0( +y lyO(r o Ept)D}
(4.5) B(V) = { pOL () [(p =L (W) L} .

Let E(a ,V) be the vector space consisting of all maps WA, p): Aa) xB(v) - C . For

(y,u)D(F'/F’ n E)x(r n Ept)D, we put
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(46) (ovmu)n + wy + p =expl 2 =2{ p=x5(w) + A)ucr. p.
(4.6) defines actions of (F’/F' n I:)X(I" n I:pt)D and of (F/I‘ n I:)X(I' n I:pt)D. The
definitionof HL,a) (see(2.8)) impliesthefollowing :

@7 (L @) m@mé(a V| 0w o/ E)x(r' n I:pt)D(y,u)u ~u E

(Lpe(Vv). £)

0 . - ~ \O L
(48)  HLA)q, ) DHOE@ V| D(y,p)D(F/F n L)x(r n Lpt) (v, Hu =ul.

We are going to construct an isomorphism between (4.7) and (4.8) by a Fourier transfor-
mation. Let y, betherepresentative of (I"/F' N L)/(I‘/F N L) and ; betherepresentatives

of (I‘ N I:pt)D/(F' N I:pt)D. For uD L)L, )z U Dm(f([,oT))(L (v Weput:
(4.9) AP =Y udyi+p.
@10 PP = Y el -2m/= 1 (- gD+ 1, D).

J
Lemma 4.11 y(u)DT[*(Z(E,oT))(Lm(V)’L) , FW)OELA) (e - FHY=U,
FF(U)=uU".
Proof: It is easy to see AWAY +p=AWA,p for yadr'. Let

~ ]
p’D(F' N Lpt) . We have
AW +AP) = u +Ay; +p
= Yol + p-x)uiry, +
= exgl 2/ 23 (p - x5() ) AU (A, .

Therefore ﬂl(u)DT[*(ﬂE ’OT))(Lm(v),L)'

On the other hand, we have

The proof of  F(u') [ ﬂL’a)(Lm(v),L) issimilar.

FFU)A.p) S exp(=2md/ =1, (p — % (WU +1y, py,)

(4.12)

S exp(2/=Ty, (v,))ulh . p+y,)

1)

We remark that we may choose y; and p; sothat y, =0, p, =0 and

(4.13) Zexy{Zm/—_luj(yi))=0 unless i =1. Zexy{Zm/—_luj(yi))=0 unless j=1.
i i
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(4.12) and (4.13) imply  #Ku) =u. The proof of F#(u)=u issimilar. The proof
of Lemma4.11 is complete.

Itiseasy toseethat 7, ¥ giveisomorphisms asserted by Proposition 4.3.
Proposition 414 H (T, Q)",£(Z,&)) OH (T*,Q)",E(L,a)).

Proof: It suffices to prove the proposition in the casewhen G = G(L). Then Z(L, )

isaline bundle. Therefore H I‘(('I_'2n Q)" HZ,)) isnontrivia for only one k. (See[35]
8 16.) Proposition 4.14 follows from this fact, Proposition 4.3 and Leray spectral sequence.

We next discuss the relation between the isomorphism in Proposition 4.14 and the
homomorphism we constructed in § 3. Since GO L, it follows that LgeL=1LgeL.

Here Ly=L,/r'0T2". Moreover we can identify LynL and Ly n L. Hence there
exists a canonical isomorphism

(4.15) HF(Lg,L) OHF(Lg,L).
Lemma 4.16 The following diagram commutes :

HF'(L, L) -  HY(T™ Q)" =(La)
! !
HFYL, D) -  H(T™,Q),Z(La))

Here the vertical arrows are the isomorphisms(4.15) and Proposition 4.14. The horizontal
arrowisthemap ®, ), ® . in Definition 3.4.

Proof: We remark that the isomorphism in Proposition 4.14 is given by % in (4.9).
The lemmathen follows immediately from the definitions.

We discuss isogeny morein § 6.
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85 Sheaf cohomology and Floer conomology 2
(Proof of isomorphism)

In this section, we prove Theorems 3.1 and 3.8. We first prove that the map
@, ‘HF°((Lg,0),(La)) - H°((T™,Q)",£(L,a)) inDefinition 3.6 isinjective. We use an
inner product on H°((T*",Q)",Z(L,a))= I'(£(L,a)) forthispurpose. To definea hermitian
inner product on our vector bundle Z(L,a), we first remark that the bundlie %(L,O() on the
universal cover V/ I:pt O I:;t (which we defined by (2.7)) has a hermitian inner product in an
obvious way. Since the action g, defined by (2.8) is unitary on each fiber, it induces a
hermitian inner product on £(L,a). We denoteit by (,). We next take a flat Riemannian
metricon (T?",Q)"” and fix it. The hermitian inner product (,) on T (#(L,a)) isinduced
by the metric and the hermitian inner product on £(L,a).

Proposition 5.1 (®,, ([P, P ([PD)>0. (P, [P). @, [(PD)=0 for
p,p'ULgn L, p#p.

Proof: Let vDV/Em and f),f)'D[St beaninverseimageof p,p' in V. Let I:(p),
I:(p’) are the connected components of inverse images of L in V such that
{B=L nL(p, {P} =Ly nL(p). Weput

(52) Gy vy @) = exp(-2Q(R(Y ), E(Y ), Xo(W) +21t/=1(0 (% (V) = () + o (@ - BlY))))-

Here the notation is similar to (3.17) and is as follows. © DI:*pt, {X%(\W)}= I; N I:pt(v),

{§OL,MnL(P, yOr, {8W}0LuM nLp+y), {BV)}OLgnL(p+y). (See
Figure5) Wedefine gy 4, ,(0) inasimilar way.
By (3.17) we have

(53) O (PDVO)= Y Gyauy @), O (PNVO)= Y Gy (0).

yOo(L) yOro(L)

Lemma 5.4

(5.4.1) LELm/ gpqu(cr)gpqu(o) do =0, if y,y’ DF(L) YZ£Y'.

(5.4.2) L[L gIO qvy(0)8p q.vy(0) do =0, if y,y' OF (L) pzp.
Proof: We remark that

Gpauy 0)Toqvy (0) = Cexp(2m/=Io (G(y") - &(v))

where C isindependent of 0. (5.4.1) follows. The proof of (5.4.2) issimilar.
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By (5.4.1), we have

Li*m/(rn ; )D‘DL,O(([ /) (v,o)®, ([ pl)(v,0) do

Lot

- 2 L iy /( X )Dgp,q,v,y(c)gp,q,\,,y(c) do >0.

N L nL
yoroL) ™ "

(@, AP, P, ([PD)>0 follows. (5.4.2) implies (@, ([p]),® ,([P1))=0 inasimilar
way. The proof of Proposition 5.1 is complete.

We remark that Proposition 5.1 impliesthe injectivity of ® .

To prove Theorems 3.1 and 3.8, we use Proposition 4.14 and Lemma 4.16, and we may
assume that L L,(0) =1 namely #(L,a) isalinebundle. By Proposition 5.1, the map
® ., isinjective. Hence Theorem 3.1 implies Theorem 3.8. We now are going to prove
Theorem 3.1 in the case when Z£(L,a) isaline bundle. We use Riemann-Roch’s theorem
for this purpose. Namely we are going to calculate the first Chern classof Z(L,a). To
state it, we need some notations. Let L, I:g , I:pt be as before. We assume that they are
transversal to each other. Hence L may be regarded as a graph of a linear isomorphism :
I:g - I:pt. We writeitas @, : I:S[ - I:pt. We next remark that there exists an isomorphism

V/L, OL,. Wehave L 0L, OV/L, 0Ly, I/T n Ly O nLeOLyg.

~ ~ ~ [}
Definition 55  Let y,y' O/r n L, O n Ly, pp’ D(r n Lpt) . We define:

EL((y,). ¢ 1)) = me () - (e (V)

Since L L,(0)=1, itfollowsthat (pL(I'/I' N [pt) Or n ﬂm. Therefore E, isinteger
valued. By definition, E,_ is anti-symmetric. We can extend E, to an R- bilinear
anti-symmetric formon L U L*pt DV/ Ly O L;t, we denote it by the same symbol.

Lemma 5.6 E (JgX,JqY) =E (X,y), where J, isthe complex structure on V/I:pt O I:;t
introduced in 81.

We prove Lemma 5.6 later.

Theorem 5.7 C,(E(L,a))=E_. Here we regard an anti-symmetric map E,_ on
(r/r n Ept)m(r n Ept)=n1((T 2 )" asaneement of H2((T2"Q)2).

Note that Lemma 5.6 impliesthat E, OH™((T*",Q)"). We prove Theorem 5.7 later in
this section.

We next show that Theorem 5.7 implies Theorem 3.1. For this purpose, we need to
recall some standard results on the cohomology of line bundles on complex tori. We define a
hermitian form H, o on V/L, 0L, by
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(5.8) He a(x,3) =EL (Jox,y) +V-1E(x, ).

Lemma 5.6 impliesthat H_ is hermitian. We recall the following classical result.
(See[35] 8§16, [27] Theorem 5.5.)

50 k#index H

Theorem 5.9 H*(T *,.Q)”, £(L,a)) = )
( )L ELa) EZ'F*EL' k =index H,

Here Pf E_ isthe Pfaffian of the anti-symmetric form E_ and index H_ isthe
number of negative eigenvalues of the hermitian form H_. It is easy to see that, in our
case

Fnl,

(5.10) PfE = #—(—~5 =|Le Lyl
@(r/rnL,

We next need the following :

Lemma 5.11 index H, 5(x,Y) =n" (L, L), where n"(L,L) is defined by Definition
2.23.

Theorem 3.1 follows from Theorems 5.7, 5.9, Lemma 5.11 and (5.10).
We now prove Lemmata 5.6, 5.11. We put

~ O
’

(5.12) U=(rnL,)O(r/rnL,), U =rni, U=(r/Tn ipt)m.

We first calculate the complex structure J,. We first note that the symplectic form
defines an isomorphism I : L, — L*pt by 1,(V)(x) =w(xV). Similarly the closed 2 form
B defines I,:Ly - L, by I;()(x)=B(x,v). We then find, from the definition, that
V+0o va+\/—_](IBv+0) is a complex linear isomorphism : [St O E*pt - I:’;)t Ug C,

where v,v OLg, 0,0 OL,,. Hence

O 0, o0 -1 oML
Jo0 O =0° 00 “m® ‘mC
@0 Og 100 Omg 1M@C
(5.13)
O -4, 280

Ew+|BI(;1|B IBI(;L%E

Therefore, we have:
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EL(JqVidoV) =E (I,() +1glg 15(V), 15 (V)
+EL (=15 g(W), 1, (V) + 115 g (V)

614 = (15160)9)- (cp( 131000
oo (17100 v ) + B0 (121.0) 112w

On the other hand, since <.o|E = B|L~ =0 if follows that

(515) v (v)) =ale(vv). Blvan(v))=-sfa(vv).

Therefore
o (1160 1211609) - Bl 1211609 116 (1) =0
Moreover we have
oo ) e icteco) )

= o (v)12100) o (v).1511v)

= lov))-Blo.[v)=0
Hence
(5.16) E (JoV,doV) =0 = E (V,V).
We can prove
(5.17) E,(J,0,J,0") =0=E (0,0")

inasimilar way. We next calculate using (5.13), (5.15) :

EL(JqV.Jo0) = E(l,() +1gl5 (W), 15 (0)) + EL(-1,15(W), 11, (0))
619 = w@1510).v)-Bou15 ) 151600 + Blout w15 0))
= {0, (9.15%0)) = -0(0.() =E,(v.0).

Lemma5.6 follows from (5.16) , (5.17) and (5.18).

We turn to the proof of Lemma 5.11. We put Q. =w + S\/—_lB . We remark that the
Jo, hermitianform H_ o _ iswell-defined and nondegenerate for each s. Hence its index
isindependent of <. Soto prove Lemmab.11, we may assume B =0. Then we have

(5.19) He o, (v =By (0, (V) V) = E(1,0.V) =e(0, (9,1
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for VDI:Q. Lemma5.11 follows from (5.19) and the definition of n*(lzst,l:).

The rest of this section is devoted to the proof of Theorem 5.7. We remark that the first
Chern classof Z£(L,a) isindependent of a. Henceweput a =0 for simplicity. We are
going find a 1-cocycle ¢g,(z):U ><(iS O I:*m) - C —{0} representing our line bundle
HL,0). For this purpose we will find a holomorphic trivialization of the pull back bundle
Z(L,0 on  V/[,OL,.  Note that there is an obvious trivialization

HL,0) D(V/I:pt O I:*pt)xc . Namely, by choosing alift LOR" of L, we define a global
frame s of HL,0) by s(v,0)=[pv)] for (V,O)DV/I:lDt O I:*pt. Here
{p(v)} =L n Ly(v). Werecal i(L,O)(V,G):C[xo(v)] , Since we assumed that %(L,O) isa

line bundle. However this frame does not respect the holomorphic structure introduced in 8
2. A holomorphic global frameof L ,0) isobtained by

(5.20) 5(v,0) :exp(znc( %0) 0, v, p(v) ~2r/~10( p(y —v)) J(V,0).

Note {v} :Eg N I:(v). Other notationsare asin (2.11). Weusetheactionof U on %(V,O)
defined in 8§ 2 and obtain the following formulae for u, OU,, u, OU, .

b+ sv.0) =exif2r 10).0, b + v, Hu, +v)
(521.1) ~2md-10((u, +V) - Py, + )
—an p(0),0, z;, p(v)) + ZH\/—_lo(v - p(v))) s(u; +v,0).
(5.21.2) U,* s(v,0) = exp(—ZT[\/—_luz(v - qv))) s(v,u, +0).

(5.21) follows from (5.20) and

(5.22.1) (u1 . §)(v+ u,,0) = $(v,0),
(5.22.2) (u2 . s’)(v,c +U,) = ex;(Zn\/—_luz(xo(v)))s'(v,c) .

(5.22) is a consequence of the definitionin § 2. By the definition of ¢, we have

(5.23) Xo(V) =V =%, (0) + @, (V).
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Here we regards VDV/ Lpt DEQ. Thereforea 1l cocycle g,(z) defining HL,0) is:

(5.24.1) e,(v.0) = exp(erq p(V),V,v+ Uy, p(v+ Ul)) + 21T\/—_10((PL(U1)))-
(5242) &, (v.0) =exp(2md-1u,(x,(0) + 9, (V))) .

We put

(5.25.1) f, (v,0) = —\/—_1dx0(v),v,v+ Uy, Xo(V + ul)) +o(@ (u)).
(5.25.2) f,(V,0) = Up(Xo(0) + @ (V) .

Then, by a standard result (see Proposition in page 18 of [35]), we find that the first
Chern classof HL,0) isrepresented by :

(5.26) E(u,u)=f,(z+u)+ f,(2 - f,(z+u - f,(2).

We remark that (;( 0(z),z,z +u,p(z + ul)) is affine with respect to z . Using this fact
and (5.25), (5.26), wefind E(u,u’) = E (u,u’). The proof of Theorem 5.7 is now complete.



40

We remark that Theorem 5.7 and A ppel-Humbert theorem (see [35]) imply the following.

Corollary 5.27 Anylinebundleon (T*",Q)" isisomorphicto (L,a) for some affine
Lagrangian subspace L and a.
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8§ 6 Extension and Floer cohomology 1
(0 th cohomology)

Let I; and I:2 be Lagrangian linear subspaces of (V,Q). We assume that they are
transversal to each other and to L, L,. Let v OV/L and o OL. We obtain a
holomorphic vector bundle E(L (v,),a,) on (T?"Q)". Weput (L(v,).a,)=(L,%).

Theorem 6.1 HF (L, 4),(L,, 5)) OBt “(HL,,5), HL,,L)).

In the case when k:r]([l,l:z):o our result is more explicit. Namely we construct an
explicit isomorphism also in this section. (In the case k >0, we will construct an explicit
isomorphism in § 11.) We assume n(L;,L,)=0. Let [g OHF°((L,,4).(L,,%)), where
pdL, n L,. Let (L (v),0) I(T>".9". We define a homomorphism

Sp(Lp(9,0): HLy, L) (L, (v)o) = ELar L)1 y(v)o) BY
(6.2) S L (V),0)(X) = my (X [P]) DE(L L5) )0 DHF”((Lm (V),U),(inﬁz)) :

Here X DE(Ly, £, sy OHF" ((Ly(),0), (L, £,)).

Lemma 6.3 Sp(L(¥,0) is holomorphic with respect to (L(v),0). Hence
S, OHOM((E(Ly, £,), E(L,, L,)).

Lemma 6.3 follows from Theorem 7.22 which is proved in the next section. By Lemma
6.3, we obtain a homomorphism

P e - HF (L L), (L, ) ~ HOM((E(Ly, L), E(L,, £,)).
Theorem 6.4 D, )L,z 1SaNisomorphism.
We prove Theorems 6.4 and 6.1 later in this section. We next prove the following :

Theorem 6.5 If r](I:1 , I:z) = r]([2 , I:3) =0, then the following diagram commutes.

HFO((Ly, 4).(L;, £) OHF®((L,, L) (Ls &) —»  HF((Ly,4).(Ls, )
! !

Hom(H(L,, 4), HL,, L)) O Hom(HL,, 5); AL;, L)) - Hom(HL,,45), HLs, L))

Diagram 1

where the vertical arrows are @,y yOP ).y ad &g 0, . ad
the horizontal arrowsare m, and the composition product.
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Proof: Let [Py, el OHFO((L(%),0).(Lir1 (Ve 1).01 1)), (Lp(V),0) O(T?",Q)° and
XUHL(M),01) (L, (v).0)- Wehave

(6.6) (CD(Ll(vl),cl),(Ls vy (Mo P pzs])))(x) = my(xm, ([p.].[Px])),
6.7) D oo UPD(Pts oy oy [ PD() = My (X[ 1) [Ps]) -

The associativity relation (Theorem 3.15) then implies Theorem 6.5.
By putting L, =Ly inTheorem 6.5, we obtain the following :
Corollary 6.8 If n(l:1 : I:Z) =0 thefollowing diagram commutesfor k =/ =0.

HF°((Lg,0).(Ly, 4)) O HF (L, 4),(L;, ) ~  HF%(Lg,0),(L;, 5))
l l

HO(T?" Q" HLy, 4)) DHom(HLy, 4), HL,, 5)) - HUT*Q" AL, L))

Diagram 2

Here the vertical arrowsare &, \O® ), .,) ad & ., and the horizontal
arrowsare m, and evaluation map.

In § 11, we generalize Theorem 6.5 and Corollary 6.8 to higher conomology.
We now start the proof of Theorems 6.1 and 6.4. We first show the following :

Lemma 6.9 Themap @, y(L,.c,) ISinjective.

Proof: The proof is similar to one of injectivity of ®, ., wegavein85. Wefirst

define an inner product of the bundle ﬂon(Z(Ll,Ll),Z(Lz,zz)) usingoneson HL,,4) and
HL,,L). Thenwe prove

(610) ((D(LLLl),(Lz,Lz)[ p] ! ¢(L1,L1)r(L2yL2)[ p]) >0 !
(6.11) (q)(Ll,Ll),(Lz,Lz)[p]’q’(Ll,m,(Lz,Lz)[Q]) =0,

for pqUL, nL,, p#qg. The proof of (6.10) and (6.11) is the same as the proof of
Proposition 5.1 and is omitted. (6.10) and (6.11) imply Lemma 6.9.

By Lemma 6.9, Theorem 6.1 implies Theorem 6.4.

Lemma 6.12 Theorem6.1 holdsif HL,,4) and EL,,s) arelinebundles.
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Proof: We have

(6.13) Ext (AL, 4), HL,, L)) OH(T.Q ", &L, 4) 0 AL,,5))
in this case. By Theorem 5.7, we have

(6.14) cl(z(Ll,Ll)* O Z(Lz,zz)): —E_, +Ey,.

Let @ beasin 85 Then we find a Lagrangian linear subspace L; such that
P, TP, =P . Therefore

(6.15) Pf E., =#(L, nL,(0) =#(L, n L,).

Hence Theorem 5.9 , (6.14) and (6.15) imply Theorem 6.1 in this case. (In fact, we can
prove Z(Ll,ﬁi)* OHL,,5) OHKL,,L5). Hereto define £; weidentify L, 0L, DV/LIQt
and put 7, 07 O Z,. We omit the proof since we do not useit.)

In the rest of this section, we reduce Theorem 6.1 to the case when HL,,5) areline
bundles. We further study isogeny for this purpose. Let G(L;), GL,) beasin84. Let

GOL, beafinite subgroup. We define (T*",Q) asin § 4. We remark that Lemma 4.2
holdsfor our G aso. We usethe notationsin § 4. We study the following three cases:

Casel: GOGQL,) n G(L,)). Let 7, beaflat connectionon L, suchthat 1w Z O4. We
remark that n*(Z + u)[][i for nOG".

Lemma 6.16 mHL,L) O O Df(fi Lo+ ).
u oG

Proof: By Proposition 4.4, E(Li,[i):n*(f(fi ,Z)). Notethat G is the deck trans-

formation group of the covering 1t:(T*",Q)" - (T*",Q)". Hence
mAL,5) 0 0 WAL T).
n G

Here we regard p:(T°", Q)" - (T*",Q)". Itiseasy to see W AL, Z)OHL T + 1.
Lemma 6.16 follows.

Lemma 6.17 Suppose that there exists k, suchthat Ext (AL, %), AL,.Z, + 1))
vanishesfor k # k, then

Ext “(H(Ly, 4), AL, L)) DHEGDExtk(f(El,Zl),f(fziz + 1)
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Proof: Proposition 4.3 and Lemma 6.16 implies
Bt (L, 4) ALy s) O Bt (D, D) 4L, 5)
0 ugmmk(ﬂtl,z),ﬂtz,zgw))

We next consider the Floer cohomology. The assumption GO ((L;) n G(L,) implies
that L, and L, areboth G invariant. Hence G actson L, n L, freely. Therefore we
have

(6.18) HF (L, 2L, £)) DHFY((T, 2).(T, ) DR .

Lemma 6.17 and (6.18) implies that Theorem 6.1 holds for (L,,%4),(L,,%) if it holds
for (Ly,4).(L2, L) -

Case2: GUELy), Gn(dLy)={1}. Weput G={y;, -y} and Lyy;) =yL,. By
assumption Gn G(L,) ={1}, wehave yLnylL,=0 for i#j. Let L,=m(L,). m
induces an isomorphism L, OL,. Using thisisomorphism we define Z, on L,.

Lemma 6.19 £(L,,Z,) On E(L,, L,).
Proof: Let (L (V),0) D(TZ”,Q)D. Lemma 6.19 follows from :

(6.20) KLy L) (L v)o) = ) o c[gb O C[J :ﬂEZ[Q)([m(V),o)'

OLonLy (v) pl, N (V)

Lemma 6.21 Supposethat there exists k, suchthat Ext “(‘H(L;,Z,), HL,,Z,)) vanishes
for k#k, then Ext“(#(Ly, £,), H(L,, £,)) DEXt*(£(T,,Z,), KL, . L))

Proof: Lemma6.19 and Proposition 4.3 imply :
EXY(HL, L) HL, L) O B(m(2(0,10)) AL, L)
0 Bx(=(,2). M HL,, L))
0 Bxt"%(@0,L).4L,.L))
Tt inducesanisomorphisn L, n L, OL nL,. Hence
(6.22) HF*((Ly, £), (L, £,) OHF((T, 2).(G, 2)).

Lemma 6.21 and (6.22) implies that Theorem 6.1 holds for (L;,4),(L,,%) if it holds
for (L, 4).(L2. %) .

Case 3 GOQL,, GnQlL)={}. We hae %(,7)0n%L,) ad



45
HL,, L) OmnHL,,Z,) . Hence

EX(B(Ly, L), H L, ) O Bx(E(L, L)1 (£, L))
0 Ext*(n'EL,£),5L,.L))
0 BxtY(%(0,1).45,1))

if Ext“(®(L,,Z), AL, Z,)) vanishes for k#k,. On the other hand, (6.22) holds also in
this case. Therefore Theorem 6.1 holdsfor (L, 4),(L,,%,) if it holdsfor (L, Z ),(L,,Z,).

Combining these three cases and Lemma 6.12 the proof of Theorem 6.1 is compl ete.
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8 7 Moduli space of holomorphic vector bundles
on amirror torus

Let L be a Lagrangian linear subspace of (V,Q) transversal to £, and satisfying
L nl OZ ". We constructed a complex manifold (torus) M(I:) in 8 2. On the other hand,
for each element [L(w),a] OM(L), we constructed a holomorphic vector bundle
HL(W),a) on (T*",Q)". Inthis section, we construct a universal family of vector bundles
on M(I:) . One delicate point in doing so is gauge fixing which we mentioned in 8 2. In fact,
during the proof of Proposition 2.16, we need to choose a base point on L(w). In other

~\0O

words, the isomorphism HL(w),a) OHL(w),a +u) for uD(G N L) depends on the
choice of the base point on L(w) and is not canonical. To choose a base point on L(w)

systematically, we need additional data. Namely wefix other affine Lagrangian submanifold.
More precisely we start with the following situation.

Assumption 7.1 Let I:1,I:2 and |\7I1,I\7I2 be Lagrangian linear subspaces of (V,Q)
such that

(7.1.2) L nFOZ" M, nr OZ".

(7.1.2) I:i istransversal to I\7Ii.

(7.12.3) I:1 istransversal to I:2.

Weput M, =M /(M nr)OT" 0T,

Definition 7.2 M(L; M) s the set of pairs ([L,(w,),0],p) 0 (L) xT*" sueh
that p, OM n L (w).

ML M)~ ML), ((Lw).ol,p) - [Lw).a] isa [M;«Lw)| hold covering.
Hence the complex structure on M(I:i) induces one on M(I:i,l\7li). We are going to define
a holomorphic vector bundle HL,,L,;M;,M,) - M(L;,M;) x M(L,,M,) such that the

fiber at ([, (W).a1.], p,), ([L(W,).0,, ) isidentified with HF((L, (w).a1,),(Ly(w,),01,)-
Let

(7.3) (w9, 0wp0 ) O(V/ Ly %5 ) %(V/C, %) DM Ly

Let V(L,,L,:M,,M,) bethetotality of al ((w 0,), (W, ,), B, p,) Satisfying (7.3).
We put

U C[x.

- XOLy (wy )nLp(wy)

(74) 52’{Ll’l‘Z;Ml’M2)((VV1:0‘1),(W2v0‘2)rplrpz)

i?(l:l,l:z;l\hl,l\ﬁz) is acomplex vector bundle on V(I:l,l:z;l\7ll,l\ﬁz). We put
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(7.5) MLy, M, M) :(r/r n El)x(r n El)D x(r/r n Ez)x(r n EZ)D.

I’(Ll,Lz,Ml,Mz) acts on. V(Ll,Lz,Ml,MZ) in an obvious way and the quotient
space IS M(Ll, 1)><9\/[(L2, 2) We define an action of F(Ll,LZ,Ml,MZ) on
ﬂL17L21M1’M2) as follows.  Let ((le ), (W 05), B, pz)DV(LpLz’Ml’Mz)

X OLy(wy) N Ly(wy). [x] D?(Ll’LZ’Ml’M2)((W11u1)r(wzvu2)v PL.P2)" Let
(yl,ul,yz,uz)DF(Izl,l:z;l\ﬁl,l\h2). We choose a lift Dl:i(Wi) n Mi(ui) of p. (Here

u Or.) Let xOL(w,) n Ly(w,) betheliftof x. We then put

(vl,ul,vz,uz)[x] = exp(—Zn\/—_lul(i—h)+2ﬂ\/—_1uz(>?—Toz))

(7.6) .
R T(Ll ’ LZ ; Ml’M 2)((W1+V1 0+ Hg)(Wotyo, 05+ o), Prs pz)'

Lemma 7.7 (7.6) definesan action of I'(I:l,l:z;l\7ll,l\ﬁ ») On V(I:l,l:2;|\7ll,l\ﬁ 2) -
The proof is straightforward and is omitted.

Remark 7.8 The reader may wonder why we can not simply take p O |;(W )n I\7I (If we
could do it we would be unnecessary to take a covering 9\/[(LI ,M ) - M(L ).) However if

we do it, the analogue of Lemma 2.9 does not hold. Using our choice p O L i(w;) n M, i(u),
we can prove an analogue of Lemma 2.9 in our situation.

Let £F(L1,L2,M1,M2) - M(Ll, 1) XM(LZ, 2) be the bundle obtained by taking
the quotient AL, ,L,;M,,M,)/T (L;,L,:M;,M,).

We next construct a holomorphic structure on £P(I:1,I:2;I\7I1,I\ZZ). We again construct
a holomorphic local frame. We use the same notation as above. Let
((vx/l,a'l),(wz,a'z), Q. gz)DV(Izl,I:Z;I\ﬁl,l\hz) be in a neghborhood  of
(w0 4), (W0 5), Bs pz). There exists apoint X’ Dl:l(vv’l) n I:2(vv'2) in a neighborhood of
X. (SeeFigure7.)
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Lytwy)

Lotw,) Ly(w3)

Figure 7

We define:

e((Wl-O‘ (W, 85). 5, B ’;()((Wj'_,a]’.), (VV'Z’ a,z))
(7.9) = exp(-2rQ(X B, B, X, B, B,)
+2m/=A (o, (B~ %) +aj(X - B) +a5 (B, — %)+ a, (%= B,))

where C(f(,bl,ﬁ,f(',fiz,bz) isaintegration of Q over union of 4 triangles A5, A »

Dssp,r Dy, - Thentheframeis
(7.10) ((wy,a ) w0t >,b1,r3z,i)((""i ag),(w a '2))
= Eltmay), (), 5u, b (WS (W 05) JIXT.
Lemma 7.11 There exists a unique holomorphic structure on 1Z(I:1 , [2 : M 1r M ,) such

that €, a,)(w.a,) py5,%) IS@local holomorphic section.

The proof is a straightforward analogue of the proof of Lemma 2.14 and is omitted. We
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thus obtained a holomorphic vector bundle
(7.12) ALy, LMy, M) — (L, M) x (L, M)

under Assumption 7.1.

We put L1 L , L, =L, M; =Ly, M, =Lg. Weobtain
(7.13) P(LLiLg, Ly) — (T2,Q)"x ¢ (L,L).
(Note L, eL,=1 implies M(Ly,Lg)=M(L,)=(T*,Q".) Let us consider the group
G=Lg n L(O). It is easy to see M([,Est)/G:M(E). Since
(T7,9Q)° OL /(T n L) x L,/ (r ant)D asagroup, G actson (T*",Q". (Welet G

~ ~

act on the first factor Li/(l'n La).) It iseasy to finda G action on ﬂL,Lpt;I:g,I:g)
such that (7.13) isequivariant. Thuswe divide (7.13) by G and obtain

0y, ) (L)

(7.14) (L, =

Note that we have afiber bundle

(T2, Q) x M(L,L,)

. oo - ().

(7.15) (T*", Q)"

Itiseasy to verify the following :

Proposition 7.16 Let (Lo)OM(L). Theredrictionof 2(L,.L) to priLa) is

iIsomorphicto HL,a). (Here pr isasin (7.15).)

pt’

Propositions 7.16 and the following Proposition 7.17 imply that we may regard (7.14) as
the universal bundle.

Proposition 7.17 Let (Loa),(L'a’) DM(I:). Assume that AL ) is isomorphic to
HL'a'). Then (La)=(L"a’).

We prove Proposmon 7.17 later in this section.
We next put L1 Lpt, L2 Lst, L2 Lst, M =L, andobtain

(7.18) P o (T, Q)" x M (Ly,).
We remark that since L, » L, =1 it followsthat M(Lg,L )= M(Ly).

Proposition 7.19 M(Ly) is the dual torus (T>",Q)"™ of (T?",Q)". The bundle
(7.18) isthe Poincaré bundle.
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The proof is easy and is omitted.

We next study the holomorph|C|ty of m,. We suppose that |:1,|:2,|\7|1,|\7| and I:z,
L3,M2,M and Ll,L3,M1,M all satisfy Assumption 7.1. We obtain bundles (7.12)
ad o PG LM M) - (L, M) < (L, M),
ALy, Ly;M{,M3) - M(L,M;) x M(L;,M5). We consider product
(L, M) x (L, M) x (L5 M) and pull back bundies  1e,(#(C,, M, M),
"*23(51“:21':3;'\7'2"\23))’ T[IS(Q(I:PEB;'\;ILM?;)) onit.

~ ~ ~

Theorem 7.22 If n(L,L,, Ly) =0, then m, definesa holomorphic map
niz(ﬂl—lyLz;Ml’Mz))Dn*zs(?(LzyLs;Mz'Ms)) - n13(?(L1'L1;M27M3))-

Proof: We define notations by the following Figure 8.
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Ltwy)
By
X
s
()
5
Mt F
s
f@- (M) ﬁrﬂf? (s,
2,
Ly(ws) L(w3)
Figure 8

We prove holomorphicity on the second factor M( I:2 , M »). Weput

mZ([X] ,[y]) =Y Ty Wedp,Wo @ 5,W3 0 5)[2
Mo {IXTIV) = 3 fggy0(Wa 1 W 0 W 1) [,
Nxyiynz (Wa 01, W5 05, W3 O 5)
= faryia(Wa g, Wo 05, W3, 3)
X€(way), W), 51,”pz,>2)((W1 o), (wp '2))_1

xq(wz,uz),(w3,a3), P2, bsvz) ((V\/Z a ’2)’(W3 a 3))
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It suffices to show that R, (Wy,0 3, W;,05,W,,05) is holomorphic with respect to
(W'Z,G'z). By definition ;. .,(W, 00, W, 05, W,,0,) isasum of the terms such as

(7.23) exp(—an(i' 5 .,2) + 2l -1{0 (¥ ~%) +a (2 - ) +6, (% - 2))).
on the other hand

109 € (w0, ).(w,.2), 6, ,ﬁz.i)((wl ay),(Wp 0 '2))

= —2nQPy %%, ) + 2md-1{0r (% - )+, (% —%) +ap( - %))
109 &y, 1, ws 5. 5, ,bs.i)((Wz a5),(ws 0 3))

= —21QY, By, B.Y) + 2010 (B, - ) +a (7 — B) +a5(V- V)

(7.24)

(7.25)

We find that the logarithm of (7.23) minus (7.24) plus (7.25) is a complex linear map
plus constant. The proof of Theorem 7.22 is complete.

We remark that Lemma 6.3 is a specia case of Theorem 7.22.
We finally prove Proposition 7.17. It suffices to show the following :

Proposition 7.26  If (L,4a)),(L',00")) OM(L) andif (L,da))#(L',40")) then
Ext(AL, La))), KL, 4o"))) =0.

Proof: We use isogeny in away similar to § 6 and find that it suffices to §how the
proposition in the case when HL,40)) isalinebundle. Let (Ly(u), 4B))0M(Ly). We
sudy HL,40)) 0 ALg(U), 4B)). Using a spliting V=L 0L, we obtan a map
W, Lo I:St. Since |LeL,| =1 itfollowsthat ¢ induces Y :L - L4(0). Weremark
that Y, :L - Lg(0) is
obtain T DV/I:.

Le Lst|:1 map. We regards uDI:pt since V:IZSD I:pt. We then

Lemma7.27  #L,0)) O HLyu), 4B)) OHL + 0,40 +y; (B)).

Proof: Let (Ly(v),0) I(T*"Q" xOLy(MnL, yOLgunl. We remak

X+ulLy(v) n(L+T). We put q»([x] D[y]):[x+u]. It is easy to check that W
defines the required isomorphism.

Now we consider the map M(ES) - Moc{u[(lz),
HL,4do)) — AL, 4a)) O KLg(W, AB)), where Modul(L) isthe component of the moduli
gpace of line bundles containing HL,4a)). It is classical that this map is

rankH((T*",Q", HL, £a))) hold covering. (See Proposition (iii) in [35] 84 page.) On the
other hand, we know that (L,4@)) - (L + T, 40 +W,(B))) : ML) - M(L) is|Le Lyl
hold covering also. Hence by Proposition 2.16 Moz{u[(I:) DM(I:). Namely
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AL, 40)) 2 AL, ga")). Since (AL, 4a)))=d(AL’, 4a")) by Theorem 5.6, we have
Ext(BEL,4a))),HL',4a'"))) =0. The proof of Proposition 7.26 is complete.
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8 8 Nontransversal or disconnected L agrangian submanifolds.

In this section, we discuss two generalizations of the constructionin 88 3- 7. Oneisto
the case when Lagrangian submanifolds are not transversal to each other. The other is the
case when Lagrangian submanifolds are disconnected or the case of alimit of a sequence of
disconnected Lagrangian submanifolds. Our argument here is a bit sketchy. They are not
used in 88 9,10,11,12.

First we generalize the construction to include the case when the linear Lagrangian
subspace L may not be transversal to [pt. In this case, we obtain a coherent sheaf whichis

L
=0L.

Lol L

~ ~ ~ - - 0 |:| ~
not a vector bundle. We consider ('— + Lpt)/Lpt and (L n Lpt) = 0L, |o

~ o~ ~ ~  ~ \O ~ ~

The sum (L + Lpt)/Lpt O (L N Lpt) is a subspace of the universal cover V/LIOt 0Ly of

(T?",Q)". Itiseasy to see that this subspace is complex linear. The sheaf HL(wW),a) we
~ ~ ~ ~ ~ ]

will obtain has a support on a subtorus parallel to (L+L|m)/LIot D(L N Lpt) . Here

wDV/I:, a OL . To explain the reason, we first recall the following calculation of Floer
homology. Let L (w) be affine Lagrangian submanifolds.

Proposition 8.1

HF (2L, w),0), E(L, ), B) = H (L W) 0 LBl . =i )

Here p isa constant depending only on I:1 I:2 and the right hand sides is the cohomol ogy
with local coefficient.

Proof: Onecan proveProposition 8.1 inthesameway as[43], or by using the perturbation
mentioned in[12]. We omit the detail.

We remark that the cohomology in the right hand side istrivial unlessthe flat connection

Bl wy 1, ~Ol, @i, istrivia. Hencewe have the following :

Lemma 8.2 HF((L(w),0),(L(¥),0))=0 unless w—vD(E+Em) modl  and
a[mim_cinim :ulfmﬁm for some uD(I:pt nI’)D.
We put
(8.3) T(L(vv),a):ﬁv,o]|w—vD|:+l:pt,a|£n£ -al. - =O§D(TZ”,Q)D.
" "

We remak that  T(L(wa)  depends only on  [w] O(V/C)/(r/Cnr),
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~ ~ O
[a] DL/(L mr) . Wecan provethat T(L(w),a) isacomplex subtorus of (TZ”,Q)D. We
put

(8.41) V(LD )(En ) r=+0nly)/(Cniy).
(8.4.2) U=0/(Cn L), =L /(Cn L)
(8.4.3) [S’t =(I:St N (I:+ [pt )/([St nLn I:pt)= I:St N ([+ [pt).

Since I:,I:pt are both Lagrangian linear subspaces it followsthat V' has a symplectic
structureand L', I:'pt are Lagrangian subspaces of V'. In other words, V' isasymplectic
reduction of V with respect to L n I:pt. (See [29] Chapter 2.) ' isalattice of V'.
Hence we obtain amirror torus (V'/T',Q")" using I:'pt.Wecan easily find that I; isalso
aLagrangian linear subspace of V'. Itiseasy to see
(85.1) v/, oL/ (Cn L) 0 V/L,,

~ O\ * ~ ~ 0 ~
(85.2) (Cu) B(Cn L) DL,
Hence we may regard (V'/I",Q")" as a subgroup of (Tz”,Q)D. It is easy to see that
T(L(w),a) isan orbit of (V'/T",Q")". We fix (v5,0,) OT(L(w),a) and define an
isomorphism 1, 5., (V/T",Q")" - T(L(W),a) by 1 4,(9) = 9(%.0,).

We next construct affine Lagrangian subspaces L'(W;v,,]) on (V'/ rQ) for
(V0,00) UT(L(W),0). Letusconsider L(w) n Ly(vo) OT%". It isadigoint union of affine

subtori. Let (L(w) N Lpt(vo)) j=1;--,J be its connected components. Let

jl
v, D(L(W) n Lpt(vo))j and V; 0OV beits lift. We may assume V, -V, oL + I:pt. Let
v; V' be the L n Ept equivalence class of ?/j. V; depends only on the component

(L(W) N Lpt(vo))j (and  vy) and is independent of the choice of the point

v D(L(w) N Lpt(vo))j. We put
8.6) L(Wive, )= L@)/(r n D).
Using the splitting V = Est O I:pt we have a projection L VAN I:pt. We put

8.7) &, =a -1 (0,)0L" O

(@)

We remark that L' is transversal to I:pt. Hence by the construction of § 2, we obtain a
holomorphic vector bundle HL'(W;vy, ))&, ) on (V//T",Q)".

Lemma 8.8 The holomorphic vector bundle I[Vj’Gj]*f(L’(v_v;vo,j),oToO) on
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T(L(w),a) isindependent of the choiceof (v,,0,) OT(L(w),a).
The proof is straightforward and is omitted.

E(L'(W; v, ]).8,,). Where i isinclusion

[vj.oi]

Definition 8.9 E(L(w),0) = Dl
2n . g
T(L(w),a) O (T™,Q) .

We can verify easily the following :

Lemma 8.10

if (v,0) D(TZ”,Q)D
S L0000, 4L 9.0)) HT ST (Lw.a)) if o) O(T2.0)
i w),a)) if (v,.o nQJ.

Ooogo

Thisis consistent with Proposition 8.1 and hence justify our definition.

We next consider the casewhen L isnot necessary transversal to I:S1 We recall that,
in the construction of £(L(w),a) in 82 and above, we did not assume that L |stransverwl
to Lg But in the calculation of cohomology in sections 3 and 5, we assumed that L is
transversal to Lg. We remove this assumption and prove the following.

Theorem 8.11 HF*((Lg,0),(L.a)) OH (T Q)" "L a)).

Proof: We first show that it suffices to prove in the case when L s transversa to
L Infact, using the notation above, we find that

J

(8.12) H*((TZ”,Q)D,Z(L(W),G)) =0H ((v’/r' ,Q')D,Z(L’(v—v;vo,j),oToo)).
J:

On the other hand we can easily find an isomorphism

(8.13) Le n HLW.o) OULY 0 L'(W3vp, ).
]

Furthermore if we consider connection a  on the left hand side and &, on the right hand
side of (8.13), then they are isomorphic to each other aso. Hence by Proposition 8.1, we
have

J

(8.14) HF((LS,O),(L(W),O())= jDleF((L' ,0),(L’(v‘v;vo,i),oToo))-

Thus Theorem 811 for HL'(W;v,, )),0;,) implies Theorem 8.11 for HL(w),a).
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Hence we may and will assume that L istransversal to I:pt. We put

(8.15.1) vi=(L+L)/(Cnly) = +Dn L0 n Ly).
(8.15.2) =000 L), L=Lyf(Cen D),
(8153) L= (D (C# L))/ (e n D0 L) =0y n (L),

V" is a symplectic reduction of V. We can prove dso that L", L

o Lg ae

Lagrangian linear subspaces of it. Weobtain (V"/I",Q")". We remark that

(8.16.1) V& L L V
6.1 = U= —— U= .
Cp Cu+(Cnly) Cp+(Cniy)
(8.16.2) (e =(Ept n(C+ Eg)) .
Therefore there exists a surjective linear map
V. V'~
(8.17) T['I:_DLpt_’FDLpt'

It is easy to see tha (8.17) is complex linear and induces a map
T (T*,Q" - (v'/r",Q")". Wethen have:

Lemma 8.18 HL(0),0) Om HL"(0),0).

The proof is straightforward and is omitted. We next compare #L(0),0) with
HL(W,a). Let TOLMW n L,(0) weliftitto uOL, OV/Lg. Since V=LgOLy,
we have an isomorphism | :I:g ~ L. Let a'=aol. We consider the line bundle
HLy(U),a') (weremark ¢ HLg(u),a’) =0).

Lemma 8.19 HL(W),a) DAL u).a’) O HL(0),0).

The proof is straightforward and is omitted. Using Lemmata 8.18 and 8.19, we can
prove Theorem 8.11 by using Theorem 3.1. (The argument for it is standard one which is
used to study degenerate line bundle in the theory of Abelian variety. See[35], [27].) The
proof of Theorem 8.11 is now complete.

We can aso generalize Theorem 6.1 in a smilar way to the case when L is not
transversal to L'. Weomit it.

Next we study digoint union of finitely many paralel affine Lagrangian submanifolds,
(L,L)=LJ;:1(L(WJ-),CXJ-). Incasewhen L(w,)# L(w,) we define
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(8.20) HL, )= 08LW)a ).

(8.20) is a trivial generaization of the construction in 8 2. Theorems 3.1 and 6.1 will be
generalized also in a trivial way. However something interesting happens in case when
L(w;,) = L(w;,), a; =a, . Our conclusion here is that those case correspond to the case
when there is an indecomposabl e flat vector bundle on a Lagrangian submanifold.

We briefly recal the definition of Lagrangian intersection Floer homology in the case
where there are flat vector bundles on it. Let L,L, be Lagrangian submanifolds and
L, - L, be flat vector bundles. We define Floer homology HF((L,,£,),(L,,£,)) as
follows. We assumethat L, istransversal to L, for smplicity. (The general case can be
handled in the same way asthefirst half of thissection.) Let L n L, ={p,,---, p\}.- We put

CF(Lt(Ly &)= O HOML, Ly,

In the general case, the boundary operator is defined in away similar to 8 2. However it is
zero in our case. Hence we obtain the Floer homology HF((L,, £,),(L, £,)). Let ususeits
family version. Let L be an affine Lagrangian submanifold inatorusand £ - L beaflat
line bundle onit. We define

(8.21) E(L, L)q)= HF"((L(v),0),(L, £)).

It is a straightforward analogue of the argument of § 2, to construct a complex vector bundle
E(L, L) suchthat (8.21) isthefiber. Let usdefine aholomorphic structure on it.

Wemay assumewithout loosing generality that theflat bundle £ — L isindecomposable.
Since the fundamental group of L isabelian it follows that there exist subbundles £, of
L suchthat £ hasafiltration by flat bundles

(8.22) 0=40-04=12

suchthat £,/£_, OL(@). Here o) istheflat line bundle with holonomy o . (Note o
Is independent of i.) In order to define a holomorphic structure on HL,£4) we need to

modify (2.11). Let ususethe notation in Figure 2. We remark that Hom(L(0) ,, £,) =C Tt
has afiltration Hom(L(0),, %) =c ! OC”’. Let uschoose éj[p] so that

(8.23.1) & OHom(L(0) ,,£,)=C’ OC”’
(8.23.2) § OHom(L(0),, 4, ,)=C'*OC”.

We use it to define



59

e, \/,O-' ZEXFQZT[ . . Q—
J( ) ID(P,Xo(V),Xo(V)vQ)

(8.24)
215060 = B +0'(@ - (V) P.(E I

Here P, isthe paralel transport of £ alongtheline pg. We use (8.24) instead of (2.11)
to define alocal holomorphic frame of HL, 1.

A holomorphic vector bundle HL,£) constructed in thisway is classical. Atiyah [2]
found one on dliptic curves. Mukai observed that such bundles AL, 1) istransformed to an
Artinian sheaf by appropriate Fourier-Mukai transformation. Artinian sheaf is an element of
Hilbert scheme of points. It isrelated to our story in the following way.

We recall that we first considered the case when there are finitely many parallel affine
Lagrangian submanifolds. The sheaf we obtained in this way is parametrized by the set
Sym,M (I:)reg of smooth points of J-th symmetric power of a mirror. There are various
ways to compactify Sym M (I:),eg. Off course  Sym;M (I:) itself is a compactification. But
more natural compactification in our context is the Hilbert scheme Hilb;, M(I:), of points
M(I:). The relation between Hilbert scheme of points and a bundlie like our M(I:) IS
known. We can find it from the description of Hilber scheme near the singularity. (See [36]
Theorem 1.14.) We remark that the relation between Hilbert scheme and nilpotent bundle is
observed by [5].

What we are discussing here may also be regarded as a mathematically rigorous way to
describe the relation between T-duality, D-brane and Chan-Paton Factor. In other words
when severa branes coincide to each other then enhancement of gauge symmetry occurs.
(See [40] 8 23) Inour case, we have aflaa U(J) bundle £ on L(w) when J
Lagrangian submanifolds ~ L(w;) coincides with L(w). It seems interesting to try to
generalize the story here to flat orbifold and relate it to more general gauge group than
U(J). It seems interesting to describe the complex structure of Hilb, M(I:) directly from
symplectic geometry side, since this case (the phenomenon where a finitely many parallel
Lagrangian submanifolds coincide in the limit) is the easiest example of the phenomenon that
L agrangian submanifolds becomes singular in the limit.
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89 Multi Thetaseries 1 (Definition and A” Formulae.)

In this section we add “imaginary part” to the map m, introducedin[12] § 5. Aswe
mentioned there, the coefficients ¢, (L (), -, Li.,(V,.;)) Of multi theta series are obtained
by counting holomorphic polygons whose boundariesarein L,(v,)d---0O L, ,(v,,,). Hence
to define multi theta function rigorously in this way, we need to prove [12] Conjecture
5.33. In this and the next sections, we describe away to go around this trouble and to define
multi theta functions rigorously without assuming [12] Conjecture 5.33. In the next section,
we also present away to calculate ck(Li(vl),- Lk+1(Vk+1)) :

The way we proceed to do so is as follows. We will first find the properties we expect
c (L), Luy(Ve,,)) (obtained by counting holomorphic disks) satisfies. Some of them
we prove rigorously (using Morse homotopy and [18]) but some others we can prove only in
a heuristic way. We find an algorithm to find numbers ck(Li(vl),u-, Lk+1(vk+1)) satisfying
these properties. We next prove that these properties are enough powerful to determine
ck(Li(vl),---, Lk+1(vk+1)) up to boundary. (We define what we mean by “up to boundary”
later in this section.) We then use the algorithm to define ck(Li(vl),---, Lk+1(Vk+1))' We
remark that the fact that the number ck(Li(vl),---, Lk+1(vk+1)) is well-defined only up to
“boundary” is related to the fact that (higher) Massey product is well-defined only as an
element of some coset space.

Let us first define some notations. We take finitely many Lagrangian linear subspaces
I:j OV, jOJ such that I:j nl 0Oz " and fix it. For simplicity we assume that they are

pairwise transversal. We assume also that st, pt 0J. Namely I:st, L are one of the

Lagrangian linear subspaces I:j we consider. Let n (L, ) be Madlov index

(Kashiwara class). It satisfies

.'Jk

(9.1.1) ) r](LJl N J“):n([jz,...,ﬁjk+l, Y
(912) r](lei " Jk 1) n(le . jor Sjm T jk+1)+n(Ljf"..’ij)’

I_x

and n(L,,L,,L,), n(LJl, ,)=n-n(L; ,L;) saisfy Lemma 2.25. More explicitly we
define

92) oy oDy =0 (00, )+ e (5,0, ) - (5,06 )

(Compare[23] appendix.) We put

(931) ](n!k!d):{(jl"“'jkﬂ) k_z_n(l:h" Jk1)+d (%
(9-3-2) (jl""7 jk+1) D](mk'deg(jl""! jk+1)) )
(9.33) deg(s, ) =n" (L, .L;,)-

Hereafter we write deg(l---,k+1) etc. in place of deg(j;, -, ]..,) €tc.in case no confusion
can occur. We remark that k —=2-n(j,,--- j,.,) isthe virtual dimension of the moduli space
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of holomorphic polygons. More precisely we consider the following moduli space :

¢ :D? - C " isholomorhpic

z DaDz,(z1 ,zk+1) respects the
;217""Zk+1)

M(le(vl),~~- ’ij+1(v"+1)): cyclic order of 0D

0(2) = Pij+1,0(0;D% OL; (v)

Aarararrarir

DDD&DDD

Here 0,D° is a pat of 0D° between z and z,,. PS(2R) acts on
ﬁ/[(lijl(vl),---,I:jk+l(vk+1)). Let M(I:h(\ﬁ),---,lijkﬂ (Vk+l)) be the quotient space. Then
k=2-n(jp " ji.y) isthevirtual dimension of M(le(\g),n-,ijﬂ (vk+1)). We put

(9.4) Ve Vo] = M (L (), L, (o).

The right hand side of (9.4) is the number counted with sign of (L, (v,),~, L, (v, ).
There is atrouble to make (9.4) to arigorous definition. We explained this troublein [12] §

5. We are going to study the property of q?o'[v1 +,Visp] @nd useit as the axioms to define

the number we actually use.
k+1

For By dkans we put I:(jl,-~~,jk+1)(: I:(l~--,k +1) = |_|V/I:jl . For
1=1

(vl,---vk+1)DI:(L---,k +1), we obtain k affine Lagrangian subspaces I:ji(vi). We may
regard VDI:(L~--,k+1) by v (v,--,v). We put L(l~-,k+1):I:(L---,k+1)/v. Let
[V, Vi ] OL(Q---,k +1)  denote the equivalence class of (v,,---v,,,) DL,k +1). For
(vl,--~vk+1)DI:(l-~-,k +1) let p,,, be the unique intersection point of I:ji(vi) and
I:J-M(viﬂ). We write P, (M3 Vier) = Riv1 (V) in case we need to specify v,. We
define

k-1

(9.5) QW Vyeg) = ZQbk+llhi+1h+li+2) oc .
E

In other words, Q(v;,---V,,) istheintegration of Q overthe k+1-gon P, - Pex+1 Pesar -

C isaquadratic function on I:(L---,k +1). Using Stokes theorem and the fact that L; are
L agrangian subspaces, we find

QWL Vi) = Qe VW) -

We remark that C isinvariant of V and hence definesamap : L(1,---,k+1) - C. We
denote it by the same symbol C.
Wewill consider apair g and W for each deg(l,---,k+1)JO such that

(9.61) W@ k+D)OLL-k+1),
(962) G:L(Lik+D) -1 k+1) - Z .
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Wefix anorm | || on L(L---,k+1).

Axiom |

(9.7.1) There exists a positive number & such that c[v,-,v,,]=0, Iif
To (VRERVER L. | (VRSAVAN §

(9.7.2) clevy,- - ev, 1 =clv, v, ] If cOR —{0}. Inparticular W(L,---,k+1 is
independent of [v,,---,V,,, ] — [CV,-+,CV,,,] .

(9.7.3) C [V, Vi) is constant on each connected component of
LA, k+D)-w(Q,--- k+1).

(9.7.49) W(,---,k +1) isacodimension onerea anaytic subset of L(L---,k+1).
(9.7.5) GV Vil = (5D G Vi VoM where H=(degy +--

+deg vi)deg Vi, tk.

We cal w thewall, ¢ the coefficient function. We remark that all of these
properties are likely to be satisfied by the number c,f‘". In fact, [12] Conjecture 5.33 is
(9.7.4) and the most essential property (9.7.1) is a consequence of the fact that the symplectic
area of holomorphic map is positive. Also the system obtained by Morse homotopy (see
[16], [18]) satisfies these axioms.

Using (”,09 satisfying Axiom |, we define a multi theta series. We put
C@-k+) =[], and UL k+D) =L (L k+D/V" . For

(@, 0,) OC @ K +1), (vyv,,) OL@- Kk +1), weput

k+1

(9-8) H(C( 1""7Gk+1;V17"'Vk+1) = zai(biHl_ﬁ—li) .
=1

(See Figure 9.)
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Figure9

Here we recall that ;. is the unique intersection point of I:ji(vi) and I:jiﬂ(vm) and
Vi, =V  etc. by convention. We remark that H is well defined as the map :
L@--,k+1) - R. Weput

(9.9) ra-k+)=[]or/(rnL,).

F(L---,k+1) acts on L(L""k"'l) by (yl""1yk+1)[V1""’Vk+1] :[V1+V1""1Vk+1+yk+1]-
Let L(L---,k+1) bethe quotient space. We usethe symbol [[v,,--,v,,,]] for elements of
L@ k+1). For [[v, -V, J]OL@Q---,k+1), weput

k+1

(9.10) 9+ Vel = [ (L ) 0 Ly, 4) B (T7)

=1

k+1

9V, .V, ]] isafiniteset. Weputm:V - T,
Definition 9.11  Let (0;,, ", 01qq) OO[[Vyye - Viual] . We put
(9-12) V(q12""nQ|<+11) :{[Vi!“"\/kﬂ] DL(l,---,k + 1) |T[(Vi) = T[(Vi')1 n(ﬁml(v’)) =G i+1} :

Note that there exists a subgroup TI,0OTI(L---,k+1) acting transitively on
V(q121"':Qk+11) and

(ML k+1):T,]= |‘i||Lj W) Ly, i)

Definition 9.13

Ok([[V11""Vk+1]];[a vond k+1];Q)

GIVE W Xp(~21Q, - Vo) + 2T (@, 8y Vi Vi)

[Vlr ,-~-,VL+1]D\/ qlz:"',qkﬂl)

(12 Ais11)

(9.13)

We remark that, in the case when d=1, a; =0, B=0, (9.13) coincides with [12] (5.49),
and in the case when k=2 (9.13) is m, in Theorem 7.22, that is a usual theta function. We
also remark that the right hand side of (9.13) is discontinuous at the point [[v,---,V,,,]]
where V(q,, --,0,,,,) intersects with W(1---,k +1). In the general situation, this can
happen at adense subset of L(1,---,k+1) (= T**"). It seemslikely that we can choose an
appropriate perturbation so that the image W(@---,k+1) of W@---k+1) in
L(L---,k+1) isaunion of finitely many compact submanifolds. (The author can proveit in
case k+1<4.) Inthat case, the set where O, is disconnected is a union of finitely many
codimension 1 compact submanifolds of L(1,--,k +1). However in general the proof of it
looks cumbersome and we do not need it in the application of later sections. So we do not try
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to proof it .

Definition 9.14 The set of all points [[v,---,V,,]] where V(q,,:-,q,.,,) intersectswith
WL,k +1) for some (4, *,0s1y) DO[[Vy, -, Viuy]] 1S called thewall aso and is written
as W (L, k+1).

Proposition 9.15 If Axiom | is satisfied, then (9.13) converges on
L@ k+D)-w (- k+1) pointwissandon L(L---,k+1) asadistribution.

Using (9.7.1) the proof is easy and is omitted. We choose M i Which istransversal to
L, and satisfies |\7|. N 0z ". We consider [] (L, .M, ) introduced in §7, and the pull
backs : nlz?(LJ L, ,M I\7IJ-2) etc. of the bundlesdefinedin 8 7. Using ©, we define

m (L 5 M M) OO, . 2(C LG MM, )
(9.16) -

—’T[1k+1T(L11' jren? M Mlkl)

mk([q12] 0. D[qkk+1])
= zek([vl,...,Vk+1];[al,...,a k+1];Q)

Okt 11

Definition 9.17 ]
[q1k+1]

(d12, A k+11)

Weremark that degm, =2 -Kk.

In asimilar way as the proof of Theorem 7.22, we find that “m, is holomorphic outside
W(@,---,k+1)". However since W (L---,k+ 1) may be dense, we need to be a bit careful to
state it. We take a sequence of compact subsets W, [ W(,--,k+1) such that
We UIntW,, and Ue%{e) =w(,--k+1) Let ‘W(e) OL(L--,k+1) be the image of
W Then ‘We) is compact and can be chosen to be a union of finitely many codimension 1
submanifolds with smooth boundary. For [[Vv;,---,V,.,]] Ow 9+ We choose a normal vector
n=(n,---,n.,) to ‘W(e) and put

(918) (A(e)ck)[\/l’ T VI’<+1] = le(ck[\/l +8nl1. ’ "VI2+1 +8nk+1] - Ck [V:It - enl’. ’ "V[(+1 _ank+1]) .
We useit to define:

(A(e)@kX[[Vl’ Tt Vk+1]] ; [al’. a k+1] ’ Q)(qlzv'“x%«n)
(919) = Z (A(e)Ck)[Vll,' : '1V;<+1]
V1 Vig 2 ] OWiey 0V (Gyz v+ Gem )

X~ 2V, Wy ) + 2T =TH(O 0y Vi Vi)

Using A,©, wedefine A m inthesameway as Definition 9.17.
Foreach[[v,--,V,.]] D‘I/_V(e), let Hev,, beaHeavisidefunction definedinaneighborhood
of [[v, -, V,,]] suchthat [[v,-,V,,]] takesvauein {0, and jumps at rl/_l/(e). Its
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Dolbeault derivative 0 Hev,, isa(01)currenton C(L--k+1).

Proposition 9.20 om, = lim A,,m, 00 Hev,,. Here the right hand side converges
e

asacurrent.

Proof: By the proof of Theorem 7.22, we find that d m, is nonzero only because of

the discontinuity of m, . The proposition then follows from the definitions.

Remark 9.21 At first sight it may look strange to consider m, which is discontinuous
at a dense subset. | hope that after the arguments of 8 11,12, where we regards it as current
and useit in Dolbeault complex, it looks more natural to do so.

The operator m, in Definition 9.17 is a family version of the higher multiplication of
Floer cohomology which is introduced in [13] in the case when the coefficient function is

c:"' , (by extending an idea of the definition of m, dueto Donaldson [9].) Aswe remarked

aready, for the coefficient function cf"', our m, may be ill-defined on a (countably)
infinitely many union of codimension one submanifolds. Namely higher multiplication of
Floer cohomology is well-defined only at a Bair subset. This is what we asserted in [13].
For the “family version” we are discussing here, we need more and we regard m, asa

distribution.

Our next purpose is to define the notion that two coefficient functions are homologous
to each other and show that m, in Definition 9.17, up to appropriate chain homotopy,
depends only on the homology class of coefficient functions. Thisis important for us since
the author can calculate the coefficient function ¢™ only up to boundary. We need to
discuss A” formulae for this purpose. One messy matter in introducing A structure is
sign. The signis related to suppersymmetry and is in fact an important matter. To simplify
the sign we use atrick due to Getzler-Jones[19]. Weorder J and let Ts(J) bethe graded
vector space spanned by the symbols [ehjz |--{ejkjm], j << (We write sometimes

[qzl---lekk+l] for simplicity.) We put

deg ejlrjz = deg(l:ll ’I:'z) ! deg[ehjzl.“leikjm] = Zdegejijiﬂ +k.

(Here we shift the degree of [ejlj2 - lejkjk+1 ] by k. This construction, the suspension in the
terminology of [19], isthe main ideato simplify the sign.)

Suppose we have integers b, ; (=b, ,,,) foreach deg(l,--,k+1)=0. Weuseit
to obtain amap

(9.22) [elzl"l%(u] 0 eal€kel s

of degree -1. (Note deg(1,2)+--- +deg(k,k +1) -deg(Lk +1) =n(1,---,k+1) = 2-k.) We
extendittoamap b: TqJ) - Ts(J) of degree -1 by
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(9.23) t{elzl‘ : '|ekk+1] = Z (_1)Zitlldege“ “b, m[ e.l.2|' ' ‘|eé -1/ |e/zm emm+1| ' '|Q<k +1] -
/<m

Herethe sumistaken for all ¢,m suchthat deg(/,--,m)=0. (Note that the signin (9.23)
iIsusual onesincedegreeof b is —-1.) Wesaythat b isaderivativeif bob=0. Nextlet
T(J) be the graded vector space spanned by e, -0 - Here

deg(e;2 0..-0d ekm): Zdegelm. (No degree shift thistime.) Wedefine < by :

se, U---Usge = [elzl"'lexk+1] -
We then find

0.2 (st 0 05 al Jaws] =% (e 0 D ggs).

where p(L---,k +1) = (k—1) dege,, + (k — 2)dege,, +---+ dege _,, + k(k—1)/2. (Note that
sign isdetermined from the fact that degs=1.) We define

(9.25) b =sogo(s? O Os™)
and
(9.26) G (elz a..-0 E?<|<+1) =Gy k€ -

In [19], Getzler-Jones write G =s™ oh, °(SD U 5) However to have the sign
(D" %Y they obtained, it seems that (9.25) is a correct definition. Note
(5—1 0---0 S_l)O(SD“-D S) :(_1)k(k—1)/2.

By definition ¢, ., =(-1)"“"**Yb_ ... beb= 0 isequivaent to an equation

z (_1)u(1""’k+1;g’m)CLH./,m,..., wiCrom = 0.
Herethesumistakenfor all /,m suchthat deg(¥,---,m)=deg(L---,/,m,---,k+21) =0, and

WL K+ 10,m) = (L K+ 1)+ (4o, m)

(-1
(9.27) UL, f,my k+ 1)+ deg gy,
i=1

The sign here is messy and complicated. But in fact we do not need to calculate it so much,
since most of the calculation will be done by using b in place of c. (The reason we
introduced ¢ (and m) isthat the degree coincides with natural one (in sheaf cohomology)
for them.)

Now we go back to our situation. We consider coefficient functions ¢ [v,---,v,,,] for
deg(L-+,k+1) =0, [V, V] OL(L-+ K +1).
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Axiom II
Z(_l)u (1,---,k+1;/,,m)Ck_m+é[Vl REPRVRVSPE in+1]Cm—€ “ [VZ oo ’Vm] =0,

where p(L,---,k +1;/,m) isasin(9.27).

Lemma 9.28 If the coefficient functions satisfies Axiom I, then we have

Z(_l)u(l,...,kﬂ; ¢,m) m_m+e+1(X12" ., X[_l(”mn_[ﬂ(x”ﬂ’. . "Xm—lm)7 Xmagr" " 'kaﬂ) =0.

Proof: Immediate from the definition and

AV Vier) = Q3 Vi Vi M) + QYo Vi)
H(al,...’a k+1;V1""’Vk+1): H(Gl,"',CX€ Fo QRN (HIPIA VARERIR V) ’me"vk)

+H (G(; ’...’am;vé !"'7Vm)

We next define the notion that two coefficient functions to be homologous. Let
f11,~-,jk+1(: f . .1)0Z for deg(L---,k+1)=1. Weassume

(9.29) f,, =1 for (jyjp) 0a(n 29).

j1.d2

We have a map [elzl---|ekk+l]H f € Of degree 0. We extend it to
f:TqJ) > Ts(J) by

(9.30) f’e.Lzl"'|ekk+1] = z faq1)a2) fa2) a3 fa(e—l)n-a(e)[ea(l)a(Z)l"|ea(e—1)a(e)]'

Here the sum is taken over al l1=a(l)<---<a(e) =k +1 such that
deg(a(e),--,ale+1))=1. Weremark that thereisno signin (9.30) since f isof degreeO.
We then put

(9.31) fe=sodeo (s O--O0s7).

Let ¢V, -V and ¢v,---,V,.,] betwo coefficient functions satisfying Axioms |
andIl. Let bv,, V., ], BV, M.,] befunctions corresponding to them by (9.25).

Definition 9.32 We say that ¢* is homologous to ¢ if there exists integer valued
function f,  ..[Vy--+ V] for deg(l---,k+1) =1 satisfying (9.29) such that

(9.33.1) fob' =b%o f.
(9.33.2) If BV Viera] 20, k22, then ReQ(Vy Vi) <3V Ve[
(9.33.3) ) (VR VAN el s AV ISEERY Y

Let m; and m’ be mapsobtained from ¢ and ¢’. Wedefine d, by (9.31). d,
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also definesamap n,. (We use (9.33.2) to show the convergence.) We find that (9.33.1)
implies

1
z Ny me /(X12 X100 My +1(th£ w10 7Xm—1m)'xmm+l o 7ka+1)

_ 2
(9.34) = Z m (na(Z)—a(l) +1(Xa(1) a1)+17 " Xa(2)1a(2) )

“Nagiy-agi-1) +1(Xa(i—1) a(i-1)+17 " 1Xa( -1 a(i)))'

(9.34) means that n definesan A" functor from the A" category determined by mﬁ to
one determined by mf. (See [15] for its definition.) (9.29) implies that n, is identity.
Hence n isahomotopy equivalencein the sense of [15].

We explain itsimplication by an example. Consider the case k =3. We assume

(9.35) M, (X120, X53) = My(Xo5,X54) =0.

Thisis the situation where we can define Massey triple product. In our case, it is represented
by M5(X;0Xp3,Xas) OF MA(Xp,Xp5,Xs,). (We assume m;=ms for simplicity.) (9.34)
implies
M3(X12 X231 X 32) = M5(X12,X 3, X 35)
= 2N,(X2,Mo(Xa35X34)) £ Np(My(Xy2,X53) s X34)
+My(Xgp,N(Xp3,X34)) £ My(Ny(Xe2,X03) 5 X34)
= 2My(X12 Mo X35 X34)) £ My(Ny (X121 X23), X34)

(9.36)

It follows that M5(Xyp,X05,X3,) COINCIdES With M2(Xgy,Xp3,X5,) Modulo elements of the
form m,(X,,,*)+m,(*,X;,). Thisis consistent with the usual definition of Massey triple
product. Thusthemaps n determinestheambiguity of (higher) Massey productssystematically.
We will apply (9.34) more systematically in 88 11 and 12.
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8§10 Multi Theta Series 2 (Calculation of the coefficients).

Now we determine the homology class of coefficient function. For this purpose, we add
more axioms so that it is enough to characterize the homology class. To find appropriate
axioms, we further study the counting problem of holomorphic polygons. Namely we study
the structure of the wall of qi‘o'. For this purpose, we recall [12] Lemma 5.36. It implies
Lemma 10.3 below, if we assume transversality. We need some notations and remarks to
state the lemma

Let deg(L---,k+1)=0. In 8 9 we considered the wall W(1,---,k +1) as a subset of
L@Q,---,k+1). Wecanregarditalsoasa V invariant subset of H:j\// [ji = I:(L---,k +1).
We write ‘VT/(L---,k+ 1) inthelater case.

We next remark that, in case when deg(L---,k+1)=0 and k +1>3, the quadratic
function ReQ:L(L---,k+1) - R has negative eigenvalue. (See Lemma 10.20 below.) It
follows that there existsadomainin L(L---,k+1) where the coefficient function ¢ must
vanish by Axiom I. Thisimpliesthat if we know thewall 9({1,--,k +1) asacycle then we
can determine G,. More precisely we regard thewall 9{1,--,k +1) asacycle asfollows.
We first triangulate 94{1,--,k +1). Let A be one of its top dimensional simplex. We
assumethat A isoriented. Since {1, -,k +1) iscodimension one, we have an oriented
normal vector n(p) for pOA. We consider an integer

c(®) = lim(c,(p+€fi(p)) - G(p — &())).

The sum zc(A)A isacycle. We denote this cycle by rVT/(J,~--,k+1) by abuse of notation.
In asimilar way, we may regard ¢, asatop dimensiona chainin I:(l,---,k+1) asfollows.
Let U, beconnected componentsof L(L---,k+1)-%(1,---,k+1). We put

C(L--- k+Lc)= ch(U|)[U|]-

Here g (U,) isthevalueof ¢ atapointon U . (G(U,) isindependent of the point on
U by (9.73).) d1,--,k+1;9 isatopdimensional chain and we have

(10.1) aC(L--,k+10 = ML k+1),

as chains. Obviously ‘VT/(L---,k+1) and (10.1) determine m, if C is negative
somewhere on I:(],---,k+1). We remark that in the case when deg(1,2,3 =0, C is
positive definite on I:(LZ, 3. So ‘VT/(L 2,3) determines c, only up to constant. However,
in this case, we already know that ¢, is 1 everywhere and rI/T/(L 2,3) is empty, by [12]
Theorem 4.18.

We generalize the definition of C(1,---,k+1;c™) to the case when deg(l,---,k+1) =d
with d>0 hy

(102) (1 K+ 21¢)= {4, vy) DL k4 D) |3 (), C, () 0},



70

“Lemma 10.3”  Let deg(L---,k+1)=0. Thewall W™ - k+1) of " isasumof
(10.4) Clip=sJmi €)X Cliy s Jisf s Jeai )
here we take the sumover /,m suchthat deg(¢,---,m)=1 or deg(1,---,/,m,---,k+1)=1.

We remark that deg(4,---,m)=1 implies that the virtua dimension of
mj[(I:j, v,), -, I:J.m(vm)) is -1. Hence c(/,---,mc®) is a codimension one chain of
L(j, -, j) inthat case. (In case we regard C(/,--,md™) as achain, (10.4) is a bit
imprecise, since we need to consider multiplicity and sign.)

As mentioned above, we do not prove Lemma 10.3 rigorously because of transversality
problem. (One can certainly find a perturbation so that Lemma 10.3 holds after perturbation.
But we do not need to work out this heavy job.) So instead we take it as an axiom. However
to motivate the axiom, we explain the idea of the “proof” of “Lemma 10.3".

In fact, we aready explained the most essentia part of the “proof” in[12] § 5. Namely
[12] Lemma5.36 “implies’ that if (v, V,,) W™ (L, k+1) then there exist £,m such
that

05 FL; () Ly i) %, () Ly (v, Ly (i L ()

is nonempty. Namely if (Vg ,Viuy) =limg_ o (W, V)  then the k+1 gons in

V I:jl(vl(e)),--- ,I:J-leff)l)) splitsinto aunion of m-/¢+1-gonand k—m+ ¢ +2 gon. By
dimension counting, we find that the virtual dimension of (10.5) is —1. We consider the
following three cases.

(10.6.2) deg(4,---,m) =1, deg(L---,/,m,--- . k+1)=0.
(10.6.2) deg(4,---,m) =0, deg(4,---,4,m,--- ,k+1)=1.
(10.6.3) deg(4,---,m) >1 or deg(L,---,¢,m,---,k+1)>1.

It iseasy to seethat if (10.6.1) or (10.6.2) holds then we have aterm like (10.4). On the
other hand, in the case when (10.6.3) is satisfied, the set of all (v,,---,V,,,) such that (10.5)
IS nonempty is of codimension higher than one. Hence to find the wall as a codimension one
cycle, we do not need to consider (10.6.3). This completes the “proof” of “Lemma 10.3".

To find a good axiom, we need to study the boundary of c(1,---,k+2c™) in the case
when deg(L---,k+1)=d, d>0 aso. The “result” isthe following “Lemma 10.8". We
remark that if deg(l---,k+1)=d then the (virtua) codimension of C(¢,---,m:d”) is d.
The following lemma follows from (9.1.2).

Lemma 10.7 If deg(L---,k+1)=d,deg(/,---,m)=d,, and(L,---,¢,m,---,k +1) O d, then
d+1=d +d,.
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We next show :

“Lemma 10.8”  Let deg(L---,k+1)=d. Theboundary of thechain c(1,--,k+1c"™) is
asum of

(10.9) iC(jw""jm;chd) X C(jli'“' jﬁ’ jm;"" jk+1;Ch0|),

where the sum is taken over all f,m such that deg(/,--,m)=d, 20,
deg(1,--,¢,m,-- k+1)=d, 0.

“Proof” Again by [12] Lemma 5.36, we find that (v,,---,V,,,) 00C(L,---,k+1c™) if
and only if (10.5) isnonempty. Wetake d, and d, asin“Lemma10.8". In the case when
d;,d, =0 we find (10.9). Otherwise we have d, >d+1 or d,>d+1 by Lemma 10.7.
Then the set of all (v,,---,v,,;) such that (10.5) is nonempty is of codimension higher than
d. Hence, by dimension counting, it is O as a codimension d+1 chain. The “proof” of
“Lemma 10.8” is complete.

Now we take Lemmata 10.3 and 10.8 as axioms. Namely we consider :

Axiom III There exist locdly finite chan c@(L---,k+1) on L@ k+1) for
deg(L---,k+1) =d, with the following properties.

(10.10.1)  Thecodimensionof ¢ (1,---,k+1) is d.

(10.10.2)  Cc9(L---,k+1) isinvariantof V actionon L(L---,k+1).

(10.103)  c“(1,---,k+1) isinvariant of themap [vy,--,V,] F>[cvy,--,Cv,] .

(10.10.49) Let | || be anorm on L(L---,k+1) Then, there exists & >0 such that
(Vy Vi) 0CP (L, k +1) implies

2

ReQ(V;, -+, Via) > 5|[V11""Vk+1] :

(10.105)  oc'?(1,---,k+1) isasum of
D (- myxc (@ 0, me Kk +D)

where the sum is taken over all /,m such that deg(/,--,m)=d, 20,
deg(1,--,¢,m,-- ,k+1)=d, 0.

We fix the sign in (10.10.5) later during the proof of Theorem 10.17. We can write
(10.10.5) roughly as

(10.12) 09 + Y 10 o9 =,



72

We regard (10.11) as a Maurer-Cartan equation or Batalin-Vilkovisky master equation as we
mentioned in the introduction. It is natural that we find it here, since we here are studying a
family of A™ categories parametrized by (v,,---,V,,;) and (10.11) describes a deformation of
A” structure (asis explained in the literatures quoted in the introduction.)

One advantage to restrict to such cycles isthe following lemma.

Lemma 10.12 Let ¢ be a one parameter family of coefficient functions of degree 0
satisfying Axiom1,I1,I1I. Then ¢ ishomologousto c°.

Lemma 10.12 is an immediate consequence of Theorem 10.18, we prove later.

Note that ¢ =0 satisfies Axioms I,11,I1l. We introduce an axiom which exclude such
trivial G . We consider the casewhen k+1=3. Then dc(1,2,3 =0 by Axiom Ill. Axiom
IV will determine the homology class of this cycle. We put

S(Q1.2,3)= { (W, Vo, V) OL(L 23) | Qvy %) > 0, [ v,V ] = 1.
Lemma 10.13 If deg(1,2,3 =d thentheindexof C on L(1,2,3 is d.
Corollary 10.14 If L(1,2,3 then S$(Q1,2,3) ishomotopy equivalentto S" ™.

Corollary 10.14 is immediate from Lemma 10.13. Lemma 10.13 is immediate from
definition. In fact, we have QO,v,,0] =Q(rtle2,r[L3v2)/2, where T :V/I:2 - I: IS an
isomorphism.

Hereafter we omit (d) in c“(1---,k+1) in case no confusion can occur. Let
ay, - k+1;d, ai--,k+1) be cycles on L@, k+1) induced from
c(L--- k+1c™), di1,--,k+1) respectively.

Theorem 10.15 [C(1,2,3¢™) n Q,1,2,3)] OH, ,,(S(Q,1,2,3);Z) =Z isthe generator.

Theorem 10.15 is a generalization of [12] Theorem 4.18 (which isthe casewhen d =0)
and is amotivation of Axiom IV below. Note that we do not put Theorem 10.15 in the quote
while we put Lemmata 10.3 and 10.8 in the quote. The difference is that the statement of
Theorem 10.15 is stable by the perturbation. So though we do not specify the perturbation, it
Is now standard to show that there exists a perturbation so that we can make sense of the left
hand side of Theorem 10.15. On the other hand, it is not clear in what sense the statements
of Lemmata 10.3 and 10.8 are stable by perturbation.

Axiom IV [C(1,2,39n SQ,L23)] 0H,_ ,,(S(Q12,3);Z) =Z isthe generator.

Note that we need to fix the sign of the generator of H,_, ,(S(Q1,2,3);Z) for Axiom
IV to make sense. The ssimplest way to do so isto use Theorem 10.15. Namely we assume

(10.16) [C(L2,3¢)n SQ,123)]=[C(123) n SQ123)].
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The orientation of C(1,2,3,d”) is determined by using its Morse homotopy limit. We
discuss it later during the proof of Proposition 10.25. Our main results of this section are as
follows:

Theorem 10.17 There exists a coefficient function ¢ satisfying Axioms I,11,111,1V.

Theorem 10.18 Let c', ¢ be two coefficient functions satisfying Axioms I,I1,111,IV.
Then ¢' ishomologousto c?.

Proof of Theorem 10.15:  We use Morse homotopy in a similar way as the proof of [12]
Theorem 4.18. We choose a complex structure on V  so that JI:jl is transversal to I:jz
and I:jg. Using it weregards V=T I:h. We regards I:jz and |:13 as graphs of closed one
forms dV,, dV;, where V, are quadratic functionson I:1 Let I:fz and I:J.ES be the graphs
of edV,, edV; respectively. We consider the isomorphism V -V, v,+\, >V, +&v,
where v, DI:].1 v, DJ[h : We then obtan an isomorphism
I, :V/L, xV/L, xV/L, OV/ L xV/L xV/L5. Wefind Q(, (Vy,V,,\%)) = €2Q(V,,V, V) . It
follows that the homology class in Theorem 10.15 does not change if we replace I: by I:.s .
So we may consider the limit where € - 0. By [18] this limit is described by Morse
homotopy. Let usrecal it here.

We remark that L(j,, j,.j;) ={[0.,v,,01} . Let L (v,) bethegraphof edV, . Itis
easy to find that there exists a linear isomorphism I :V/[2 - I:1 such that
Voo, = Vo +1(v,). Let gy =0 and let q,(V,), dxs(v,) be the unique critical points of
Voo ~Va and V; =\, - respectively. Let U,L(V,), Uy(v,), U, be the unstable manifolds
of grad(\/zyqz - Vl), grad(\/3 ‘Vz,q2)1 grad(V -V,) respectively. Then for sufficiently small

£, Wpsjn» jz;c™) isdiffeomorphicto:
(10.19) {Vzl Upa(Vy) N Ups(V,) n Uy 200 } -

Itiseasy to seethat (10.19) isalinear subspaceof L(j,, j,.j;) ={[0,v,,0]} anditscodimension
Is 2n—dimU,;,(V,) —dimU(v,) —dimUg;, =d. Thisimplies Theorem 10.15.

Proof of Theorem 10.17: Wefirst generalize Lemma 10.13 as follows.

Lemma 10.20 Let deg(l---,k+1)=d. Then the index quadratic foom Q on
L@L---,k+1) is d+k-2.

Proof: Wetake /,m with ¢/ </+2< m. Weremark
L(l’k+1) = {[Vl""’V(f-l’O’er" Vv O!Vm+1""ivk]} .

1 Vim-11

We have
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Q(V1""1Vf—1’01Vz+1""’Vm—1’01Vm+11"" Vk+1)

(10.21)
= Q(Vf,+1"'" Vm—l) + Q(Vl""1V€—1’Vm+1""’vk+1)'

Using (10.21) and Lemmata 10.7, 10.13, we can prove Lemma 10.20 by an induction on k.

We put

SOL - k+1) :{[V1 o Vo] DL+ K+ 1) Qe Year) > 00+ el| = 1} _
Corollary 10.22 H*(S(Q,l,u- k+1),Z ) OH.( gk ~(drk1) ).

Corollary 10.22 isimmediate from Lemma 10.20.

Now we start the proof of Theorem 10.17. We construct c(1,---,k+1) by induction on
k. In case when k+1=3, we need to find C(1,2,3) satisfying Axiom IV. Let
deg(1,2,3 =d, d>0. We take a codimension d linear subspace C(1,2,3) of L(12,3
suchthat Q ispositiveonit. (We can choosesuch €(1,2,3) by Lemma10.13 and d>0.)
By perturbing it a bit, we may assume C(L,2,3)n T (14,2,3) 02 **3  This €(@1,2,3)
satisfies Axioms 1V.

We next consider thecase k=4. Let deg(1,2,34) =d. Weconsider the cycle:

(—1)“1[(c(1,2,3) xqL34) n S(Q1,2,3,4)]

(10.23) +(_1)H2[(C(2’3’4) X C(]_,2,4)) N S(Q;1,2,3,4)]
where

(10.24.1)  p, =deg(1,3,4) +deg(1,3),
(10.24.2)  u, =deg(1,2,3) + deg(2,3,4) + deg(1,2,4) + deg(1,2)deg(2,3,4) + deg(1,3) + 1.

(10.23) represents an element of HZn_d_Z(S(Q v dos Jas j4);Z) 0z .
Proposition 10.25 (10.23) represents O in the homology group.
Proof : We first show the following :

Lemma 10.26 If 4An,k,d)#0 then d=2-Kk.

Proof: Let (j -, Jksq) O An,k,d). We choose a complex structure on V so that
JL, istransversad to L; /¢=2,--,k+1.Usingitweregards V=T L, . We regarcjs L;,
as graphs of closed one forms dV, etc. where V, are quadratic functionson L,. Let

f,ps1=V,sn—V,. Let u( fM+1) be the number of positive eigenvalues of f,,,;. By
definition we have
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(10.27) (1) -+ () =M ) = k+12).

On the other hand, since f, +---+ f,,; = fj 41, itiSeasy to seethat the right hand side of
(10.27) isnonnegative. Lemma 10.26 follows.

Now let deg(4,2,34)=d. Using Lemma 10.26 and Axiom V, we find that
[(c(l,z,s)x a134)n S(Q1,234)| and [(c(z,3,4)xc(1,2,4)) n S(01,2,34) both
represent the generator of H,,_441 S(Q,1,2,3,4);Z ) We are going to check the sign and
show that (10.23) is 0 in the homology group. For this purpose we recall the definition of
the orientation. We regards I: asthe graph of df,, where f isaquadratic form on some
[, and weidentify V=T'L,. Let S(ab) be the stable manifold of f,— f,. (Namely
S(a,b) is the eigen space of negative eigenvalues.) We remark that we may regards
C(1,2,3) asalinear subspace of I:O Then we define the orientation on €(1,2,3) etc. so that

(10.28) SL2) 0 §2,3)Uc(1,2,3) 1 §1,3)
is an orientation preserving isomorphism. Then we have orientation preserving isomorphisms

S@2) 0 §2,3)1 §3,4) Uc(1,2,3) U S(1L,3) U J3,4)
Oc(L2,3)0c(1,3,4) 0 S(L4)

S1,2) 0 §2,3) 0 §3,4) 051,2) 0 2,3,4) 0 S(2,4)
[(-1)%e9(344e9(12) 72 3 1) §(1,2) O 2,4)
O(-1)de9(23:9de0(1.2) @2 3 4) O (1,2,4) O S(1,4).

Namely we have  ((1,23)0C(1,34) O(-1)*>*M2c(234)0c(1,2,4).  Note
deg(2,34) +deg(1,2,4) =deg(1,2,3) +deg(1,3,4) by (9.1.2). Proposition 10.25 follows.

By Proposition 10.25, we can choose achain €(1,2,3,4) which satisfies Axiom I11.
Now theinduction for thegeneral k isasfollows. We assume that we have constructed

al,-- k") satisfying Axiomslll for k' <k. Let (j,, -+, ], ) O9(nk,d).

Lemma 10.29 0% Hc(t,-,m) x (L, f,m,--- k+ 1) = 0.

Proof: We first prove the lemma up to sign. (Namely over Z, coefficient.) The
argument of the sign (together one in the statement) will be given later. We remark that the
left hand side is a sum of the terms of the form

(10.30) C(a,,b) X (L, a b, m) X C(L+ £, K + 1)

for l</<a<b<mc<k. We put deg(a,--,b)=d,, deg(4---,a,b,---,m)=d,,
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&---,¢,m;---,k+) =d,, We may assume d,d,,d,=0. We consider the following three
Ccases.

Cae 1. d,+d,>0, d,+d;>0. Since deg(/,---,m)=d, +d, -1,
deg(L---,a,b,---,k+ 1) =d, +d, -1, it follows that both a(c(¢,---,m)xC(L---, £,m---,k+1))
and o(c(a,--,b)xC(L---,ab,--,k+1)) appears in the left hand side of Lemma 10.29 and
contains (10.30). Hence this case the term (10.30) cancels to each other (up to sign.)

Case 2: d,+ d, = 0. Weapply induction hypothesis Axiom Il to (¢,---,m). We obtain

zic(a’...,b)xC(ﬁ,...’a’b,...’ m) =0.

Hence the sum of such terms in the left hand side of Lemma 10.29 vanishes.
Case3:d, +d,=0. Thesameas Case 2.
Thus we proved Lemma 10.29 up to sign.

We now consider the homology class

(10.31) [S (e mxc(@ - ame k+ D) n QL+ k+1)]

This homology class isin H ., _d_z(S(Q;l,n-,k +1),Z ) Corollary 10.22 implies that
this group vanishes if k+1>5. Therefore we can find C(1,---,k+1) which bounds
(10.31). Namely this class satisfies Axiom I11.

In the final step, namely inthecase d =0, we proceed in the same way. Axiom I,I11,1V
are satisfied. We finally verify AxiomIl. Let deg(l,:--,k+1) =—1. We consider the sum

(10.32) Zic(z,---,m)xc(J,-.-,f,m,m,k+1).

where the summations is taken  over ¢,---,m) such  that
deg(4,---,m) =deg(L,---,/,m,---, k+1) =0. (We discuss the sign later.) In the same way as
Lemma 10.29 we can prove that (10.32) is a cycle. On the other hand, (10.32) is the top
dimensional chain. Hence (10.32) is equal to the constant times the fundamental class. On
the other hand, since Q is not positive definiteon L(1,--,k +1), it follows that the cycle
(10.32) is zero on some open set. Therefore (10.32) is zero everywhere. Axiom |l follows
immediately. We thus proved Theorem 10.17.

Remark 10.33 The proof of Theorem 10.17 as well as the proof of Theorem 10.18 is
somewhat similar to the method of Acyclic model discovered by Eilenberg and MacLane

[10] in the early days of homological algebra.

Before going further, we show how the wall % looks like combinatorialy in the case
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k+1=456. Inthecase k+1=5 and deg(1,2,34) =0, we have
W(@1,2,34) =+C(L,34) xC(1,23)+ C(1,2,4) xC(2,3 4).

Note deg(1,34) +deg(12,3)=1. In case deg(1,34)=1, we may choose C(1,34) asa
codimension 1 linear subspace of I:(1,3,4). Hence €(1,34) xC(1,2,3) isacodimension 1
linear subspace. The other case and other term (C(1,2,4) x €(2,3,4) can be chosen to be a
codimension 1 linear subspace. On the other hand, theindex of Q on L(1,2,34) dsois
1 by Lemma10.13. Hence we have the following Figure 10.

Figure 10

Here Q<0 on A. Wehave c;=%#1 on B and c;=F1 on C, c,=0 elsewhere.
(Compare [21] (3.0.1).)

In the case when k+1=5, there are several possibilities according to the Maslov
index. We first consider the case deg(1,2) =2, d(i,j)=0 for other i<j. (Note then
deg(1,2,34,5) =0.) We find that C(i, j,k,¢) is of negative virtua codimension, except
c(1,2,3,4), c(1,2,3,5), c(1,2,4,5). Hence

W(L2,3 4,5 = +C(12,3,4) x C(L4,5) + C(L,2,3,5) x C(3,4,5) £+ C(1,2,4,5) xC(2,3,4).

Therefore combinatorialy 7/(1,2,3,4,5 looks like asthe following Figure 11. (We remark
that index of Q=2 on L(1,2,34,5) inthiscase.)
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c(124) x G234 = o{ds ) o(1245) = o23dy o (125)x o{245)x o (234)
= C124) = S {45 1) = C(234 =c(125jxc(235]|xr:(345]|

C(1234) % 5(45 1) 5(12353 X £(345)

Figure 11

We remark however that Figure 11 is combinatorial or topological picture. Namely
faces €(1,2,3,4) xC(L4,5) etc. are not liner in this case. In fact, let us consider the case of
n=2. Then L(1,234)=R* and ¢(1,34)xC(1,2,3)OR *. Hence dC(1,2,34) isaunion
of two R?'sin R*. Itisimpossibleto find achain ¢(1,2,3,4) contained in asingle (flat)
hyperplain. (We can take it as a union of two flat 3 dimensional sectors.) Thisis the reason
why itisdifficult tofindawall % suchthat % 0O T iscompact.

Let us consider other cases of k +1=15. Here we take the negative eigenspace L(-)
of C and draw the figure of the intersection of 9 with a 2 dimensional plain parallel to
L(-).

If deg(1,2) =deg(2,3)=1 and deg(i,j)=0 for other i<j, thend4of dj;,J»,i3:4)'S
can appear in W(1,2,3 4,5 and we find Figure 12-1. If deg(1,2) =deg(34)=1 and
deg(1,2) =deg(2,3) =1 for other i <], we have Figure 12-2.
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£ (23451 % £(512)

£ (4512) % (234) £ {1235) % 2 345)

C (12347 = (451)
Figure 12-1

C(4512) % C(234) C(2345) x C(312)

C(1234) 451 CLI235) * Cr343)

CrLA45Y) o O(123)
Figure 12-2

Let us consider the casewhen k+1=6. Inthiscase index of Q on L(1,2,34,5,6)
is 3. We take a 3 dimensional subspace L(-) and are going to draw the figures of the
intersection of 7/ with a 3 dimensional plain parallel to L(-). Let us consider first the
case deg(L,2) =3, deg(i,j)=0 for other i<j. Then W(1,2,34,56) isaunion of 4
faces and looks like
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c(12556) x C(34%)

C(12345) x C(561)

C(12456) x C23d)

Figure 13.

Next we consider the case deg(1,2) =deg(34) =deg(56) =1, deg(i,j)=0 forother i<]j.
Thewefind that "(1,2,3 4,56) lookslike

{1 ZA56) % o[ 245)

C1EME) x 561 CF122) w o(12456)

O[Ty oft2sd)

_________

e L256) wed3s Ty tF -

{12456 wef Ead) C{1Z346) % ef456)

o 224 56) 1612

Figure 14.
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Thisisacell Stasheff introduced to study A”-structurein [45].

Finally we consider the case deg(1,2) =deg(3,4) =deg(4,5)=1, deg(i,j)=0 for other
I <j. Wethen find that the following figure :

£ (12356) =& (345)

cil2Ee)
w0 (3456

Zi123d)
sl (4551

cilzad)
efA5E1 Y

£ (12456) =& (234)

S{23456) » G512

C(12348) x C(d56)

Figure 15

Here the shaded region can belong any one of ((1,23,6)xC(34,5,6),
C(1,2,3,4,5) xc(56,1), Cc(1,2,3,4) xC(4,5,6,1). Note that we need to use the formula

+[C(1,5,6) x €(1,2,35)] £[€(2,3,5) xC(1,2,5,6)] £[C(3,5,6) xC(1,2,3,6)]
to draw Figure 15.

Proof of Theorem 10.18:  Let C'(L,---,k+1) i =12 betheclassesassociatedto m. We
are going to prove the following by inductionon k.

Lemma 10.34 There exist codimension deg(L:--,k+1)-1 chains D(,---,k+1) in
L(L---,k+1) withthefollowing properties.

(10.35.1) 7§1,2) isthe fundamental class.
(10.35.2) D(,---,k+1) isinvariant of the trandation by V OL(,---,k+1) and by
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A =Y [-VREN - B
(10.35.3) Thereexists 8 >0 suchthat (v,,---,V,,,) UD(L---,k+1) implies

2

ReQ(v,*+,Vy.y) > 6|[v1,---,vk+1] .

(10.35.4) The boundary 0D(L,---,k+1) of D(L---,k+1) isa difference of two types
of components. One of themis the sum of

(10.36) +D(a(l), --,a(2)) x--- x Da(t - 1),---,a(t)) x c*(a(1), a(2),---,a(t))

where the sum is taken over all t and 1=al)<---<aft) =k +1 with

deg(a(i), -, ai +1))20, ai + 1)z a(i) +1, and dega(1)a(2),-,at))20.
The other isthe sum of

(10.37.1) +C'(l,---,m) x D(L,---,4,m,---, K +1),
(10.37.2) +D(0,--,m) x C'(1,---,0,m,--- K +1),

where the sum is taken over all /,m with deg(l,---,ﬁ,m,---,k+1)20, deg(ﬁ,---,m)zo.
(k+12m-/+1>23 in(10.37.1), k=2m-/+1>2 in(10.37.2).)

The sign will be fixed during the proof.
Remark 10.38  We can rewrite (10.35.3) as 9D +C*o D - DoC' =0.

The proof of Lemma 10.34 is similar to one of Theorem 10.17 and proceeds as follows.
Let usfirst give aproof up to sign. (Wediscusssign later.) The proof is by inductionon k.
Inthecase k+1=2 wedefine Z asin (10.35.1). Inthecase k+1=3, (10.36) -

(10.37) is €?(1,2,3)- c*(1,2,3), which is homologous to 0 by Axiom IV. Hence we have
D(1,2,3).

Assume that © is constructed up to k. We consider the boundary of (10.36) -
(10.37). It consists of three kinds of terms

if(a(l)’... ,a(Z)) Xeoo X ddt —1)'... ’a(t))
(a),-,a@),a(B),,a(t) x (a@),a +1);--,a(B)).
icl(a(e) +0,aQ) + [ +1,--,a@) + m) x da(l),... ,3(2)) ...
(10.39.2.1) x2{&@),--,a@) + £,a@) + m,--,a@ + 1)) x--- x fa(t -1), - ,a(t))
x(a1),--,a(t)).
J_r@(a@) +0,aQ) +/+1,--,a@) + m) x @(a(l),m ,a(Z)) X
(10.39.2.2) xCH(a(®),--,a@) + £,a@) + m,--,a@ + 1)) x--- x ofa(t -1),--,a1))
x( 1), a(t)).
(10.39.3.1) +c'(a, -, b)x (¢, ab,--,m)x D(L,---, 0, m,--- Kk +1).

(10.39.1)
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(10.39.3.2)
(10.39.3.3)

+ I+

Cl(a,...’b)x@(f’...,a,b,...’ m)xCl(:L...,g, m,...,k+1)_
Cl(a,...’b)xCl(f,...'a’b,...’m)xg)(]_’...,g’ m’...’k+1)_

For each term we can divide the case in the same way as the proof of Lemma 10.29. In
one case, the term appears twice in the boundary of (10.36) — (10.37) and hence cancels. In
the other case, terms cancel to each other by induction hypothesis or Axiom 11.

Therefore (10.36) — (10.37) gives an element of H.(S(Q1,--,k +1),Z). We find the
degreeis n(k—1)—-d-1. (Thisis 1+ the degreein the case of the proof of Theorem 10.17.)
Note Hoka)-a-1(S(Q1;--,k+1),2)=0 by Corollary 10.22. Hence we obtain
D(L---,k+1). The proof of Lemma 10.34 is complete up to sign.

We can apply the same argument in the case when deg(L:--,k+1) =0. Then we obtain
(10.36) = (10.37) , sincein this case they are top dimensional cycle which is zero somewhere.

Wenow use D(1,---,k+1) incase deg(L---,k+1)=1inthesameway as 1, --,k +1)
to obtain f. Then (10.36) = (10.37) for deg(l,---,k+1)=0 impliesthat b’c f = fob" in
the sense of Definition 9.32. Therefore ¢' is homologousto c®. This completes the proof
of Theorem 10.18 up to sign.

Now we are going to discuss the sign in Axiom Ill and check the sign in the proofs of
Theorem 10.17 and Lemma 10.34. For this purpose we continue the discussion of § 9 on the
A" structure. In § 9, we consider only ¢, of degree 0 (or b, of degree -1) we
generdlize it to other degree. We discuss using b, to smplify the sign. Let
deg(L---,k+1)=d. We consider integral current B ,,.[v;,--",\,,] Of degree d on

L(L---k+1). Let A [resp. A(s?n)(,oth denote the vector space of all degree A current
[resp. smooth  differential  forms]  on L@ k+1). We  define

b@ Ty OAL) = T OAPD py

b(d)%elzl"'hk +1] O UE

_ Z(_l)(dﬂ)zitll(deg(i,i+1)+1)’el2|._le(_”

/<m

(10.40)

€ rrlemm+1"|er<k+l] O (U Dh_(,o.l.).,ku)-

(Note that Ts(J) degree of b'? is —d -1 and Ts(J) degree of e,

j

is deg(i,j).) Sincethe

current degree of b'®) is d, thetotal degree of b'® is -1 and isodd. We consider the
equation

(10.42) db @+ Y (-1)*b' % b =0,
dy +dy,=d+1

Here d istheexterior derivativeon L(1,---,k+1).

Lemma 10.42 (10.41) isequivalent to
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d +(d, + 4 ii+1)+ d d
(1043)  do,,, ¢ F(-pE @ NIt aly@) npd) =0,
/<
dl+d2=C;T':'1

Proof: We apply db'® + Zd1+d2:d+l(—1)dz b{%) o bl%) to [e12|--lq<k+1] 01 and obtain

(10.43). On the contrary, if we apply db'® +Zq+d2 L (D% b to general

[e,l--{e,,] Ou we obtain the terms

%"|“iejljk+l

(049 O 0O e s
Dﬁj DEHQ_(’.,),’k+1+ Z(_l)dz (d2 1)Zi=f(deg(|,| l) 1)b§,1)’m Dq(_,~~2~,)ﬁym’.--’k+1%

/<m

e

and
(10.45) i[e..| A (e - b . ) fe. ] + [e| A e} b el ) fe. ] .

(10.44) vanishes by (10.43). (10.45) cancels to each other since the total degree of b'® is
odd. The proof of Lemma 10.42 is complete.

We now put
(10.46) ¢ =sob®o(stO--Os™).

We regards our chain C“[v,,---,y] in Axiom Ill asadegree d integral current. Let b®
correspond to it by (10.46). We choose the signin (10.10.5) so that it is equivalent to (10.41)
or (10.43). (We will check that this choice coincides with (10.23) and (10.24) in the case
k+1=4 later.)

To check that the sign in the proof of Theorem 10.17 is correct, we proceed as follows.
We construct b'® by induction on k such that

(10.47) dbl® + (-1* b;dn oh‘(ldl) -0,
d, +d, =(+1
Ky +ky =k+1

The proof of Theorem 10.7 for k<3 gives bl”, b{"”. We calculate
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d z (_1)d2 qﬁzdz ) oggldl )

d;+dy=(+1

kqy +ky=k+1

— (d2) (di) (d2) 3 (di)

= —1d2d o + z od
> (~D%dg " b, edo,
dl+d2=€+l dl+d2=é+l

ky +ko=k+1 kit ky =k+1

—_ _\datdg (dg) 1 (dp—d3+l)
== CDFERSeh,

dy+dy S7+1, dy

Ky +ko + kg =k + 2

(dp) 14(d3) (dy —d3+1)
oD N G VAl et el
dy + =l +1,d; 2 : !
kq +kotks=k+2

()
o,

Thus induction works.
We next check that the choice of sign above coincides with (10,23), (10.24). We
calculate using

(deg(j1.j2.13)) — ¢ _1\deg(jqjp )+1
m, (Xj1jz'szjs) _( 1) o sz[lejz'szjs] !

and obtain

Z(‘l)dz bédz) ° bédl)[xlzlxmlxml

_ deg(1,3,4),.(deg(1,3,4)) | ,.(deg(1,2,3))
= Z(‘l) “ b, [bz [X12|X23] |X34

(deg(2,3,4) +1)(deg(1,2)+1) +deg(1,2,4) ;.(deg(1,2,4)) (dp)
+(-1) b, ’X12| by ™ [X23|X34]]

— (deg(1,3,4)) (deg(1,2,3))
=(-1)"rsm, m, (X121X23) 1 X34)

(deg(2,3,4))

(deg(1,2,4))
(X3, My (X23:X34))-

+(-1)"2sm,

where

K =deg(1,3,4) +deg(1,2) +deg(1,3),
Ky =(deg(2,3,4) + 1)(deg(1,2) + 1)+ deg(1,2,4) + deg(1,2) + deg(2,3)
=deg(1,2)deg(2,3,4) + deg(1,2,3)
+deg(1,2,4) + deg(2,3,4) + deg(1,3) + 1.

Thus the sign coincide with one of (10.23) and (10.24). The proof of Theorem 10.17 is
complete.

Weuse ¢ inplaceof ¢, in Definitions9.13 and 9.17 and obtain amap
m® m,e(C, 0 MM ) O O, 2(C, 0, M M, )

(10.48) o |
S P TN Y Y VR Ta (|‘| M(L, M)

where /\d(nM(I:ji,l\?Iji)) is the totality of degree d currents on |_|M(I:ji,|\~/lji). Note
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that the Floer degree of m( ) is 2-k-d. Itscurrent degree (degree as differential form)
is d. Using complex structure of 2/(L; ,M, ) we decompose

(HM(LJ ’MJ' )) dy+d, d/\(dlde)(nM(Eji’Mji ))

Lete m?P= Y m %) be the decomposition of m® to (did ) forms. We generalize
d,+d,=d
Proposition 9.20 as follows.

0+ 3w ) =0,

dl + d2=f +1
ki tko=k+1

Theorem 10.49

Thesignisso that it is equivalent to

aB(Od) Z (_1)dzB(0d2)oB(0d1):O
dy+ p=r+1 . @
ky +homk+l

here B°" isthe operator obtained from b'®.

Proof of Theorem 10.49.  Asin the proof of Proposition 9.20, mliOd) fails to be holomorphic
only because of its discontinuity. Hence (10.47) implies Theorem 10.49.

We turn to the proof of Lemma 10.34. Consider degree d integral current

£ Ve Vil for deg(l,--- k+1)=d + 1. We use it to define
HO T3 OAG o — Ts(9) DA by

f(d)%elzl"l%ull 0 U%
— (di-1) (dy)
= ( 1" [ea(l)a(Z)l |ea(| ~Da(i )] (U O fa(l—i)---a(i) O---o fa(11)~~-a(2)

dy+ d1

(10.50)

where

=d_,((deg(12) + 1) +--- +(deg(a(i ~1) -1, ai - 1)) +1))
""" + d,((deg(1,2) +1) +--- +(deg(a(2) ~1,a(2)) +1)).

We note that Ts(J) degree of @ is -d and current degreeis d. Hence its total
degreeis0 and iseven. Now we consider the equation

(10.51) o+ > (DT AF - S (DT =0,
d +d, =d +1 d,+d, =d +1
Ky +k,=k+1 k +k, =k +1

We solve it by induction on k in the same way as the proof of Theorem 10.17. We can
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check using induction hypothesis that

dg (_1)d2 f(2) pld) _ Z (_1)d2 b2(%), f (dl)gzol
d,+ 0

, +d, =/+1 , =(+1

The proof of Lemma 10.34 and Theorem 10.18 is compl ete.

In asimilar way as Theorem 10.49, we can define n®® and show :

Lemma 10.52 on* + Z ingdz) onfl(Odl) - zi an(Odz) ° nf;:dl) =0.

o +G=d+1 d,+do=d+
K +k =k+1 K +k, =k+1

Wherethe sign isso that it is equivalent to

a-Fk(Od) + Z(_l)dz Fk(ZOdz) OB]éOdl) — Z (_l)dz Bk22(0d2) o Fk(10d1) — O
d; +d, =d +1 o +d,=d+1
ky +k, =k+1 ky ko= k+1

where F°? isthe operator correspondingto .

Remark 10.53 We can prove one more step. Namely the homotopy equivalence n, is
unique up to chain homotopy. The method of proof is similar. (See Remark 12.42.) We can
further continue and will arrive the notion of A category consisting of al A" functors.
(See[15].) Wedo not discussit here.
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8§ 11 Extension and Floer cohomology 2
(Higher cohomol ogy)

In this section we describe the isomorphisms in Theorems 3.1 and 6.1 in terms of m,
and prove the commutativity of the higher conomology analogue of Diagrams 1,2 in 86. We
first consider the case of Abelian variety. Let (L,0, (L',£") be pairsof affine Lagrangian
submanifolds and flat line bundles on it. For simplicity, we assume that L,L' are
transversal to L,. Let k bethe number such that

(11.1) HF ((L",£"),(L,£)) # 0.

Since (TZ”,Q)D is an Abelian variety, it follows from Corollary 5.27 that there exist
line bundles E(L (w),3,) and an exact sequence

(11.2) 0- HL, D - KLy (W),B) ™ =+ o HLy, f(Wier2) Brs) 2

such that

(11.3.1) Extm(Z(Li(Wi),Bi),Z(Lj(wj),Bj)):O for m#z0and i<j,
(11.3.2) Em”(z(L',g),z(Lj(wj),Bj)):o for m#0.

Hereafter wewrite HL,;) etc. inplaceof HL;(w),B;) etc. We put

ke (L™ — 07,

HenceO - F - HL)™™ - 4, - 0isexactand 7 OH(L,).ItfollowsfromAssumption
(11.2), (11.3) and Theorem 6.1 that Ext((L',£'),E(L L)) O
Ext"(f( L’,L’),?l) g--- 0 Extl(z(L’,L’),fk). Therefore, we obtain an exact sequence :

ON,
aa O~ Hom( (L', 2), %) - Hom(&L',z),4L,))
- Hom( AL, 2), .,) - Bxt*((L', £).L,2) - O.

We are going to construct amap @: HFk((L',E),(L,L)) OExt“(£(L', £'),EL, L)) by
imitating the above constructions in its mirror. We first remark that the morphismsin (11.2)
are elements of Hom{ (L, £),E(L(w,), B)) and
Hom{ (L (W4, B;2) ELi W), B)) DM (N, 3.N), (where M(N,,,N,) isthetotality of
N._, x N, matrices.) Sincewe have acanonical isomorphism between 0-th Floer cohomology
and Hom by Theorem 6.4, we obtain elements

0 Ny
(1151)  x OHF(A(L,9, AL wy).By) .
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(1152)  x OHF((Ly(Wiy), Bi) (L), B)) DM (N, N)).
Since (11.2) is exact, it follows from Theorem 6.5 that

(115.3) m, (x,,X.,) = 0.

Definition 11.6  Let SOHFX((L',£),(L,). Wedefine &9 OHF((L,2),L,,) ™
OHom(HL, 9, HLy,)) " by

(11.7) (9 =my, Z(lei""xkﬂ)'
Lemma 11.8 &9 OHom(A(L', £), %.1).

Proof: mz(mk+2(s,xl ,---,xk+l),xk+2):0 by (11.5.3),(11.3)and A” formulae(Lemma
9.28.) Thelemmafollows.

Definition 11.9 X9 is the image in Ext*((L',£'),(L, £)) of
&9 DHom(A(L',£), %)

Lemma 11.10 d(s) isindependent of the coefficient function defining m, .
Proof: Let m;, ny bethe higher multiplications obtained by two choices of coefficient

functions. Then, by using Theorem 10.18, we obtain n. Using (9.33) and Assumption
(11.5.3), wefind that

mk2+ Z(S’Xl v ’Xk+1) - mt+ 2(51)(1 e 'Xk+1) =% mz(nk+1(5’X1"" 'Xk)ixk+1)'
The proof of Lemma 11.10 is compl ete.
Proposition 11.11 ® isindependent of the choice of the resolution (11.2).
Proof: We first consider the “dual” way to construct the map ®. Let
(1112) > AL o(Wir2) Blsd) 2 = - ALi(W).B) ™ = AL L) - 0
be an exact sequence of sheaves such that
(11.13.1) Extm(z(Li'(wi'),B'i),Z(L’j(wj),B'j)) =0 for mz0and i>j.

(11.13.2) Ext”(z(L](vv’j),B’j),Z(L,L)):O for m#0.
(11.13.3) Extm(Z(L](vv’j),B’j),Z(Li(wi),Bi)):O for mz0.
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Hereafter, wewrite HL;) inplaceof HL{(w),Bi). We put

G Dooker{ A(Li, )™ — #(L)™ ).

Hence 0 - G,, - HL|)) - G- 0 isexact and ¢ UOZXL',L). We then have an exact
sequence

0- Hom(g,®L,9) - Hom(#Ly),AL,9) "

11.14
(1119 - Hom( Gy, HL, Q) — Bxt*((L', £).(L,9) - O

ONy
Let y, OHFO(Ly. (L', 2)) . and y, OHF(L{,L{, )0 M(N;,N,) be the elements cor-
responding to the mapsin (11.12). Wehave m,(y;,y;-;) =0. We put

(1115) B9 =Mo(Yoor %09 DHF(Lices (L, 9) DHom{ A L), AL, ).

We can prove that &D’(s) = Hom(g(+1 ,Z(L,L)) in the same way as Lemma 11.8 and

thet the class (9 DExt*((L',£),(L,9) induced from &(9 is independent of the
coefficient function.

Lemma 11.16 d(9 = £P'(9, where the sign depends only on the degree.

Proof: By A” formula and the fact the Floer cohomology of nonzero degree appears
only in HF((L',ﬂ),(L,L)),Wehave

(11.17) mz(mk+ A Vi 7Y1a5)aX1) =% mz(Yk+1 Mo (Vi % ’Sixl))’

We compare (11.17) to the standard argument of double complex. Let
C,, =HF(L,L,)OM(N,N,). Wedefine &, :C,, - C,.;p, 0.5:C.p — Cipy bY

8 () =My(Y,.2), 85, (2 =m,(zX,).
(11.2) and (11.14) implies
Ker (8.0 )/ IM(B1o) DEXE((L', £).(L, £)) OKer (82,,.)/ 1m(32, ).

The isomorphism Ker (8;,,,)/ Im(3;,) O Ker(87..,)/1m(3Z,) is constructed in standard ho-
mological agebraas follows. Let z[] Ker(éiﬂo). Weobtain z OC,,,_;, suchthat z=2z,
and 8., (2)=0,,.,(z.,). Then z_, DKer(éjkﬂ)/lm(éjk) is the element corresponding
to z. Weconsider thecase z=2,,= M.,,(Vis1r-» %9 (11.17) implies that we can take
z =M Yo%, SX) . Inasimilar way, we cantake z = My, o(Yi-isa 2 Y28 X0 X) -
Thusweobtain z,, =m,, (S X, *,%.;). Namely *=d(s) =d'(g) asrequired.
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It is easy to seethat Proposition 11.11 follows from Lemma 11.16.

Theorem 11.18  The following diagram commutes up to sign.

HFE ((L",£"), (L, £)) O HFY((L', £'),(L L)) O HF((L",2"),(L, L))
L PO o)
Ext“(£(L", £'),E(L', £)) 0 Ext*(£(L', £'), B(L,£)) M~ Ext“*(£(L",£"),(L L))

Diagram 3

Here the map in the second horizontal line is Yoneda product.

To prove it we need another results, Propositions 11.20 and 11.22. We recall
&J(s)DHom(Z(L’,ﬂ), }|;+1). Wefirst find adiscontinuous section of L;)™™ which projects

to &9 by Hom(m(L',),7(L)) " - Hom(AL',£), £..) - 0. Let (v,0) O(T?", Q)"
and zOHL', L)) OHF"((Lx(V),0).(L", £)). Weput

(11.19) Dy 4(9(V0)(2) = My(Z,5% v+, %) THF (L y(v),0), L) ™™ DALy (o

(vo):

We remark that my . ,(z,S,%; ,+-,%,) isill-defined if (V,G)D(Tzn,Q)D is on a (Hausdorff)
codimension k subset that isthewall. @, _,(s) is discontinuous there.

Lemma 11.20 b, 1(9(v0) projectsto (9 (v,0) THom(HL', 2), %.,) by the
ON
sheaf homomorphism }[on(ﬂL’,ﬂ),Z(Lk)) R ﬂom(Z(L',E), %1) - 0.

Proof: By A” formulae we have

mz(mk+2(z,s,x0 ,xk),xk+l) = imz(z,m|(+2(s,x0 e Xy ,xk+1)).

Lemma 11.20 follows.

Lemma 11.20 implies that in particular that &Dk_l(s)(v,o) determines a smooth
element of ﬂ-[om(Z(L',ﬂ), j{(ﬂ). Namely the singularity is contained in the kernel of
Z(I-k)DNk - —‘}I—<+1'

Proof of Theorem 11.18: We consider resolutions :

(11211) 0—> 'Z(L,,[,) — ﬂl_l)DN:L s e ﬂLk+k’+2)DNk+kr+2
(11.21.2) - HLjan) 2 o ALY S HL", L) - 0.



92

Suppose the maps in (11.21.1) is represented by  x; DHFO(Li_l,Li) OM(N;_,N;,) andthe
maps in (11212) is represented by v OHFY(LLLL)OM(NLNI).  Let
$ OHF*((L, 2).(L, 2)), sOHFY{(L", £),(L,2), (v,0) O(T2,0)" and
Z0H L, ) (v o) DHF((Ly(W,0), Li1) . By definition

&(2)(v0)() = My(Z. My o (Yiear 1 11.)).

Hence by Proposition 11.20 the Yoneda Product ®(S)o®(s) is represented by a map
sending z to

(11-22) my ., Z(mz(z’n.k'+2(YI<+1 SRS ] ,S)),S,Xl " ’Xk)'

By A" formula, we find that (11.22) isequal to

imz(z1mk+ 2(m<'+2(y|<+1 ;o Y1, S) S Xy 1Xk))

= imZ(Z,mk+k’+2(yk+1 Y M(8,9), X ’Xk))

By the proof of Lemma 11.16, we find that this element is +®(m,(s,9). The proof of
Theorem 11.18 is complete.

Theorem 11.23  Let s, OHF((L(i), £()),(L(i+D, (i +1)), i=123. Suppose

M, (S,,S,3) = M,(S;,Sy,) =0. Then dJ(ng(slz,s%, 3,,4)) coincideswiththetriple Massey-Yoneda
product of ®(s,), D(S;), P(s,) uptosign.

Proof: Let k bethedegreeof s,,,. Wetakeresolutions:

(11.24) R E(LL+2)DNL+2 e Z(Ll')DNi - E(L(), Z(D) - 0,
(11.25) 0- HL(4),44)) - f(Ll)DNl e Z(Lk+2)DNk+2 o

satisfying (11.3), (11.13). Let y OHF°(L, L"), x OHF°(L_,,L) beelementscorresponding
to the boundary operators of (11.24), (11.25). Using assumptions we calculate

My, + k2+k3+1(ykl+k2+ koo Y1, Ma(S12, S ’33,4))
(11.26) = imk2+k3+2( iy kg 0 Vi +20 Mis 2(Yi o177 Y15S12) 1 Sos 534)

EMy o\ Vgt ko +ka " Yig+ ko +10 Mic + ky 420 Vi, + k5 ""’Y17512’523)’534)

On the other hand, by using m,(s,,S,;) =0 wehave:

m, (Yk1+ ko +10 Mic 1, 42 (Vi #7771 Y1, S12 ’523))

(11.27)
=% mk2+2(ykl+ kot iy +10 Mh 2 (Vi v Y1, 92), 523)-
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The right hand side of (11.27) belongs to Hom(Z(L, ,,,.,),E(L(3))) and goes to zero by
HoM(E(L .., ) E(L(J))) —» Ext™ ™ (£(L(D), E(L(3))), since  my(s,,S,)=0. Hence
M o2 Vs, Yir 42, %3) 1S @ chain which bounds the cycle representing the Yoneda
product m,(z,,z,;). Thus the second term in (11.26) is one of the terms defining Massey-
Yoneda product. In asimilar way we find that the first term gives another term of Massey
Y oneda product. The proof of Theorem 11.23 is complete.

Theorem 1128 ®: HF¥((L',£),(L,9) ~ Bxt*((L",£),(L,5) isan isomorphism.

Proof: We need to prove injectivity only since we know the groups are isomorphic to
each other by Theorem 6.1. To show injectivity we study the map

Mg, ot HE"((L(v,0),(L", £)) O HF((L', £),(L, 9)
OHFO((L,9,L,) O OHFO(L ;L) » HE"((L 4 (v,0),Ly).

First we determine the combinatorial structure of its wall. To save notation, we put
Lo=(L,0 and L, =(L",£), L,=L, and n(L;, L )=n(js jm). We consider
N(jys-+yJm) oOnlyinthecase | <j,<---<j,. By Assumption (11.3.1) and Lemma 2.25,
we have

(11.29) n(-2,-10)=n(-10,i)=k andall other n(j;, j,,Js) =0.

We can study the wall in the same way as the examples in 8 10 (especially Figure 13)
and obtain the following :

Lemma 11.30 aA-2,-10,j;,,Jjpa), (resp. A-1,0, j;,+-,]j,)) 1S homeomorphic to a
product of the nm—-k—-m dimensional vector space and a cone of two m-1 - dimensional
simplexes.

- Werrecal L; =(Li(w),B)). Wewrite (L,0=(Lo(Wp),Bq), (L'.£)=(Lo(W4),B-1)
L, =L,. Note that here we move only (v,0). Namely the other variables w;, 3, are
fixed. By Bair’'s category theorem, we can choose the coefficient function ¢, such that the
following (11.31) holds.

(11.31) If j()#-2-1,0 then a-1,0, j@),--,j(m))  does not contain
[WLy, W, W gy Wi ]

We next use the Maurer-Cartan equation (Theorem 10.53) and obtain

=(+1
Kk, +k,=k +1

(11.32) Gl + 5w it =0,
d, +d,
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We remark we are moving only v. (11.32) makes sense and holds in this situation because
of (11.31). We then have

(11.33) 5(®, 1(9)v.0)@ = myzm (5.x,,--,%,)).

Now we recall the exact sequence
)DNk 4

Hom(#(L', 2), %)  — Hom(#L',£), AL,
- Hom(&L',2), £.,) OF - Ex*(AL, L), %).

The standard construction of the coboundary operator
Hom(Z(L',ﬂ), }|;+1) - BExt'(HL, L), %), in Dolbeault cohomology is as follows. We start

ON,_,
from uOHom(A(L',£), %.,,). Weliftit to asection & of #or{H(L', L), HLY)

which is, in general, not holomorphic. Then, since u is holomorphic, 9l is a section of
Hom(E(L',£"), %) 0 A and represent the class SuOExt'(HL',£), %). We consider
&D(s) O Hom(Z( L', L), ?&+1), the holomorphic section in Lemma 11.20. By Lemma 11.20, we

~ ON
can lift it to &, ,(9, which is a (discontinuous) section of #or{ HL', £), HL)) .

Hence the 01 current d®, _,(9 represents 3d(s) DExt '(H(L',£), %). To be more explicit
we put

(11.34) Oy o9 =MD (5% %, )

ON
P, (s)isa ﬂam(Z(L’,E), E(Lk)) “ valued 01 current.

Lemma 11.35 P, _,(9 isa % valuedO1 current.

. (01) — 2 —
Proof: mz(mk+1 (s,x1 ,xk),xk+1) =% mkﬂ(sx1 ,xk_l,mz(xk,xk+1)) =0. Thelem-
ma follows. (In fact this lemma is also a consequence of the construction of boundary
operator summarized above.)

Thus, by (11.33), we have

Lemma 11.36 3D(9 = +D, (9.

UNy g .
) which goes

We next find a 01 current with coefficient in - #om{ HL', £), H(L,_,)
to ®,_,(9. Weput

(11370 & (9(v0) (D =mos (28 X,

(11372 D y(9=m (5%, %).
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(11.37) implies mz(tfbk_z(s),xk):iGJK_z(s). Using Theorem 10.53 we can show
55>k_2($ =+®, _5(9. Therefore 6653(3) =+®,_5(9. We continue in the same way and
conclude:

Proposition 1138 (5-+-3)(®(9)) DEXt"(H(L', L), %) = EXt*(£(L', £),£(L,£)) is rep-
resented by Dolbeault cycle WYs where

(11.39) W9 (v0) () =m; z.,9.

We thus describe our element d(s) using Dolbeault conomology. To show that it is
nontrivial, we use the above representative and Serre duality. Namely we prove the following

Theorem 11.40  The following diagram commutes up to nonzero constant.

HE (L', £'),(L,£) O HF™ (L,z),(L' ") - C
1 00 I
Ext“(£(L', £'),£(L, L)) O BExt"™(£(L,L),E(L', L)) - C

Diagram 4
Here the inner products are defined in Remark 3.3.

Proof: We apply Proposition 11.38 aso to tDHF”"‘((L,L),(L’,ﬂ)) and obtain
Wt). To prove Theorems 11.40 and 11.26, we calculate W9 and Wt) more explicitly.
We may regard L(-2,-1,0) DV/ I:pt. By definition, we may choose
C(2,-1,0) 0 L(-2,-1,0) asacodimension k linear subspace such that Q is positive
definite on it. Furthermore, we may assume that Cc(-2,-1,0)n T OZ" . We put
C(2,-L0)nT Or,, C(-2,-1,0)=c(-2,-10)/T,. We consider the case s=[p], where
pOLnL'. Let pOV bealift of it and v(p) DV/I:pt be its equivalence class. Then the
support of W[ p]) is

T={[01] BOLW) + (-2, -L0)} = {{vIll v- w(p) O (-2,-1,0)}
0T O(V/ L)/ (T/T n Ly)-

We consider [[v]]OT. Let q,0L(v)n L, qg,0L(v)n L. We are going to calculate
the [q,] component of ®,([p])([q,]). Itiszero unless

(11.41)

(11.42) 0,0, OV(p) + C(-2,-10)+ L, modT .

In case (11.42) holds, we choose lifts ¢,,q, in V such that
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(11.43) 6,8 OV(p) +C(-2,-1,0) + L.
We may choose g, DI:(v(p)) , G, DI:'(V( p)). Weput :

k
e(() ) (V’ O-)p,ql,qz

= Y exp-2mQ(a,(). V(). G (¥)) + 2/=TH(G, (v),V(P), (v )i B.0,B,)).

y

(11.44)

Here {q,(y)} = L(@) n L(P) +Y). {6, ()} = L'(&) n L(V(p) +Y)-
By definition the [q,] coefficient of ®,([p])([g,]) around (v,0) is (0,k) component
of the delta current times  ©4” (v,0) ., . We remark that

(11.45) O (V.0)paue = 3 G exp(2m/~To(a,(y) - 0,v))).

yuTr,

Here C, isindependent of o .

We next consider  ®,(t). Note L(-2,0,-1)0L(-2-10)0V/L,, and
QAu20-1 =~ Q2109 Dby this isomorphism. Hence ((-2,0,-1) is transversa to
c(-2,-1,0).

Let p'OLNL". Weconsider t=[p']. We define v(p')DV/I:pt in asimilar way as
v(p). We put

(11.46) T ={[M1lv-p) 0c(2,0-0} 0T O(V/L, )/(F/r n L,,).

Let [[Vv]]OT', q,0L(NV)NnL, g,0L(V)nL". We choose ¢;, ¢, such that
0,0, Ov(p) +C(=2,-1,0)+ L, qG; OL(v(p)), G; OL'(\(p)) . We define
I GITR N

=y exp(2mQ(c(y ), v(p"), & (V) — 2t =TH(q (). v(P), G (Y); By.0 B,)).

yLr

(11.47)

Here {g(y)} = L'@) n LA(P) + V), {ah ()} = L'(&) n L(Ap') +Y). Wehave

(11.48) O M (M)(V:0) pgq = 3 G exp( 2/lo (ch(y) - Gi(y))).
yar,
Let w" bethe nontrivial holomorphic n form on (TZ”,Q)D. By definition, we have

Ji72n 0, ol A) Tbo([ 1) D"
=C z J:ID(TZ”,Q)DG(k)([ A (v,0) " ([ p])(v,0) do.

vdTnT

(11.49)

By (4.45), (4.45), we find that (4.49) is equal to
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150 €Y GG.[ . ool 10(66) - am -6 + ).

y1DF
ARl

We remark that () -q,() 0d-2,-10), ) -0(y)OJd-2,0,-1).  Since
a-2,-1,0)n a-2,0,-1) ={0}, it follows that the integral in (11.50) is O unless
g,(y)—a,(y)=0q/(y)—g;(y) =0. Therefore (11.50) is zero unless  p) = v(p) =Vv. Inthat
case, (11.50) is CG,C,Vol(T") andisaconstant. The proofs of Theorems 11.40 and 11.28
are complete.

We finally consider the case when (T°",Q)" is not necessary an Abelian variety. In
thet case we define ®: HF'{(L', £),(L,9) ~ Bxt*((L', £).(L,2) by (10.39). Then by the
argument above, ® isanisomorphism. We are going to prove Theorems 11.18 and 11.23
by using this definition of ®. (Then they are generalized to the case when (T°",Q)" isnot
necessary an Abelian variety.)

Alternative proof of Theorem 11.18: Let s, be asin the proof of Theorem 11.18. By
Theorem 10.49, we have

(0k+K)

(1151) Hm,(s,8))(v,.0)(2 =m, ~ ~(z,my(s3))
: _ J_rméw)%ﬂéo k)(z,s),s% %méo k+K-1) %Z,S,S).
Since am**“™ iszeroin Dolbeault cohomology Theorem 11.18 follows.

Alternative proof of Theorem 11.23: Let s,,S,,S, beasin the proof of Theorem 11.23.
By Theorem 10.49, we have

WMy (82,55,54)) (v,0)(2)
(0 ky+ky +k3-1)

=m; (zM3(S2,5:3:S3))

11.52 (0|<2 +kg-1) (Okl) (0k3), (Ok;+k—1)
92 amf D (P (2,5,),55,50) £ MO M ™ 2,5,,8,),5,0)
(0 ky+ky + k3=2)
%m %21512'5231534)-
By (11.51) Z +m(3 arle 1)( 2,9,,S3) is a Dolbeault chain which bounds

zi> my (M (z,s,),8;). Therefore the right hand side of (11.52) is the Massey-Y oneda
product of ®(s,),P(S;), P(S,,). The proof of Theorem 11.23 is complete.
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§ 12 Resolution and Lagrangian surgery

The purpose of this section is to show that multi theta function m, describes various
important properties of the sheaves on complex tori. In fact, in this section, we do not use so
much the fact that our complex manifold is a torus. Many of the arguments of this section
may be generalized if we can construct m, satisfying Theorem 10.49 etc. on more general

complex manifolds. We study the derived category D((TZ”,Q)D) of coherent sheaves of
complex torus. Note that the derived category we study in this section is the usual one (see
[23], [22]) and not one we introduced in § 2. For fDOb(D((TZ“,Q)D)), udz et

AOoHD((T*,Q)"))  be the object obtained by shifting degree.  Namely
H((T™, 9", 7(w) OH*((T™,Q)", 7). Roughly speaking, we construct objects such as

0 8L, o(Wo) 002 JUOA] = -+~ DAL, 4w, )t 2l ).

We consider
(12.2) Xi j:ab DHFi"'*“<J'b>‘“("a)*1((Li,a(wi,a),a i a)s (L (W) )0 j,b)))-

Foreach 0<i < j<k, ab weconsider an equation

u —
(122 z Z (=1) mk(xf(l)"f‘(z):0<1)|0<2)""’Xk(k),z(kﬂ);c(k),c(k+1))‘0'
K i=0(1)<---<l (k+1)=]j
a=c(1),---,c(k+1)=b

Herethesignissothat itisequivalent to :

(12.3) Z z h([xé(l),é(Z); c(l),c(2)|"'|X/.(k),ﬁ(k+1);c(k),c(k+1) ] =0.
K i=((1)<-<7 (k+1)=]
a=c(1),---,c(k+1)=b

Definition 12.4 Wesay asystem <£= (((Li,a(wi,a) ,O(i,a)),(u(i ,a)),(xi,j;a’b)) a Lagrangian
resolution, if (12.2) is satisfied.

Theorem 12.5 For any Lagrangian resolution £, we have an object
K2 O Ot(D((TZ” ,Q)D)).
Remark 12.6 Any Lagrangian resolution determines an A”  functor

LaA(TZ“,Q)) — Ch. (See [15] for definition and notation.) Hence Theorem 12.5 associates
an object of a derived category of sheaves of the mirror to certain A® functors
L%((TZ“,Q)) - Ch. The conjecture we mentioned in the introduction of [12] is

D((TZ”,Q)D) O func(Laj(Tzn,Q)),Ch)op, (Where func(LaJ,((TZ”,Q)),Ch)op is the opposite
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category of the A” category of A” functors Laf(T*",Q) — Ch. See [15].) Thus
Lagrangian resolution naturally appears in homological mirror conjecture.

Conjecture 12.7 Any object of D((TZ”,Q)D) isobtained as E(4) from some Lagrangian
resolution £, if (T*",Q)" isan Abelian variety.

Remark 12.8 Muka mentioned to the author that he proposed a conjecture (10 years
ago) that any coherent sheaf on abelian variety has aresolution by semi-homogeneous sheaves.
Conjecture 12.7 will follow from this conjecture of Mukai.

Proof of Theorem 12.5:  Wefirst give an idea of the proof of Theorem 12.5. The detail will
be given later in this section. We consider adirect sum of holomorphic vector bundles:

(12.9) C(L) = d|:i|aZ(Li,a(Wi,a)’ai, )OACD,

where the degree of an element of /\(O’d)(ﬂLi’a(wi’a),a i,a) is d+i-ui,a). We will

define a boundary operator on (12.9) and will regard it as a complex of & 20 ;o module

sheaves. Let i =¢(1) <---<(K =], a=c(l),c(2),--,dk)=b. Weput ¢=(/(),-,«K)),
€ =(c(D,---,c(k)). Let

k-1
47,9 =Y (69 - M+ D)+ u(i(s+1),ds+1) - u(l(9,d9) +1) +2-k
s=1

=/(1)- (k) + k) —q1)+ 1.

(12.10)

If £,(ky) =2,(1) and g(k;) =¢(1), we put

-~ By i<k, . .. He i <k
OO0 ke ik, @TDOTi ey sk,

Definition 12.11 We define a distribution valued homomorphism
M ey s HL oW )05 5) » L (W )05 1) OAL- o) by

_ (0d(Z.))
(12.12) M6 (2 =my (Z’Xé(l),f(Z);c(l),c(Z) 7Xf(k—1),f(k);c(k—l),c(k))'

Here zOE(L, (W, ). 0 )¢y DHF (L (V),0),(L J(W, ). q; ) -

(1210) implies that the right hand side of (1212) is in
Z(l—j,b(Wj,b)’(xj,b)(v,cs) EIHFn(Lpt(v)lo)i(Lj,b(Wj,b)’a j,b)) 0 /\(O’d)-

Definition 12.13 Let S=(s,,) isasmooth sectionof C(<£). We define adistribution
section 0S of dS by
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(12.14) (Es)j’b = 55”1 + %(—1)#1 (7,¢)+deg S+d(€'é)m(2,6)($,a)'

Here the sum is taken over al  (/,6) such that i=¢1)<---<4K =],
a=c(1,c(2),--,dk)=Db. u(t7 ,C) in (12.149) is determined o) that
)* OB =somy; o o(s_l 0---0 s‘l) Here s in this formulais the suspension in

(4,c)
§9 and B((/)) is defined from qﬁ) in the same way as we defined m((/)) from qﬁd).
Lemma12.15 00 iswell-definedand d -0 =0.
Proof: Notethat 68 isin general not well-defined for a distribution section. However

the definition of rnk impliesthat 8 00(S) iswell-defined for smooth S. We calculate

5 oa)s% =305 5= Y (-1 B )(s,)
) l,¢C

_Z(_l)deg S+1+ d(z ’6)8(2 £) Cg(s ,a)

l,C
d(’
(12.16) ] z( 17 °1)(B(ﬂ1 ¢1)° B(/zcz))(s 2
=007,
c=cic,
=" (a (z,e)kﬁ,a)i z(‘l)”(él'cl)(5(21,61)°B(?z,éz))(sya)'
i ¢=0,01,
¢=c, 0g,

(Note that our convention in (10.40) is that we take wedge with b from the right.) On the
other hand, (12.2) implies

&) (d d
Z(‘l)( 2)(5( 2) o B ”)(ﬁ,a’Xz (D, 7(2): ¢, c(2) " 1 X1(k=1), £(K):c(k-1), c(k))
e

12.17 : ic
(12.17) = Y (DM B 6o B, o S0
0s,

0=0,0
é=é ac,
Theorem 10.49 and (12.17) impliesthat (12.16) vanishes. Lemma 12.15 is proved.

We remark that 0 isan Ozn 0 module homomorphism. (0 isan G 2n g0

module homomorphism and m; , does not contain derivative and SO is an G q2n oo

module homomorphism.) Thus we are almost done. Namely we obtain a “complex of
o - module sheaf”, which gives an element of Ob(D((Tz”,Q)D)).

(TZn’Q)
However thereis one trouble. Namely m issingular. Hence, we need to be careful

)
to choose the regularity we assume to associate O 720 gy module sheaf to the holomorphic

bundle C(<). Namely if we consider the sheaf of smooth sections S, then m((c)(S) is not

smooth hence 6 does not give a sheaf homomorphism. On the other hand, if we consider
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the sheaf of distribution valued sections S, then m(m(S) is not well defined in general.
We go back to this point later in this section.

The next result calculates the cohomology of H.<). We define a chain complex
(:(0,.4’). We put :

(12.18) C'(0.4) = OHF ™™ ((Ly,0),(Liaw, ).t 1))

We next define 3:C'(0.£) - C'"(0.4). Let S=(s,) DCe(O,A’). We put
(12.19) ©S)p= z(‘]-)H (['é)mk(ﬁ,a’xz (1), 2(2):c(1), c(2)i"" ’X//(k—l),Z(k);c(k—l),c(k))'
e

Here p(/,c) isasin (12.14).
Lemma 12.20 00 =0.

The proof is a straight forward calculation using A® formulae and (12.2). We omit it.
Theorem 1221  H¥((T*,Q)",E(«)) OH*(C (0.4).3).

We can generalize Theorem 12.21 as follows. Let £,Z' be Lagrangian resolutions.
We put
(12.22.1) C'(<",.£) = OHF Tt ((Li',a(Wi', 200 (L (Wj,b)’aivb))

— ;5',4';2,4 ]
©S)iaa = Z(—l)“( ¢ C)mk+k’—1(xé’(l),f’(2);c’(1),c’(2)""’
¢, r0,¢c

(12.22.2) Xir k=1, £ (K): /(K 1), ¢(K) »F(k), 2 (1): ¢ (K )e (1) X 0(1), £ (2): (1), c(2) »

"Xy (k-1), 0(k);c(k-1), c(k)
Againby using A” formulae and (12.2) we can check &3 =0.
Theorem 12.23  Ext(E(<"),E(€)) OH*(C'(<",2).3).

Remark 12.24 We can also describe the Yoneda and Massey-Y oneda products among
elements of Ext“(E(«<'),E(«)) intermsof m. Weleave it to the reader. (Compare the

definition of (higher) compositionsamong A” functorsin [15].)

Next we dightly rewrite Theorem 12.21. We recall
HF(( LS,O),(Li,a(wi,a),a i'a)) DHF((Li’a(wiya),a i’a),(Lst,O))*. We use the (canonical) basis

of them to associate element s*VaDHF((Li AW )0 iYa),(Lst,O)) to each element of
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§aUH F((Lst ’0)’( Li,a(Wi )0 a)) :

Corollary 12.25 H((TZ”,Q) . ,E(4) is isomorphic to the linear space of the solutions of
the linear equations

_1\H(l0) —
Z( 1) mk(S,a, Xff(l),ﬁ,(]);c(z),c(z) v "'Xé(k—l),/(k);c(k—]),c(k)) =0,

’,c

u(e,e) s =
Z(—l) mk(xé’(l),f’(Z); ¢(1),¢(2)7 " 1 Xer k1), ¢ (K )ic' (k' 1), ¢ (K) 'Sq,b) =0,
e

for S:(S,a)-

Corollary 12.25 follows immediately from Theorem 12.11 by using the cyclicity :

(mk(ti,a’xf(l), 7(2): ¢(1), ¢ (2) 7" 1 Ko (K ), £ (K )i (KAL), c’(k’))!Sj,b)
_/ s\
=\Mk a0 Xe@), 0(2): e(1),c(2) i 1 X e (KA), £(K ):e (K 1), ¢ (K) 1Sib/

:—<mk(xf’(1), r(2);¢'(1),c'(2) i X e (K-1), £ (K); ¢ (K-1), ¢(K') !%*,b)!ti,a/'
Before proving theorems, we give some examples.
Example 12.26  Suppose r](I:l,I:Z) =0. Wechoose

(12.27) x= 5 el ATHF((Li(wy) @), (Lo(W,) 05)),
pOL; (wy )n La(w,)

(Ly(wy),0,),(Ly(W,),0,),x determine a Lagrangian resolution <. Then H<) is an
element  of E(L) DOb(D((TZ“,Q)D)) determined by the complex

HLy (W) ,0) O i HLy(wp),a5).

Example 12.28 (Compare [41].) Suppose n( I:l,l:z) =1 We choose
x [ HFl((Ll(vl),al),(LZ(vz) a5)) . (Ly(w),a;),(Ly(w,),0,),x determine alLagrangian res-
olution 4. (W2)=1.) We have an exact sequence

(12.29) 0 - HL,(Wy)0,) — EQ[1] ~ HLy(w)a,) - 0.

which corresponds to  x OExt'(E(L,(W,),a,),E(L,(W,),a,)). To show (12.29) we consider
the operator 0 we used in the proof of the Theorem 12.5. In our case
C'(<) = (E(L(w),a) O A°) O(E(L, w,),a,) DA®?), and 9 :C*(<£) - C"(2) is

3(s.3) =(551 ds, + mél’(si,x))-
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Therefore the Dolbeault resolution Q(Z(Lz(wz),az)D/\(o‘d)) of Z(L(w,)a,) is a

subcomplex of the complex C*(.e) defining H.4[1] and we have an exact sequence
0 - O(B(L,(Wy),0,) O A®) — CH) - D(E(L,(w,),0,) O A®?) ~ 0.
compatible with differentials. (12.29) follows.

Example 1230  Let n'(Ly,L,)=n"(Ls,L,) =1and n'(L;,L;)=0 for other i<j. We
put uwl1)=0, w2)=u(3) =1, ui4)=u)=2 and consider
Xij OHF ((Li(Wi)'ai)!(Lj(Wj)ia j)))1 where dj, =dy =1, dy3 =0y =0dj3 =0y =dys =0.
Our equation (12.2) is

(12.31.1) M3 (X3, X34, X45) £ My(Xp4,Xg5) £ My(Xp5,X35) =0

My (X12,X 23, X34+ X45) £ Ma(Xe3,Xa4,X45) £ My(X12, X4, X45)

(12.31.2)
£M,(Xy3,X35) £ Moy(X4,X45) =0.

They are third and fourth order equations of L;eL,+L,eLz+LgeL,+L,*Lg
+LeLg+LeL,+L,oL,+Lge Ly variables. (The number of equations is
L,eLg+L;*Ls.) Incasewhen E.[2] is represented by a vector bundle, we have a
diagram of exact sequences:

0
! !
E4[2] - O
1 !
0O - % - H - G - 0
1 !
T 0
1
0

Diagran 5
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o

Diagram 6

Here % = KL;(w),a,). The extension of the first line in Diagram 5 isgiven by x,,. The
composition £, - F - E; IS X,. There exists a lift 7 - £ of X,;3 since
Extl(fl,fg) =0. Theliftis not unique. The ambiguity is controlled by x;; DHom(%F ,Z;) .

The extension of the first horizontal line in Diagram 6 is given by X, [ Extl(fg,@) . Note
that we can find % as in the second horizontal line of Diagram 6, since Extl(T,Z4) =0.
(The extension # such that Diagram 6 commutes is not unique. The ambiguity is
controlled by x, and Xx,,.) The equations (12.31) give a condition for the map
X5 UHOM(Z,, %) to extendto #H — Z. It seems possible but complicated to identify
this obstruction as an element of Hom(Z, %) [0 HOm(Z,,Z.). We do not need to do so since
we can construct Diagram 5 directly from

[l - (]
0 0 0 0
1 —

7 mCx) 5 =

0 Ma(*,X2,Xz3) = 0

0 R My(*,X93) 0 0
20 M, (* 1 %y3) 0
d =

M,(*5 X121 X3 X34) 0

' M3(*, X053 ,X34) 1 -

O M, (0, X0, X 3723 m e x 0 O

O £my(*,Xy4) O

[ Ma(* ,Xaq ,X U

O 0 0 5(* a4 Xas) m,(*,X,) 00

l + my(*,X35) 0

We next explain how Theorems 12.5 12.21 and 12.23 are related to the study of
Lagrangian submanifolds in tori. We will show what Examples 12.26 and 28 correspond in
themirror. Weregard L,(w;) O L,(w,) asasingular Lagrangian submanifold in (TZ”,Q).
We suppose B =0 for simplicity. We can perform Lagrangian surgery at each
pOL,(W,) n Ly(w,) and obtain a smooth Lagrangian submanifold L O (Tzn,w). In case

n=2, Ly(w)eL,(w,)=1, weobtain agenustwo Lagrangian surfacein T

Conjecture 12.32 The bundle AL, 1) constructedin§2isequa to H4) with ¢, #0.
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We explain an argument to justify the conjecture. Let (v,0) D(TZ”,Q)D. The fiber
H<) (., isacohomology of the complex

(1233)  HF((Ly(W,0),(Ly(wy),a,)) 0 BT HR((L,(),0),(LA(wy).a ).

We remark that the isomorphism class of the complex (12.33) is independent of ¢, as
far as it is nonzero. In fact if ¢, =kc,, we have an isomorphism which is > on
HF((L x(V),0),(Lo(w,) 0 ).

On the other hand, the fiber HL,5,,, of KL, ) is the Floer cohomology
HF”((Lpt(v),c),(L,L)) by definition. Floer's chain complex to calculate it is (as graded
Abelian group) :

CR(Lx(M.0)(L.9) = Y Hom(40),.2,)

Pl (o)nL

(12.34) a > Hom([(o) o ,L(al)) a > Hom(z(o) 0 0 2))

PLL (o) Nl g (W) POL o (0 )n La(w,)

O HF(ﬂ(cr) D ,1(0(1)) O HF([(O') pr L0 2)).

Floer’s boundary operator of CH(L(V),0),(L,2) is obtained by counting the number of
holomorphic 2 gons bounding L,(v) and L. Ascan be seenin Figure 16, such 2 gon will
become a holomorphic triangle used in the definition of m, in (12.33).
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Loy ()

Figure 16

Thus we find that the boundary operator in (12.33) and the map in (12.32) coincides.
Hence E(L).) OE(L L)y 0 -

From this argument, the reader finds that calculating m, gives away to calculate Floer
homology of various Lagrangian submanifolds (which are not affine) in tori. We do not
pursue thisline in this paper and leave it to future research.

We now go back to the proof of Theorem 12.5. To overcome the difficulty mentioned
before, we are going to replace m, (which are singular), by smooth one. In § 9, we

constructed afamily qﬁd) of integral currents by solving the equation :

(d=dy+1) _

(12.35) dqu) + zicéldl)oc%—klﬂ =0

inductively. We do the same process but using smooth forms in place of integral currents.
First wetakeasmooth d form G,.(1,2,3) for each deg(1,2,3)=d. More precisely, we
choose Goin(1,2,3) first so that the following is satisfied.

Supp( %mooth(l’zis))

2.36.
a D O @vl,vz,vs] 0L(1,2,3) | Qv V,, V4 26||[v1 YA ,v3]|2@
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(12.36.2) CGmooti(1:2,3) isinvariant of [v;,V,,V5] = [Cv;,Cv,,Cvy] .
(12.36.3) Gmootn(1,2,3) is smooth outside origin.
(12.36.4) d¢00tn(1,2,3) =0. And Gmootn(1,2,3)  represents a generator in

Hor((QL23)R).

To remove the singularity at the origin we replaceit by Gooi(1,2,3) such that

Supp( c'Smooth(l’zis))

237.
(12.37.0) 0 @vl,vz,VS] OL(L.2,3) | QW Y vl >8[0% v, vs]| —CE

for some constant C.

(12.37.2) Gmootn(1,:2,3) is invariant of [v;,v,,V;] > [cv;,cv,,Cv;]  outside a compact
set %(1,2,3).

(12.37.3) Gmootn(1:2,3) is smooth.

(12374 Groor(1:2.3) ~ Croo(1,23) =d(Ad1,23)) where AqL,2,3) s of compact
supportin %(1,2,3).

We next construct Gooi,(1: -,k +1) inductively. We can solve (12.35) inductively
since appropriate De-Rham cohomology vanishes. We then obtain ¢ ,oi(1;--,K +1) which
Is smooth. Also we may choose it so that a condition similar to (12.37.1) , (12.37.2) hold
outsidetheset #(1,---,k +1), where %(1,--,k +1) isdefined inductively as:

K1 k+1) =L k+)OUKL -, 6m k+# 1) x 0, ,m)

(12.38) olJad; -, ,my - K+ 1)x &£, m).

Here %y(1,--,k +1)isasmall compact neighborhood of the origin.
(d)

Wenow Use G gnoorn iNPlaceof g in Definitions 9.13 and 9.17 to obtain My &0t
We remark that the properties (9.7.1) and (9.7.2) are used to show that mlid) converges.
However we can easily find that it is enough if (12.37.1) , (12.37.2) are satisfied and
K1, -,k +1)isof theform (12.38). We then can use exponential decay estimate to prove
that mlﬁfjgmooth is a (homomorphism bundle valued) smooth d form.

We want to use mf,’gmooth in place of mlﬁd) to construct (C(A,ésmooth). However

X ap SAisfies (12.2) for m but not for m ,. SO we need to replace X .., by
Xi j.ap asfollows.

We use the method of the proof of Theorem 12.18 to find nlﬁd) such that

3,,(0d) (0d,) (0d;) (0dy) (0dy) _
(12.39) on "+ En ome U+ Y EomM oo - =0.
dy + Gp=d+1 d+dy=dn
kg +kp=k+1 o+ ko =k +1

(SeeLemma10.52. Signisasinthere.) Now we put
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(12.40) Xi j:a.b :Z(‘l)U(/"C)nk(Xz(l),e(l);c(z), c(2) " Xe(k), £(k+1): (), c(k+1) ))
/,C
Then (12.2) and the d =0 case of (12.39) imply

H(4,C) ' ' —
(12.41) Z(_l) mk,smooth(xe(l),Z(Z);c(l),c(2) ""’X/,(k),é(k+1);c(k),c(k+1))_0'
IS

Hencewecanuse x';,, and méosn)qooth to construct (C(.e),émot). (We remark that

mﬁ?ﬁnlomh satisfies the conclusion of Theorem 10.49.) We then take the sheaf of smooth

sections and regard 35m00t as a chain complex of @ module sheaf. Note that the

(TZ n’Q )D
difference of (C(.e),ésmoot) from the direct sum of Dolbeault complex is degree zero term
with smooth coefficient. Hence by usua Fredholm theory (elliptic estimate) we find that the
cohomology sheaf of (C(.é),és,mot) is coherent. We now define

Definition 1242 E(<) = 10(£),3,

The proof of Theorem 12.5 is complete.

We remark that we can start with mﬁ?ﬁrﬁmh and can avoid using singular m,

However it seems that méOd) is more canonical than méf’;’r;wh In fact m(Od) has a theta

series expansion whose coefficients are integers. While the coefficients of the expansion of

(0d)
My smooth &€ NOt integer.

(0d)

Remark 12.43 We can prove that E(<£) in Definition 12.42 is independent of the
smoothing G ooy as follows. Let ci(g)mh, o o €iC. be two choices. Let n°? and
n°? beasin (12.38) and let x,ljab, xIJab beasin (12.39). We dso have n*® such

thaI

12(Od) 12(0d, ) 1(0d;)
+

- r]kz ° k1 ,smooth

d; +dy=d+1 d; +dy=d+1

ki +ko=k+1 ki +ky=k+1

2(0d, ) (0dy)

+
= k, ,smooth k;,smooth

(12.44) on, =0.

We put

12.45 X! —H R (y X

( . ) i.jia,b ™ Z( ) k \ @), £(1);c(2), c(2) " 1 20(k), £ (k+1);¢(k),c(k+1) |-
We cam easily check

(7,m),..2 )2 ‘2 _
(12.46) Z(_l)Ll " mk,smooth(xe(l),uz);c(1),c(2) XY (k) £(k+1): ¢ (k) c(k+1) ) =0.
=
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Namely we can use either 2., or X2, (together with m. G to construct

(<) amm[ Let %(4)6mth[ be one obtained from X2, and %c(z)a;jmmg be

one obtained from Xi,]ab We can use nS°%

n: Ep(l)ﬁ;mh%_, Eb(.e) 0 'zoth[ (We use Formula (12.45) to do so0.) Using the fact

to construct a chain map

(00)

that n
So it suffices to show that HS(.&’)O’Z 2 = (L), a;;om[ as an element of

isisomorphism (identity) we can show that n* |san|somorph|sm

F DOb( D((TZ“,Q)D)). For this purposewe need to proceed asfollows. We usetheterminology

of [15].) Let us consider the composition of A” functors n”on' and another A” functor
n’. (Here n' isan A” functor constructed from n°”.) We can prove that they are
homotopic. The proof is similar to the proof is Theorem 10.18 and is by Acyclic model.
Using the homotopy we can construct a chan homotopy equivalence

()30 0C(£),022,4, = We omit the detail of the proof.

Proof of Theorem 12.20: We construct (C* (0 .4’) 5mth) in the same way as

(0d) (0d)

(C'(0.4)3) andby using My groon and X', inplaceof m. ) and x

i,j;a,b-

Lemma 12.47 (C'(0.4) 8 40a) i chain homotopy equivalent to (C'(0.4).3).
Proof: Let n{® satisfy (12.39). Wedefine N:(C'(€.4).8) - (C'(€.4).84nom) by

_ n(,c)
N(S),. = Z =D"""n, (Si,a1xﬂ(:l),f(2);c(1),c(2) R Xﬁ(k—l),é(k);c(k—l),c(k)) ,
7T

where S=(s,,). By using (12.2), (12.39), (12.40) and (12.41) we find that N isachain
map. Since nl(o)—ldentity, wefindthat N isanisomorphism. The proof of Lemma 12.47
Is complete.

We next define a chain map

(12.48) W2 (C(0.2)8 ) ~ H(C),022 00"

(Here F(C(A)) isthe vector space of smooth sectionsof C(4).) We put

(LPS)J' ,b(ViO-) = z (-1 Hrerae Megsmffg (sﬁrz)gth(xo(vio)!si,a ) Xf'(]),/,(]);c(z),c(Z) ,
(12.49) e

X1 (ke (k-,09 )
where degS isthe degree as differential form.

Lemma 12.50 Y isachain map.
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Proof: Thisisan easy calculation using A” formulae and (12.39), (12.40) and (12.41).
We omit it.

We now prove that W induces an isomorphism in cohomologies. The proof is by
induction on | (the number of i's). Incase when | =1, W coincides with the
composition of the direct sum of the map W in Proposition 11.38 and the isomorphism N.
Hence W induce an isomorphism by Theorem 11.28. Let us assumethat W induces an
isomorphism for | —1. We consider | =1, +1,+1. Letusconsider 4, and <4, .,,

where 4 isthepatof < for i<Il, and 4, ., isapatfor iz1,+1. Thereisa

chain  homomorphism Eb(,l),émmg—» (45.1),5th

A

21 1) Bemoon
i) B

Lemma 12.51 There exists an exact triangle

whose  kernd is

%:('4' 2l +l) ! a:smooth E —> %:(‘4) ’a:smoothE

N

‘Zisll ’a:smooth[
)P

D

Proof: We can use a part of 3 to define (C(4s|1 )3 smooth) - (C(z,-’zllﬂ),
The lemmafollows.

smooth) 1] .

One the other hand we have an exact sequence

0- (C*(O"Zizlﬁl)’asmooth) - (C*(a’d)’ésmooth) - (C*(o"éisll)'ésmooth) -0
of chain complex. Therefore we obtain a diagram of long exact sequences :

- H(C (04 i) Bunen) = HH(C (0D 8] ~ HY(C(04,)Bum) -
| | |
- HY(M Q) E(.,0) ~  HY(O™QEW) - H(T".Q%E.)) -

Diagram 7

The diagram commutes by definition. Hence the induction hypothesis and five lemmaimply
that W inducesanisomorphismfor 1. The proof of Theorem 12.20 is complete.
The proof of Theorem 12.23 is similar to one of Theorem 12.20 and is omitted.
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In this section, we consider x; for i <j only. Hencein the mirror we have a“tree”
of Lagrangian submanifolds. It seems possible to study more general “graph” of Lagrangian
submanifolds. Then we remove the restriction i< | in the sheaf theory sides. The
construction in that case seems to become more complicated.

We finally remark that there is one important point of view which is not studied in this
paper. That is, in this paper we fix (T>",Q) and regard m_ as a function on Abelian
variety. In the theory of theta function, it is more important to regard it as a function of Q
(the moduli parameter of Abelian variety). This point of view is important also for Mirror
symmetry. Note that we can generalize the equation dm‘®) + Zim(d') om@ M =0 5o
that @ include derivative with respect to Q, under certain circumstances. In the case when
d=0 and the case when the image of the wall is compact in T2 this equation can be
regarded as one to control wall crossing of afunction m,. (Here we regard it as a function
of Q.) Thewall crossing studied in [6], [21] seemsto be more directly related to it.

We leave systematic study of multi theta function as a function of Q, as atarget of the
future research.
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