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Abstract. This is a continuation of part I in the series (in progress) of the
papers on Lagrangian Floer theory on toric manifolds. Using the deformations
of Floer cohomology by the ambient cycles, which we call bulk deformations, we
find a continuum of non-displaceable Lagrangian fibers on some compact toric

manifolds. We also provide a method of finding all those fibers in arbitrary
compact toric manifolds, which we call bulk-balanced Lagrangian fibers.
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1. Introduction

This is the second of series of papers to study Lagrangian Floer theory on toric
manifolds. The main purpose of this paper is to explore bulk deformations of
Lagrangian Floer theory, which we introduced in section 13 [FOOO2] and draw
its applications. In particular, we prove the following Theorems 1.1, 1.3. We
call a Lagrangian submanifold L of a symplectic manifold X non-displaceable if
ψ(L) ∩ L 6= ∅ for any Hamiltonian diffeomorphism ψ : X → X.

Theorem 1.1. Let Xk be the k-points blow up of CP 2 with k ≥ 2. Then there exists
a toric Kähler structure on Xk such that there exist a continuum of non-displaceable
Lagrangian fibers L(u).

Moreover they have the following property : If ψ : X → X is a Hamiltonian
isotopy such that ψ(L(u)) is transversal to L(u) in addition, then

#(ψ(L(u)) ∩ L(u)) ≥ 4.

Remark 1.2. (1) We state Theorem 1.1 in the case of the blow up of CP 2.
We can construct many similar examples by the same method.

(2) We will prove Theorem 1.1 by proving the existence of b ∈ H2(Xk; Λ+) and
x ∈ H(L(u); Λ0) such that

HF ((L(u), (b, x)), (L(u), (b, x)); Λ0) ∼= H(T 2; Λ0). (1.1)

Here

Λ0 =

{ ∞∑
i=1

aiT
λi ∈ Λ

∣∣∣ λi ≥ 0, lim
i→∞

λi = ∞, ai ∈ R

}
, (1.2)

(R is a field of characteristic 0) and

Λ+ =

{ ∞∑
i=1

aiT
λi ∈ Λ

∣∣∣ λi > 0

}
(1.3)

are the universal Novikov ring and its maximal ideal. The left hand side
of (1.1) is the Floer cohomology with bulk deformation. See section 13
[FOOO2] and section 2 of this paper for its definition.

(3) In Part IV of this series of papers, we will study this example further
and prove that the universal cover H̃am(Xk) of the group of Hamiltonian
diffeomorphisms allows infinitely many continuous and homogeneous Calabi
quasi-morphisms ϕu : H̃am(Xk) → R (see [EP]) such that for any finitely
many u1, · · · , uN there exists a subgroup ∼= ZN ⊂ H̃am(Xk) on which
(ϕu1 , · · · , ϕuN

) : ZN → RN is injective.

In sections 8 and 9 [FOOO3], we introduced the notion of leading term equation
for each Lagrangian fiber L(u) of a toric manifold X. See also section 4 of this paper.
The leading term equation is a system consisting of n-elements of the Laurent
polynomial ring C[y1, · · · , yn, y−1

1 , · · · , y−1
n ] of n variables. (Here n = dim L(u).) In

section 9 [FOOO3], we proved that if the leading term equation has a solution in (C\
{0})n then L(u) has a nontrivial Floer cohomology for some bounding cochain x in
H1(L(u); Λ0) under certain nondegeneracy conditions. The next theorem says that
if we consider more general class of Floer cohomology integrating bulk deformations
into its construction, we can remove this nondegeneracy condition.
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Theorem 1.3. Let X be a compact toric manifold and L(u) its Lagrangian fiber.
Suppose that the leading term equation of L(u) has a solution in (C \ {0})n.

Then there exists b ∈ H2(X; Λ+) and x ∈ H(L(u); Λ0) satisfying

HF ((L(u), (b, x)), (L(u), (b, x)); Λ0) ∼= H(Tn; Λ0). (1.4)

Corollary 1.4. Let X be a compact toric manifold and L(u) its Lagrangian fiber.
Suppose that the leading term equation of L(u) has a solution in (C \ {0})n. Then
L(u) is non-displaceable.

Moreover L(u) has the following property. If ψ : X → X is a Hamiltonian
isotopy such that ψ(L(u)) is transversal to L(u), then

#(ψ(L(u)) ∩ L(u)) ≥ 2n, (1.5)

where n = dimL(u).

The converse to Theorem 1.3 also holds. (See Theorem 4.7.)
The leading term equation can be easily solved in practice for most of the com-

pact toric manifolds, which are not necessarily Fano. Theorem 1.3 enables us
to reduce the problem to locate all L(u) such that there exists a pair (b, x) ∈
H2(X; Λ+) × H(L(u); Λ0) satisfying (1.4) to the problem to decide existence of
nonzero solution of explicitly calculable system of polynomial equations. In [FOOO3]
we provided such a reduction for the case b = 0. If all the solutions of the leading
term equation are weakly nondegenerate (see Definition 9.2 [FOOO3]), Floer coho-
mology with b = 0 seems to enough for the general study of non-displacement of
Lagrangian fibers. The method employed in this paper works for arbitrary com-
pact toric manifolds without nondegeneracy assumption, and the calculation is
actually simpler. We believe that this method provides an optimal result on the
non-displacement of Lagrangian fibers. (See Conjectures 3.16 & 3.20.)

Remark 1.5. In [Cho], Cho used Floer cohomology with ‘B-field’ to study non-
displacement of Lagrangian fibers in toric manifolds. ‘B-field’ which Cho used is
parameterized by H2(X;

√
−1 R). The bulk deformation we use in this paper is

parameterized by b ∈ H∗(X; Λ0). If we restrict to b ∈ H2(X;
√
−1 R) our bulk

deformation by b in this paper coincides with the deformation by a ‘B-field’ in
[Cho].

A brief outline of each section of the paper is now in order. In section 2, we
review construction of the operator q given in section 13 [FOOO2] and explain how
we use q to deform Floer cohomology. In section 3 we provide a more explicit
description thereof for the case of compact toric manifolds and study its relation
to the potential function with bulk, which is the generating function defined by
the structure constants of q. This section also contains various results on the
operator q and on the potential function with bulk. These results will be used also
in Parts III and IV of this series of papers. In section 4, we explain how we use
the results of section 3 to study Floer cohomology of Lagrangian fibers of compact
toric manifolds. Especially we prove Theorem 1.3 there. Section 5 is devoted to
the proof of Theorem 1.1. In this section we discuss the case of two points blow up
of CP 2 in detail and illustrate the way to locate all the Lagrangian fibers that have
nontrivial Floer cohomology (after bulk deformation). The calculation we perform
in this section can be generalized to arbitrary compact toric manifolds. In section
6 we describe the results on the moduli space of pseudo-holomorphic discs with
boundary on a Lagrangian fiber of a general toric manifold, which are basically
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due to [CO]. We use these results in the study of the operator q. In section 7 we
carry out some calculation of the potential function with bulk deformation which is
strong enough to locate all the Lagrangian fibers with nontrivial Floer cohomology
(after bulk deformation).

In section 8 we use the Floer cohomology with bulk deformation in the study of
non-displacement of Lagrangian submanifolds. For this purpose we define the coho-
mology between a pair of Lagrangian submanifolds L and ψ(L) for a Hamiltonian
diffeomorphism ψ. We also show that this Floer cohomology of the pair is isomor-
phic to the Floer cohomology of L itself. This is a standard process one takes to
use Floer cohomology for the non-displacement problem dating back to Floer [Fl].
We include bulk deformations and deformations by bounding cochain there. These
results were previously obtained in [FOOO2]. However we give rather detailed ac-
count of these constructions here in order to make this paper as self-contained as
possible. To avoid too much overlap with that of [FOOO2] in this paper, we give
a proof using the de Rham cohomology version here which is different from that of
[FOOO2] in which we used the singular cohomology version. In section 9 we study
the convergence property of potential functions. Namely we prove that the poten-
tial function is contained in the completion of the ring of Laurent polynomials over
a Novikov ring with respect to an appropriate non-Archimedean norm. This choice
of the norm depends on the Kähler structure (or equivalently to the moment poly-
tope). We discuss the natural way to take completion and show that our potential
function actually converges in that sense. In section 10, we discuss the relation of
Euler vector fields and the potential function. In section 11, we slightly enlarge
the parameter space of bulk deformations including b from H(X; Λ0) not just from
H(X; Λ+). In section 12, we review the construction of smooth correspondence
in de Rham cohomology using continuous family of multisections and integration
along fibers via its zero sets.

Notations and conventions

We take any field R containing Q. The universal Novikov ring Λ0 is defined as
(1.2), where ai ∈ R. Its ideal Λ+ is defined as (1.3).

Λ =

{ ∞∑
i=1

aiT
λi

∣∣∣ ai ∈ R, λi ∈ R, λi < λi+1, lim
i→∞

λi = ∞

}
is the field of fraction of Λ0.

In case we need to specify R we write Λ0(R), Λ+(R), Λ(R). The (non-Archimedean)
valuation vT on them are defined by

vT

( ∞∑
i=1

aiT
λi

)
= inf{λi | ai 6= 0}

It induces a non-Archimedean norm ‖x‖ = e−vT (x) and defines a topology on them.
Those rings are complete with respect to this norm.

If C is an R vector space, we denote by C(Λ0) the completion of C ⊗ Λ0 with
respect to the non-Archimedean topology of Λ0. In other words its elements are of
the form ∑

aiT
λi
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such that ai ∈ C, λi < λi+1, λi ≥ 0, limi→∞ λi = ∞. C(Λ+), C(Λ), C(Λ0(R)),
C(Λ+(R)), C(Λ(R)) are defined in the same way.

We denote by (X,ω) the compact toric manifold, with Kähler form ω given.
π : X → P is the moment map, where P ⊂ Rn. We write the vector space Rn

containing P by MR. Its dual space is denoted by NR. L(u) is a fiber π−1(u) where
u ∈ IntP . We define an R linear isomorphism

H1(L(u); R) → NR. (1.6)

as follows. Let ~f ∈ H1(L(u); Z). The moment map of the action of

S1 = ~f R mod H1(L(u); Z) ⊂ H1(L(u); R)/H1(L(u); Z) = Tn

is denoted by µ~f . µ~f factors thorough P ⊂ MR so that µ~f = µ̃~f ◦ π, where µ̃~f is

affine. We associate dµ̃~f ∈ NR to ~f . This induces (1.6).
The boundary ∂P is divided into m codimension 1 faces, which we denote by

∂iP (i = 1, · · · ,m.) In [FOOO3], we defined affine maps `i : MR → R such that

∂iP = {u ∈ MR | `i(u) = 0}, P = {u ∈ MR | `i(u) ≥ 0, i = 1, · · · ,m}.

We put ~vi = d`i ∈ NR ∼= H1(L(u); R). In fact ~vi ∈ H1(L(u); Z), i.e., ~vi is an integral
vector.

We denote by xi (i = 1, · · ·n) the coordinates of H1(L(u); Λ0) with respect to
the basis ei and put yi = exi .

2. Bulk deformations of Floer cohomology

In this section, we review the results of section 13 of [FOOO2].
Let (X,ω) be a compact symplectic manifold and L be its Lagrangian subman-

ifold. We take a finite dimensional graded R-vector space H of smooth singular
cycles of X. (Actually we may consider a subcomplex of the smooth singular chain
complex of X and consider smooth singular chains. Since consideration of chain
level arguments is not needed in this paper, we restrict ourselves to the case of
cycles. See [FOOO2] and Part III of this series of papers for relevant explanations.)

We regard an element of H as a cochain (cocycle) by identifying a k-chain with
a (2n − k)-cochain where n = dimL.

In section 13 [FOOO2] we introduced a family of operators denoted by

qβ;`,k : E`(H[2]) ⊗ Bk(H∗(L;R)[1]) → H∗(L;R)[1]. (2.1)

Explanation of the various notations appearing in (2.1) is in order. β is an element
of the image of π2(X,L) → H2(X,L; Z). H[2] is the degree shift of H by 2 defined
by (H[2])d = Hd+2. H∗(L;R)[1] is the degree shift of the cohomology group with
R coefficient. The notations E` and Bk are defined as follows. Let C be a graded
vector space. We put

BkC = C ⊗ · · · ⊗ C︸ ︷︷ ︸
k times

.

The symmetric group Sk of order k! acts on BkC by

σ · (x1 ⊗ · · · ⊗ xk) = (−1)∗xσ(1) ⊗ · · · ⊗ xσ(k),

where
∗ =

∑
i<j;σ(i)>σ(j)

deg xi deg xj .
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EkC is the set of Sk-invariant elements of BkC. The map (2.1) is a Q-linear map
of degree 1 − µ(β) here µ is the Maslov index.

We next describe the main properties of qβ;`,k. Let BkC be as above and put

BC =
∞⊕

k=0

BkC.

(We remark B0C = R.) BC has the structure of coassociative coalgebra with its
coproduct ∆ : BC → BC ⊗ BC defined by

∆(x1 ⊗ · · · ⊗ xk) =
k∑

i=0

(x1 ⊗ · · · ⊗ xi) ⊗ (xi+1 ⊗ · · · ⊗ xk).

This induces a coproduct ∆ : EC → EC ⊗EC with respect to which EC becomes
a coassociative and graded cocommutative.

We also consider a map ∆n−1 : BC → (BC)n or EC → (EC)n defined by

∆n−1 = (∆ ⊗ id ⊗ · · · ⊗ id︸ ︷︷ ︸
n−2

) ◦ (∆ ⊗ id ⊗ · · · ⊗ id︸ ︷︷ ︸
n−3

) ◦ · · · ◦ ∆.

For an indecomposable element x ∈ BC, it can be expressed as

∆n−1(x) =
∑

c

xn;1
c ⊗ · · · ⊗ xn;n

c

where c runs over all partitions of n. For an element

x = x1 ⊗ · · · ⊗ xk ∈ Bk(H(L;R)[1])

we put the shifted degree deg′ xi = deg xi + 1 and

deg′ x =
∑

deg′ xi = deg x + k.

(Recall deg xi is the cohomological degree of xi before shifted.)

Theorem 2.1. (Theorem 13.32 [FOOO2]) The operators qβ;`,k have the following
properties.

(1) For each β and x ∈ Bk(H(L;R)[1]), y ∈ Ek(H[2]), we have the following :

0 =
∑

β1+β2=β

∑
c1,c2

(−1)∗qβ1(y
2;1
c1

,x3;1
c2

⊗ qβ2(y
2;2
c1

,x3;2
c2

) ⊗ x3;3
c2

) (2.2)

where
∗ = deg′ x3;1

c2
+ deg′ x3;1

c2
deg y2;2

c1
+ deg y2;1

c1
.

In (2.2) and hereafter, we write qβ(y,x) in place of qβ;`,k(y,x) if y ∈
E`(H[2]), x ∈ Bk(H(L;R)[1]).

(2) If 1 ∈ E0(H[2]) and x ∈ Bk(H(L;R)[1]) then

qβ;0,k(1,x) = mβ;k(x). (2.3)

Here mβ;k is the filtered A∞ structure on H(L;R).
(3) Let e = PD([L]) be the Poincaré dual to the fundamental class of L. Let

xi ∈ B(H(L;R)[1]) and we put x = x1 ⊗ e ⊗ x2 ∈ B(H(L;R)[1]). Then

qβ(y,x) = 0 (2.4)

except the following case.

qβ0(1, e ⊗ x) = (−1)deg xqβ0(1, x ⊗ e) = x, (2.5)
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where β0 = 0 ∈ H2(X,L; Z) and x ∈ H(L;R)[1] = B1(H(L;R)[1]).

Theorem 2.1 is proved in sections 13 and 32 [FOOO2]. We will recall its proof
in section 7 in the case when X is a toric manifold, R = R and L is a Lagrangian
fiber of X.

We next explain how we use the map q to deform filtered A∞ structure m on L.
In this section we use the universal Novikov ring

Λ0,nov =
{∑

ciT
λieni

∣∣∣ ci ∈ R, λi ≥ 0, ni ∈ Z, lim
i→∞

λi = +∞
}

which was introduced in [FOOO1]. We write Λ0,nov(R) in case we need to specify
R. The ideal Λ+

0,nov of Λ0,nov is the set of all elements
∑

ciT
λieni of Λ0,nov such

that λi > 0. We put FλΛ0,nov = TλΛ0,nov. It defines a filtration on Λ0,nov, under
which Λ0,nov is complete. Λ0,nov becomes a graded ring by putting deg e = 2,
deg T = 0.

We choose a basis fa (a = 1, · · · , B) of H and consider an element

b =
∑

a

bafa ∈ H(Λ+
0,nov)

such that deg ba + deg fa = 2 for each a. We then define

mb
k(x1, · · · , xk) =

∑
β,`,k

eµ(β)/2Tω∩β/2πqβ;`,k(b⊗`;x1, · · · , xk). (2.6)

Here µ : π2(X,L) → Z is the Maslov index.

Lemma 2.2. The family {mb
k}∞k=0 defines a filtered A∞ structure on H(L; Λ0,nov).

Proof. We put

eb =
∞∑

`=0

b⊗`.

Then we have
∆(eb) = eb ⊗ eb.

Lemma 2.2 follows from this fact and Theorem 2.1. (See Lemma 13.39 [FOOO2]
for detail.) ¤

Let b ∈ H1(L; Λ+
0,nov). We say b is a weak bounding cochain of the filtered A∞

algebra (H(L; Λ0,nov), {mb
k}) if it satisfies

∞∑
k=0

mb
k(b, · · · , b) = cPD([L])

where PD([L]) ∈ H0(L; Q) is the Poincaré dual to the fundamental cycle and
c ∈ Λ+

0,nov. By a degree counting, we find that deg c = 2.
We denote by M̂weak,def(L; Λ+

0,nov) the set of the pairs (b, b) of elements b ∈
H ⊗ Λ+

0,nov of degree 2 and weak bounding cochain b of (H(L; Λ0,nov), {mb
k}).

We define PO(b, b) by the equation

PO(b, b)e = c.

By definition PO(b, b) is an element of Λ+
0,nov of degree 0 i.e.,

PO(b, b) ∈ Λ+

where we recall (1.3) for the definition of Λ+.
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We call the map

PO : M̂weak,def(L; Λ+
0,nov) → Λ+

the potential function. We also define the projection

π : M̂weak,def(L; Λ+
0,nov) → H ⊗ Λ+

0,nov

by
π(b, b) = b.

Let b1 = (b, b1),b0 = (b, b0) ∈ M̂weak,def(L; Λ+
0,nov) with

π(b1) = b = π(b0).

We define an operator

δb1,b0 : H(L; Λ0) → H(L; Λ0)

of degree +1 by

δb1,b0(x) =
∑
k1,k0

mb
k1+k0+1(b

⊗k1
1 ⊗ x ⊗ b⊗k0

0 ).

Lemma 2.3.

(δb1,b0 ◦ δb1,b0)(x) = (−PO(b1) + PO(b0))ex.

Proof. This is an easy consequence of Theorem 2.1. See [FOOO2] Proposition
12.17. ¤

Definition 2.4. ([FOOO2] Definition 13.61.) For a pair of elements b1,b0 ∈
M̂weak,def(L; Λ+

0,nov) with π(b1) = π(b0), PO(b1) = PO(b0), we define

HF ((L,b1), (L,b0); Λ0,nov) =
Ker(δb1,b0)
Im(δb1,b0)

.

This is well defined by Lemma 2.3.

By [FOOO2] Theorem 24.22, Floer cohomology is of the form

HF ((L,b1), (L,b0); Λ0,nov) ∼= Λa
0,nov ⊕

⊕ Λ0,nov

TλiΛ0,nov
.

We call a the Betti number and λi the torsion exponent of the Floer cohomology.
The following is a consequence of Theorems G and J [FOOO2] combined. (See

also section 8.)

Theorem 2.5. Let b1,b0 ∈ M̂weak,def(L; Λ+
0,nov) be as in Definition 2.4. Let

ψ : X → X be a Hamiltonian diffeomorphism. We assume ψ(L) is transversal to
L.

(1) The order of ψ(L) ∩ L is not smaller than the Betti number a of the Floer
cohomology HF ((L,b1), (L,b0); Λ0,nov).

(2) Let {λi} be the torsion exponents of HF ((L,b1), (L,b0); Λ0,nov) and E be
the Hofer distance of ψ from identity. Let b be the number of λi which is
not smaller than E. Then the order of ψ(L)∩L is not smaller than a+2b.
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3. Potential function with bulk

In this section, we specialize the story of the last section to the case of toric
fibers, and make the construction of section 13 [FOOO2] explicit in this case. We
also generalize the results from section 12 [FOOO3] and the story between Floer
cohomology and the potential function to the case with bulk deformations.

Let X be a compact toric manifold and P its moment polytope. Let π : X → P
be the moment map. For each face (of arbitrary codimension) Pa of P we have a
complex submanifold Da = π−1(Pa) for a = 1, · · · , B. We enumerate Pa so that
the first m Pa’s correspond to the m codimension one faces of P . Here we note
that the complex codimension of Da is equal to the real codimension of Pa. Let A
be the free abelian group generated by Da. (In this paper we do not consider the
case when Pa = P .) It is a graded abelian group A = ⊕`A` with its grading given
by the (real) dimension of Da. We put D = π−1(∂P ) = ∪aDa, that is, the toric
divisor of X. We denote

Ak(Z) := A2n−k

We remark that A` is nonzero only for even ` and so Ak is nonzero for even k.
The homomorphism : A2n−k → H2n−k(X; Z) and the Poincaré duality induce a
surjective homomorphism

i! : Ak(Z) → Hk(X; Z)

for k 6= 0. We remark that i! is not injective. For example A2(Z) ∼= Zm (where m
is the number of irreducible components of D) and H2(X; Z) = Zm−n. In fact we
have the exact sequence

0 → H2(X; Z) → H2(X,X \ D; Z) → H1(X \ D; Z) ∼= Zn → 0.

On the other hand, since H2(N(D); ∂N(D)) ∼= H2n−2(N(D)) ∼= H2n−2(D), (where
N(D) is a regular neighborhood of D in X) we have H2(X,X \ D; Q) ∼= Qm ∼=
A2(Q)∗.

We denote the set of Λ+-cycles by Ak(Λ+) = Ak ⊗Z Λ+. The following is a
generalization of Proposition 3.2 [FOOO3].

Proposition 3.1. We have the canonical inclusion

A(Λ+) × H1(L(u); Λ+) ↪→ M̂weak,def(L(u)).

Proposition 3.1 will be proved in section 7. We remark that the map i! : Ak(Z) →
Hk(X; Z) is not injective. Therefore, the gauge equivalence relation (See Defini-
tion 16.1 [FOOO2].) on the left hand side is nontrivial. So the right hand side
is not Mweak,def(L(u)), the set of gauge equivalence classes of the elements of
M̂weak,def(L(u)).

For b ∈
⊕

k Ak(Λ+), u ∈ IntP , we define

POu(b, b) : H1(L(u); Λ+) → Λ+

by
POu(b, b) =

∑
β;`,k

Tω∩β/2πqβ;`,k(b⊗`; b⊗k) ∩ [L(u)]. (3.1)

We remark that the summation on right hand side includes the term where ` = 0.
The term corresponding thereto is∑

k,β

Tω∩β/2πmβ;k(b⊗k) ∩ [L(u)] = POu(b)



10 K. FUKAYA, Y.-G. OH, H. OHTA, K. ONO

which is nothing but the potential function in the sense of section 3 [FOOO3].
Namely we have the identity

POu(0, b) = POu(b). (3.2)

This function (3.1) is also a special case of the potential function we discussed in
section 2. (We will not use the variable e in this section.)

We put
b =

∑
a

wa[Da], b =
∑

xiei.

Here ei (i = 1, · · · , n) is a basis of H1(L(u); Z). (See [FOOO3] Lemma 3.3.) We
also put u = (u1, · · · , un), and yi = exi . (See the end of section 1.) We next discuss
a generalization of [FOOO3] Theorem 3.5.

To state it we need some notations.

Definition 3.2. A discrete submonoid of R≥0 is a subset G ⊂ R≥0 such that
(1) G is discrete.
(2) If g1, g2 then g1 + g2 ∈ G. 0 ∈ G.

Hereafter we say discrete submonoid in place of discrete submonoid of R≥0 for
simplicity.

For any discrete subset X of R≥0 there exists a discrete submonoid containing
it. The discrete submonoid G generated by X is, by definition, the smallest one
among them. We write G = 〈X〉.

Compare Condition 6.11 [FOOO2]. In [FOOO2] we considered G ⊂ R≥0 × 2Z.
Since we do not use the grading parameter e we consider G ⊂ R≥0 in this paper.

Definition 3.3. Let Ci be an R vector space. We denote by Ci(Λ0) the completion
of Ci ⊗ Λ0. Let G be a discrete submonoid.

(1) An element x of Ci(Λ0) is said to be G-gapped if

x =
∑
g∈G

xgT
g

where xg ∈ Ci.
(2) A filtered Λ0 module homomorphism f : C1(Λ0) → C2(Λ0) is said to be

G-gapped if there exists R linear maps fg : C1 → C2 for g ∈ G such that

f(x) =
∑
g∈G

T gfg(x).

Here we extend fg to fg : C1(Λ0) → C2(Λ0) in an obvious way.

The G-gappedness of potential functions, of filtered A∞ structures, and etc. can
be defined in a similar way.

We define

G(X) = 〈{ω ∩ β | β ∈ π2(X) is realized by a holomorphic sphere}〉. (3.3)

Denote by Gbulk a discrete submonoid containing G(X).
We put

POu
0 (b) =

m∑
i=1

T `i(u)y
vi,1
1 · · · yvi,n

n (3.4)

and call it the leading order potential function.
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Theorem 3.4. Let X be an arbitrary compact toric manifold and L(u) as above
and b ∈ A(Λ+) a Gbulk gapped element. Then there exist cσ ∈ Q, ei

σ ∈ Z≥0,
ρσ ∈ Gbulk and ρσ > 0, such that

∑m
i=1 ei

σ > 0 and

POu(b; b) − POu
0 (b) =

∞∑
σ=1

cσy
v′

σ,1
1 · · · yv′

σ,n
n T `′σ(u)+ρσ (3.5)

where

v′
σ,k =

m∑
i=1

ei
σvi,k, `′σ =

m∑
i=1

ei
σ`i. (3.6)

If there are infinitely many non-zero cσ’s, we have

lim
σ→∞

ρσ = ∞. (3.7)

Theorem 3.4 is proved in section 7. (3.7) slightly improves corresponding state-
ment in Theorem 3.5 [FOOO3].

We regard POu as a function of wi and yi and write POu(w1, · · · , wB ; y1, · · · , yn).
(Here B =

∑
k rankAk.) Then Theorem 3.4, especially (3.7), implies the following

Lemma 3.5. The potential function

POu(w1, · · · , wB ; y1, · · · , yn) : (Λ+)B × (1 + Λ+)n → Λ0

is extended to a function : (Λ+)B × (Λ0)n → Λ0.

We remark that 1 + Λ+ is the set of elements 1 + x ∈ Λ0 with x ∈ Λ+. It
coincides with the image of exp : Λ+ → Λ0. We denote the extension by the same
symbol POu.

Actually, we can extend the domain of the potential function to (Λ0)B × (Λ0 \
Λ+)n. Let w1, · · · , wm be the parameter corresponding to A2. (m is the number
of irreducible components.) We put wi = ewi and consider the ring

Λ0[w1, · · · ,wm,w−1
1 , · · · ,w−1

m , wm+1, · · · , wB , y1, y
−1
1 , · · · , yn, y−1

n ]. (3.8)

We take its completion with respect to the norm induced by the non-Archimedean
norm of Λ0 and denote it by

Λ0{w,w−1, w, y, y−1}.

In other words, its element is an infinite sum∑
k

ak w
ek,1
1 · · · ,w

ek,m
m w

ek,m+1
m+1 · · ·wek,B

B y
fk,1
1 · · · yfk,n

n

where ek,i ∈ Z (i ≤ m), ek,i ∈ Z≥0 (i > m), fk,i ∈ Z, ak ∈ Λ0 and

lim
k→∞

vT (ak) = ∞.

The ring (3.8) is called a strictly convergent power series ring. See [BGR]. We have

POu ∈ Λ0{w,w−1, w, y, y−1}. (3.9)

In particular, (3.9) implies that the potential function

(w1, · · · ,wm, wm+1, · · · , wB , y1, · · · , yn)

7→ PO(w1, · · · ,wm, wm+1, · · · , wB , y1, · · · , yn)

is defined on (Λ0 \ Λ+)m × (Λ0)B−m × (Λ0 \ Λ+)n.
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We can further improve (3.9) to Theorem 3.11. To make the precise statement
on this we need some preparation.

First recall that P is convex and so IntP is contractible. Therefore we have a
Tn-bundle isomorphism

Ψ : π−1(IntP ) ∼= Tn × IntP.

For example we can construct such an isomorphism by first picking a reference point
uref and identifying a fiber π−1(uref) = L(uref) with Tn and then using the parallel
transport with respect to the natural affine connection associated the Lagrangian
smooth fibration π−1(IntP ) → IntP . (See [W], [Dui].) Then Ψ induces a natural
isomorphism

ψu := (Ψ|π−1(u))∗ : H1(Tn; Z) → H1(L(u); Z).

Now we choose a basis {ei} of H1(Tn; Z) and xi for i = 1, · · · , n the associated
coordinates. We then denote yi = exi . We note that {ei} and xi (and so yi) depend
only on Tn. Using the isomorphism ψu we can push-forward them to H1(L(u); Z)
which are nothing but the coordinates associated to the basis

{ψu(ei)}1≤i≤n

of H1(L(u); Z) mentioned in the end of section 1.
We denote the variable

yi(u) = T−uiyi ◦ ψ−1
u (3.10)

and consider the ring

Λ[w1, · · · ,w−1
m , wm+1, · · · , wB , y1(u), · · · , yn(u)−1].

By definition we have a ring isomorphism, again denoted by ψu,

ψu : Λ[w,w−1, w, y, y−1] → Λ[w, · · · ,w−1, w, y(u), y(u)−1]; yi 7→ Tuiyi(u) ◦ ψu.

Furthermore by definition, we have a ring isomorphism

ψu′,u : Λ[w1, · · · ,w−1
m , wm+1, · · · , wB , y1(u), · · · , yn(u)−1]

→ Λ[w1, · · · ,w−1
m , wm+1, · · · , wB , y1(u′), · · · , yn(u′)−1]

given by ψu′,u = ψu′ ◦ ψ−1
u or more explicitly by

ψu′,u(yi(u)) = Tu′
i−uiyi(u′)

for any two u, u′ ∈ IntP . (Compare the discussion just below Remark 5.13
[FOOO3].) Clearly ψu′′,u′ ◦ ψu′,u = ψu′′,u.

Now we define a family of valuations vu
T parameterized by u ∈ IntP on the ring

Λ[w,w−1, w, y, y−1] by the formula

vu
T

(∑
k

ak w
ek,1
1 · · · ,w

ek,m
m w

ek,m+1
m+1 · · ·wek,B

B y
fk,1
1 · · · yfk,n

n

)
= inf

k
{vT (ak) + 〈fk, u〉 | ak 6= 0}.

(3.11)

We note that by definition we have

vu
T (yi) = ui. (3.12)

We remark that vu
T is independent of the choice of the basis {ei} of H1(Tn; Z).
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Definition 3.6. We define a function

vP (x) = inf{vu
T (x) | u ∈ IntP}

on the ring Λ[w,w−1, w, y, y−1] which defines a non-Archimedean valuation. We
denote its completion by ΛP {w,w−1, w, y, y−1}. We put

ΛP
0 {w,w−1, w, y, y−1} = {x ∈ ΛP {w,w−1, w, y, y−1} | vP (x) ≥ 0}.

If we denote

Λu
0{w,w−1, w, y, y−1} = {x ∈ ΛP {w,w−1, w, y, y−1} | vu

T (x) ≥ 0}
⊂ ΛP {w,w−1, w, y, y−1},

we have
ΛP

0 {w,w−1, w, y, y−1} =
⋂

u∈P

Λu
0{w,w−1, w, y, y−1}. (3.13)

Define the variable

zj(u) = T `j(u)y1(u)vj,1 · · · yn(u)vj,n

for j = 1, · · · ,m.
The following lemma follows from the definition (3.10) of yi(u).

Lemma 3.7. The expression

zj(u) ◦ ψu ∈ Λ{y, y−1}

is independent of u ∈ IntP . We denote this common variable by zj. Furthermore
we have

vu
T (zj) = `j(u). (3.14)

In particular zj ∈ ΛP
0 {y, y−1}.

Proof. From (3.10), we have yi(u) ◦ ψu = T−uiyi. Therefore we have

(y1(u)vj,1 · · · yn(u)vj,n) ◦ ψu = T−〈vj ,u〉
n∏

i=1

y
vj,i

i

for j = 1, · · · ,m. Recalling `j(u) = 〈vj , u〉 − λj , we obtain

zj(u) ◦ ψu = T `j(u)(y1(u)vj,1 · · · yn(u)vj,n) ◦ ψu = T−λj

n∏
i=1

y
vj,i

i

which shows independence of u.
We evaluate

vu
T (zj(u) ◦ ψu) = vu

T (T−λj

n∏
i=1

y
vj,i

i ) = −λj +
m∑

i=1

vj,iv
u
T (yi)

= −λj +
m∑

i=1

vj,iui = 〈vj , u〉 − λj = `j(u)

where we use (3.12) for the third equality and the definition of `j for the last.
Finally since `j(u) > 0 for u ∈ IntP , the last statement follows. This finishes the
proof. ¤
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Remark 3.8. We note that the variables zj , j = 1, · · · , m depend on IntP and the
vectors {vj}j=1,···m. Recall the latter is the set of one dimensional generators of
the fan Σ associated to the toric manifold X = XΣ which determines the complex
structure on X. On the other hand the moment polytope P is determined by the
symplectic structure of X. In other words, the variables depend on both complex
structure and symplectic structure.

We consider formal power series of the form
∞∑

k=1

akw
ek,1
1 · · · ,w

ek,m
m w

ek,m+1
m+1 · · ·wek,B

B z
fk,1
1 · · · zfk,m

m , (3.15)

with the conditions

ak ∈ Λ0, lim
k→∞

vT (ak) = ∞,

ek,i ∈

{
Z i ≤ m,

Z≥0 i > m,

fk,j ∈ Z≥0.

Lemma 3.9. Any formal power series of the form (3.15) is an element of the ring
ΛP

0 {w,w−1, w, y, y−1}.
Conversely any element of ΛP

0 {w,w−1, w, y, y−1} can be written in the form of
(3.15).

Proof. Consider a monomial

ξ = awe1
1 · · · ,wem

m w
em+1
m+1 · · ·weB

B yf1
1 · · · yfn

n .

Then we have the valuation

vu
T (ξ) = vT (a) + 〈f, u〉.

Put
c = inf {〈f, u〉 | u ∈ IntP} . (3.16)

Since P is a convex polytope, we can take a vertex u0 of P such that

c = 〈f, u0〉.

There exist n faces ∂jiP , i = 1, · · · , n such that

{u0} =
n⋂

i=1

∂jiP. (3.17)

Since X is a smooth toric manifold, the corresponding fan is regular and so ~vij

j = 1, · · · , n forms a Z-basis of M . (See section 2.1 [Ful], for example.) Therefore
we have

~f = (f1, · · · , fn) =
n∑

i=1

bi~vji

for some bi ∈ Z. By definition of c (3.16), we have

bi ≥ 0.

And we can express

ξ = aT 〈f,u0〉we1
1 · · · ,wem

m w
em+1
m+1 · · ·weB

B zb1
j1

· · · zbn
jn

:
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Here we use the facts that zi(u) = T `i(u)y1(u)vi,1 · · · yn(u)vi,n , zi(u) ◦ ψu = zi do
not depend on u and `ji(u

0) = 0 by (3.17). We have

vT (aT 〈f,u0〉) = vT (a) + 〈f, u0〉 = vT (a) + c.

If vu
T (ξ) ≥ 0 for all u ∈ IntP , then

vT (aT 〈f,u0〉) = vT (a) + c = inf
u∈IntP

vu
T (ξ) ≥ 0.

Therefore ξ is of the form (3.15).
For the converse, we first obtain

vu
T (awe1

1 · · · ,wem
m w

em+1
m+1 · · ·weB

B zf1
1 · · · zfm

m ) = vT (a) +
m∑

j=1

`j(u)fj

from (3.14). Since a ∈ Λ0, fj ≥ 0 and `j(u) > 0 for all u ∈ IntP , vT (a) +∑m
j=1 `j(u)fj ≥ 0 for all u ∈ IntP and so

vP (awe1
1 · · · ,wem

m w
em+1
m+1 · · ·weB

B zf1
1 · · · zfm

m ) ≥ 0.

This prove the converse and hence the proof of the lemma. ¤
Remark 3.10. (1) We remark that the representation (3.15) of an element

x ∈ ΛP
0 {w,w−1, w, y, y−1} is not unique. The non-uniqueness is due to the

fact that zi’s in ΛP
0 {w,w−1, w, y, y−1} satisfy the quantum Stanley-Reisner

relation. (See Proposition 5.5 [FOOO3].)
(2) The proof of Lemma 3.9 implies the following : A monomial of the form

(3.15) is a monomial in ΛP
0 {w,w−1, w, y, y−1} and vice versa.

(3) The discussion above shows that the moment polytope P is closely related
to the Berkovich spectrum [Ber], [KS] of ΛP

0 {w,w−1, w, y, y−1}.

Now we can state the following theorem whose proof we will postpone until
section 9.

Theorem 3.11. The function POu ◦ ψu lies in

ΛP
0 {w,w−1, w, y, y−1}

and is independent of u.

We denote the common function by PO.
Now we can generalize the result of section 3 [FOOO3] as follows. Using Lemma

3.5 and the idea of Cho (see section 11 [FOOO3]) we can define Floer cohomology

HF ((L(u), b, x), (L(u), b, x); Λ0)

for any (b, x) ∈ H(X; Λ0) × H1(L(u); Λ0) ∼= (Λ0)B × (Λ0)n. See sections 8 and 11.
The following is the generalization of Theorem 3.9 [FOOO3].

Theorem 3.12. Let (b, x) ∈ (Λ0)B × (Λ0)n. We assume
∂PO

∂xi
(b, x) = 0 (3.18)

for i = 1, · · · , n. Then we have

HF ((L(u0), b, x), (L(u0), b, x); Λ0) ∼= H(Tn; Λ0). (3.19)

If we assume
∂PO

∂xi
(b, x) ≡ 0 mod TN (3.20)
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then we have

HF ((L(u0), b, x), (L(u0), b, x); Λ0/TN ) ∼= H(Tn; Λ0/TN ). (3.21)

Theorem 3.12 will be proved in section 7. We next define :

Definition 3.13. Let L(u) be a Lagrangian fiber of a compact toric manifold
(X,ω). We say that L(u) is bulk-balanced if there exist sequences ωi, Pi, bi, xi, Ni,
and ui with the following properties.

(1) (X,ωi) is a sequence toric manifolds such that limi→∞ ωi = ω.
(2) Pi is a moment polytope of (X,ωi). It converges to the moment polytope

P of (X,ω).
(3) ui ∈ Pi and limi→∞ ui = u.
(4) bi ∈ A(Λ+(C)), xi ∈ H1(L(ui); Λ0(C)), Ni ∈ R+.
(5)

HF ((L(ui), bi, xi), ((L(ui), bi, xi); Λ0(C)/TNi) ∼= H(Tn; Λ0(C)/TNi).

(6) limi→∞ Ni = ∞.

Remark 3.14. (1) Definition 3.13 is related to Definitions 3.10 [FOOO3]. Namely
it is easy to see that

“Strongly balanced” ⇒ “balanced”⇒ “bulk-balanced”

On the other hand the three notions are all different. (See Example 9.17
[FOOO3] and section 5 of the present paper.)

(2) We can generalize Theorem 3.12 to the case b ∈ A(Λ0(C)) in place of
b ∈ A(Λ+(C)). See section 11.

The next result is a generalization of Proposition 3.11 [FOOO3] which will be
proved in section 8.

Proposition 3.15. Suppose that L(u) ⊂ X is bulk-balanced. Then L(u) is non-
displaceable.

Moreover if ψ : X → X is a Hamiltonian diffeomorphism such that ψ(L(u)) is
transversal to L(u), then

#(ψ(L(u)) ∩ L(u)) ≥ 2n. (3.22)

It seems reasonable to expect the following converse to this proposition.

Conjecture 3.16. If L(u) is a non-displaceable fiber of a compact toric manifold
then L(u) is bulk-balanced.

The next definition is related to Definition 4.10 [FOOO3].

Definition 3.17. Let L(u) be a Lagrangian fiber of a compact toric manifold
(X,ω). The bulk PO-threshold, E

bulk
(L(u)) is 2πN where N is the supremum of

the numbers Ni such that there exist ωi, Pi, bi, xi, and ui satisfying Definition 3.13
(1) - (5).

Remark 3.18. In Definition 4.10 [FOOO3] we defined two closely related numbers
E(L(u)), E(L(u)). It is easy to see

E(L(u)) ≤ E(L(u)) ≤ E
bulk

(L(u)). (3.23)

The equalities in (3.23) do not hold in general. (See Example 9.17 [FOOO3] and
section 5.)
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We recall that the displacement energy e(L) of a Lagrangian submanifold L ⊂
X is the infimum of the Hofer distance dist(ψ, id) ([H]) between identity and a
Hamiltonian isotopy ψ : X → X such that ψ(L) ∩ L = ∅. (See Definition 4.9
[FOOO3].)

We will prove the following in section 8.

Theorem 3.19.
e(L) ≥ E

bulk
(L(u)). (3.24)

It would be interesting to see if the following holds :

Conjecture 3.20. The equality holds in (3.24).

4. Elimination of higher order terms by bulk deformations

The purpose of this section is to apply the result of the last section to locate
bulk-balanced Lagrangian fibers. We first recall the notion of leading term equa-
tion. We denote by Λ0{y, y−1} the completion of the Laurent polynomial ring
Λ0[y1, y

−1
1 , · · · , yn, y−1

n ] with respect to the non-Archimedean norm. For each fixed
b ∈ ρA(Λ+) and u, we have

POu(b; y1, · · · , yn) ∈ Λ0{y, y−1}.

We also put
POu

b(y1, · · · , yn) = POu(b; y1, · · · , yn)

and regard POu
b as an element of Λ0{y, y−1}.

Henceforth we write y~v for yv1
1 · · · yvn

n with ~v = (v1, · · · , vn).
Let ~vi = d`i = (vi,1, · · · , vi,n) ∈ H1(L(u); Z) ∼= Zn ∼= NZ (i = 1, · · · ,m) as in the

end of section 1. We define Sl ∈ R+ by Sl < Sl+1 and

{Sl | l = 1, 2, · · · ,L} = {`i(u) | i = 1, 2, · · · ,m}. (4.1)

We re-enumerate the set {~vk | λk = Sl} as

{~vl,1, · · · , ~vl,a(l)}. (4.2)

Let A⊥
l ⊂ NR ∼= Rn be the R-vector space generated by ~vl′,r for l′ ≤ l, r =

1, · · · , a(l′). We remark that A⊥
l is defined over Q. Namely A⊥

l ∩Qn generates A⊥
l

as an R vector space. Denote by K the smallest integer l such that A⊥
l = NR. We

put d(l) = dim A⊥
l − dimA⊥

l−1, d(1) = dim A⊥
1 .

We remark

{~vl,r | l = 1, · · · ,K, r = 1, · · · , a(l)} ⊂ {~vi | i = 1, · · · , m}.

Henceforth we assume l ≤ K whenever we write ~vl,r. For each (l, r) we define the
integer i(l, r) ∈ {1, · · · ,m} by

~vl,r = ~vi(l,r). (4.3)
Renumbering ~vi, if necessary, we can enumerate them so that

{~vi | i = 1, · · · , m}
= {~vl,r | l = 1, · · · , K, r = 1, · · · , a(l)} \ {~vi | i = K + 1, · · · ,m}

(4.4)

for some 1 ≤ K ≤ m − 1.
Recall we have chosen a basis ei of H1(L(u); Z) in the end of section 1. It can

be identified with a basis of MR ∼= H1(L(u); R). Denote its dual basis on NR by e∗i .
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We choose a basis e∗l,s of NR such that e∗1,1, · · · , e∗l,d(l) forms a Q-basis of A⊥
l and

that each of ~vi lies in
⊕

l,s Ze∗l,s.
We put

e∗i =
K∑

l=1

d(l)∑
s=1

ai;(l,s)e∗l,s,

(a(l,s);i ∈ Q). Regarding e∗i and e∗l,s as functions on MR, this equation can be
written as

xi =
K∑

l=1

d(l)∑
s=1

ai;(l,s)xl,s

with xi = e∗i and xl,s = e∗l,s. If we associate yl,s = exl,s , it is contained in a finite
field extension of Q[y1, y

−1
1 , · · · , yn, y−1

n ] and satisfies

yi =
K∏

l=1

d(l)∏
s=1

y
ai;(l,s)

l,s . (4.5)

We put ~vl,r = (vl,r;1, · · · , vl,r;n) ∈ Zn.

Lemma 4.1. The product

y~vl,r = y
vl,r;1
1 · · · yvl,r;n

n

is a monomial of yl′,s for l′ ≤ l, s ≤ d(l′).

Proof. By the definition of A⊥
` , ~vl,r is an element of A⊥

l and so

~vl,r =
∑

l′≤l,s≤d(l′)

cl,r;l′,se∗l′,s

for some integer cl,r;l′,s. Therefore

y~vl,r =
∏

l′≤l,s≤d(l′)

y
cl,r;l′,s

l′,s

and the lemma follows. ¤

We put

(POu
b)l =

a(l)∑
r=1

y~vl,r . (4.6)

By Lemma 4.1, (POu
b)l can be written as a Laurent polynomial of yl′,s for l′ ≤ l,

s ≤ d(l′) with its coefficients are scalers i.e., elements of R.
Now we consider the equation

yk
∂POu

b

∂yk
= 0 (4.7)

with k = 1, · · · , n for yk from Λ0 . By changing the coordinates to yl,s (l =
1, · · · ,K, s = 1, · · · , d(l)), (4.7) becomes

yl,s
∂POu

b

∂yl,s
= 0. (4.8)
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Lemma 4.2. The equation (4.8) has a solution with yl,s from Λ0(R) \ Λ+(R) if
and only if (4.7) has a solution with yk ∈ Λ0(R) \ Λ+(R).

If R is algebraically closed, then the ratio between the numbers of solutions
counted with multiplicity is equal to the degree of field extension[

Q[y1,1, y
−1
1,1, · · · , yK,d(K), y

−1
K,d(K)] : Q[y1, y

−1
1 , · · · , yn, y−1

n ]
]
.

Proof. This is obvious from the form of the change of coordinate (4.5). ¤

Definition 4.3. The leading term equation of (4.7) or of (4.8) is the system of
equations

∂(POu
b)l

∂yl,s
= 0 (4.9)

with yl,s from R \ {0} for l = 1, · · · , K, s = 1, · · · , d(l).

We remark that (4.7) is an equation for y1, · · · , yn ∈ Λ0. On the other hand, the
equation (4.9) is one for yl,s ∈ R \ {0}. The following lemma describes the relation
between these two equations.

Lemma 4.4. Let yl,s ∈ Λ0(R) \ Λ+(R) be a solution of (4.8). We define yl,s ∈
C\{0} by yl,s ≡ yl,s mod Λ+(R). Then yl,s solves the leading term equation (4.9).

The proof is easy. (See sections 8,9 [FOOO3].)
We remark that the discussion above applies to the leading order potential func-

tion POu
0 (See (3.4)) without changes. See sections 8,9 [FOOO3].

Lemma 4.5. The leading term equation of POu(b, y) is independent of b ∈ A(Λ+).
Moreover it coincides with the leading term equation of POu

0 .

Proof. The first half follows from Theorem 3.4. The second half follows from The-
orem 3.5 [FOOO3]. ¤

We denote by Λ0{y∗∗, y−1
∗∗ } the completion of Λ0[y1,1, y

−1
1,1, · · · , yK,d(K), y

−1
K,d(K)]

with respect to the non-Archimedean norm. It is a finite field extension of Λ0{y, y−1}.

Definition 4.6. We say that (X,ω) is rational if c[ω] ∈ H2(X; Q) for some c ∈
R \ {0}. We say that a Lagrangian submanifold L ⊂ X is rational if {ω ∩ β | β ∈
H2(X,L; Z)} ⊂ R is isomorphic to Z or {0}.

We remark that only rational symplectic manifold (X,ω) carries a rational La-
grangian submanifold L. (In the general situation π2(X,L) is used sometimes in
the definition of rationality of L. In our case of toric fibers, they are equivalent.)

Now we state the main result of this section.

Theorem 4.7. The following two conditions on u are equivalent to each other :
(1) The leading term equation of POu

0 has a solution yl,s ∈ R \ {0}.
(2) There exists b ∈ A(Λ+(R)) such that POu

b has a critical point on (Λ0(R) \
Λ+(R))n.

Corollary 4.8. If the leading term equation of POu
0 has a solution then L(u) is

bulk-balanced.

Proof of Theorem 4.7. The proof of (2) ⇒ (1) is a consequence of Lemmata 4.2,
4.4 and 4.5. The rest of this section is devoted to the proof of the converse.
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Let y1,1, · · · , yK,d(K) be a solution of the leading term equation. We remark
yl,s ∈ R \ {0} ⊂ Λ0(R) \ Λ+(R). We will fix yl,s during the proof of Theorem 4.7
and find b such that yl,s is a critical point of POu

b . We also require b to have the
form

b =
K∑

l=1

a(l)∑
r=1

bl,rDi(l,r) (4.10)

where bl,r ∈ Λ+. (Here and hereafter in this section we omit R in Λ+(R) and etc.)
Note i(l, r) ≤ m and so deg Di(l,r) = 2. In other words, we use b in the second

cohomology H2(X; Λ+) (more precisely b ∈ A2(Λ+)) only to prove Theorem 4.7.
We first consider the case when X is Fano. In this case we can calculate

POu(b; y) explicitly as follows.

Proposition 4.9. Suppose X is Fano and b is as in (4.10). Then

POu(b, y) =
K∑

l=1

a(l)∑
r=1

exp(bl,r)TSly~vi(l,r) +
m∑

i=K+1

T `i(u)y~vi . (4.11)

We will prove Proposition 4.9 in section 7.
We put

~vi(l,r) =
l∑

l′=1

d(l′)∑
s=1

vl,r;l′,se∗l′,s, ~vi =
K∑

l=1

d(l)∑
s=1

vi;l,se∗l,s.

Lemma 4.10. If yl,s ∈ R \ {0} is a solution of the leading term equation, then

yl′,s
∂POu

∂yl′,s
(b; x) =

K∑
l=l′

a(l)∑
r=1

(
bl,r +

∞∑
h=2

1
h!

bh
l,r

)
TSlvl,r;l′,sy

~vi(l,r)

+
m∑

i=K+1

vi;l′,sT
`i(u)y~vi .

(4.12)

Here x =
∑

(log yi)ei and yi is determined from yl,s by (4.5).

Proof. Differentiating (4.11), we obtain

yl′,s
∂POu

b

∂yl′,s
=

K∑
l=l′

a(l)∑
r=1

(
1 + bl,r +

∞∑
h=2

1
h!

bh
l,r

)
TSlvl,r;l′,sy

~vi(l,r)

+
m∑

i=K+1

vi;l′,sT
`i(u)y~vi .

On the other hand, the leading term equation is

0 =
a(l)∑
r=1

vl,r;l′,sy
~vi(l,r)

Therefore (4.12) follows. ¤
To highlight the idea of the proof, we first consider the rational case. In this

case, by rescaling the symplectic form ω to cω by some c ∈ R+, we may assume
that ω is integral, i.e.,

{ω ∩ β/2π | β ∈ H2(X,L(u); Z)} ∈ Z.
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It follows that Sl, `i(u) ∈ Z. Thus, we can reduce the coefficient rings from the
universal Novikov rings Λ0, Λ+, Λ to the following rings respectively :

Λint
0 := R[[T ]], Λint

+ := TR[[T ]], Λint
0 := R[[T ]][T−1].

Here R[[T ]] is the formal power series ring.
We also consider pairs (b, b) only from A2(Λint

+ ) × H1(L(u); Λint
0 ). Under these

restrictions, the exponents of T appearing in our discussion following always become
integers.

Lemma 4.11. Suppose X is Fano and L(u) is rational. For each k, l, r, there
exists bl,r(k) ∈ Λint

+ such that

b(k) =
K∑

l=1

a(l)∑
r=1

bl,r(k)Di(l,r)

has the following property.

yl,s
∂POu

∂yl,s
(b(k); x) ≡ 0 mod T k. (4.13)

for l = 1, · · · ,K, s = 1, · · · , d(l). Here x =
∑

(log yi)ei. We also have

bl,r(k + 1) ≡ bl,r(k) mod T k−Sl . (4.14)

Proof. The proof is by an induction over k. If k ≤ S1, we apply Lemma 4.10 to
b = b(k) = 0 and obtain

yl′,s
∂POu

∂yl′,s
(b(k); x) ≡ 0 mod TS1 .

Hence (4.13) holds for k ≤ S1.
Now suppose k > S1 and assume b(k − 1) with the required property. By the

induction hypothesis we may put

yl′,s
∂POu

∂yl′,s
(b(k − 1); x) ≡ T kEl′,s mod T k+1, (4.15)

for some El′,s ∈ R. Let ~E =
∑

El′,se∗l′,s ∈ NR = N ⊗Z R.

Sublemma 4.12. ~E is contained in the vector space generated by {e∗l,s | Sl <

k, s = 1, · · · , d(l)}.

Proof. This is a consequence of (4.12). ¤

By Sublemma 4.12, we can express ~E as

− ~E =
∑
Sl<k

cl,ry
~vl,r~vl,r (4.16)

for some cl,r ∈ R. Note ~vl,r, l ≤ l0, r ≤ a(l) span the vector space

A⊥
l0 = spanR{e∗l,s | l ≤ l0, s = 1, · · · , d(l)}.

We define bl,r(k) by

bl,r(k) = bl,r(k − 1) + cl,r(y~vl,r )−1T k−SlDi(l,r).

Since k − Sl > 0 it follows k − Sl ∈ Z+ by the integrality hypothesis of ω. Namely
bl,r(k) ∈ Λint

+ . Lemma 4.10, (4.15) and (4.16) imply (4.13). This finishes the
induction steps and so the proof of Lemma 4.11 is complete. ¤
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Now we consider
b = lim

k→∞
b(k).

The right hand side converges by (4.14) and so b is well-defined as an element of
ρA(Λint

+ ) and satisfies

yl′,s
∂POu

∂yl′,s
(b; x) = 0

as required. Thus Theorem 4.7 is proved for the case where X is Fano and L(u) is
rational.

We now turn to the case where X is not necessarily Fano or L(u) not necessarily
rational. We will still use an induction argument but we need to choose the discrete
submonoids of R that we work with carefully to carry out the induction.

Let G(X) be as in (3.3). We define :

G(L(u)) = 〈{ω[β]/2π | β ∈ π2(X,L(u)) is realized by a holomorphic disc}〉.
(4.17)

Definition 4.13. Let G(X) be as in (3.3). We define Gbulk to be the discrete
submonoid of R generated by G(X) and the subset

{λ − Sl | λ ∈ G(L(u)), l = 1, · · · ,K, λ > Sl} ⊂ R+ ⊂ R.

Condition 4.14. We consider

b =
K∑

l=1

a(l)∑
r=1

bl,rDi(l,r) ∈ A2(Λ+(R)) (4.18)

such that all bl,r are Gbulk-gapped.

The main geometric input to the proof of the non-Fano case of Theorem 4.7 is
the following.

Proposition 4.15. We assume b satisfies Condition 4.14 and consider

b′ = b + cTλDi(l,r), (4.19)

with c ∈ R, λ ∈ Gbulk, l ≤ K. Then we have

POu(b′; y) − POu(b; y)

= cTλ+`i(l,r)(u)y~vi(l,r) +
∞∑

h=2

chThλ+`i(l,r)(u)y~vi(l,r)

+
∞∑

h=1

∑
σ

ch,σThλ+`′σ(u)+ρσy~vσ .

(4.20)

Here ch, ch,σ ∈ R, ρσ ∈ Gbulk. Moreover there exists ei
σ ∈ Z≥0 such that ~vσ =∑

ei
σ~vi, `′σ =

∑
ei
σ`i and

∑
i ei

σ > 0.

We prove Proposition 4.15 in section 7.

Definition 4.16. We enumerate elements of Gbulk so that

Gbulk = {λb
j | j = 0, 1, 2, · · · }

where 0 = λb
0 < λb

1 < λb
2 < · · · .
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(1) For k ≥ 1, we define ΛGbulk
0 {y∗∗, y−1

∗∗ }k to be a subspace of Λ0{y∗∗, y−1
∗∗ }

consisting of elements of the form
K∑

l=1

∞∑
j=k

TSl+λb
j Pj,l(y1,1, y

−1
1,1, · · · , yl,d(l), y

−1
l,d(l)) (4.21)

where each Pj,l is a Laurent polynomial of y1,1, · · · , yl,d(l) with R coeffi-
cients, i.e.,

Pj,l ∈ R[y1,1, y
−1
1,1, · · · , yl,d(l), y

−1
l,d(l)].

We put ΛGbulk
0 {y∗∗, y−1

∗∗ }0 := ΛGbulk
0 {y∗∗, y−1

∗∗ }.
(2) We define NGbulk

R (k) to be the set of elements of the form

K∑
l=1

d(l)∑
s=1

∞∑
j=k

cl,s,jT
Sl+λb

je∗l,s

from NR ⊗R Λ0 with cl,s,j ∈ R.

Lemma 4.17. If b satisfies Condition 4.14 then POu
b ∈ ΛGbulk

0 {y∗∗, y−1
∗∗ }.

Proof. This will follow from Theorem 3.4. It is easy to see POu
0 ∈ ΛGbulk

0 {y∗∗, y−1
∗∗ }

from the definitions of POu
0 and Gbulk. So it suffices to show that the right hand side

of (3.5) in Theorem 3.4 lies in ΛGbulk
0 {y∗∗, y−1

∗∗ }. We consider a term cσy~v′
σT `′σ(u)+ρσ

thereof. Let ~v′σ =
∑m

i=1 ei
σ~vi as in (3.6). We put

l0 = sup{l | ∃r ei(l,r)
σ 6= 0}.

Then
cσy~v′

σ ∈ R[y1,1, y
−1
1,1, · · · , yl0,d(l0), y

−1
l0,d(l0)

].

On the other hand

`′σ(u) =
∑

ei
σ`i(u) ≥ `i(l0,r)(u) = Sl0

because ei
σ ≥ 0 and

∑
i ei

σ > 0 and e
i(l0,r)
σ 6= 0 for some r. Therefore

`′σ(u) − Sl0 ∈ Gbulk.

It follows that
cσy~v′

σT `′σ(u)+ρσ ∈ ΛGbulk
0 {y∗∗, y−1

∗∗ }
as required. ¤

We now state the following lemma

Lemma 4.18. If P lies in ΛGbulk
0 {y∗∗, y−1

∗∗ }k for some k ∈ Z≥0, so does ∂P
∂yl′,s

for
the same k and so

K∑
l′=1

d(l′)∑
s=1

cl′,s
∂P

∂yl′,s
(c)e∗l′,s ∈ NGbulk

R (k) (4.22)

for c = (c1,1, · · · , cK,d(K)) ∈ (R \ {0})n.

Proof. By the form (4.21) of the elements from ΛGbulk
0 {y∗∗, y−1

∗∗ }k, the first state-
ment immediately follows. Then the last statement follows from the definition of
NGbulk

R (k). ¤
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Proposition 4.19. There exists a sequence

b(k) =
K∑

l=1

a(l)∑
r=1

bl,r(k)Di(l,r) (4.23)

that satisfies Condition 4.14 and

K∑
l′=1

d(l′)∑
s=1

yl′,s

∂POu
b(k)

∂yl′,s
(y)e∗l′,s ∈ NGbulk

R (k). (4.24)

Moreover
b(k + 1) − b(k) ≡ 0 mod Tλb

kΛ0. (4.25)

Proof. We prove this by induction over k. The case k = 0 follows from Lemma
4.17. (b(0) = 0.)

Suppose we have found b(k) as in the proposition. Then we have

K∑
l′=1

d(l′)∑
s=1

yl′,s

∂POu
b(k)

∂yl′,s
(y)e∗l′,s ≡

K∑
l=1

d(l)∑
s=1

cl,s,kTSl+λb
ke∗l,s mod NGbulk

R (k + 1)

with cl,s,k ∈ R.
Since {~vi(l′,r) | l′ ≤ l} spans A⊥

l for all l ≤ K by definition, we can find al,r,k ∈ R
such that

d(l)∑
s=1

cl,s,ke∗l,s −
a(l)∑
r=1

al,r,k~vi(l,r) ∈ A⊥
l−1.

Therefore by definition of NGbulk
R (k) we have

K∑
l=1

d(l)∑
s=1

cl,s,kTSl+λb
ke∗l,s −

K∑
l=1

a(l)∑
r=1

al,r,kTSl+λb
k~vi(l,r) ∈ NGbulk

R (k + 1).

Thus
K∑

l′=1

d(l′)∑
s=1

yl′,s

∂POu
b(k)

∂yl′,s
(y)e∗l′,s

≡
K∑

l=1

a(l)∑
r=1

al,r,kTSl+λb
k~vi(l,r) mod NGbulk

R (k + 1)

(4.26)

We now put
bl,r(k + 1) = bl,r(k) − Tλb

kal,r,k(y~vi(l,r))−1.

Lemma 4.20. Let b(k) be as in the induction hypothesis above. If λ = λb
k, then

the second and the third terms of (4.20) are contained in ΛGbulk
0 {y∗∗, y−1

∗∗ }k+1.

Proof. We first consider
chThλb

k+`i(l,r)(u)y~vi(l,r) (4.27)
which is in the second term of (4.20). (h ≥ 2.) We remark that

chy~vi(l,r) ∈ R[y1,1, y
−1
1,1, · · · , yl,d(l), y

−1
l,d(l)].

On the other hand,
hλb

k + `i(l,r)(u) − Sl = hλb
k
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is contained in Gbulk and so must be equal to λb
k′ for some k′ > k since h ≥ 2.

Therefore (4.27) is contained in ΛGbulk
0 {y∗∗, y−1

∗∗ }k+1, as required.
We next consider

ch,σThλb
k+`′σ(u)+ρσy~vσ (4.28)

which is in the third term of (4.20). (h ≥ 1.) We have ~vσ =
∑

ei
σ~vi, `′σ =

∑
ei
σ`i.

We put
l0 = sup{l | ∃r ei(l,r)

σ 6= 0}.
Then

ch,σy~vσ ∈ R[y1,1, y
−1
1,1, · · · , yl0,d(l0), y

−1
l0,d(l0)

].

On the other hand, since

`′σ(u) =
∑

i

ei
σ`i(u) ≥ `i(l0,r)(u) = Sl0

it follows that
`′σ(u) + ρσ − Sl0 ∈ Gbulk \ {0}.

Therefore
hλb

k + `′σ(u) + ρσ − Sl0 > λb
k

and so equal to λb
k′ for some k′ > k. Hence (4.28) is contained in ΛGbulk

0 {y∗∗, y−1
∗∗ }k+1,

as required.
The proof of Lemma 4.20 is complete. ¤

Then Proposition 4.15, (4.26), Lemma 4.18 and Lemma 4.20 imply that (4.24)
is satisfied for k + 1. The proof of Proposition 4.19 is complete. ¤

Now we are ready to complete the proof of Theorem 4.7. By (4.25)

lim
k→∞

b(k) = b

converges. Then (4.24) implies

yl,s
∂POu

b

∂yl,s
(y) = 0,

as required. ¤

We next show that the proof of Theorem 4.7 also provides a way to calculate
bulk PO-threshold E

bulk
(L(u)) from the leading term equation.

Theorem 4.21. The following two conditions for N are equivalent to each other.
(1) There exists (b, b) ∈ A(Λ+) × H1(L(u); Λ0) such that

HF ((L(u0), b, x), (L(u0), b, x); Λ0/TN ) ∼= H(Tn; Λ0/TN ). (4.29)

(2) We put l0 = max{l | Sl ≤ N}. Then there exist yl,j ∈ R \ {0} for l ≤ l0,
j = 1, · · · , d(l) which solve the leading term equation (4.9) for l ≤ l0.

Corollary 4.22. If the statement (2) of Theorem 4.21 holds then E
bulk

(L(u)) ≥
2πN .

Proof of Theorem 4.21. The proof of (1) ⇒ (2) is similar to one in Theorem 4.7.
If (2) is satisfied, we can repeat the proof of Theorem 4.7 up to the order N to

find b such that (3.20) is satisfied. Then, (1) follows from Theorem 3.12. ¤
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5. Two points blow up of CP 2 : an example

Our main example is the two-points blow up X2 of CP 2. We take its Kähler
form ωα,β such that the moment polytope is

Pα,β = {(u1, u2) | 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 − α, β ≤ u1 + u2 ≤ 1}. (5.1)

Here
(α, β) ∈ ∆ = {(α, β) | 0 ≤ α, β, α + β ≤ 1}. (5.2)

We remark that R+∆ is the Kähler cone of X2.
In Example 9.17 [FOOO3] we studied this example in the case

β =
1 − α

2
,

1
3

< α. (5.3)

We continue the study this time involving bulk deformations.
We consider the point

u = (u, β) , u ∈
(

β,
1 − β

2

)
(5.4)

and compute

POu(0; y1, y2) = T β(y2 + y−1
2 ) + Tu(y1 + y1y2) + T 1−β−uy−1

1 y−1
2 . (5.5)

We note that (5.4) implies
β < u < 1 − β − u. (5.6)

Therefore the leading term equation is

1 − y−2
2 = 0, 1 + y2 = 0. (5.7)

Namely (y1,−1) is its solution for any y1. Therefore Theorem 4.7 implies :

Proposition 5.1. L(u) ⊂ (X2, ωα,β) is bulk-balanced if (5.3) and (5.4) are satisfied.

Theorem 1.1 for k = 2 will then follow from Proposition 3.15.

Proof of Theorem 1.1. The case k = 2 (the two points blow up) is already proved.
We consider k = 3. We blow up (X2, ωα,β) at the fixed point corresponding to
(1, 0) ∈ Pα,β . Then we have a toric Kähler structure on X3 whose moment polytope
is

{(u1, u2) ∈ Pα,β | u1 ≤ 1 − ε}.
We have

POu
0 (y1, y2) = T β(y2 + y−1

2 ) + Tu(y1 + y1y2)

+ T 1−β−uy−1
1 y−1

2 + T 1−ε−uy−1
1 .

(5.8)

We remark that
1 − β − u < 1 − ε − u

if ε is sufficiently small. Therefore the leading term equation at (5.4) is again (5.7).
Therefore we can apply Theorem 4.7 to show that all L(u) satisfying (5.4) are
bulk-balanced. Thus Theorem 1.1 is proved for k = 3.

We can blow up again at the fixed point corresponding to (1 − ε, 0). We can
then prove the case k = 4. (We remark that this time our toric manifold is not
Fano. We never used the property X to be Fano in the above discussion.) We can
continue arbitrary many times to complete the proof of Theorem 1.1. ¤
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Below we will examine the effect of bulk deformations more explicitly for the
example of two points blow up. We consider the divisor

D1 = π−1({(u1, u2) ∈ P | u2 = 0})
and let

bw,κ = wTκ[D1] ∈ A2(Λ+). (5.9)
By Proposition 4.9, we have :

POu(bw,κ; y1, y2) =T β(exp(bw,κ)y2 + y−1
2 )

+ Tu(y1 + y1y2) + T 1−β−uy−1
1 y−1

2 .
(5.10)

We study the equation
∂POu

∂y1
(bw,κ; y1, y2) =

∂POu

∂y2
(bw,κ; y1, y2) = 0. (5.11)

We put y2 = −1 + cTµ, y1 = d, with c, d ∈ Λ0 \ Λ+. Taking the inequality (5.6)
into account, we obtain

cTµ + d−2T 1−β−2u ≡ 0 mod Tmax{µ,1−β−2u}

−2cTµ + wTκ + dTu−β ≡ 0 mod Tmax{µ,κ,u−β}.
(5.12)

(Case 1) µ = κ < u − β.
We have c = w/2, µ = 1 − β − 2u. d = ±

√
−2/w. u = (1 − β)/2 − κ/2 =

(1 + α)/4 − κ/2. It implies 1/3 < u < (1 + α)/4. The equation for (c, d) has 2
solutions. They are both simple. Hence in the same way as the proof of Theorem 9.4
[FOOO3] (the strongly non-degenerate case) we can show that these two solutions
correspond to the solutions of (5.11).

(Case 2) µ = u − β < κ.
We have d = 2c, 1 − β − 2u = µ. Hence u = 1/3. We can show that there are 3

solutions of (5.11) in the same way.

(Case 3) κ = u − β < µ.
We have d = −w. Then µ = 1 − β − 2u. c = −w−2. Hence u < 1/3. We can

show that there is 1 solution of (5.11) in the same way.

(Case 4) κ = u − β = µ.
We have −2c + w + d = 0 and 1 − β − 2u = µ. Hence u = 1/3. κ = α/2 − 1/6.

d2(d + w) + 2 = 0. (5.13)

This has three simple roots unless
4
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w3 + 2 = 0. (5.14)

When κ is small Case 1 and Case 3 occur. There are two fibers with nontrivial
Floer cohomology (on (5.4)), that is ((β + κ, β) and ((1 + α)/4 − κ/2, β)). They
move from (β, β), (1 + α)/4, β) to (1/3, β). Then, when κ = α/2 − 1/6, Case 4
occurs. If κ > α/2− 1/6 then Case 2 occurs and bulk deformation does not change
the ‘secondary’ leading term equation (5.13).

It might be interesting to observe that it actually occurs that the ‘secondary’
leading term equation (5.13) has multiple roots. That is the case where (5.14)
is satisfied. (We remark that the example where there is a multiple root for the
leading term equation was found in [OsTy].)
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6. Operator q in the toric case

In this section and the next, we study the moduli space of holomorphic discs and
its effects on the operator q and on the potential function POu(b; y1, · · · , yn).

Let u ∈ IntP and β ∈ H2(X,L(u); Z). We denote by Mmain
k+1;`(L(u), β) the

moduli space of stable maps from bordered Riemann surfaces of genus zero with
k + 1 boundary marked points and ` interior marked points, in homology class β.
(See section 3 [FOOO1]. We require the boundary marked points to respect the
cyclic order of S1 = ∂D2. (In other words, we consider the main component in the
sense of section 3 [FOOO1].)) We assume k ≥ 0. Then Mmain

k+1;`(L(u), β) is compact.
(See sections 13.2 and 32.1 [FOOO2], for the reason why we need to assume k ≥ 0
for compactness.)

We denote an element of Mmain
k+1;`(L(u), β) by

(Σ, ϕ, {z+
i | 1 = 1, · · · , `}, {zi | i = 0, 1, · · · , k})

where Σ is a connected genus zero bordered semi-stable curve, ϕ : (Σ, ∂Σ) →
(X,L(u)) is a holomorphic map and z+

i ∈ IntΣ and zi ∈ ∂Σ. Let Mmain,reg
k+1;` (L(u), β)

be its subset consisting of all maps from a smooth disc. (Namely the stable map
without disc or sphere bubble.)

We have the following proposition. Let βi ∈ H2(X,L(u); Z) (i = 1, · · · ,m) be
the classes with µ(βi) = 2 and

βi ∩ Dj =

{
1 i = j,
0 i 6= j.

We recall from [CO] that the spin structure of L(u) induced from the torus Tn =
Rn/Zn as its orbit is called the standard spin structure.

Proposition 6.1. (1) If µ(β) < 0, or µ(β) = 0, β 6= 0, then Mmain,reg
k+1;` (L(u), β)

is empty.
(2) If µ(β) = 2, β 6= β1, · · · , βm, then Mmain,reg

k+1;` (L(u), β) is empty.
(3) For i = 1, · · · ,m, we have

Mmain,reg
1;0 (L(u), βi) = Mmain

1;0 (L(u), βi),

Mmain
1;` (L(u), βi) = Mmain,reg

1;0 (L(u), βi) × Conf(`;D2).
(6.1)

Here Conf(`;D2) is a compactification of

{(z+
1 , · · · , z+

` ) | z+
i ∈ IntD2, z+

i 6= z+
j for i 6= j.}

(See Remark 6.2.) Moreover Mmain
1;0 (L(u), βi) is Fredholm regular. Further-

more the evaluation map

ev : Mmain
1;0 (L(u), βi) → L(u)

is an orientation preserving diffeomorphism if we equip L(u) with the stan-
dard spin structure.

(4) For any β, the moduli space Mmain,reg
1;` (L(u), β) is Fredholm regular. More-

over
ev : Mmain,reg

1;` (L(u), β) → L(u)

is a submersion.
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(5) If Mmain
1;` (L(u), β) is not empty then there exist ki ∈ Z≥0 and αj ∈ H2(X; Z)

such that
β =

∑
i

kiβi +
∑

j

αj

and αj is realized by a holomorphic sphere. There is at least one nonzero
ki.

Remark 6.2. We define the compactification of Conf(`;D2) as follows. We con-
sider X = C, L = S1. Let β1 be the generator of H2(X;L) which is represented
by a holomorphic disc. Then, clearly Mreg

0;` (L;β1) is identified with Conf(`;D2).
Hence M0;`(L;β1) is a compactification of it. We use this compactification.

Proposition 6.1 follows easily from Theorem 10.1 [FOOO3] which in turn follows
from [CO] as we explained in section 10 [FOOO3].

We next discuss Kuranishi structure of Mmain
k+1;`(L(u), β). In section 17, 18

[FOOO1] or section 29 [FOOO2], we defined a Kuranishi structure on Mmain
k+1;`(L(u), β).

In our toric case, this structure can be chosen to be Tn equivariant in the follow-
ing sense. Let (V,E, Γ, ψ, s) be a Kuranishi chart (see section 5 [FO] and sec-
tion A1 [FOOO2]). Here V ⊂ RN is an open set with a linear action of a finite
group Γ, E → V is a Γ equivariant vector bundle, s its Γ-equivariant section and
ψ : s−1(0)/Γ → Mmain

k+1;`(L(u), β) is a homeomorphism onto an open set. Then
we have a Tn action on V,E which commutes with Γ action, such that s is Tn

equivariant. Moreover ψ is Tn equivariant. Here the Tn action is induced by one
on X. (We recall that L(u) is Tn invariant.) The construction of such Kuranishi
structure is obvious from construction given in section 29 [FOOO2]. We use the
Tn equivariance of ψ and the fact that Tn action is free on L(u) to conclude that
the Tn action on V is free.

Let {Da | a = 1, · · · , B} be the basis of A(Z). (Each Da corresponds to a face
of P .) We note that each of Da is a Tn invariant submanifold. Let

evint
i : Mmain

k+1;`(L(u), β) → X

be the evaluation map at the i-th interior marked point. (i = 1, · · · , `.) Namely

evint
i ((Σ, ϕ, {z+

i }, {zi})) = ϕ(z+
i ).

We put B = {1, · · · , B}. We denote by Map(`, B) the set of all maps p : {1, · · · , `} →
B. We write |p| = ` if p ∈ Map(`, B).

We define a fiber product

Mmain
k+1;`(L(u), β;p) = Mmain

k+1;`(L(u), β)(evint
1 ,··· ,evint

` ) ×X`

∏̀
i=1

Dp(i). (6.2)

Here the right hand side is the set of all ((Σ, ϕ, {z+
i }, {zi}), (p1, · · · , p`)) such that

(Σ, ϕ, {z+
i }, {zi}) ∈ Mmain

k+1;`(L(u), β), pi ∈ Dp(i), and that ϕ(z+
i ) = pi.

We define
evi : Mmain

k+1;`(L(u), β) → L(u)
by

evi((Σ, ϕ, {z+
i }, {zi})) = ϕ(zi).

It induces
evi : Mmain

k+1;`(L(u), β;p) → L(u)
in an obvious way.
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Lemma 6.3. Mmain
k+1;`(L(u), β;p) has a Kuranishi structure such that each Kuran-

ishi chart is Tn-equivariant and the coordinate change preserves the Tn action.
Moreover the evaluation map

ev = (ev0, ev1, · · · , evk) : Mmain
k+1;`(L(u), β;p) → L(u)k+1

is weakly submersive and Tn-equivariant. Our Kuranishi structure has a tangent
bundle and is oriented.

Proof. The fiber product of Kuranishi structures is defined in section A1.2 [FOOO2].
Since the maps we used here to define the fiber product are all Tn-equivariant it
follows that the Kuranishi structure on the fiber product is Tn-equivariant. The
orientability is proved in Chapter 9 [FOOO2]. The fact that ev is well defined and
is weakly submersive is proved in section 29 [FOOO2] also. ¤

We next describe the boundary of our Kuranishi structure. For the description,
we need to prepare some notations. We denote the set of shuffles of ` elements by

Shuff(`) = {(L1, L2) | L1 ∪ L2 = {1, · · · , `}, L1 ∩ L2 = ∅}. (6.3)

We will define a map

Split : Shuff(`) × Map(`, B) −→
⋃

`1+`2=`

Map(`1, B) × Map(`2, B), (6.4)

as follows : Let p ∈ Map(`, B) and (L1, L2) ∈ Shuff(`). We put `j = #(Lj) and
let ij : {1, · · · , `j} ∼= Lj be the order preserving bijection. We consider the map
pj : {1, · · · , `j} → B defined by pj(i) = p(ij(i)), and set

Split((L1, L2),p) := (p1,p2).

We now define a gluing map, associated to

Glue(L1,L2),p
`1,`2;k1,k2;i;β1,β2

:Mmain
k1+1;`1(L(u), β1;p1)ev0 ×evi Mmain

k2+1;`2(L(u), β2;p2)

→ Mmain
k+1;`(L(u), β;p)

(6.5)

below. Here k = k1 + k2 − 1, ` = `1 + `2, β = β1 + β2, and i = 1, · · · , k2. Let

Sj = ((Σ(j), ϕ(j), {z+
i,(j)}, {zi,(j)}) ∈ Mmain

kj+1;`j
(L(u), βj ;pj)

j = 1, 2. We glue z0,(1) ∈ ∂Σ1 with zi,(2) ∈ ∂Σ2 to obtain

Σ = Σ1#iΣ2.

Suppose (S1, S2) is an element of the fiber product in the left hand side of (6.5).
Namely we assume

ϕ(1)(z0,(1)) = ϕ(2)(zi,(2)).
This defines a holomorphic map

ϕ = ϕ(1)#iϕ(2) : Σ → X

by putting ϕ = ϕ(j) on Σj .
Let m ∈ Lj . Then ij(c) = m, ij : {1, · · · , `j} ∼= Lj be the order preserving

bijection. We define the m-th interior marked point zint
m of ϕ as zint

c;(j) ∈ Σj ⊂ Σ.
We define the boundary marked points (z0, z1, · · · , zk) by

(z0, z1, · · · , zk) = (z0,(2), · · · , zi−1,(2), z1,(1), · · · , zk1,(1), zi+1,(2), · · · , zk2,(2)).

Now we put
S = ((Σ, ϕ, {z+

i }, {zi})
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and
Glue(L1,L2),p

`1,`2;k1,k2;i;β1,β2
(S1, S2) = S.

Lemma 6.4. The boundary of Mmain
k+1;`(L(u), β;p) is isomorphic to the union of

the images of Glue(L1,L2),p
`1,`2;k1,k2;i;β1,β2

for k = k1 + k2 − 1, ` = `1 + `2, β = β1 + β2,
and i = 1, · · · , k2 as a space with Kuranishi structure. The isomorphism preserves
the Tn action.

The isomorphism commutes with the evaluation maps at the boundary marked
points.

The lemma directly follows from our construction of the Kuranishi structure we
gave in section 29 [FOOO2].

Let S` be the symmetric group of ` elements. It acts on Mmain
k+1;`(L(u), β) by

changing the indices of interior marked points. It also acts on Map(`, B) by σ ·p =
p ◦ σ−1. Then for σ ∈ S` we have

σ∗ : Mmain
k+1;`(L(u), β;p) → Mmain

k+1;`(L(u), β;σ · p). (6.6)

We next generalize Lemma 10.2 [FOOO3] to our situation. Let

forget0 : Mmain
k+1;`(L(u), β;p) → Mmain

1;` (L(u), β;p) (6.7)

be the forgetful map which forgets all the boundary marked points except the 0-
th one. We may choose our Kuranishi structures so that (6.7) is compatible with
forget0 in the same sense as Lemma 31.8 [FOOO2].

Lemma 6.5. For each given E > 0 and `0, there exists a system of multisections
sβ,k+1,`,p on Mmain

k+1;`(L(u), β;p) for β ∩ ω < E, ` ≤ `0, p ∈ Map(`, B). They have
the following properties :

(1) They are transversal to 0.
(2) They are invariant under the Tn action.
(3) The multisection sβ,k+1,`,p is the pull-back of the multisection sβ,1,`,p by the

forgetful map (6.7).
(4) The restriction of sβ,k+1,`,p to the image of Glue(L1,L2),p

`1,`2;k1,k2;i;β1,β2
is the fiber

product of the multisections sβj ,kj+1,`j ,pj
j = 1, 2 with respect to the iden-

tification of the boundary given in Lemma 6.4.
(5) For ` = 0 the multisection sβ,k+1,0,∅ coincides with one defined in Lemma

10.2 [FOOO3].
(6) The map (6.6) preserves our system of multisections.

Proof. The proof is similar to the proof of Lemma 10.2 [FOOO3]. We define
sβ,k+1,`,p for p ∈ Map(`, B) by a double induction over ` and ω∩β. The case ` = 0
is proved in Lemma 10.2 [FOOO3]. Condition (4) above determines the multisection
on the boundary. Tn equivariance implies that ev0 : Mmain,reg

k+1;` (L(u), β;p)sβ,k+1,`,p →
L(u) is a submersion. Here

Mmain,reg
k+1;` (L(u), β;p)sβ,k+1,`,p = (sβ,k+1,`,p)−1(0).

This fact and the induction hypothesis imply that the multisection we defined by
(4) on the boundary of our moduli space is automatically transversal. (This is
the important point that makes the proof of Lemma 6.5 easier than corresponding
general discussion given in section 30 [FOOO2]. See section 10 [FOOO3] for more
discussion about this point.)
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Thus we have defined a multisection on a neighborhood of the boundary. We
can extend it to the interior so that it satisfies (1) and (2) in the following way
: We first take the quotient (V/Tn, E/Tn) of our Kuranishi chart. Since the Tn

action is free on V the quotient space is a manifold on which Γ acts. Thus we can
use the standard result of the theory of Kuranishi structure to define a transversal
multisection on this chart where the multisection is already defined. We lift it
to V and obtain a required multisection there. In this way we can construct the
multisection inductively on the Kuranishi charts using the good coordinate system.
(See section A1 [FOOO2].)

To show (6) it suffices to take the quotient by the action of symmetric group
and work out the induction on the quotient spaces. The proof of Lemma 6.5 is now
complete. ¤

Corollary 6.6. Mmain
k+1;`(L(u), β;p)sβ,k+1,`,p is empty, if one of the following con-

ditions are satisfied.
(1) µ(β) −

∑
i(2n − dimDpi

− 2) < 0.
(2) µ(β) −

∑
(2n − dimDpi

− 2) = 0 and β 6= 0.

Proof. We may assume k = 0, by Lemma 6.5 (3).
We first consider the case of β = 0. All the holomorphic curves in this homotopy

class are constant maps. Then our moduli space is empty for ` > 0, since L(u)∩D =
∅. This implies the lemma for the case β = 0.

We next consider the case β 6= 0. The virtual dimension of Mmain
1;` (L(u), β;p)

(which is, by definition, its dimension as a space with Kuranishi structure) is

n + µ(β) −
∑

(2n − dimDpi
− 2) − 2. (6.8)

By the transversality (Lemma 6.5 (1)) and Tn equivariance (Lemma 6.5 (2)), we
find that (6.8) is not smaller than dim L(u) = n if the perturbed moduli space is
nonempty. (We use β 6= 0 here : If β = 0 the virtual dimension of Mmain

1;0 (L(u), β0)
is n − 2 but it is nonempty.) This finishes the proof of the lemma for the case
β 6= 0. ¤

We now assume
µ(β) −

∑
(2n − dimDpi

− 2) = 2, (6.9)

and β 6= 0. Then
Mmain

1;` (L(u), β;p)sβ,1,`,p

has a virtual fundamental cycle, by Corollary 6.6. We introduce the following
invariant

Definition 6.7. We define c(β;p) ∈ Q by

c(β;p)[L(u)] = ev0∗([Mmain
1;` (L(u), β;p)sβ,1,`,p ]).

Lemma 6.8. The number c(β;p) is independent of the choice of the system of
multisections sβ,k+1 satisfying (1) - (6) of Proposition 6.5.

The proof is the same as the proof of Lemma 10.7 [FOOO3] and so is omitted.

Remark 6.9. The independence of open Gromov-Witten invariant such as c(β;p)
was proved in [KL] by taking equivariant perturbations in the situation where an
appropriate S1-action exists.
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We use the above moduli spaces to define the operators qβ;k,` as follows. Let
p ∈ Map(`, B). We put

D(p) = Dp(1) ⊗ · · · ⊗ Dp(`).

Let h1, · · · , hk be differential forms on L(u). We put∑
(deg hi + 1) − µ(β) +

∑
(2n − dimDpi

− 2) + 2 = d

where we note that
deg[Mmain

1;` (L(u), β;p)sβ,1,`,p ] = codim[Mmain
1;` (L(u), β;p)sβ,1,`,p ]

= −µ(β) +
∑

(2n − dimDpi
− 2) + 2.

(See (6.8).) We then define a differential form of degree d on L(u) by

qdR
β;`,k(D(p);h1, · · · , hk) =

1
`!

(ev0)!(ev1, · · · , evk)∗(h1 ∧ · · · ∧ hk), (6.10)

here ev0, evi are the maps

(ev0, · · · , evk) : Mmain
k+1;`(L(u), β;p)sβ,1,`,p −→ L(u)k+1

and (ev0)! is the integration along the fiber. More precisely we use (6.10) for
(β, `, k) 6= (0, 0, 0), (0, 0, 1) and we put

q0;0,1(h) = (−1)n+deg h+1dh, q0;0,2(h1, h2) = (−1)deg h1(deg h2+1)h1 ∧ h2.

We use Tn-equivariance to show that

ev0 : Mmain
k+1;`(L(u), β;p)sβ,1,`,p → L(u)

is a proper submersion. Hence the integration along the fiber is well-defined and
gives rise to smooth forms. (It is fairly obvious that the integration along the fiber
on the zero set of a transversal multisection is well defined and that it satisfies
Stokes’ theorem. See section 12 [Fu3], section 33 [FOOO2] or section 12 of present
paper.) Let Ω(L(u)) be the de Rham complex of L(u).

Definition 6.10. We put

qdR
`,k =

∑
β

Tω∩β/2πqdR
β;`,k.

By restricting qdR
`,k to E`A ⊂ B`A we obtain

qdR
β;`,k : E`(A[2]) ⊗ Bk(Ω(L(u))[1]) → Ω(L(u))[1]

of degree 1 − µ(β) and

qdR
`,k : E`(A(Λ+)(R)) ⊗ Bk((Ω(L(u)) ⊗̂Λ0(R))[1]) → (Ω(L(u)) ⊗̂Λ0(R))[1].

Proposition 6.11. qdR
β;`,k satisfies (2.2).

Proof. For p ∈ Map(`, B), (L1, L2) ∈ Shuff(`) we put

Split((L1, L2),p) = (Split((L1, L2),p)1,Split((L1, L2),p)2)

It is easy to see that the coproduct ∆(D(p)) is given by the formula

∆(D(p)) =
∑

(L1,L2)∈Shuff(`)

`!
#|L1|!#|L2|!

D(Split((L1, L2),p)1)⊗D(Split((L1, L2),p)2).

Then (6.4) and (6.5) imply (2.2) in the same way as section 13 [FOOO2]. ¤
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Now for b ∈ A2(Λ+), we define

mdR,b
k (h1, · · · , hk) = q(eb;h1, · · · , hk). (6.11)

Here

eb = 1 + b + b ⊗ b + · · · .

Proposition 6.11 implies that mDr,b
k defines a structure of filtered A∞ algebra on

Ω(L(u)).

Lemma 6.12. (Ω(L(u)) ⊗̂Λ0(R), {mdR,b
k }∞k=0) is homotopy equivalent to the fil-

tered A∞ algebra defined by (2.6).

The proof of the this lemma is the same as that of Lemma 37.55 [FOOO2] and
is omitted here. We refer readers thereto for the details. In fact we do not need to
use Lemma 6.12 for our applications. We can just use the de Rham version without
involving the singular homology version.

We take a canonical model of (Ω(L(u)), {mdR,b
k }∞k=0) to obtain a filtered A∞

algebra (H(L(u); Λ0(R)), {mdR,b,can
k }∞k=0). The canonical model in the situation

where we include bulk deformations can be defined also by using section 32 [FOOO2]
as follows. In Corollary 32.40 [FOOO2] we reinterpreted the operator q as follows
: We define

qo(D(op(p));x1, · · · , xk) = (−1)∗q(D(p);x1, · · · , xk). (6.12)

Here

(op(p))(i) = p(` − i)

if p ∈ Map(`, B). We do not discuss sign ∗ here. In our case where deg Di is even
and deg xi is odd, there is no such a sign factor, i.e., (−1)∗ = 1. We regard qo as a
homomorphism

EA(Λ+(R))[2] −→
⊕

k

Hom(Bk(Ω(L(u))[1]),Ω(L(u))[1]) ⊗̂Λ0(R). (6.13)

We regard EA(Λ+(R))[2] as a filtered L∞ algebra with trivial operations. The
right hand side of (6.13) is identified with Hochschild complex of differential graded
algebra Ω(L(u)). So it is a differential graded Lie algebra. Then the formula (2.6)
which we proved in Lemma 6.11 is equivalent to saying that (6.13) is a filtered L∞
homomorphism. This is Proposition 32.34 [FOOO2].

Let H(L(u); R) be the de Rham cohomology of L(u). Then it has the structure
of A∞ algebra.

Remark 6.13. We remark that in our case where L(u) is a torus, this A∞ structure
is formal. Namely there is no higher operations mk for k > 2. In other words, The
cohomology ring, H(L(u); R), is homotopy equivalent to the de Rham complex as
an A∞ algebra defined by (6.10).

We identify ⊕
k

Hom(Bk(H(L(u); R)[1]),H(L(u); R)[1])
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with the Hochschild complex of H(L(u); R). In Theorem 32.41 [FOOO2] we defined
a homotopy equivalence of L∞ algebras⊕

k

Hom(Bk(Ω(L(u))[1]),Ω(L(u))[1])

−→
⊕

k

Hom(Bk(H(L(u); R)[1]),H(L(u); R)[1]).
(6.14)

(We will review some part of the construction of (6.14) at the beginning of the next
section.)

Remark 6.14. The domain and the target of (6.14) are both differential graded
Lie algebras. However the homotopy equivalence is one as an L∞ algebra and is
not as a differential graded Lie algebra homomorphism.

We compose two (filtered) L∞ homomorphisms (6.13) and (6.14)⊗Λ0(R) to ob-
tain

qcan,o : E(A(Λ+(R))[2]) −→
⊕

k

Hom(Bk(H(L(u); Λ0(R))[1]),H(L(u); Λ0(R))[1]).

We reinterpret qcan,o in the opposite direction as (6.12) to obtain

qcan
`,k : E`(A(Λ+(R))[2]) ⊗ Bk(H(L(u); Λ0(R))[1]) → H(L(u); Λ0(R))[1].

It can be decomposed as

qcan
`,k =

∑
β

T β∩ω/2πqcan
β;`,k.

We use this to obtain a filtered A∞ structure mb,can
k = qcan

∗,k (eb, · · · ) as in (6.11) on
H(L(u); Λ(R)) for b ∈ Λ+.

7. Calculation of potential function with bulk

We define a potential function POu as we discussed in section 3. In this section
we study and will partially calculate it. The next lemma is used for this purpose.

Lemma 7.1. Let x ∈ H1(L(u); Λ+), β ∈ H2(X,L; Z), and p ∈ Map(`, B). We
assume (6.9). Then we have

qcan
β;`,k(D(p); x, · · · , x) =

c(β;p)
`!k!

(∂β ∩ x)k · PD([L(u)]).

where PD([L(u)]) is the Poincaré dual to the fundamental class [L(u)] ∈ Hn(L(u); Z).

Proof. The proof is similar to that of Lemma 10.8 [FOOO3] and proceed as follows.
Let h be a harmonic representative of the class x. We first prove∫

L(u)

qdR
β;`,k(D(p);h, · · · , h) =

c(β;p)
`!k!

(∂β ∩ x)k. (7.1)

The proof is the same as that of Formula (10.7) [FOOO3], using Definition 6.7.
We next use (7.1) to calculate operations in the canonical model. According

to the construction of section 32.4 [FOOO2] and at the end of this section of this
paper, the operator qcan

β;`,k induced on the canonical model is a sum :

qcan
β;`,k(D(p); x, · · · , x) =

∑
Γ

qΓ(h, · · · , h). (7.2)
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Explanation of the formula (7.2) is in order. The right hand side is a sum over Γ.
Γ consists of the following data :

(1) |Γ| is a tree together with an isotopy type of its embedding to R2. ( It
determines cyclic order to each of the sets of edges containing a vertex. In
other words we fix its ribbon structure.)

(2) Each of the vertex |Γ| is either exterior or interior.
(3) Each of the exterior vertices has only one edge. The set of the exterior

vertices is numbered from 0 to k which respect the counter-clockwise cyclic
order of R2, that is the order induced by the orientation of R2.

(4) Each of the interior vertices is either of the type Q or C. Let CQ
0 (Γ), CC

0 (Γ)
be the set of interior vertices of type Q (= quantum) or C (= classical),
respectively.

(5) The set {1, · · · , `} is divided into a disjoint union
⋃

v∈CQ
0 (Γ) Iv.

(6) To the vertex v of type Q, an element βv ∈ H2(X;L(u); Z) such that
Mmain

1 (L(u), βv) 6= ∅, βv 6= 0 is chosen.
(7) The vertex v of type Q with kv + 1 edges is assigned the A∞ operation

qdR
βv ;`v,kv

(D(pIv
); · · · ), where kv ≥ 0 and pIv

= (p(Iv(1)), · · · ,p(Iv(#Iv)).
Here we identify Iv ⊂ {1, · · · , `} with an order preserving injective map
Iv : {1, · · · ,#Iv} → {1, · · · , `}.

(8) The vertex v of type C has exactly 3 edges. We assign the wedge product
m2,β0 = ±∧ to it. (We remark β0 = 0. So the operations mk,β0 are
operations of Ω(L(u)), that is the differential graded algebra regarded as
an A∞ algebra. In particular mk,β0 = 0 for k ≥ 3.)

We take a Tn-invariant Riemannian metric on L(u) and hence the Green operator
(or the propagator)

G : Ωk(L(u)) → Ωk+1(L(u))
is also Tn-invariant. We identify H(L(u); R) to the space of harmonic forms and
let

Π : Ωk(L(u)) → Hk(L(u); R) ⊂ Ωk(L(u))
be the harmonic projection. They satisfies the relation :

−(d ◦ G + G ◦ d) = id − Π.

We assign the Green operator G to each of the interior edges, that is the edges
which do not contain exterior vertex. We assign Π to the edge which contains the
zero-th exterior vertex. We define qΓ(h, · · · , h) by composing operations assigned
to the vertices and edges according to the way they are connected. More precisely,
we first define

fΓ(h, · · · , h) ∈ Ω(L(u))
by the induction of the number of vertices as follows.

If there is a unique interior vertex v then

fΓ(h, · · · , h) = qdR
βv;`v,kv

(D(pIv
); h, · · · , h),

when v is of type Q and
fΓ(h, h) = h ∧ h,

when v is of type C.
We next assume that Γ has more than one interior vertices. Let vlast be the

unique edge which is joined with the zero’s exterior vertex. We remove vlast, zero’s
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exterior vertex, and the edge joining them from |Γ|. Let |Γ1|, · · · , |Γkvlast
| be the clo-

sure of the connected component of it. (The number of the connected components
is kvlast , that is the number of edges of vlast minus 1.) The other data consisting Γ
induces ones on Γi in an obvious way. We then put

fΓ(h, · · · , h) = qdR
βvlast ;`vlast ,kvlast

(D(pIvlast
);G(fΓ1(h, · · · , h)),

· · · , G(fΓkvlast
(h, · · · , h))),

when vlast is of type Q and

fΓ(h, · · · , h) = G(fΓ1(h, · · · , h)) ∧ G(fΓ2(h, · · · , h),

when vlast is of type C.
We then define

qΓ(h, · · · , h) = Π ◦ fΓ(h, · · · , h).

We have thus defined qΓ(h, · · · , h). (7.2) is its sum over Γ such that∑
v∈CQ

0 (Γ)

βv = β.

This finishes the description of (7.2). Let us go back to the proof of Lemma 7.1.

Sublemma 7.2. In our situation the nonzero qΓ appears only in the case of Γ
which has only one interior vertex.

Proof. We remark that since L(u) is a torus the wedge product between harmonic
forms is again harmonic. Therefore application of the Green operator to the wedge
product gets zero. Namely if there is an interior vertex of type C which is not the
vertex vlast (that is the vertex which is joined by an edge to the zero’s exterior
vertex), then qΓ is zero.

We next consider the vertices of type Q. Consider

µ(βv) −
∑

i

(2n − dimDpIv
− 2) (7.3)

for each v ∈ CQ
0 (Γ). We remark that βv 6= 0. Hence (7.3) is not smaller than 2 for

each v.
On the other hand the sum of (7.3) over vertices of type Q is 2. This is a

consequence of (6.9) which we assumed. It follows that there is only one vertex of
type Q.

To complete the proof of the sublemma it suffices to consider the case where vlast

is of type C and there is another interior vertex of type Q. In such a case we have

qΓ(h, · · · , h) = ±Π(G(qdR
β;`,k−1(D(p);h, · · · , h)) ∧ h) (7.4)

Using β and the above argument we have

qdR
β;`,k−1(D(p);h, · · · , h) ∈ Ωn(L(u)).

Hence GqdR
β;`,k−1(D(p);h, · · · , h) ∈ Ωn+1(L(u)) = 0. Therefore (7.4) is zero. The

proof of Sublemma 7.2 is now complete. ¤

The above discussion implies that the only nonzero term in (7.2) is (7.1). The
proof of Lemma 7.1 is complete. ¤
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Proof of Proposition 3.1. This is an immediate consequence of Corollary 6.6. In
fact it implies that mcan,b

k (b, · · · , b) can be only degree 0, that is proportional to
PD[L(u)]. ¤

Proof of Theorem 3.4. Let b =
∑B

a=1 baDa, ba ∈ Λ+. We assume ba is Gbulk-
gapped. We have

eb =
∑

`

∑
p∈Map(`,B)

bpD(p).

Here
bp =

∏
j

bp(j).

We have :
POu(b; b) =

∑
β,p,k

bpT β∩ω/2πqcan
β;|p|,k(D(p); b, · · · , b).

By the degree counting the sum is nonzero only when (6.9) is satisfied. Therefore
by Lemma 7.1 we have

POu(b; b) =
∑
β,p,k

bpT β∩ω/2π c(β;p)
k!|p|!

(b ∩ ∂β)k

=
∑
β,p

1
|p|!

bpT β∩ω/2πc(β;p) exp(b ∩ ∂β).
(7.5)

The sum of the cases β = βi (i = 1, · · · ,m) and |p| = 0 is POu
0 (b).

We next study other terms for |p| 6= 0. We first consider the case β = βi, ` 6= 0.
Then the corresponding term is a sum of the terms written as

cT `i(u)+ρy~vi . (7.6)

Here c ∈ Q and ρ is a sum of the numbers which appears as an exponents of ba

for various a. It is nonzero since ` 6= 0 and ba ∈ Λ+. Therefore ρ ∈ Gbulk \ {0}.
Therefore (7.6) is of the form appearing in the right hand side of (3.5).

We next consider the case β 6= βi (i = 1, · · · ,m). We assume c(β;p) 6= 0 in
addition. Then by Proposition 6.1 (5) we have ei and ρ such that

β ∩ ω

2π
=

∑
i

ei`i(u) + ρ.

Here ei ∈ Z≥0 and
∑

ei > 0 and ρ is a sum of symplectic areas of holomorphic
spheres divided by 2π. Thus the corresponding term is a sum of the terms

cT
P

i ei`i(u)+ρ+ρ′
y

P

ei~vi .

Here c ∈ Q and ρ′ is a sum of the numbers that appear as the exponents of ba for
various a. This is exactly of the form in the right hand side of (3.5).

Finally we prove (3.7). We first fix β. There can be infinitely many terms
contributing to qcan

β;`,k. Namely it is possible that ` → ∞. The exponent of any such
term is not smaller than

β ∩ ω

2π
+ `ρ0 (7.7)

where
ρ0 = inf(Gbulk \ {0}).

(7.7) goes to infinity as ` → ∞.
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We next consider the case where infinitely many different β’s contribute to qcan
β;`,k.

We denote the β’s by βγ . Suppose qcan
βγ ;`γ ,kγ

is nonzero. The term corresponding
thereto in (3.5) is of the form :

cγT `′γ(u)+ργ y
v′

γ,1
1 · · · yv′

γ,n
n (7.8)

such that d`′γ = (v′γ,1, · · · , v′γ,n). We study `′γ(u) and ργ and prove that ργ goes to
infinity.

We apply Proposition 6.1 (5) and obtain

βγ =
m∑

i=1

ki,γβi +
∑

j

αγ,j .

We have

`′γ(u) =
m∑

i=1

ki,γ`i(u)

and

ργ =
∑

j

αγ,j ∩ [ω]
2π

+ (a sum of exponents appearing in b).

If (k1,γ , · · · , kn,γ) ∈ Zn is bounded as γ → ∞, then
∑

j αγ,j ∈ H2(X; Z) is neces-
sarily unbounded. Therefore

ργ ≥
∑

j

αγ,j ∩ [ω]
2π

goes to infinity, as required.
We next assume that (k1,γ , · · · , kn,γ) ∈ Zn is unbounded. Then the sum of its

Maslov indices
n∑

i=1

ki,γµ(βi) = 2
n∑

i=1

ki,γ

is unbounded. (We remark ki,γ ≥ 0.) Therefore one of the following occurs.

(a) |
∑

j c1(X) ∩ αγ,j | is unbounded.
(b) µ(βγ) is unbounded.

In case (a),
∑

j αγ,j ∈ H2(X; Z) is unbounded. Therefore

ργ ≥
∑

j

αγ,j ∩ [ω]

goes to infinity, as required.
For the case of (b), we have

dimMmain
1;`γ

(L(u);βγ) = 2`γ + n + µ(βγ) − 2.

On the other hand,
dimMmain

1;`γ
(L(u); βγ : p) = n,

since qβγ ;`γ ,kγ (p; b) is nonzero. Therefore

`γ∑
j=1

(deg pj − 2) = µ(βγ) − 2
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goes to infinity. Hence `γ goes to infinity. It follows that

ργ ≥ `γρ0

goes to infinity, as required.
The proof of Theorem 3.4 is now complete. ¤

Proof of Proposition 4.9. We assume that b is as (4.10). We remark that Di(l,r) ∈
H2(D; Z). Therefore a dimension counting argument shows that only β with µ(β) =
2 contributes to POu(b; b). Then by the assumption that X is Fano we derive that
only βi’s for (i = 1, · · · ,m) contribute among those β’s.

Thus we have obtained

POu(b; b) =
m∑

i=1

∑
p

1
|p|!

bpT `i(u)c(βi;p)y~vi . (7.9)

We next calculate c(βi;p). By definition we have

c(βi;p)[L(u)] = ev0∗(Mmain
1;|p| (L(u), β;p)sβ,1,`,p)

and

Mmain
1;|p| (L(u), β;p) = Mmain

1;|p| (L(u), β) ×X|p|

|p|∏
j=1

Dp(j).

We consider
ev0 : Mmain

1;0 (L(u), β) → L(u).

It is a diffeomorphism by Proposition 6.1. We fix p0 ∈ L(u) and let {ϕ} is ev−1
0 (p0).

Since [ϕ] = βi it follows that

[ϕ] ∩ D(p(j)) =

{
1 j = i,

0 j 6= i.

We remark that the number c(βi;p) is well defined, that is, independent of the
perturbation. So we can perform the calculation in the homology level to find that

c(βi;p) =

{
1 p(j) = i for all j,

0 otherwise.
(7.10)

Thus (7.9) is equal to
m∑

i=1

exp(bi)T `i(u)y~vi .

By using the decomposition of bi in (4.10), the proof of Proposition 4.9 is complete.
¤

Proof of Proposition 4.15. We assume that b satisfies Condition 4.14. Again by
dimension counting only β with µ(β) = 2 contributes to POu(b; b). In Proposition
4.15 we do not assume that X is Fano. So the homology classes β other than βi

(i = 1, · · · ,m) may contribute.
We first study the contribution of βi. We put

P0(b; b) =
m∑

i=1

∑
p

1
|p|!

bpT `i(u)c(βi;p)y~vi .
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(7.10) holds also in our case. Therefore we have

P0(b′; b) − P0(b; b) =
m∑

i=1

(exp(b′i) − exp(bi))T `i(u)y~vi

= (exp(bi(l,r) + cTλ) − exp(bi(l,r)))TSly~vi(l,r) .

This is of the form of the sum of the first 2 terms of the right hand side of (4.20).
We next study the contribution of β 6= βi. We assume µ(β) = 2 and Mmain(L(u);β) 6=

∅. We put

Pβ(b; b) =
∑
p

1
|p|!

bpT β∩ω/2πc(β;p) exp(b ∩ ∂β).

We write

β =
m∑

i=1

ei
ββi +

∑
j

αβ,j

as in Proposition 6.1 (5). Then

β ∩ [ω] =
m∑

i=1

ei
β`i(u) +

∑
j

αβ,j ∩ [ω]

exp(b ∩ ∂β) = y
Pm

i=1 ei
β~vi .

We have ei
β ≥ 0 and

∑
i ei

β > 0. Moreover, since β 6= βi (i = 1, · · · ,m) it follows
that

∑
j αβ,j 6= 0. (We use µ(β) = 2 to prove this.) Therefore

ρβ =
∑

j

αβ,j ∩ [ω]/2π > 0.

Hence

Pβ(b′; b) − Pβ(b; b) =
∑

σ

∞∑
h=1

cσ,hT
P

i ei
β`i(u)+ρβ+hλ+ρ′

σy
P

i ei
β~vi ,

where cσ,h ∈ R and ρ′σ is a sum of exponents of T in b. This corresponds to the
third term of (4.20). In fact `′σ =

∑
i ei

β`i, ρσ = ρ′σ + ρβ .
Now Proposition 4.15 follows if we rewrite

PO(b′; b) − PO(b; b) = (P0(b′; b) − P0(b; b)) +
∑

β

(Pβ(b′; b) − Pβ(b; b)).

¤

8. Floer cohomology and non-displacement of Lagrangian
submanifolds

In this section we discuss how we apply Floer cohomology and the potential
function to the study of non-displacement property of Lagrangian submanifolds.
Especially we will prove Proposition 3.15 and Theorem 3.19. The argument of this
section is a minor modification and combination of the one given in [FOOO3] except
that we integrate bulk deformations into the argument therein. (The way to use
bulk deformation in the study of non-displacement of Lagrangian submanifold is
described in section 13 [FOOO2].) This generalization is quite straightforward. We
however gives details in order to make this paper as self-contained as possible for
readers’ convenience. To avoid too much repetition of the materials from [FOOO2]
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or [FOOO3], we will use the de Rham cohomology version instead of the singular
cohomology version of filtered A∞ algebra associated to a Lagrangian submanifolds
in some part of this section. De Rham version is suitable for the purpose of present
paper since we can easily realize exact unit in de Rham theory. We are using weak
bounding cochain which is easier to handle in case exact unit (rather than homotopy
unit) exits.

In this section we put R = C. We write Λ0, Λ+, Λ in place of Λ0(C), Λ+(C),
Λ(C) respectively, in this section.

We first explain how we enlarge the deformation parameters (b, x) of Floer co-
homology to

A(Λ+) × H1(L(u); Λ0) ⊃ A(Λ+) × H1(L(u); Λ+),

by including b ∈ H1(L(u); Λ0) ⊃ H1(L(u); Λ+) as in [FOOO3] where we borrowed
the idea of Cho [Cho] of considering Floer cohomology twisted with flat non-unitary
line bundles in the study of displacement problem of Lagrangian submanifolds.

Definition 8.1. Let
x =

∑
i

xiei ∈ H1(L(u0); Λ0) (8.1)

and
xi = xi,0 + xi,+ (8.2)

where xi,0 ∈ C and xi,+ ∈ Λ+. We put

yi,0 = exp(xi,0) =
∞∑

n=0

xn
i,0

n!
∈ C.

Let ρ : H1(L(u); Z) → C \ {0} be the representation defined by ρ(ei) = yi,0.

Definition 8.2. We define

qcan,ρ
`,k : E`A(Λ+)[2] ⊗ Bk(H(L(u); Λ0)[1] → H(L(u); Λ0)[1].

by

qcan,ρ
`,k =

∑
β

y
∂β∩e∗

1
1,0 · · · y∂β∩e∗

n
n,0 T β∩ω/2πqcan

β;`,k.

We then define :

mb,can,x
k (x1, · · · , xk) =

∑
`

qcan,ρ
` (b`; ex+x1e

x+ · · · ex+xkex+), (8.3)

and
POu

ρ(b, x+) =
∑
`,k

qcan,ρ
`,k (b`; xk

+). (8.4)

We define

qρ
`,k : E`(A(Λ+)[2]) ⊗ Bk((Ω(L(u) ⊗̂Λ0)[1]) → (Ω(L(u)) ⊗̂Λ0)[1].

and mb,x
k in the same way.

Lemma 8.3. (1) mb,x
k , mb,can,x

k define structures of a filtered A∞ algebra on
Ω(L(u))⊗̂Λ0 and on H(L(u); Λ0), respectively.
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(2) Let POu : H1(L(u); Λ0) → Λ0 be the extended potential function as in
Lemma 3.5. Then we have

POu
ρ(b; x+) = POu(b; x)

if (8.2) holds.

Proof. The proof of (1) is the same as that of Proposition 11.2 [FOOO3]. The proof
of (2) is the same as the proof of Lemma 3.8 [FOOO3]. ¤

Definition 8.4.

HF ((L(u), b, x), (L(u), b, x); Λ0) :=
Ker mb,can,x

1

Im mb,can,x
1

.

We remark
Ker mb,can,x

1

Im mb,can,x
1

∼=
Ker mb,x

1

Im mb,x
1

.

Proof of Theorem 3.12. Based on the above definition the proof goes in the same
way as the proof of Theorem 3.9 [FOOO3]. ¤

We next prove Proposition 3.15 and Theorem 3.19. Again the proofs will be
similar to the proofs of Proposition 3.11 and Theorem 4.11 [FOOO3] in which
we use a variant of Theorem 2.5 that also employs Floer cohomology twisted by
non-unitary flat bundles (whose holonomy is ρ as above).

Now we provide the details of the above mentioned proofs.
Let ψt : X → X be a Hamiltonian isotopy with ψ0 = identity. We put ψ1 = ψ.

We consider the pair
L(0) = L(u), L(1) = ψ(L(u))

such that L(1) is transversal to L(0). By perturbing ψt a bit, we may assume the
following :

Condition 8.5. If p ∈ L(u) ∩ ψ(L(u)) then

ψt(p) /∈ π−1(∂P ) (8.5)

for any t ∈ [0, 1].

We put ψ∗
t J = Jt where J is the standard complex structure of X. Then J0 = J

and J1 = ψ∗(J).
Let p, q ∈ L(0) ∩ L(1). We consider the homotopy class of maps

ϕ : R × [0, 1] → X (8.6)

such that
(1) limτ→−∞ ϕ(τ, t) = p, limτ→+∞ ϕ(τ, t) = q.
(2) ϕ(τ, 0) ∈ L(0), ϕ(τ, 1) ∈ L(1).

We denote by π2(L(1), L(0); p, q) the set of all such homotopy classes. We then
define maps

π2(L(1), L(0); p, r) × π2(L(1), L(0); r, q) → π2(L(1), L(0); p, q),

π2(X;L(1)) × π2(L(1), L(0); p, q) → π2(L(1), L(0); p, q),

π2(L(1), L(0); p, q) × π2(X;L(0)) → π2(L(1), L(0); p, q),

(8.7)
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as follows. The map in the first line is an obvious concatenation. To define the map
in the second line we first fix a base point p0 ∈ L(1). Let ϕ : R × [0, 1] → X rep-
resent an element of π2(L(1), L(0); p, q) and φ : D2 → X an element of π2(X;L(1)),
respectively. (φ(1) = p0 and φ(∂D2) ⊂ L(1).) We take a path γ joining p0 and
ϕ(0, 1) in L(1). We take the boundary connected sum (R × [0, 1])#D2 of R × [0, 1]
and D2 along (0, 1) and 1, which is nothing but R × [0, 1]. We use γ to obtain the
map ϕ#γφ : R × [0, 1] ∼= (R × [0, 1])#D2 → X joining ϕ and φ. The homotopy
class of ϕ#γφ is independent of γ since π1(L(1)) acts trivially on π2(X;L(1)). (We
use the fact that L(1) is a torus here.) We thus defined the map in the second line.
The map in the third line is defined in the same way.

We denote the maps in (8.7) by #.

Remark 8.6. (1) We here use the set π2(L(1), L(0); p, q) of homotopy classes.
In the last two sections we use homology group H2(X,L(u); Z). In fact
H2(X,L(u); Z) ∼= π2(X,L(u)) in our situation and so we can instead use
the latter.

(2) The definition of # above is rather ad hoc since we use the fact that L(1)

is a torus. In the general case we use the set of Γ equivalence classes of
the elements of π2(L(1), L(0); p, q) in place of π2(L(1), L(0); p, q) itself. (See
Definition-Proposition 4.9 [FOOO2].)

Definition 8.7. We consider the moduli space of maps (8.6) satisfying (1), (2)
above, in homotopy class B ∈ π2(L(1), L(0); p, q), and satisfying the equation :

∂ϕ

∂τ
+ Jt

(
∂ϕ

∂t

)
= 0. (8.8)

We denote it by
M̃reg(L(1), L(0); p, q;B).

We put k1 marked points (τ (1)
i , 1) on {(τ, 1) | τ ∈ R}, k0 marked points (τ (0)

i , 0) on
{(τ, 0) | τ ∈ R}, and ` marked points (τi, ti) on R × (0, 1). We number the k1 + k0

marked points so that it respects to the counter-clockwise cyclic order. The totality
of such (ϕ, {(τ (1)

i , 1)}, {(τ (0)
i , 0)}, {(τi, ti)}) is denoted by

M̃reg
k1,k0;`

(L(1), L(0); p, q;B).

We divide this space by the R action induced by the translation of τ direction to ob-
tain Mreg(L(1), L(0); p, q;B), and Mreg

k1,k0;`
(L(1), L(0); p, q;B). Finally we compactify

them to obtain M(L(1), L(0); p, q;B), and Mk1,k0;`(L
(1), L(0); p, q;B).

See Definition 12.24 [FOOO2] (the case ` = 0) and section 13.8 [FOOO2] for the
detail.

Remark 8.8. In [FOOO2] we defined Mk1,k0(L
(1), L(0); [`p, w1], [`q, w2]). The

choice of [w1] and B uniquely determines [w2] by the relation [w1]#B = [w2], but
there could be more than one element B ∈ π2(L(1), L(0); p, q) satisfying [w1]#B =
[w2]. This is because the equivalence class [`p, w] is not the homotopy class but
the equivalence class of a weaker relation. But the number of such classes B for
which M(L(1), L(0); p, q;B) 6= ∅ is finite by Gromov’s compactness. Therefore
Mk1,k0(L

(1), L(0); [`p, w1], [`q, w2]) is a finite union of M(L(1), L(0); p, q;B) with B
satisfying [w1]#B = [w2].
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We define the evaluation map

ev = (evint, ev(1), ev(0)) : Mk1,k0;`(L
(1), L(0); p, q;B) → X` × (L(u))k1 × (L(u))k0 ,

as follows.

ev
(0)
i (ϕ, {(τ (1)

i , 1)}, {(τ (1)
i , 0)}, {(τi, ti)}) = ϕ((τ (0)

i , 0)),

ev
(1)
i (ϕ, {(τ (1)

i , 1)}, {(τ (0)
i , 0)}, {(τi, ti)}) = ψ−1(ϕ((τ (1)

i , 1))),

evint
i (ϕ, {(τ (1)

i , 1)}, {(τ (0)
i , 0)}, {(τi, ti)}) = ψ−1

ti
(ϕ((τi, ti))).

(8.9)

We have diffeomorphisms L(u) ∼= L(0) and L(u) ∼= L(1). (The former is the identity
and the latter is ψ.)

Lemma 8.9. Mk1,k0;`(L
(1), L(0); p, q;B) has an oriented Kuranishi structure with

corners. Its boundary is isomorphic to the union of the follows three kinds of fiber
products as spaces with Kuranishi structure.

(1)

Mk′
1,k′

0;`
′(L(1), L(0); p, r;B′) ×Mk′′

1 ,k′′
0 ;`′′(L(1), L(0); r, q;B′′)

where k′
j + k′′

j = kj, `′ + `′′ = `, B′#B′′ = B. The product is the direct
product.

(2)

Mk′
1+1;`′(L(u);β′) ev0 ×ev

(1)
i

Mk′′
1 ,k0;`′′(L

(1), L(0); p, q;B′′).

Here β′ ∈ π2(X;L(1)) ∼= π2(X;L(u)), k′
1 + k′′

1 = k1 + 1, `′ + `′′ = `,
β′#B′′ = B. The fiber product is taken over L(1) ∼= L(u) by using ev0 :
M`′;k′

1+1(L(u);β′) → L(u) and ev
(1)
i : Mk′′

1 ,k0;`′′(L
(1), L(0); p, q;B′′) →

L(1). Here i = 1, · · · , k′′
1 .

(3)

Mk1,k′
0;`

′(L(1), L(0); p, q;B′)
ev

(0)
i

×ev0 Mk′′
0 +1;`′′(L(u);β′′).

Here β′′ ∈ π2(X;L(0)) ∼= π2(X;L(u)), k′
0 + k′′

0 = k0 + 1, `′ + `′′ = `,
B′#β′′ = B. The fiber product is taken over L(0) ∼= L(u) by using ev0 :
Mk′′

0 +1;`′′(L(u);β′′) → L(u) and ev
(0)
i : Mk1,k′

0;`
′(L(1), L(0); p, q;B′) →

L(0).

Lemma 8.9 is proved in section 29.4 [FOOO2].

Definition 8.10. We next take p ∈ Map(`, B) and define

Mk1,k0;`(L
(1), L(0); p, q;B;p) = Mk1,k0;`(L

(1), L(0); p, q;B) ev+ ×
∏̀
i=1

Dp(i). (8.10)

It is a space with oriented Kuranishi structure with corners.
We remark that Condition 8.5 implies that if p = q, B = B0 = 0 then the set

M(L(1), L(0); p, p;B0) is empty.

Lemma 8.11. The boundary of Mk1,k0;`(L
(1), L(0); p, q;B;p) is a union of the

following three types of fiber product as a space with Kuranishi structure.
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(1)

Mk′
1,k′

0;`
′(L(1), L(0); p, r;B′;p1) ×Mk′′

1 ,k′′
0 ;`′′(L(1), L(0); r, q;B′′;p2).

Here the notations are the same as Lemma 8.9 (1) and

(p1,p2) = Split((L1, L2),p) (8.11)

for some (L1, L2) ∈ Shuff(`).
(2)

Mk′
1+1;`′(L(u);β′;p1) ev0 ×ev

(1)
i

Mk′′
1 ,k0;`′′(L

(1), L(0); p, q;B′′;p2).

Here the notations are the same as Lemma 8.9 (2) and (8.11).
(3)

Mk1,k′
0;`

′(L(1), L(0); p, q;B′;p1) ev
(0)
i

×ev0 Mk′′
0 +1;`′′(L(u);β′′;p2).

Here the notations are the same as Lemma 8.9 (3) and (8.11).

The proof is immediate from Lemma 8.9. We remark that by our definition of
evaluation map evint

i the homology class β′, β′′ in (2), (3) above are nonzero.
We now construct a virtual fundamental chains on the moduli space (8.10). We

remark that we already defined a system of multisections on Mk+1;`(L(u);β;p) in
Lemma 6.5.

Lemma 8.12. There exists a system of multisections (8.10) which are compatible to
one another and to the multisections provided in Lemma 6.5 under the identification
of the boundaries given in Lemma 8.11.

Proof. We construct multisections on the moduli space (8.10) by induction over k
and

∫
β

ω.
We remark that the boundary condition for (8.8) is not Tn equivariant anymore

: while the boundary L(0) = L(u) is Tn invariant, L(1) = ψ(L(u)) is not. So there
is no way to define a Tn-action on our moduli space (8.10).

We however remark that ev0 in (2) and (3) of Lemma 8.11 is a submersion after
perturbation. This is a consequence of (2) of Lemma 6.5. Moreover the fiber prod-
uct in (1) of Lemma 8.11 is actually a direct product. Therefore the perturbation
near the boundary at each step of the induction is automatically transversal by the
induction hypothesis. Therefore we can extend the perturbation by the standard
theory of Kuranishi structure and multisection. This implies Lemma 8.12. ¤

We are now ready to define Floer cohomology with bulk deformation denoted by

HF ((L(1), b, ψ∗(x)), (L(0), b, x); Λ0).

Let us use the notation of Definition 8.1. We have a representation ρ : π1(L(u)) →
C \ {0}. We choose a flat C-bundle (L,∇) whose holonomy representation is ρ. It
determines flat C bundles on L(0), L(1), which we denote by L(0) and L(1), respec-
tively. The fiber of L(j) at p is denoted by L(j)

p .

Definition 8.13. We define

CF ((L(1), ρ), (L(0), ρ); Λ0) =
⊕

p∈L(1)∩L(0)

Hom(L(0)
p ,L(1)

p ) ⊗C Λ0.

With elements p ∈ L(1) ∩ L(0) equipped with the degree 0 or 1 according to the
parity of Maslov index, it becomes a Z2-graded free Λ0-module.
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We are now ready to define an operator r, following section 13.8 [FOOO2]. We
first define

Comp : π2(L(1), L(0); p, q) × Hom(L(0)
p ,L(1)

p ) → Hom(L(0)
q ,L(1)

q )

Let B = [ϕ] ∈ π2(L(1), L(0); p, q), σ ∈ Hom(L(0)
p ,L(1)

p ).
τ 7→ ϕ(τ, j) defines a path joining p to q in L(j). Let

Pal∂jB : L(j)
p → L(j)

q (8.12)

be the parallel transport along this path with respect to the flat connection ∇.
Since ∇ is flat this is independent of the choice of the representative ϕ but depends
only on B. We define

Comp(B, σ) = Pal∂1B ◦ σ ◦ Pal−1
∂0B . (8.13)

Lemma 8.14. Let B ∈ π2(L(1), L(0); p, q), B′ ∈ π2(L(1), L(0); q, r) and βj ∈
π2(X,L(j)), σ ∈ Hom(L(0)

p ,L(1)
p ). Then we have

Comp(B#B′, σ) = Comp(B′,Comp(B, σ)),

Comp(β0#B, σ) = ρ(β0)Comp(B, σ),

Comp(B#β1, σ) = ρ(β1)Comp(B, σ).

The proof is easy and so omitted.

Definition 8.15. Let B ∈ π2(L(1), L(0); p, q), p ∈ Map(`, B) and h
(j)
i (i = 1, · · · , kj)

be differential forms on L(j). We define

rρ,k1,k0;`;B(D(p);h(1)
1 , · · · , h

(1)
k1

;σ;h(0)
1 , · · · , h

(0)
k0

)

=
1
`!

Tω∩B/2πComp(B, σ)
∫
Mk1,k0;`(L(1),L(0);p,q;B;p)

ev(1)∗h(1) ∧ ev(0)∗h(0)

∈ Hom(L(0)
q ,L(1)

q ) ⊗C Λ0.

(8.14)

Here

h(j) = h
(j)
1 × · · · × h

(j)
kj

is a differential form on (L(j))kj .

rρ,k1,k0;` =
∑
B

rρ,k1,k0;`;B

converges in non-Archimedean topology by the energy estimate (see section 22.5
[FOOO2]) and defines

rρ,k1,k0;` : E`A(Λ+)[2] ⊗ Bk1((Ω(L(1)) ⊗̂Λ0)[1])

⊗ CF ((L(1), ρ), (L(0), ρ); Λ0) ⊗ Bk0((Ω(L(0)) ⊗̂Λ0)[1])

−→ CF ((L(1), ρ), (L(0), ρ); Λ0).

The following is a slight modification of Theorem 13.71 [FOOO2].
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Proposition 8.16. Let y ∈ A(Λ+)[2], x ∈ Bk1((Ω(L(1)) ⊗̂Λ0)[1]), and let z ∈
Bk0((Ω(L(0)) ⊗̂Λ0)[1]), v ∈ CF ((L(1), ρ), (L(0), ρ); Λ0). Then, we have

0 =
∑
c1,c2

(−1)deg y(2;2)
c1

deg′ x(3;1)
c2

+deg′ x(3;1)
c2

+deg y(2;1)
c1

rρ(y(2;1)
c1

⊗ (x(3;1)
c2

⊗ qρ(y(2;2)
c1

⊗ x(3;2)
c2

) ⊗ x(3;3)
c2

) ⊗ v ⊗ z)

+
∑

c1,c2,c3

(−1)deg y(2;2)
c1

deg′ x(2;1)
c2

+deg′ x(2;1)
c2

+deg y(2;1)
c1

rρ(y(2;1)
c1

⊗ x(2;1)
c2

⊗ rρ(y(2;2)
c1

⊗ x(2;2)
c2

⊗ v ⊗ z(2;1)
c3

)) ⊗ z(2;2)
c3

)

+
∑
c1,c3

(−1)(deg y(2;2)
c1

+1)(deg′ x+deg′ v+deg′ z(3;1)
c3

)+deg y(2;1)
c1

rρ(y(2;1)
c1

⊗ (x ⊗ v ⊗ (z(3;1)
c3

⊗ qρ(y(2;2)
c1

⊗ z(3;2)
c3

) ⊗ z(3;3)
c3

)).

(8.15)

Proof. The 1st, 2nd and 3rd terms correspond to (2), (1) and (3) of Lemma 8.11
respectively. The associated weights of symplectic area behave correctly under the
composition rules in Lemma 8.14. The proposition follows from Stokes’ formula.
(We do not discuss sign here, since the sign will be trivial for the case of our interest
where the degrees of ambient cohomology classes are even and the degrees of the
cohomology classes of Lagrangian submanifold are odd.) ¤

Lemma 8.17. If x = x1 ⊗ 1 ⊗ x2 where 1 is the degree 0 form 1, then

rρ(y ⊗ x ⊗ v ⊗ z) = 0. (8.16)

The same holds if z = z1 ⊗ 1 ⊗ z2.

Proof. This is an immediate consequence of the definition. ¤

Using the algebraic formalism developed in section 32.7 [FOOO2] we can define

rcan
ρ,k1,k0;` : E`A(Λ+)[2] ⊗ Bk1(H(L(1); Λ0)[1])

⊗ CF ((L(1), ρ), (L(0), ρ); Λ0) ⊗ Bk0(H(L(1); Λ0)[1])

−→ CF ((L(1), ρ), (L(0), ρ); Λ0),

such that (8.15), (8.16) hold when r and q is replaced by rcan and qcan.

Definition 8.18. Let b ∈ A(Λ+), x ∈ H1(L(u),Λ0). We use the notations of
Definition 8.1 and define

δb,x : CF ((L(1), ρ), (L(0), ρ); Λ0) → CF ((L(1), ρ), (L(0), ρ); Λ0)

by
δb,x(v) = rcan

ρ (eb ⊗ ex+ ⊗ v ⊗ ex+).

By taking a harmonic representative of x+ we also have

δb,x(v) = rρ(eb ⊗ ex+ ⊗ v ⊗ ex+).

Lemma 8.19.

δb,x ◦ δb,x = 0.
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Proof. We remark that ∆eb = eb⊗eb and ∆ex+ = ex+ ⊗ex+ . Therefore Proposition
8.16 implies

0 =rcan
ρ (eb ⊗ ex+ ⊗ rcan

ρ (eb ⊗ ex+ ⊗ v ⊗ ex+) ⊗ ex+)

+ rcan
ρ (eb ⊗ ex+ ⊗ qcan

ρ (eb ⊗ ex+) ⊗ ex+ ⊗ v ⊗ ex+)

+ (−1)deg v+1rcan
ρ (eb ⊗ ex+ ⊗ v ⊗ ex+ ⊗ qcan

ρ (eb ⊗ ex+) ⊗ ex+).

Since qcan
ρ (eb ⊗ ex+) is a (harmonic) 0 form, Lemma 8.17 implies that the second

and the third terms vanish. This proves the lemma. ¤
Definition 8.20.

HF ((L(1), b, ψ∗(x)), (L(0), b, x); Λ0) =
Ker δb,x

Im δb,x
.

We recall we are considering the Hamiltonian isotopic pair

L(0) = L(u), L(1) = ψ(L(u)).

For this case, we prove

Proposition 8.21. We have

HF ((L(1), b, ψ∗(x)), (L(0), b, x); Λ) ∼= HF ((L(u), b, x), (L(u), b, x); Λ).

Remark 8.22. We use Λ coefficients instead of Λ0 coefficients in Proposition 8.21.

Proof. We can prove Proposition 8.21 in the same way as sections 13, 22, 32 of
[FOOO2]. We will give an alternative proof here using de Rham theory. Let ψt

be the Hamiltonian isotopy such that ψ0 is the identity and ψ1 is ψ. We put
L(t) = ψt(L(u)).

Let χ : R → [0, 1] be a smooth function such that χ(τ) = 0 for τ sufficiently
small and χ(τ) = 1 for τ sufficiently large. We choose a two-parameter family of
compatible almost complex structures {Jτ,t}τ,t by

Jτ,t = ψ∗
tχ(τ)J.

Then it satisfies the following :
(1) Jτ,t = Jt for sufficiently large τ .
(2) Jτ,t = J for sufficiently small τ .
(3) Jτ,1 = ψχ(τ)∗J .
(4) Jτ,0 = J .

Let p ∈ L(0) ∩ L(1). We consider maps ϕ : R × [0, 1] → X such that
(1) limτ→+∞ ϕ(τ, t) = p.
(2) limτ→−∞ ϕ(τ, t) converges to a point in L(0) independent of t.
(3) ϕ(τ, 0) ∈ L(0), ϕ(τ, 1) ∈ L(χ(τ)).

We denote by π2(L(1), L(0); ∗, p) the set of homotopy classes of such maps. There
are obvious maps

π2(L(1), L(0); ∗, p) × π2(L(1), L(0); p, q) → π2(L(1), L(0); ∗, q),

π2(X;L(1)) × π2(L(1), L(0); ∗, p) → π2(L(1), L(0); ∗, p),

π2(L(1), L(0); ∗, p) × π2(X;L(0)) → π2(L(1), L(0); ∗, p).

(8.17)

(We here use the fact that the action of π1(L(i)) on π2(X;L(i)) is trivial.) We
denote (8.17) by #.
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Definition 8.23. We consider the moduli space of maps satisfying (1) - (3) above
and of homotopy class C+ ∈ π2(L(0), L(1); ∗, p) and satisfying the following equation
:

∂ϕ

∂τ
+ Jτ,t

(
∂ϕ

∂t

)
= 0. (8.18)

We denote it by
Mreg(L(1), L(0); ∗, p;C+).

We also consider the moduli spaces with maps with interior and boundary marked
points and their compactifications. We then get the moduli space

Mk1,k0;`(L
(1), L(0); ∗, p;C+).

We remark that we do not divide by R action since (8.18) is not invariant under
the translation. We can define an evaluation map

ev = (evint, ev(1), ev(0)) : Mk1,k0;`(L
(1), L(0); ∗, p;C+) → X` × (L(1))k1 × (L(0))k0 ,

in a similar way as (8.9) as follows :

ev
(0)
i (ϕ, {(τ (1)

i , 1)}, {(τ (1)
i , 0)}, {(τi, ti)}) = ϕ((τ (0)

i , 0)),

ev
(1)
i (ϕ, {(τ (1)

i , 1)}, {(τ (0)
i , 0)}, {(τi, ti)}) = ψ−1

χ(τi)
(ϕ((τ (1)

i , 1))),

evint
i (ϕ, {(τ (1)

i , 1)}, {(τ (0)
i , 0)}, {(τi, ti)}) = ψ−1

tiχ(τi)
(ϕ((τi, ti))).

(8.19)

Moreover there is another evaluation map

ev−∞ : Mk1,k0;`(L
(1), L(0); ∗, p;C+) → L(u)

defined by
ev−∞(ϕ) = lim

τ→−∞
ϕ(τ, t).

Using fiber product with the cycle D(p) we define Mk1,k0;`(L
(1), L(0); ∗, p;C+;p)

in the same way as above.

Lemma 8.24. Mk1,k0;`(L
(1), L(0); ∗, p;C+;p) has an oriented Kuranishi structure

with boundary. Its boundary is a union of the following four types of fiber products
as the space with Kuranishi structure.

(1)

Mk′
1,k′

0;`
′(L(1), L(0); ∗, q;C ′

+;p1) ×Mk′′
1 ,k′′

0 ;`′′(L(1), L(0); q, p;B′′;p2).

Here the notations are the same as Lemma 8.9 (1) and (8.11).
(2)

Mk′
1+1;`′(L(u); β′;p1) ev0 ×ev

(1)
i

Mk′′
1 ,k0;`′′(L

(1), L(0); ∗, p;C ′′
+;p2).

Here the notations are the same as Lemma 8.9 (2) and (8.11).
(3)

Mk1,k′
0;`

′(L(1), L(0); ∗, p;C ′
+;p1) ev

(0)
i

×ev0 Mk′′
0 +1;`′′(L(u);β′′;p2).

Here the notations are the same as Lemma 8.9 (3) and (8.11).
(4)

Mk′
1+k′

0+1;`′(L(u);β′;p1)ev0 ×ev−∞ Mk′′
1 ,k′′

0 ;`′(L(1), L(0); ∗, p;C ′′
+;p2),

where k′
j + k′′

j = kj, `′ + `′′ = `, β′#C ′′
+ = C+ and (8.11).
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The proof is the same as one in section 29.4 [FOOO2].

Lemma 8.25. There exists a system of multisections on Mk1,k0;`(L
(1), L(0); ∗, p;C+;p)

so that it is compatible with one constructed before at the boundaries described in
Lemma 8.24.

Proof. We can still use the fact ev0 is a submersion on the perturbed moduli space
to perform the inductive construction of multisection in the same way as the proof
of Lemma 8.12. ¤

For C+ ∈ π2(L(1), L(0); ∗, p), we define ρ(C+) ∈ Hom(L(0)
p ,L(1)

p ) by

ρ(C+) = Pal∂1C+ ◦ Pal−1
∂0C+

. (8.20)

Here we use the notation of (8.12).

Lemma 8.26. Let C+ ∈ π2(L(1), L(0); ∗, p), B′ ∈ π2(L(1), L(0); p, q) and βj ∈
π2(X,L(j)). Then we have

Comp(B′, ρ(C+)) = ρ(C+#B′),

ρ(β0#C+) = ρ(β0)ρ(C+), ρ(C+#β1) = ρ(β1)ρ(C+).

The proof is easy and is left to the reader.
Now let C+ ∈ π2(L(1), L(0); ∗, p), p ∈ Map(`, B) and let h

(j)
i (i = 1, · · · , kj) be

differential forms on L(j) and h also a differential form on L(u). We define

fk1,k0;`;C+(D(p);h(1)
1 , · · · , h

(1)
k1

;h;h(0)
1 , · · · , h

(0)
k0

)

=
1
`!

ρ(C+)
∫
Mk1,k0;`(L(1),L(0);∗,p;C+;p)

ev(1)∗h(1) ∧ ev∗−∞h ∧ ev(0)∗h(0)

∈ Hom(L(0)
p ,L(1)

p ) ⊗ Λ.

(8.21)

Here
h(j) = h

(j)
1 × · · · × h

(j)
kj

is a differential form on (L(j))kj . It induces

fC+ : B((Ω(L(1)) ⊗̂Λ0)[1]) ⊗ (Ω(L(u)) ⊗̂Λ)[1] ⊗ B((Ω(L(0)) ⊗̂Λ0)[1])

→
⊕

p∈L(1)∩L(0)

Hom(L(0)
p ,L(1)

p ) ⊗ Λ.

Now we define

f : Ω(L(u)) ⊗ Λ → CF ((L(1), ρ), (L(0), ρ); Λ)

by
f(h) =

∑
C+

Tω∩C+/2πfC+(eb ⊗ ex+ ⊗ h ⊗ ex+). (8.22)

We remark that ω ∩ C+/2π may not be positive in this case since (8.18) is τ -
dependent.

The fact that the right hand side converges in non-Archimedean topology follows
from the energy estimate. See section 22.5 [FOOO2].

Lemma 8.27. f is a chain map.

Proof. With Lemmata 8.24, 8.25, 8.26, the proof is similar to the proof of Lemmata
8.15, 8.17 and 8.19. ¤
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We next define the chain map of the opposite direction. Let p ∈ L(0) ∩L(1). We
consider maps ϕ : R × [0, 1] → X such that

(1) limτ→−∞ ϕ(τ, t) = p.
(2) limτ→+∞ ϕ(τ, t) converges to a point in L(0) and is independent of t.
(3) ϕ(τ, 0) ∈ L(0), ϕ(τ, 1) ∈ L(χ(−τ)).

We denote by π2(L(1), L(0); p, ∗) the set of homotopy classes of such maps. There
are obvious maps

π2(L(1), L(0); p, q) × π2(L(1), L(0); q, ∗) → π2(L(1), L(0); p, ∗),

π2(X;L(1)) × π2(L(1), L(0); p, ∗) → π2(L(1), L(0); p, ∗),

π2(L(1), L(0); p, ∗) × π2(X;L(0)) → π2(L(1), L(0); p, ∗).

(8.23)

We denote them by #.

Definition 8.28. We consider the moduli space of maps satisfying (1) - (3) above
and of homotopy class C− ∈ π2(L(1), L(0); p, ∗) and satisfying the following equation
:

∂ϕ

∂τ
+ J−τ,t

(
∂ϕ

∂t

)
= 0. (8.24)

We denote it by
Mreg(L(1), L(0); p, ∗;C−).

We include interior and boundary marked points and compactify it. We then get
the moduli space Mk1,k0;`(L

(1), L(0); p, ∗;C−).

We define evaluation maps

ev = (ev+, ev(1), ev(0)) : Mk1,k0;`(L
(1), L(0); p, ∗;C−) → X` × (L(1))k1 × (L(0))k0 ,

and
ev+∞ : Mk1,k0;`(L

(1), L(0); p, ∗;C−) → L(u).
Here

ev+∞(ϕ) = lim
τ→+∞

ϕ(τ, t).

Using ev+ we take fiber product with D(p) and obtain Mk1,k0;`(L
(1), L(0); p, ∗;C−;p).

Lemma 8.29. Mk1,k0;`(L
(1), L(0); p, ∗;C−;p) has an oriented Kuranishi structure

with boundary. Its boundary is a union of the following four types of fiber product
as the space with Kuranishi structure.

(1)

Mk′
1,k′

0;`
′(L(1), L(0); p, q;B′;p1) ×Mk′′

1 ,k′′
0 ;`′′(L(1), L(0); q, ∗;C ′′

−;p2).

Here the notations are the same as Lemma 8.9 (1) and (8.11).
(2)

Mk′
1+1;`′(L(u);β′;p1) ev0 ×ev

(1)
i

Mk′′
1 ,k0;`′′(L

(1), L(0); p, ∗;C ′′
−;p2).

Here the notations are the same as Lemma 8.9 (2) and (8.11).
(3)

Mk1,k′
0;`

′(L(1), L(0); p, ∗;C ′
−;p1) ev

(0)
i

×ev0 Mk′′
0 +1;`′′(L(u);β′′;p2).

Here the notations are the same as Lemma 8.9 (3) and (8.11).
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(4)

Mk′
1,k′

0;`
′(L(1), L(0); p, ∗;C ′

−;p1)ev−∞ ×ev0 Mk′′
1 +k′′

0 +1;`′′(L(u);β′′;p2),

where k′
j + k′′

j = kj, `′ + `′′ = `, β′#C ′′
− = C− and (8.11).

The proof is the same as one in [FOOO2] section 29.4.
We define

Comp : π2(L(1), L(0); p, ∗) × Hom(L(0)
p ,L(1)

p ) → C

as follows. Let σ ∈ Hom(L(0)
p ,L(1)

p ) and C− ∈ π2(L(1), L(0); p, ∗). Then

Comp(C−, σ)v = Pal∂1C− ◦ σ ◦ Pal−1
∂0C−

(v), (8.25)

where v ∈ Llimτ→+∞ ϕ(τ,t) and we use the notation of (8.12).
Let σ ∈ Hom(L(0)

p ,L(1)
p ), C− ∈ π2(L(1), L(0); q, ∗), B′ ∈ π2(L(1), L(0); p, q) and

βj ∈ π2(X,L(j)). Then we have

Comp(B′,Comp(C−, σ)) = Comp(B′#C−, σ),

Comp(β0#C−, σ) = ρ(β0)Comp(C−, σ),

Comp(C−#β1, σ) = ρ(β1)Comp(C−, σ).
(8.26)

Now let C− ∈ π2(L(1), L(0); p, ∗), p ∈ Map(`, B) and h
(j)
i (i = 1, · · · , kj) be differ-

ential forms on L(j) and σ ∈ Hom(L(0)
p ,L(1)

p ). We will define an element

g`;k1,k0;C−(D(p);h(1)
1 , · · · , h

(1)
k1

;σ;h(0)
1 , · · · , h

(0)
k0

) ∈ Ω(L(u)) ⊗ Λ. (8.27)

We will define it as

g`;k1,k0;C−(D(p); h(1)
1 , · · · , h

(1)
k1

;σ;h(0)
1 , · · · , h

(0)
k0

)

=
1
`!

Comp(C−, σ)((ev+∞)!)(ev(1)∗h(1) ∧ ev(0)∗h(0)).
(8.28)

Here (ev+∞)! is the integration along the fiber of the map

ev+∞ : Mk1,k0;`(L
(1), L(0); p, ∗;C−;p)s → L(u) (8.29)

of the appropriately perturbed moduli space. More precise definition is in order.
We can inductively define a multisection on Mk1,k0;`(L

(1), L(0); p, ∗;C−;p) so
that this is transversal to 0 and is compatible with other multisections we have
constructed in the earlier stage of induction. We can prove it in the same way as
Lemma 8.25.

However it is impossible to make the evaluation map (8.29) a submersion in
general by the obvious dimensional reason if we just use multisections over the
moduli space Mk1,k0;`(L

(1), L(0); p, ∗;C−;p) : We need to enlarge the base by
considering a continuous family of multisections. This method was introduced
in section 33 [FOOO2] for example and the form we need here is detailed in
section 12 [Fu3]. We recall the detail of this construction in Appendix of the
present paper for readers’ convenience. More precisely we take Ms = L(u)k0+k1 ,
M = Mk1,k0;`(L

(1), L(0); p, ∗;C−;p), Mt = L(u), evs = (ev(1), ev(0)), evt = ev+∞
and apply Definition 12.16. Then, the next lemma follows from Lemma 12.19 in
Appendix.
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Lemma 8.30. There exists a continuous family {sα} of multisections on our moduli
space Mk1,k0;`(L

(1), L(0); p, ∗;β;p) so that it is compatible in the sense of Defini-
tion 12.12 and is also compatible with the multisections constructed before in the
inductive process at the boundaries described in Lemma 8.29. Moreover (8.29) is a
submersion.

By Definition 12.16, the integration along the fiber (8.28) (or smooth correspon-
dence map) is defined. Now we have finished the description of the element (8.27).
This assignment induces a homomorphism

gβ : B((Ω(L(1)) ⊗̂Λ0)[1]) ⊗

 ⊕
p∈L(1)∩L(0)

Hom(L(0)
p ,L(1)

p ) ⊗C Λ

 ⊗ B((Ω(L(0)) ⊗̂Λ0)[1])

→ (Ω(L(u)) ⊗̂Λ)[1].

Now we define
g : CF ((L(1), ρ), (L(0), ρ); Λ) → Ω(L(u))⊗̂Λ

by
g(σ) =

∑
β

Tω∩C−/2πgβ(eb ⊗ ex+ ⊗ σ ⊗ ex+). (8.30)

With these preparation, we can prove the following lemma in the same way as
Lemma 8.27 using Lemmata 12.18 and 12.20. So its proof is omitted.

Lemma 8.31. g is a chain map.

Proposition 8.32. f ◦ g and g ◦ f are chain homotopic to the identity.

Proof. We will prove that g ◦ f is chain homotopic to the identity. Let S0 be a
sufficiently large positive number. (Say S0 = 10.) For S > S0 we put

χS(τ) =

{
χ(−τ − S) τ ≤ 0,

χ(τ − S) τ ≥ 0.

We will extend it to 0 ≤ S ≤ S0 so that χ0(τ) = 0.
We consider maps ϕ : R × [0, 1] → X such that the following holds :
(1) limτ→−∞ ϕ(τ, t) converges to a point in L(u) and is independent of t.
(2) limτ→+∞ ϕ(τ, t) converges to a point in L(u) and is independent of t.
(3) ϕ(τ, 0) ∈ L(0), ϕ(τ, 1) ∈ L(χS(τ)).

We denote by π2(L(1), L(0); ∗, ∗;S) the set of homotopy classes of such maps. There
exists a natural isomorphism π2(L(1), L(0); ∗, ∗;S) ∼= π2(X,L(u)),

[ϕ] 7→ [ϕ′], where ϕ′(τ, t) = ψ−1
χS(τ)(ϕ(τ, t)).

Here we recall L(1) = ψ1(L(u)), L(0) = L(u). Therefore we will denote an element
of π2(L(1), L(0); ∗, ∗;S) again by β as for the case of π2(X,L(u)).

We have the obvious gluing maps

π2(L(1), L(0); ∗, p) × π2(L(1), L(0); p, ∗;S) → π2(L(1), L(0); ∗, ∗;S),

π2(X;L(1)) × π2(L(1), L(0); ∗, ∗;S) → π2(L(1), L(0); ∗, ∗;S),

π2(L(1), L(0); ∗, ∗;S) × π2(X;L(0)) → π2(L(1), L(0); ∗, ∗;S)

(8.31)

which we denote all by #.
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We consider a three-parameter family of compatible almost complex structures
JS,τ,t given by

JS,τ,t = ψ∗
tχS(τ)J.

Then it satisfies :

JS,τ,t =



J−τ−S,t τ is sufficiently small and S ≥ S0,

Jτ−S,t τ is sufficiently large and S ≥ S0,

J t = 0,

ψ∗
χS(τ)J t = 1,

J S = 0.

(8.32)

Definition 8.33. Consider the moduli space of maps satisfying (1) - (3) above and
of homotopy class β ∈ π2(L(0), L(1); ∗, ∗) and satisfying the following equation

∂ϕ

∂τ
+ JS,τ,t

(
∂ϕ

∂t

)
= 0. (8.33)

For each 0 ≤ S < ∞, we denote the moduli space by

Mreg
S (L(1), L(0); ∗, ∗;β)

We also put

Mreg
+∞(L(1), L(0); ∗, ∗;β)

=
⋃

p∈L(1)∩L(0)

⋃
C′

+#C′′
−=β

(Mreg(L(1), L(0); ∗, p;C ′
+) ×Mreg(L(1), L(0); p, ∗;C ′′

−))

and define

Mreg(L(1), L(0); ∗, ∗;β; para) =
⋃

S∈[0,+∞]

({S} ×Mreg
S (L(1), L(0); ∗, ∗;β)).

We can also include interior and boundary marked points and compactify the cor-
responding moduli space which then gives rise to the moduli space

Mk1,k0;`(L
(1), L(0); ∗, ∗;β; para).

We define evaluation maps

ev = (evint, ev(1), ev(0)) : Mk1,k0;`(L
(1), L(0); ∗, ∗;β) → X` × (L(1))k1 × (L(0))k0 ,

and
ev±∞ : Mk1,k0;`(L

(1), L(0); ∗, ∗;β) → L(u).
Here

ev±∞(ϕ) = lim
τ→±∞

ϕ(τ, t).

Using evint we take fiber product with D(p) and obtain Mk1,k0;`(L
(1), L(0); ∗, ∗;β; para;p).

Lemma 8.34. Mk1,k0;`(L
(1), L(0); ∗, ∗;β; para;p) has an oriented Kuranishi struc-

ture with corners. Its boundary is a union of the following six types of fiber products
as the space with Kuranishi structure :

(1)

Mk′
1+1;`′(L(u);β′;p1) ev0 ×ev

(1)
i

Mk′′
1 ,k0;`′′(L

(1), L(0); ∗, ∗; para;β′′;p2).

Here the notations are the same as Lemma 8.9 (2) and (8.11).
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(2)

Mk1,k′
0;`

′(L(1), L(0); ∗, ∗; para;β′;p1) ev
(0)
i

×ev0 Mk′′
0 +1;`′′(L(u);β′′;p2).

Here the notations are the same as Lemma 8.9 (3) and (8.11).
(3)

Mk′
1,k′

0;`
′(L(1), L(0); ∗, ∗;β′; para;p1)ev+∞ ×ev0 Mk′′

1 +k′′
0 +1;`′′(L(u);β′′;p2),

where k′
j + k′′

j = kj, `′ + `′′ = `, β′#β′′ = β and (8.11).
(4)

Mk′
1+k′

0+1;`′(L(u); β′;p1)ev0 ×ev−∞ Mk′′
1 ,k′′

0 ;`′′(L(1), L(0); ∗, ∗;β′′; para;p2),

where k′
j + k′′

j = kj, `′ + `′′ = `, β′#β′′ = β and (8.11).
(5)

Mk′
1,k′

0;`
′(L(1), L(0); ∗, p;p1;C

′
+) ×Mk′′

1 ,k′′
0 ;`′′(L(1), L(0); p, ∗;p2;C

′′
−)

where k′
j + k′′

j = kj, `′ + `′′ = `, C ′
+#C ′′

− = β and (8.11).
(6) A space M̃k1+k0+2;`(L(u);β;p). There exists an R action on it such that

the quotient space is Mk1+k0+2;`(L(u);β;p).

Proof. The proof is similar to the proofs of Lemma 8.29 etc.
We remark that the case S = ∞ corresponds to (5).
The case when S = 0 corresponds to (6). In fact χ0(τ, t) = 0. So the boundary

condition reduces ϕ(∂(R× [0, 1])) ⊂ L(u) and the equation (8.33) is J holomorphic-
ity. The τ -translations define an R-action on the moduli space at the part S = 0.
The quotient space is the moduli space of holomorphic discs with boundary and
interior marked points.

To construct a Kuranishi chart in a neighborhood of S = ∞, we need to choose
a smooth structure of [0,∞] at ∞. We can do this so that the coordinate change of
the Kuranishi structure is smooth using the standard exponential decay estimate :
Namely, for a sufficiently large S, every element of Mreg

S (L(1), L(0); ∗, ∗;β), together
with its S-derivatives, is close to an element of Mreg

∞ (L(1), L(0); ∗, ∗;β) in the order
of Ce−cS . We can prove this estimate in a way similar to the proof of Lemma A1.58
section A.1 [FOOO2]. ¤

Lemma 8.35. There exists a continuous family s of multisections on our moduli
space Mk1,k0;`(L

(1), L(0); ∗, ∗;β; para;p) such that it is compatible in the sense of
Definition 12.12 and also compatible with the one constructed before in the induction
process at the boundaries described in Lemma 8.34. Moreover ev±∞ are submersions
on the moduli space perturbed by this family.

Proof. The proof is the same as the proof of Lemma 8.30. ¤

We use π2(L(1), L(0); ∗, ∗;S) ∼= π2(X,L(u)) to define ρ : π2(L(1), L(0); ∗, ∗;S) →
C \ {0}, as the composition

π2(L(1), L(0); ∗, ∗;S) → π2(X,L(u)) → π1(L(u))
ρ−→ C \ {0}.

There is an obvious compatibility relation of this ρ and other ρ’s and Comp’s we
defined before through #.
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Now let β ∈ π2(L(1), L(0); ∗, ∗;S), p ∈ Map(`, B) and h
(j)
i (i = 1, · · · , kj) be

differential forms on L(j) and h is another differential form on L(u). We will define
an element

hβ;`;k1,k0(D(p);h(1)
1 , · · · , h

(1)
k1

;h;h(0)
1 , · · · , h

(0)
k0

) ∈ Ω(L(u))⊗̂Λ. (8.34)

by
hβ;`;k1,k0(D(p);h(1)

1 , · · · , h
(1)
k1

;h;h(0)
1 , · · · , h

(0)
k0

)

=
1
`!

ρ(β)((ev+∞)!)(ev(1)∗h(1) ∧ ev∗−∞h ∧ ev(0)∗h(0)).
(8.35)

Here (ev+∞)! is the integration along fiber of the map

ev+∞ : Mk1,k0;`(L
(1), L(0); ∗, ∗;β; para;p)s → L(u) (8.36)

of our moduli space which is perturbed by the continuous family s of perturba-
tions given in Lemma 8.35. More precisely we apply Definition 12.16 to Ms =
L(u)k0+1+k1 , Mt = L(u), M = Mk1,k0;`(L

(1), L(0); ∗, ∗;β; para;p), and evs =
(ev(1), ev−∞, ev(0)), evt = ev+∞. We then obtain (8.36).

The family of the maps hβ;`;k1,k0 induce a homomorphism

hβ : B((Ω(L(1)) ⊗̂Λ0)[1]) ⊗ (Ω(L(u)) ⊗̂Λ))[1] ⊗ B((Ω(L(0)) ⊗̂Λ0))[1])

−→ Ω(L(u))[1]⊗̂Λ.

Now we define
h : Ω(L(u)) ⊗̂Λ → Ω(L(u)) ⊗̂Λ

by
h(h) =

∑
β

Tω∩β/2πhβ(eb ⊗ ex+ ⊗ h ⊗ ex+). (8.37)

Lemma 8.36. h is a chain homotopy from the identity to g ◦ f.

Proof. Lemma 12.18 implies that d ◦ h + h ◦ d is a sum of terms which are obtained
from each of (1) - (6) of Lemma 8.34 in the same way as (8.35), (8.37).

Using the fact qρ(eb, ex+) is a harmonic zero form in the same way as the proof
of Lemma 8.19, we can show that the contributions of (1) and (2) vanish. The
contributions of (3) and (4) are

(mb,x
1 − d) ◦ h

and
h ◦ (mb,x

1 − d)
respectively. The contribution of (5) is g ◦ f. The contribution of (6) vanishes in
the case when β 6= 0, because of extra R symmetry. The case β = 0 gives rise to
the identity.

In sum, we use Stokes’ formula to conclude

h ◦ mb,x
1 + mb,x

1 ◦ h = g ◦ f − id.

We use the composition formula in Appendix (Lemma 12.20) to prove the above
formulae. The proof of Lemma 8.36 is now complete. ¤

We have thus proved that g ◦ f is chain homotopic to the identity. We can prove
f ◦ g is chain homotopic to identity in the same way. The proof of Proposition 8.32
is now complete. ¤
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The proof of Proposition 8.21 is complete. Hence we have also completed the
proof of Proposition 3.15 also. ¤

Remark 8.37. We gave the proof of the above proposition using de Rham co-
homology. In [FOOO2] we gave a proof based on singular cohomology. Strictly
speaking we only discussed in the case when b ∈ H1(L(u); Λ+) in [FOOO2]. But
using Cho’s idea of shifting the constant term by non-unitary flat connection, the
proof of [FOOO2] can be easily generalized to the present situation of H1(L(u); Λ0).
In fact Theorem 2.5 was proved in section 13 or 22 [FOOO2] by proving a statement
similar to Proposition 8.21 from which we can derive Proposition 3.15.

Since we use de Rham cohomology to calculate the potential function in this
paper, we need to rely on Lemma 6.12 to get results on the displacement out of the
proof in [FOOO2], which uses the singular cohomology version.

The approach using de Rham cohomology is shorter but we cannot treat the
results with Q-coefficients, at least at the time of writing this article. Theretofore
we need to use singular homology version for that purpose. It might be possible to
develop the Q de Rham theory for the purpose. We remark that by Lemma 6.8,
POu(b; y1, · · · , yn) is defined over the Q coefficients. To study quantum cohomol-
ogy QH(X; Λ0(Q)) this de Rham version will be enough.

Proof of Theorem 3.19. This is a straightforward combination of the proofs of Propo-
sition 3.15 and Theorem J [FOOO2]. ¤

9. Domain of definition of potential function with bulk

The purpose of this section is to prove Theorem 3.11. Theorem 3.11 is not used
in the other part of this paper except in section 11 but will be used in Part III of
this series of papers.

Proof of Theorem 3.11. We recall that D1, · · · , Dm are of complex codimension one
in X and Dm+1, · · · , DB are of higher complex codimension. Let p ∈ Map(`, B).
We put

|p|high = #{j | p(j) > m}.

Lemma 9.1. For any E we have

sup{|p|high | c(β,p) 6= 0, β ∩ ω < E} < C(E),

where C(E) depends only on E and X.

Proof. If |p|hight = N and c(β,p) 6= 0 then 2N ≤ µ(β) by the dimension counting.
The lemma then follows from Proposition 6.1 (5) and Gromov’s compactness. ¤

We denote by Map(`+, B \ m) be the set of the maps {1, · · · , `+} → B \ m =
{m + 1, · · · , B}. We put

M+ =
⋃
`+

Map(`+, B \ m).

For p+ ∈ Map(`+, B \ m) and `1, · · · , `m we define p = (`1, · · · , `m;p+) by

p(i) =

{
j if `1 + · · · + `j−1 < i ≤ `1 + · · · + `j ,
p+(i −

∑m
j=1 `j) if i >

∑m
j=1 `j .

(9.1)
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Lemma 9.2. If p = (`1, · · · , `m;p+) then

c(p;β) = c(p+;β)
m∏

i=1

(β ∩ Di)`i .

Proof. By the dimensional reason

dimM1,|p+|(L(u); β;p+) = n

and c(p+;β) is the degree of the map

ev0 : M1,|p+|(L(u); β;p+) → L(u). (9.2)

Note M1,|p+|(L(u);β;p+) after perturbation is a space with triangulation and the
weight in Q, which is defined by the multiplicity and the order of the isotropy group.
So it has a fundamental cycle over Q.

We fix a regular value p0 ∈ L(u) of (9.2). Let

ev−1
0 (p0) = {ϕj | j = 1, · · · ,K}

be its preimage. Each of its elements contributes to c(p+;β) by εj ∈ Q so that∑
εj = c(p+;β).
We remark that our counting problem to calculate c(p;β) is well-defined in the

sense of Lemma 6.8. Therefore we can perform the calculation in the homology
level to find that each of ϕj contributes εj

∏m
i=1(β ∩ Di)`i to c(p;β). The lemma

follows. ¤

Now we are ready to complete the proof of Theorem 3.11. By Lemmata 7.1,
(7.5), 9.2 and 6.5 (6), we find

POu(w1, · · · , wB ; x)

=
∑

β

∑
p+∈M+

∑
`1,··· ,`m

(
(`1 + · · · + `m + |p+|)!

`1! · · · `m!|p+|!

)
wp+(1) · · ·wp+(|p+|)

(`1 + · · · + `m + |p+|)!

T β∩ω/2πc(p+;β)

(
m∏

i=1

(β ∩ Di)`i

)
w`1

1 · · ·w`m
1 exp(∂β ∩ x)

=
∑

β

∑
p+∈M+

c(p+;β)
|p+|!

wp+(1) · · ·wp+(|p+|)T
β∩ω/2π

wβ∩D1
1 · · ·wβ∩Dm

m y1(u)∂β∩e1 · · · yn(u)∂β∩en .

(9.3)

By Lemma 9.1 this series converges on vu
T -adic topology for any u.

Remark 9.3. In the second equality in (9.3) we use
∞∑

k=0

wk
i

k!
= wi (9.4)

(9.4) is actually the definition of the formal variable wi. If we replace the formal
variable wi by a number ci ∈ C and wi by ci = eci ∈ C, then the second equality
(9.3) still holds. However the convergence in the left hand side of

∞∑
k=0

ck
i

k!
= ci
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is with respect to the usual Archimedean topology of C and is not with respect to
the non-Archimedean topology we are using here.

Now we examine the dependence of this sum on u’s. Firstly, through the isomor-
phism ψu : H∗(Tn; Z) → H∗(L(u); Z), we may regard β or βj are independent of
u and so are the coefficients aj ’s. Secondly by the structure theorem, Proposition
6.1, the moduli spaces associated to a given β are all isomorphic and so can be
canonically identified when u ∈ IntP varies. Thirdly the two factors T β∩ω/2π and
y1(u)∂β∩e1 · · · yn(u)∂β∩en depending on u can be combined into

T β∩ω/2πy1(u)∂β∩e1 · · · yn(u)∂β∩en =
m∏

j=1

(zj(u))aj

where β =
∑

j=1 ajβj in H2(X,L(u)) and then Lemma 3.7 showed that zj(u) ◦ ψu

are independent of u ∈ IntP . Therefore the composition POu ◦ ψu are a function
defined on A(Λ+) × H1(Tn; Λ0) independent of u’s.

The proof of Theorem 3.11 is complete. ¤

We recall that X is nef if and only if every holomorphic sphere w : S2 → X
satisfies w∗[S2] ∩ c1(X) ≥ 0. In the nef case we can prove the following statement
which is somewhat similar to Proposition 4.11.

Proposition 9.4. If X is nef and b is as in (4.10), then we have

POu(b; y) =
K∑

l=1

a(l)∑
j=1

TSl(exp(bl,j)+cl,j(b))y~vi(l,j)+
m∑

i=K+1

T `i(u)(1+ci(b))y~vi , (9.5)

where ci(b), cl,j(b) ∈ Λ+.

Proof. Let β ∈ H2(X,L(u); Z) with µ(β) = 2. We assume Mmain
1;` (L(u), β) is

nonempty. Let

β =
m∑

i=1

kiβi +
∑

j

αj

be as in Proposition 6.1 (5). Since αj ∩ c1(X) ≥ 0 by assumption, it follows from
the condition µ(β) = 2 that there exists unique i such that ki = 1 and other ki is
zero. Moreover αj ∩ c1(X) = 0. Hence if β is not βi then

β = βi +
∑

j

αj .

This β contributes
cT

P

j αj∩[ω]/2πT `i(u)y~vi ,

to POu(b; y). The rest of the proof is the same as the proof of Proposition 4.11. ¤

10. Euler vector field

The formula (9.3) derived in the previous section yields an interesting conse-
quence that is related to the Euler vector field on a Frobenius manifold and to our
potential function. In Part III of this series of papers, we will further discuss the
Frobenius manifold structure on the quantum cohomology and on the Jacobian ring
of our potential function and their relationship. (See Remark 10.3.)
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For i = 1, · · · , B let di be the degree of Di ∈ A. (That is twice of the real
codimension of the corresponding faces of P .) In case di = 2 (that is i ≤ m) we
put

2ri = [Di] ∩ µL(u) ∈ Z.

Here µL(u) ∈ Hom(π2(X,L(u)); Z) ∼= H2(X,L(u); Z) is the Maslov index.

Definition 10.1. We define the Euler vector field E on A by

E =
B∑

i=m+1

(
1 − di

2

)
wi

∂

∂wi
+

m∑
i=1

ri
∂

∂wi
.

Theorem 10.2. The directional derivative POu along the vector field E satisfies

E(POu) = POu.

Proof. The proof is similar to the proof of a similar identity for the case of the
Gromov-Witten potentials. (See [Dub] for example.) Let

E1 =
B∑

i=m+1

(
1 − di

2

)
wi

∂

∂wi
,

E2 =
m∑

i=1

ri
∂

∂wi
,

POu
β,1 =

∑
p+∈M+

c(p+;β)
|p+|!

wp+(1) · · ·wp+(|p+|),

POu
β,2 = wβ∩D1

1 · · ·wβ∩Dm
m .

Since dimM1,|p+|(L(u), β;p+) = n, it follows that

n − 2 + µL(u)(β) +
∑

i

(2 − deg p+(i)) = n.

Therefore

E1(POu
β,1) =

(
1 −

µL(u)(β)
2

)
POu

β,1.

On the other hand, we have

E2(POu
β,2) =

µL(u)(β)
2

POu
β,2

by definition. Theorem 10.2 now follows from (9.3). ¤

Remark 10.3. In Part III of this series of papers, we will prove the isomorphism

Φ : (H(X; Λ0),∪b) ∼=
ΛP

0 {y, y−1}(
yi

∂POb

∂yi
: i = 1, · · · , n

) , (10.1)

for arbitrary compact toric manifold (which is not necessarily Fano). Here the
product ∪b in the left hand side is defined by the formula

〈a1 ∪b a2, a3〉PD =
∑

α∈H2(X;Z)

∞∑
`=0

Tα∩ω/2π

`!
GWα,`+3(a1, a2, a3, b

⊗`)
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where

GWα,m(c1, · · · , cm) =
∫
Mm(α)

ev∗(c1 × · · · × cm),

Mm(α) is the moduli space of the stable maps of genus 0 with m marked points in
homology class α, and ev : Mm(α) → Xm is the evaluation map. (〈, 〉PD denotes
the Poincaré duality.)

The isomorphism (10.1) is defined as follows. We choose a lift⊕
d 6=0

Hd(X; Λ0) ∼= H(λ0) ⊂ A(Λ0).

Using its basis fa we write the element of H(λ0) as
∑

a wafa. Then (10.1) sends fa
to [(

∂

∂wa
PO

)
(b; y)

]
.

We can prove that this map is a ring isomorphism by an argument which elaborates
the discussion outlined in Remark 5.14 [FOOO3]. We will work it out in detail in
Part III.

We will also prove in Part III that if POb has only nondegenerate critical point,
then (10.1) sends Poincaré duality to the residue pairing. Here residue pairing is
defined as follows : By nondegeneracy assumption we have a ring isomorphism

ΛP
0 {y, y−1}(

yi
∂POu

b

∂yi
: i = 1, · · · , n

) ⊗Λ0 Λ ∼=
∏

p∈Crit(POb)

Λ. (10.2)

(See Proposition 6.9 [FOOO3]. It can be generalized to the non-Fano case.) Here
Crit(POb) is the set of critical points of POb. Let 1p be the unit ∈ Λ in the factor
corresponding to p. We then put

〈1p, 1q〉res =

{
0 if p 6= q,

1
det HesspPOu

b
if p = q.

Here

HesspPOu
b =

(
∂2POu

b

∂xi∂xj

)
(x)

is the Hessian matrix at x = (x1, · · · , xn), exi = yi, exi = yi, and (Tu1y1, · · · , Tunyn) =
p. Then we have :

〈c, d〉PD = 〈Φ(c),Φ(d)〉res (10.3)
The proof of (10.3), which we will give in Part III, uses the moduli space of

pseudo-holomorphic annuli bordered to our Lagrangian fiber L(u).
In the mean time, here we illustrate the identity (10.3) for the simple case X =

CP 1, b = 0. (See [Ta].) Its moment polytope is [0, 1]. The potential function is :

POu
0(y) = Tuy + T 1−uy−1.

The critical points are given at u = 1/2 and y = ±1. We denote them by p+, p−
respectively. We have

Hessp+PO
1/2
0 = 2T 1/2, Hessp−PO

1/2
0 = −2T 1/2.

(Note we here take x = log y as a variable.) Therefore

〈1p+ , 1p+〉res = T−1/2/2, 〈1p− , 1p−〉res = −T−1/2/2, 〈1p+ , 1p−〉res = 0.
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We consider PD[pt] ∈ H2(CP 1) and identify it with [π−1(0)]. Then the isomor-
phism (10.1) sends PD[pt] to Tuy mod

(
y

∂POu
0

∂y

)
. At u = 1/2, the latter becomes

T 1/2(1p+ − 1p−) in the Jacobian ring, which can be easily seen from the identity

T 1/2y =
1
2

((1 + y) − (1 − y))T 1/2.

On the other hand PD[CP 1] ∈ H0(CP 1) is the unit and so becomes 1p+ +1p− . We
have

〈T 1/2(1p+ − 1p−), 1p+ + 1p−〉res = 1.

This is consistent with the corresponding pairing

〈PD[pt], PD[CP 1]〉PD = (PD[pt] ∪ PD[CP 1]) ∩ [CP 1] = 1

in the quantum cohomology side.
We recall that collection of a product structure on the tangent space, residue

pairing, Euler vector field, and the unit consists of the data which determine Saito’s
flat structure (that is, the structure of Frobenius manifold) [Sa].

11. Deformation by b ∈ A(Λ0)

In sections 4 and 8, we used the bulk deformation of Lagrangian Floer cohomol-
ogy by the divisor cycles b ∈ A(Λ+). Actually using the result of section 9, most
of the argument there can be generalized to the case when b ∈ A(Λ0) by a minor
modification. In this section we discuss this and some new phenomena appearing
in the deformation by b ∈ A(Λ0). In this section we consider the case R = C. (See
Remark 11.5, however.) We write Λ0 etc. in place of Λ0(C) etc.. We first remark
that the potential function POu

b(y1, · · · , yn) = POu(b; y1, · · · , yn) itself is defined
for b ∈ A(Λ0) in section 9. But the definition of the leading term equation(4.6),
Definition 4.3 need some minor modification which is in order. We put

b =
∑

baDa ∈ A(Λ0)

and consider its zero order term

ba ≡ ba mod Λ+

where ba ∈ C. We put

(POu
b)l =

a(l)∑
r=1

exp(bi(l,r))y~vl,r ∈ C[y1,1, · · · , y−1
l,d(l)]. (11.1)

We define the leading term equation for

yl,s
∂POu

b

∂yl,s
= 0 (11.2)

for b ∈ A(Λ0) in the same way as Definition 4.3 by using (11.1) in place of (4.6).
We remark that only ba, a = 1, · · · ,m appears in (11.1). In other words, coef-

ficients of the cohomology classes Da of degree > 2 do not affect the leading term
equation.

Lemma 11.1. Lemma 4.4 holds for b ∈ A(Λ0) also.

Proof. The formula (9.3) implies that the coefficient of y~vl,r (r = 1, · · · , a(l)) in
POu

b is TSl exp(bi(l,r)). The rest of the proof is the same as the proof of Lemma
4.4. ¤
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The leading term equation is of the form

0 =
a(l)∑
r=1

exp(bi(l,r))y~vl,r~vl,r.

By varying bi the coefficients exp(bi) can assume all elements from C \ {0}.

Definition 11.2. A system of polynomial equations

0 =
a(l)∑
r=1

Ci(l,r)y
~vl,r~vl,r

with Ci(l,r) ∈ C \ {0}, l = 1, · · ·K is called a generalized leading term equation.

Now Theorem 4.7 is generalized as follows.

Proposition 11.3. The following two conditions for u are equivalent to each other.
(1) There exists a generalized leading term equation of POu

0 , which has a so-
lution yl,j ∈ C \ {0}.

(2) There exists b ∈ H(Λ0) such that POu
b has a critical point on (Λ0 \ Λ+)n.

Proof. (2) ⇒ (1) follows from Lemma 11.1. Let us assume that the generalized
leading term equation with Ci(l,r) as a coefficient has a solution yl,s ∈ C \ {0}. We
put bi(l,r) = log Ci(l,r). Then we can add higher order term in the same way as the
proof of Theorem 4.7 to obtain b such that yl,s is a solution of (11.2). ¤

Proposition 11.4. Theorem 3.12 holds for b ∈ A(Λ0).

Proof. Using a similar formula as (9.3) the proof is the same as the proof of Theorem
3.12 given in section 8. We omit the detail. ¤

Remark 11.5. Let R be a field such that Q ⊂ R ⊂ C. Even if we assume
b =

∑
baDa ∈ A(Λ0(R)), it does not imply

(POu
b)l ∈ R[y1,1, · · · , y−1

l,d(l)]. (11.3)

In fact exp(bi(r,s)) may not be an element of R. (This point is related to Remark
9.3.) An appropriate condition for (11.3) to hold is

exp(bi) ∈ Λ0(R)

for i = 1, · · · ,m.

Example 11.6. We put

P = {(u1, u2) | 0 ≤ u1, u2, u1 + u2 ≤ 1, u2 ≤ 2/3}.
P is a moment polytope of monotone one point blow up of CP 2. We consider
u = (1/3, 1/3). L(u) is a monotone Lagrangian submanifold. We put

D2 = π−1({(u1, u2) ∈ P | u2 = 0}).
Let bc = (log c)[D2]. where c ∈ C \ {0}. Proposition 4.9 implies

POu(bc; y1, y2) = T 1/3(y1 + cy2 + y−1
2 + (y1y2)−1).

Thus the critical point is given by

1 − y−2
1 y−1

2 = 0 = c − y−2
2 − y−1

1 y−2
2 .
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The first equation gives y2 = y−2
1 . Hence the second equation becomes

c − y4
1 − y3

1 = 0. (11.4)

(11.4) has a nonzero multiple root y1 = −3/4 if c = −27/256.
Namely if b = (log(−27/256))[D2], then POu

b has a degenerate critical point of
type A2.

Example 11.7. We again consider the example of two points blow up in section
5. Namely its moment polytope is (5.1) with β = 1−α

2 . We consider the point u =
(β, β). We put D2 = π−1({(u1, u2) ∈ P | u2 = 0}), and consider bc = (log c)[D2].
We have

POu(bc; y1, y2) = T β(cy2 + y−1
2 + y1 + y1y2) + T 1−βy−1

1 y−1
2 .

The (generalized) leading term equation is

c − y−2
2 + y1 = 0 = 1 + y2.

It has a nonzero solution (1 − c,−1) if c 6= 1. Hence there exists b such that

HF ((L(u), (bc, b)), (L(u), (bc, b)); Λ) 6= 0

if and only if c 6= 1.
If we deform only by b ∈ Λ+ then c = 1. Namely there is no such b with

nontrivial Floer cohomology. We remark that L(u) is bulk-balanced in the sense of
Definition 3.13 since it is a limit of balanced fibers.

The authors do not know an example of L(u) that carries a pair (b, b) with
b ∈ A(Λ0), b ∈ H1(L; Λ0) for which we have

HF ((L(u), (b, b)), (L(u), (b, b)); Λ) 6= 0,

but which is not bulk-balanced in the sense of Definition 3.13.

12. Appendix : Continuous family of multisections

In this section we review the techniques of using a continuous family of multi-
sections and integration along the fiber on their zero sets so that smooth corre-
spondence by spaces with Kuranishi structure induces a map between de Rham
complex.

This technique is not new and is known to various people. In fact [Ru], section 16
[Fu1] use a similar technique and section 33 [FOOO2], [Fu2], [Fu3] contain almost
the same argument as we describe below. We include the details here for reader’s
convenience which we used in section 8.

Let M be a space with Kuranishi structure and evs : M → Ms, evt : M → Mt

be strongly continuous smooth maps. (See Definition 6.6 [FO] and the description
below.) (Here s and t stand for source and target, respectively.) We assume our
smooth manifolds Ms,Mt are compact and oriented without boundary. We also
assume M has a tangent bundle and is oriented in the sense of Kuranishi structure.
(See Definition A1.14 [FOOO2] and the description below.)

Remark 12.1. We may relax the orientability assumption above by using local
coefficients in the same way as section A2 [FOOO2]. We do not discuss it here since
we do not need this generalization in this paper.
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We include the case when M has a boundary or corner. We assume that evt

is weakly submersive. (See A1.13 [FOOO2] and the description below.) In this
situation we will construct the map

(M; evs, evt)∗ : ΩkMs → Ωk+dim Mt−dimMMt. (12.1)

We call (12.1), the smooth correspondence map associated to (M; evs, evt).
The space M is covered by a finite number of Kuranishi charts (Vα, Eα,Γα, ψα, sα),

α ∈ A. They satisfy the following :

Condition 12.2. (1) Vα is a smooth manifold (with boundaries or corners)
and Γα is a finite group acting effectively on Vα.

(2) prα : Eα → Vα is a finite dimensional vector bundle on which Γα acts so
that prα is Γα- equivariant.

(3) sα is a Γα equivariant section of Eα.
(4) ψα : s−1

α (0)/Γα → M is a homeomorphism to its image.
(5) The union of ψα(s−1

α (0)/Γα) for various α is M.

We assume that {(Vα, Eα,Γα, ψα, sα) | α ∈ A} is a good coordinate system,
in the sense of Definition 6.1 [FO] or Lemma A1.11 [FOOO2]. This means the
following : The set A has a partial order <, where either α1 ≤ α2 or α2 ≤ α1 holds
for α1, α2 ∈ A if

ψα1(s
−1
α1

(0)/Γα1) ∩ ψα2(s
−1
α2

(0)/Γα2) 6= ∅.

Let α1, α2 ∈ A and α1 ≤ α2. Then, there exists a Γα1-invariant open subset
Vα2,α1 ⊂ Vα1 , a smooth embedding

ϕα2,α1 : Vα2,α1 → Vα2

and a bundle map

ϕ̂α2,α1 : Eα1 |Vα2,α1
→ Eα2 .

which covers ϕα2,α1 . Moreover there exists an injective homomorphism̂̂ϕα2,α1
: Γα1 → Γα2 .

We require that they satisfies the following

Condition 12.3. (1) The maps ϕα2,α1 , ϕ̂α2,α1 are ̂̂ϕα2,α1
-equivariant.

(2) ϕα2,α1 and ̂̂ϕα2,α1
induce an embedding of orbifold

ϕα2,α1
:

Vα2,α1

Γα1

→ Vα2

Γα2

. (12.2)

(3) We have

sα2 ◦ ϕα2,α1 = ϕ̂α2,α1 ◦ sα1 .

(4) We have

ψα2 ◦ ϕα2,α1
= ψα1

on
Vα2,α1 ∩ s−1

α1
(0)

Γα1

.
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(5) If α1 < α2 < α3 then

ϕα3,α2 ◦ ϕα2,α1 = ϕα3,α1 ,

on ϕ−1
α2,α1

(Vα3,α2).

ϕ̂α3,α2 ◦ ϕ̂α2,α1 = ϕ̂α3,α1 ,

and ̂̂ϕα3,α2
◦ ̂̂ϕα2,α1

= ̂̂ϕα3,α1
,

hold in the similar sense.
(6) Vα2,α1/Γα1 contains ψ−1

α1
(ψα1(s

−1
α1

(0)/Γα1) ∩ ψα2(s
−1
α2

(0)/Γα2)).

Condition 12.4. The condition that M has a tangent bundle means the following
: the differential of sα2 in the direction of the normal bundle induces a bundle
isomorphism

dsα2 :
ϕ∗

α2,α1
TVα2

TVα2,α1

→
ϕ̂∗

α2,α1
Eα2

Eα1

.

We say M is oriented if Vα, Eα is oriented, the Γα action is orientation preserving,
and dsα is orientation preserving.

A strongly continuous smooth map evt : M → Mt is a family of Γα invariant
smooth maps

evt;α : Vα → Mt (12.3)
which induces

evt;α : Vα/Γα → Mt

such that
evt;α2 ◦ ϕα2,α1

= evt;α1

on Vα2,α1/Γα. (Note Γα action on Mt is trivial.) evs : M → Ms consists of a
similar family, evs;α : Vα → Ms.

Our assumption that evt is weakly submersive means that each of evt;α in (12.3)
is a submersion.

We next review on the multisections. (See section 3 [FO].) Let (Vα, Eα,Γα, ψα, sα)
be a Kuranishi chart of M. For x ∈ Vα we consider the fiber Eα,x of the bundle
Eα at x. We take its l copies and consider the direct product El

α,x. We take the
quotient thereof by the action of symmetric group of order l! and let Sl(Eα,x) be
the quotient space. There exists a map

tmm : Sl(Eα,x) → Slm(Eα,x),

which sends [a1, · · · , al] to

[ a1, · · · , a1︸ ︷︷ ︸
m copies

, · · · , al, · · · , al︸ ︷︷ ︸
m copies

].

A smooth multisection s of the orbibundle

Eα → Vα

consists of an open covering ⋃
i

Ui = Vα

and si which maps x ∈ Ui to si(x) ∈ Sli(Eα,x). They are required to have the
following properties.
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Condition 12.5. (1) Ui is Γα-invariant. si is Γα-equivariant. (We remark
that there exists an obvious map

γ : Sli(Eα,x) → Sli(Eα,γx)

for each γ ∈ Γα.)
(2) If x ∈ Ui ∩ Uj then we have

tmlj (si(x)) = tmli(sj(x)) ∈ Slilj (Eα,γx).

(3) si is liftable and smooth in the following sense. For each x there exists a
smooth section s̃i of Eα ⊕ · · · ⊕ Eα︸ ︷︷ ︸

li times

in a neighborhood of x such that

s̃i(y) = (si,1(y), · · · , si,li(y)), si(y) = [si,1(y), · · · , si,li(y)]. (12.4)

We identify two multisections ({Ui}, {si}, {li}), ({U ′
i}, {s′i}, {l′i}) if

tmlj (si(x)) = tml′i
(s′j(x)) ∈ Slil

′
j (Eα,γx)

on Ui ∩ U ′
j . We say si,j to be a branch of si in the situation of (12.4).

We next discuss continuous family of multisections and their transversality. Let
Wα be a finite dimensional smooth oriented manifold and consider the pull-back
bundle

π∗
αEα → Wα × Vα

under the projection πα : Wα ×Vα → Vα. The action of Γα on Wα is, by definition,
trivial.

Definition 12.6. (1) A Wα-parameterized family sα of multisections is by def-
inition a multisection of π∗

αEα.
(2) We fix a metric of our bundle Eα. We say sα is ε-close to sα in C0 topology

if the following holds. Let (w, x) ∈ Wα × Vα. Then for any branch sα,i,j of
sα we have

|sα,i,j(w, · · · ) − sα(· · · )|C0 < ε

in a neighborhood of x.
(3) sα is said to be transversal to 0 if any branch sα,i,j of sα is transversal to

0.
(4) Let fα : Vα → M be a Γα-equivariant smooth map. We assume that sα is

transversal to 0. We then say that fα|s−1
α (0) is a submersion if the following

holds : Let (w, x) ∈ Wα×Vα. Then for any branch sα,i,j of sα the restriction
of

fα ◦ πα : Wα × Vα → M

to
{(w, x) | sα,i,j(w, x) = 0} (12.5)

is a submersion. We remark that (12.5) is a smooth manifold by our as-
sumption.

Remark 12.7. In case M has a boundary or a corner, so does (12.5). In this case
we require that the restriction of fα to each of the stratum of (12.5) is a submersion.
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Lemma 12.8. We assume that fα : Vα → M is a submersion. Then there exists
Wα such that for any ε there exists a Wα-parameterized family sα of multisections
which is ε close to sα, transversal to 0 and such that fα|s−1

α (0) is a submersion.
If sα is already given and satisfies the required condition on a neighborhood of a

Γα invariant compact set Kα ⊂ Vα, then we may extend it to the whole Vα without
changing it on Kα.

In the course of the proof of Lemma 12.8 we need to shrink Vα slightly. We do
not mention it explicitly.

Proof. We may choose Wα to be a vector space of sufficiently large dimension so
that there exists a surjective bundle map

Sur : Wα × Vα → Eα. (12.6)

We remark that (12.6) is not necessarily Γα-equivariant. We put

s(1)
α (w, x) = Sur(w, x) + sα(x).

We put
s(2)
α (w, x) = [γ1s

′
α(w, x), · · · , γgs

′
α(w, x)]

where Γα = {γ1, · · · , γg}. s(2) defines a multisection on Wα×Vα which is transversal
to 0 by construction. Moreover since (s(2)

α )−1(0) → Vα is a submersion it follows
from assumption that fα|(s(2)

α )−1(0)
is a submersion. By replacing Wα to a small

neighborhood of 0, we can choose s
(2)
α which is sufficiently close to sα.

The last part of the lemma can be proved by using an appropriate partition of
unity in the same way as section 3 [FO]. ¤

Now let θα be a smooth differential form of compact support on Vα. We assume
that θα is Γα-invariant. Let fα : Vα → M be a Γα equivariant submersion. (The
Γα action on M is trivial.) Let sα satisfy the conclusion of Lemma 12.8. We put
a smooth measure ωα on Wα of compact support with total mass 1. By fixing an
orientation on Wα we regard ωα as a differential form of top degree. We have∫

Wα

ωα = 1. (12.7)

We next define integration along the fiber

((Vα, Eα,Γα, ψα, sα), (Wα, ωα), sα, fα)∗(θα) ∈ Ωdeg θα+dim M−dimM(M).

Let (Ui, sα,i) be a representative of sα. Namely {Ui | i ∈ I} is an open covering of
Wα ×Vα and sα is represented by sα,i on Ui. By the definition of the multisection,
Ui is Γα-invariant. We may shrink Ui, if necessary, so that there exists a lifting
s̃α,i = (s̃α,i,1, · · · , s̃α,i,li) as in (12.4).

Let {χi | i ∈ I} be a partition of unity subordinate to the covering {Ui | i ∈ I}.
By replacing χi with its average over Γα we may assume χi is Γα-invariant.

We put
s̃−1
α,i,j(0) = {(w, x) ∈ Ui | s̃α,i,j(w, x) = 0}. (12.8)

By assumption s̃−1
α,i,j(0) is a smooth manifold and

fα ◦ πα|s̃−1
α,i,j(0)

: s̃−1
α,i,j(0) → M (12.9)

is a submersion.
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Definition 12.9. We define
((Vα, Eα,Γα, ψα, sα), (Wα, ωα), sα, fα)∗(θα)

=
1

#Γα

I∑
i=1

li∑
j=1

1
li

(fα ◦ πα|s̃−1
α,i,j(0)

)!((χiπ
∗
αθα ∧ ωα)|s̃−1

α,i,j(0)
).

(12.10)

Here (fα◦πα|s̃−1
α,i,j(0)

)! is the integration along fiber of the smooth submersion (12.9).

Lemma 12.10. The right hand side of (12.10) depends only on (Vα, Eα,Γα, ψα, sα),
(Wα, ωα), sα, fα, and θα but independent of the following choices :

(1) The choice of representatives ({Ui}, sα,i) of sα.
(2) The lifting s̃α,i.
(3) The partition of unity χi.

Proof. The proof is straightforward generalization of the proof of well-definedness
of integration on manifold, which can be found in the text book of manifold theory,
and is left to the leader. ¤

So far we have been working on one Kuranishi chart (Vα, Eα,Γα, ψα, sα). We
next describe the compatibility conditions among the Wα-parameterized families
of multisections for various α. During the construction we need to shrink Vα a bit
several times. We will not mention explicitly this point henceforth.

Let α1 < α2. We use an appropriate Γα2 invariant Riemannian metric on Vα2 to
define the exponential map

Expα2,α1
: ϕ∗

α2,α1
BεVα2 → V2. (12.11)

(Here BεVα2 is the ε neighborhood of the zero section of TVα2 .)
We identify a neighborhood of the image of (12.11) with ϕ∗

α2,α1
BεVα2/Γα1 . and

denote it by Uε(Vα2,α1/Γα1).
Using the projection

PrVα2,α1
: Uε(Vα2,α1/Γα1) → Vα2,α1/Γα1

we extend the orbibundle Eα1 to Uε(Vα2,α1/Γα1). Also we extend the embedding
Eα1 → ϕ̂∗

α2,α1
Eα2 , (which is induced by ϕ̂α2,α1) to Uε(Vα2,α1/Γα1).

We fix a Γα-invariant inner product of the bundles Eα. We then have a bundle
isomorphism

Eα2
∼= Eα1 ⊕

ϕ̂∗
α2,α1

Eα2

Eα1

(12.12)

on Uε(Vα2,α1/Γα1). We can use Condition 12.4 to modify Expα2,α1
in (12.11) so

that the following is satisfied.

Condition 12.11. If y = Expα2,α1
(ỹ) ∈ Uε(Vα2,α1/Γα1) then

dsα2(ỹ mod TVα1) ≡ sα2(y) mod Eα1 . (12.13)

Let us explain the notation of (12.13). We remark that ỹ ∈ Tϕα2,α1 (x)Vα2 for
x = Pr(ỹ) ∈ Vα2,α1 . Hence

ỹ mod TVα1 ∈
Tϕα2,α1 (x)Vα2

TxVα1

.

Therefore

dsα2(ỹ mod TVα1) ∈
(Eα2)ϕα2,α1 (x)

(Eα1)x
.
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(12.13) claims that it coincides with sα2 modulo (Eα1)x.
We remark that Condition 12.4 implies that

d

dt
(Expα2,α1

(tỹ))|t=0 ≡ d

dt
sα2(Expα2,α1

(tỹ))|t=0 mod Eα1 .

Therefore we can use implicit function theorem to modify Expα2,α1
so that Condi-

tion 12.11 holds.
Let Wα1 be a finite dimensional manifold and sα1 be a multisection of π∗

α1
Eα1

on Wα1 × Vα1 . We put Wα2 = Wα1 × W ′, where W ′ is to be defined later.

Definition 12.12. A multisection sα2 of Wα2 × Vα2 is said to be compatible with
sα1 if the following holds for each y = Expα2,α1

(ỹ) ∈ Uε(Vα2,α1/Γα1).

sα2((w,w′), y) = sα1(w,Pr(ỹ)) ⊕ dsα2(ỹ mod TVα1). (12.14)

We remark that sα1(w,Pr(ỹ)) is a multisection of π∗
α1

Eα1 and dsα2(ỹ mod TVα1)
is a (single valued) section. Therefore using (12.12) the right hand side of (12.14)
is an element of Sli(Eα2)x (x = Pr(ỹ)), and hence is regarded as a multisection of
π∗

α2
Eα2 . In other words, we omit ϕ̂α2,α1 in (12.14).
Condition 12.11 implies that the original Kuranishi map sα satisfies the compat-

ibility condition (12.14). We use this and (the proof of) Lemma 12.8 and prove the
following. Let evt : M → Mt be a weakly submersive strongly smooth map. We
choose a good coordinate system (Vα, Eα,Γα, ψα, sα) and let evt,α : Vα → Mt be a
local representative of evt.

Lemma 12.13. We have Wα such that for each ε there exists sα, a Wα-parameterized
family of multisections with the following properties.

(1) sα is transversal to 0.
(2) evt,α|s−1

α (0) is a submersion.
(3) sα is ε close to sα.
(4) sα2 is compatible with sα1 for each α1 < α2.

If {sα} is already defined and satisfies (1) - (4) on a neighborhood of a compact set
K ⊂ M, then we may choose sα without changing it on K.

Proof. The proof is by induction on α. (We remark that A (the totality of α’s) is
partially ordered.) For minimal α we use Lemma 12.8 to prove existence of sα. If
we have constructed sα′ for every α′ smaller than α, then we use (12.14) to define
sα on a neighborhood of the images of Vα,α′ for various α′ < α. They coincide on
the overlapped part by the induction hypothesis and Condition 12.3. Condition
12.11 then implies that this is still ε close to sα. Therefore we can use Lemma 12.8
(the relative version) to extend it and obtain sα. (We choose W ′ at this step.)

The proof of the last statement is similar. ¤

We choose measures ωα on Wα such that the measure ωα2 is a direct product
measure ωα1 × ω′ on Wα × W ′ if α1 < α2.

We next choose a partition of unity χα subordinate to our Kuranishi charts. To
define the notion of partition of unity, we need some notation. For α1 < α2, we take
the normal bundle NVα1α2

Vα2 of ϕα1α2(Vα1α2) in Vα2 . Let Prα1α2 : NVα1α2
Vα2 →

Vα1α2 be the projection. We fix a Γα1-invariant positive definite metric of NVα1α2
Vα2

and let rα1α2 : NVα1α2
Vα2 → [0,∞) be the norm with respect to this metric. We
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fix a sufficiently small δ and let χδ : R → [0, 1] be a smooth function such that

χδ(t) =

{
0 t ≥ δ

1 t ≤ δ/2.

Let Uδ(Vα1α2/Γα1) be the image of the exponential map. Namely

Uδ(Vα1α2/Γα1) = {Exp(v) | v ∈ NVα1α2
Vα2/Γα1 | rα1α2(v) < δ}.

We push out our function rα1α2 to Uδ(Vα1α2/Γα1) and denote it by the same sym-
bol. It is called a tubular distance function. We assume appropriate compatibility
condition for various tubular neighborhoods and tubular distance functions. See
[Ma] and section 35.2 [FOOO2].

Let x ∈ Vα. We put
Ax,+ = {α+ | x ∈ Vα+,α, α+ > α}
Ax,− = {α− | [x mod Γα] ∈ Uδ(Vα,α−/Γα−), α− < α}.

For α− ∈ Ax,− we take xα− such that Exp(xα−) = x.

Definition 12.14. A system {χα | α ∈ A} of Γα-equivariant smooth functions
χα : Vα → [0, 1] of compact support is said to be a partition of unity subordinate
to our Kuranishi chart if :

χα(x) +
∑

α−∈Ax,−

χδ(rαα−(xα−))χα−(Prα1α2(xα−)) +
∑

α+∈Ax,+

χα+(ϕα+,α(x)) = 1.

Lemma 12.15. There exists a partition of unity subordinate to our Kuranishi
chart.

Proof. We may assume that A is a finite set since M is compact. By shrinking
Vα if necessary we may assume that there exists V −

α such that V −
α is a relatively

compact subset of Vα and that Eα, ϕα2,α1 , sα, etc restricted to V −
α still defines a

good coordinate system. We take a Γα invariant smooth function χ′
α on Vα which

has compact support and satisfies χ′
α = 1 on V −

α . We define

hα(x) = χ′
α(x)+

∑
α−∈Ax,−

χδ(rαα−(xα−))χ′
α−

(Prα1α2(xα−))+
∑

α+∈Ax,+

χ′
α+

(ϕα+,α(x)).

Using compatibility of tubular neighborhoods and tubular distance functions, we
can show that hα is Γα invariant and

hα2(ϕα2,α1(x)) = hα1(x)

if x ∈ Vα2,α1 . Therefore
χα(x) = χ′

α(x)/hα(x)
has the required properties. ¤

Now we consider the situation we start with. Namely we have two strongly
continuous smooth maps

evs : M → Ms, evt : M → Mt

and evt is weakly submersive. Let h be a differential form on Ms. We choose
(Vα, Eα,Γα, ψα, sα), (Wα, ωα), sα which satisfies (1) - (4) of Lemma 12.13. We also
choose a partition of unity χα subordinate to our Kuranishi chart. We put

θα = χα(evs ◦ πα)∗h (12.15)

which is a differential form on Wα × Vα.



LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS II 73

Definition 12.16. We define

(M; evs, evt)∗(h) =
∑
α

((Vα,Γα, Eα, ψα, sα), (Wα, ωα), sα, evt,α)∗(θα). (12.16)

This is a smooth differential form on Mt.

Remark 12.17. (1) Actually the right hand side of (12.16) depends on the
choice of (Vα, Eα,Γα, ψα, sα), (Wα, ωα), sα. We write s to demonstrate this
choice and write (M; evs, evt, s)∗(h).

(2) The right hand side of (12.16) is independent of the choice of partition
of unity. The proof is similar to the well-definiedness of integration on
manifolds.

In case M has a boundary ∂M, the choices (Vα, Eα,Γα, ψα, sα), (Wα, ωα), sα

on M induces one for ∂M. We then have the following :

Lemma 12.18 (Stokes’ theorem). We have

d((M; evs, evt, s)∗(h)) = (M; evs, evt, s)∗(dh) + (∂M; evs, evt, s)∗(h). (12.17)

We will discuss the sign at the end of this section.

Proof. Using the partition of unity χα it suffices to consider the case when M has
only one Kuranishi chart Vα. We use the open covering Ui of Vα and the partition
of unity again to see that we need only to study on one Ui. In that case (12.17) is
immediate from the usual Stokes’ formula. ¤

We consider the following situation. We assume M is a space with Kuranishi
structure with corners. Let ∂cM, c = 1, · · · , C be a decomposition of the boundary
∂M into components. The intersection ∂cM∩ ∂c′M is a codimension 2 stratum of
M if it is nonempty. We denote it by ∂cc′M. (Actually there may be a case where
there is a self intersection of ∂cM with itself. If it occurs there is a codimension 2
stratum of M corresponding to the self intersection points. We write it as ∂ccM.)
∂cM is regarded as a space with Kuranishi structure which we denote by the same
symbol. (This is slightly imprecise in case there is a self intersection. Since the way
to handle it is rather obvious we do not discuss it here.) The boundary of ∂cM is
the union of ∂cc′M for various c′. (Actually we include the case c′ = c. In that case
we take two copies of ∂ccM , which become components of the boundary of ∂cM.)

Now we have the following :

Lemma 12.19. If there exists data sc as in Remark 12.17 (1) on each of ∂cM.
We assume that the restriction of sc to ∂cc′M coincides with the restriction of sc′

to ∂cc′M. We assume a similar compatibility at the self intersection ∂ccM.
Then there exists a datum s on M whose restriction to ∂cM is sc for each c.

Proof. Using the compatibility condition we assumed we can define s in a neighbor-
hood of the union ∂cM over c. We can then extend it by using Lemma 12.13. ¤

We next discuss composition of smooth correspondences. We consider the fol-
lowing situation. Let

evs;st : Mst → Ms, evt;st : Mst → Mt

be as before such that evt;st is weakly submersive. Let

evr;rs : Mrs → Mr, evs;rs : Mrs → Ms
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be a similar diagram such that evs;rs is weakly submersive. We use the fact that
evs;rs is weakly submersive to define the fiber product

Mrs evs;rs ×evs;st Mst

as a space with Kuranishi structure. We write it as Mrt. We have a diagram of
strongly continuous smooth maps

evr;rt : Mrt → Mr, evt;rt : Mrt → Mt.

It is easy to see that evt;rt is weakly submersive.
We next make choices sst, srs for Mst and Mrs. It is easy to see that it

determines a choice srt for Mrt.
Now we have :

Lemma 12.20 (Composition formula). We have the following formula for each
differential form h on Mr.

(Mrt; evr;rt, evt;,rt, s
rt)∗(h)

= ((Mst; evs;st, evt;,st, s
st)∗ ◦ (Mrs; evr;rs, evs;,rs, s

rs)∗)(h).
(12.18)

Proof. Using a partition of unity it suffices to study locally on Mrs, Mst. In that
case it suffices to consider the case of usual manifold, which is well-known. ¤

We finally discuss the signs in Lemmas 12.18 and 12.20. It is rather cumbersome
to fix appropriate sign convention and show those lemmata with sign. So, instead,
we use the trick of section 53.3 [FOOO2] (see also section 13 [Fu3]) to reduce the
orientation problem to the case which is already discussed in Chapter 9 [FOOO2],
as follows.

For generic w ∈ Wα, the space s−1
α,i,j(0)∩({w}×Ui) is a smooth manifold. Hence

the right hand side of (12.10) can be regarded as an average of the correspondence
by s−1

α,i,j(0) ∩ ({w} × Ui) over w. We can also represent the smooth form h by an
appropriate average (with respect to certain smooth measure) of a family of currents
realized by smooth singular chains. So, as far as sign concerns, it suffices to consider
a current realized by a smooth singular chain. Then the right hand side of (12.10)
turn out to be a current realized by a smooth singular chain which is obtained from
a smooth singular chain on Ms by a transversal smooth correspondence. In fact,
we may assume that all the fiber products appearing here are transversal, since it
suffices to discuss the sign at the generic point where the transversality holds. Thus
the problem reduces to find a sign convention (and orientation) for correspondence
of the singular chains by a smooth manifold. In the situation of our application,
such sign convention (singular homology version) was determined and analyzed in
detail in Chapter 9 [FOOO2]. Especially the existence of an appropriate orientation
that is consistent with the sign appearing in A∞ formulae etc. was proved there.
Therefore we can prove that there is a sign (orientation) convention which induces
all the formulae we need with sign, in our de Rham version, as well. See section
53.3 [FOOO2] or section 13 [Fu3] for detail.

References

[Ber] B.G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields.
Mathematical Surveys and Monographs, 33. American Mathematical Society, Provi-

dence, RI, 1990.



LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS II 75
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