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1. INTRODUCTION

This is the second of series of papers to study Lagrangian Floer theory on toric
manifolds. The main purpose of this paper is to explore bulk deformations of
Lagrangian Floer theory, which we introduced in section 13 [FOOO2] and draw
its applications. In particular, we prove the following Theorems 1.1, 1.3. We
call a Lagrangian submanifold L of a symplectic manifold X non-displaceable if
(L) N L # § for any Hamiltonian diffeomorphism 1 : X — X.

Theorem 1.1. Let X}, be the k-points blow up of CP? with k > 2. Then there exists
a toric Kahler structure on Xy, such that there exist a continuum of non-displaceable
Lagrangian fibers L(u).

Moreover they have the following property : If ¥ : X — X is a Hamiltonian
isotopy such that ¥(L(u)) is transversal to L(u) in addition, then

#((L(w)) N L(u)) = 4.

Remark 1.2. (1) We state Theorem 1.1 in the case of the blow up of CP2.
We can construct many similar examples by the same method.
(2) We will prove Theorem 1.1 by proving the existence of b € H?(Xy; A, ) and
r € H(L(u); Ap) such that

HF(<L(U)5 (bﬁC))’ (L(u>7 (‘LI)); AO) = H(T2§ AO)' (1'1)
Here
AO = {i(llT/\‘ ceA|lN > 0, li}’n A = 00, a; € R} , (12)
i=1

(R is a field of characteristic 0) and

Ay = {ZaiTAi eA ‘ A > O} (1.3)

i=1

are the universal Novikov ring and its maximal ideal. The left hand side

of (1.1) is the Floer cohomology with bulk deformation. See section 13
[FOOO2] and section 2 of this paper for its definition.

(3) In Part IV of this series of papers, we will study this example further

and prove that the universal cover Iﬁ?n(Xk) of the group of Hamiltonian
diffeomorphisms allows infinitely many continuous and homogeneous Calabi
quasi-morphisms ¢,, : P/I—C\LT/R(Xk) — R (see [EP]) such that for any finitely
many ui,--- ,uy there exists a subgroup = ZN C %(Xk) on which
(Puyy s Puy) 2 ZN — RN is injective.

In sections 8 and 9 [FOOO3], we introduced the notion of leading term equation
for each Lagrangian fiber L(u) of a toric manifold X. See also section 4 of this paper.
The leading term equation is a system consisting of n-elements of the Laurent
polynomial ring Cly1, - -+ ,yn,y; -,y '] of n variables. (Here n = dim L(u).) In
section 9 [FOOO3], we proved that if the leading term equation has a solution in (C\
{0})™ then L(u) has a nontrivial Floer cohomology for some bounding cochain ¢ in
HY(L(u); Ag) under certain nondegeneracy conditions. The next theorem says that
if we consider more general class of Floer cohomology integrating bulk deformations
into its construction, we can remove this nondegeneracy condition.
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Theorem 1.3. Let X be a compact toric manifold and L(u) its Lagrangian fiber.
Suppose that the leading term equation of L(u) has a solution in (C\ {0})".
Then there exists b € H?(X;Ay) and r € H(L(u); Ao) satisfying

HF((L(u), (b,x)), (L(u), (b,)); Ao) = H(T"; Ao). (1.4)

Corollary 1.4. Let X be a compact toric manifold and L(u) its Lagrangian fiber.
Suppose that the leading term equation of L(u) has a solution in (C\ {0})™. Then
L(u) is non-displaceable.

Moreover L(u) has the following property. If ¢ : X — X is a Hamiltonian
isotopy such that ¥(L(w)) is transversal to L(u), then

#(P(L(u)) N L(u)) = 27, (1.5)
where n = dim L(u).

The converse to Theorem 1.3 also holds. (See Theorem 4.7.)

The leading term equation can be easily solved in practice for most of the com-
pact toric manifolds, which are not necessarily Fano. Theorem 1.3 enables us
to reduce the problem to locate all L(u) such that there exists a pair (b,r) €
H?(X;Ay) x H(L(u); Ap) satisfying (1.4) to the problem to decide existence of
nonzero solution of explicitly calculable system of polynomial equations. In [FOOO3]
we provided such a reduction for the case b = 0. If all the solutions of the leading
term equation are weakly nondegenerate (see Definition 9.2 [FOOO3]), Floer coho-
mology with b = 0 seems to enough for the general study of non-displacement of
Lagrangian fibers. The method employed in this paper works for arbitrary com-
pact toric manifolds without nondegeneracy assumption, and the calculation is
actually simpler. We believe that this method provides an optimal result on the
non-displacement of Lagrangian fibers. (See Conjectures 3.16 & 3.20.)

Remark 1.5. In [Cho], Cho used Floer cohomology with ‘B-field’ to study non-
displacement of Lagrangian fibers in toric manifolds. ‘B-field’ which Cho used is
parameterized by H?(X;+/—1R). The bulk deformation we use in this paper is
parameterized by b € H*(X;Ag). If we restrict to b € H?(X;+v/—1R) our bulk
deformation by b in this paper coincides with the deformation by a ‘B-field’ in

[Cho].

A brief outline of each section of the paper is now in order. In section 2, we
review construction of the operator q given in section 13 [FOOO2] and explain how
we use q to deform Floer cohomology. In section 3 we provide a more explicit
description thereof for the case of compact toric manifolds and study its relation
to the potential function with bulk, which is the generating function defined by
the structure constants of g. This section also contains various results on the
operator q and on the potential function with bulk. These results will be used also
in Parts III and IV of this series of papers. In section 4, we explain how we use
the results of section 3 to study Floer cohomology of Lagrangian fibers of compact
toric manifolds. Especially we prove Theorem 1.3 there. Section 5 is devoted to
the proof of Theorem 1.1. In this section we discuss the case of two points blow up
of CP? in detail and illustrate the way to locate all the Lagrangian fibers that have
nontrivial Floer cohomology (after bulk deformation). The calculation we perform
in this section can be generalized to arbitrary compact toric manifolds. In section
6 we describe the results on the moduli space of pseudo-holomorphic discs with
boundary on a Lagrangian fiber of a general toric manifold, which are basically
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due to [CO]. We use these results in the study of the operator q. In section 7 we
carry out some calculation of the potential function with bulk deformation which is
strong enough to locate all the Lagrangian fibers with nontrivial Floer cohomology
(after bulk deformation).

In section 8 we use the Floer cohomology with bulk deformation in the study of
non-displacement of Lagrangian submanifolds. For this purpose we define the coho-
mology between a pair of Lagrangian submanifolds L and (L) for a Hamiltonian
diffeomorphism . We also show that this Floer cohomology of the pair is isomor-
phic to the Floer cohomology of L itself. This is a standard process one takes to
use Floer cohomology for the non-displacement problem dating back to Floer [FI].
We include bulk deformations and deformations by bounding cochain there. These
results were previously obtained in [FOOO2]. However we give rather detailed ac-
count of these constructions here in order to make this paper as self-contained as
possible. To avoid too much overlap with that of [FOOQO2] in this paper, we give
a proof using the de Rham cohomology version here which is different from that of
[FOOO2] in which we used the singular cohomology version. In section 9 we study
the convergence property of potential functions. Namely we prove that the poten-
tial function is contained in the completion of the ring of Laurent polynomials over
a Novikov ring with respect to an appropriate non-Archimedean norm. This choice
of the norm depends on the Kéhler structure (or equivalently to the moment poly-
tope). We discuss the natural way to take completion and show that our potential
function actually converges in that sense. In section 10, we discuss the relation of
Euler vector fields and the potential function. In section 11, we slightly enlarge
the parameter space of bulk deformations including b from H(X; Ag) not just from
H(X;A4). In section 12, we review the construction of smooth correspondence
in de Rham cohomology using continuous family of multisections and integration
along fibers via its zero sets.

Notations and conventions

We take any field R containing Q. The universal Novikov ring Ag is defined as
(1.2), where a; € R. Its ideal Ay is defined as (1.3).

A= {i aiT)‘i
i=1

is the field of fraction of Ag.
In case we need to specify R we write Ag(R), Ay (R), A(R). The (non-Archimedean)
valuation v on them are defined by

o (Z (LiTAi> = mf{)\z | a; 7é 0}
=1

It induces a non-Archimedean norm ||z|| = e~*7(*) and defines a topology on them.
Those rings are complete with respect to this norm.

If C is an R vector space, we denote by C(Ag) the completion of C ® Ay with
respect to the non-Archimedean topology of Ag. In other words its elements are of

the form
et

a; € RN ER) N\ < >\¢+1, hm A = OO}
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such that a; € C, )\i < /\7;_;,_1, >\i > 0, limi_)oo )\z = Q. O(A+), O(A), C(Ao(R)),
C(A+(R)), C(A(R)) are defined in the same way.

We denote by (X,w) the compact toric manifold, with Kéhler form w given.
m: X — P is the moment map, where P C R". We write the vector space R"
containing P by Mg. Its dual space is denoted by Ng. L(u) is a fiber 7~!(u) where
u € Int P. We define an R linear isomorphism

Hy(L(u);R) — Ne. (1.6)
as follows. Let f € Hy(L(u):Z). The moment map of the action of

S'=fR mod Hy(L(u);Z) € Hi(L(u);R)/Hy(L(u); Z) =T"
is denoted by fg pf factors thorough P C Mg so that By = ﬁfo m, where [Lf is

affine. We associate dji € Ng to f. This induces (1.6).
The boundary JP is divided into m codimension 1 faces, which we denote by
0P (i=1,---,m.) In [FOOO3], we defined affine maps ¢; : Mr — R such that

0P ={ue Mg | ¢;(u) =0}, P={ue Mg|l(u)>0, i=1,---,m}.
We put 0; = d¢; € Ng = Hi(L(u);R). In fact 0; € Hy1(L(u);Z), i.e., ¥; is an integral

vector.
We denote by x; (i = 1,---n) the coordinates of H'(L(u);Ag) with respect to
the basis e; and put y; = e**.

2. BULK DEFORMATIONS OF FLOER COHOMOLOGY

In this section, we review the results of section 13 of [FOOO?2].

Let (X,w) be a compact symplectic manifold and L be its Lagrangian subman-
ifold. We take a finite dimensional graded R-vector space H of smooth singular
cycles of X. (Actually we may consider a subcomplex of the smooth singular chain
complex of X and consider smooth singular chains. Since consideration of chain
level arguments is not needed in this paper, we restrict ourselves to the case of
cycles. See [FOOO02] and Part IIT of this series of papers for relevant explanations.)

We regard an element of H as a cochain (cocycle) by identifying a k-chain with
a (2n — k)-cochain where n = dim L.

In section 13 [FOOO2] we introduced a family of operators denoted by

ag.ek - Ee(H[2]) ® By (H*(L; R)[1]) — H*(L; R)[1]. (2.1)
Explanation of the various notations appearing in (2.1) is in order. § is an element
of the image of mo(X, L) — Ho(X, L; Z). H[2] is the degree shift of H by 2 defined
by (H[2])¢ = H¥*2. H*(L; R)[1] is the degree shift of the cohomology group with
R coefficient. The notations E, and Bj are defined as follows. Let C' be a graded
vector space. We put
BC=0C® ---0C.

The symmetric group &y, of order k! acts on ByC by
o (#1® - @ap) = (—1)"To01) @+ @ Ty k),

where

* = Z deg z; deg x;.
i<j;o(i)>0(j5)
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EC is the set of Gg-invariant elements of BxC. The map (2.1) is a Q-linear map
of degree 1 — u(8) here p is the Maslov index.
We next describe the main properties of gg.,. Let BiC be as above and put

BC = é B;C.
k=0

(We remark BoC = R.) BC has the structure of coassociative coalgebra with its
coproduct A : BC — BC ® BC defined by
k
Az ® - @) ZZ(xl R @) ® (Tiy1 ® -+ ® Tp).
i=0
This induces a coproduct A : EC — EC ® EC with respect to which EC' becomes
a coassociative and graded cocommutative.
We also consider a map A"~ : BC — (BC)" or EC — (EC)™ defined by
A" = (AQid® - ®id)o (A®id® - Qid)o---oA.
——— ——
n—2 n—3

For an indecomposable element x € BC it can be expressed as

n— 1 nl n;n
A E X, QX

where ¢ runs over all partitions of n. For an element
X=11® - Q@ € By(H(L; R)[1])
we put the shifted degree deg’ z; = degz; + 1 and
deg’ x = Zdeg' x; =degx + k.
(Recall deg x; is the cohomological degree of x; before shifted.)

Theorem 2.1. (Theorem 13.32 [FOOO2]) The operators qg.e. have the following
properties.
(1) For each 3 and x € Bk(H(L' R)[1]), y € Ex(H][2]), we have the following :
0= > > (-Das i x @as(va’ xi?) @ x3) (2.2)
B1+B2=p c1,c2
where
* = deg’ x L4 deg’ x degy —|—degy3511.
In (2.2) and hereafter, we write qg(y, x) in place of qp.er(y,x) if y €
Ey(H[2]), x € Bi(H(L; R)[1]).
(2) If1 € Ey(H[2]) and x € B,(H(L; R)[1]) then
A0,k (1, X) = M (x). (2:3)
Here mg,y, is the filtered Ao structure on H(L; R).
(3) Let e = PD([L]) be the Poincaré dual to the fundamental class of L. Let
x; € B(H(L; R)[1]) and we put x =x1 ® e @ x3 € B(H(L; R)[1]). Then
as(y,x) =0 (2.4)

except the following case.

15, (e @) = (~1)"%7qg,(L,z @ e) =z, (2.5)
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where fp =0 € Ho(X,L;Z) and x € H(L; R)[1] = B1(H(L; R)[1]).

Theorem 2.1 is proved in sections 13 and 32 [FOOO02]. We will recall its proof
in section 7 in the case when X is a toric manifold, R = R and L is a Lagrangian
fiber of X.

We next explain how we use the map q to deform filtered A, structure m on L.
In this section we use the universal Novikov ring

)\i ng
AO,nov = {§ ciT™e

which was introduced in [FOOO1]. We write Ag noy(R) in case we need to specify
R. The ideal AT of Ag nov is the set of all elements ZciTAie”i of Ag pov such

0,nov
that A\; > 0. We put FAAQJWJ = T’\Ao,nov- It defines a filtration on Ag 0., under
which Ag ney is complete. Ag o, becomes a graded ring by putting dege = 2,
degT = 0.

We choose a basis f, (a =1,---,B) of H and consider an element

b=> buf. € H(AS,,,)

such that degb, + degf, = 2 for each a. We then define

M@, ay) = S eMORTI 2T (69 gy L ), (2.6)
3,6,k

Here p: mo(X, L) — Z is the Maslov index.
Lemma 2.2. The family {m}}22, defines a filtered Aoo structure on H(L; Ao nov)-
Proof. We put

Ci € R7>\’i Z O,Hi S Z7 hm )\7'/ = +OO}
1— 00

et = Z bt
=0
Then we have
Ae®) =€’ @b,
Lemma 2.2 follows from this fact and Theorem 2.1. (See Lemma 13.39 [FOOO2]
for detail.) O

Let b € HY(L;A{,,..,)- We say b is a weak bounding cochain of the filtered A,

0,n0v

algebra (H(L; Ao nov), {ml}) if it satisfies
> mib,---,b) = cPD([L)])
k=0

where PD([L]) € H°(L;Q) is the Poincaré dual to the fundamental cycle and
ce AT By a degree counting, we find that degc = 2.

0,nov*

We denote by .A//Tweak,def(L;AJr ) the set of the pairs (b,b) of elements b €

0,n0v

H ® A{ . of degree 2 and weak bounding cochain b of (H(L; Ag,nov), {mf}).

0,n0v
We define PO(b,b) by the equation
PO(b,b)e = c.
By definition PBO(b,b) is an element of A7,

PO(b,b) € Ay

where we recall (1.3) for the definition of A .

of degree 0 i.e.,
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We call the map

PO : Muearder(Li A oy) — At

the potential function. We also define the projection
7+ Muealaet(L AG o) = HO A,
by
(b, b) =
Let by = (b,b1),bg = (b, bp) € Mweak def (L On ») with
m(b1) = b =m(bp).
We define an operator
6P1Po s H(L; Ag) — H(L; o)

of degree +1 by

b1,b ®k ®k
6120 ( Z My g1 (07 @2 @ b5™).
k1,ko

Lemma 2.3.
(87120 0 8°1P0) () = (=P (br) + PO (b))ex.

Proof. This is an easy consequence of Theorem 2.1. See [FOOO2] Proposition
12.17. [l

Definition 2.4. ([FOOO2| Definition 13.61.) For a pair of elements by, by €
Miearder(L; AG o) With (b1) = 7(bg), PO(b1) = PO(by), we define

Ker(§P1:Po)

HF((Lab1)> (L7b0); Ao,nov) = m-

This is well defined by Lemma 2.3.
y [FOOO2] Theorem 24.22, Floer cohomology is of the form

A nov
HF((L,b1), (L, bo): Ao.no) = A o © €D iy, 1

We call a the Betti number and A; the torsion exponent of the Floer cohomology.
The following is a consequence of Theorems G and J [FOOO2] combined. (See
also section 8.)

Theorem 2.5. Let by,bg € Mweak def(L; A0 now) D€ as in Definition 2.4. Let
¥ : X — X be a Hamiltonian diffeomorphism. We assume (L) is transversal to

L.

(1) The order of w(L) N L is not smaller than the Betti number a of the Floer
cohomology HF((L,b1), (L, bo); Ao nov)-

(2) Let {\;} be the torsion exponents of HF ((L,b1),(L,bo); Ao nov) and E be
the Hofer distance of ¥ from identity. Let b be the number of A\; which is
not smaller than E. Then the order of ¥(L)N L is not smaller than a+ 20.
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3. POTENTIAL FUNCTION WITH BULK

In this section, we specialize the story of the last section to the case of toric
fibers, and make the construction of section 13 [FOOO2] explicit in this case. We
also generalize the results from section 12 [FOOO3] and the story between Floer
cohomology and the potential function to the case with bulk deformations.

Let X be a compact toric manifold and P its moment polytope. Let 7 : X — P
be the moment map. For each face (of arbitrary codimension) P, of P we have a
complex submanifold D, = W_I(Pa) for a = 1,---,B. We enumerate P, so that
the first m P,’s correspond to the m codimension one faces of P. Here we note
that the complex codimension of D, is equal to the real codimension of P,. Let A
be the free abelian group generated by D,. (In this paper we do not consider the
case when P, = P.) It is a graded abelian group A = @,.A4, with its grading given
by the (real) dimension of D,. We put D = 7~}(9P) = U,D,, that is, the toric
divisor of X. We denote

Ak(Z) = Aon—k
We remark that A, is nonzero only for even ¢ and so A* is nonzero for even k.
The homomorphism : As,_r — Ha,—(X;Z) and the Poincaré duality induce a
surjective homomorphism

i AN(Z) — HF(X;7)
for k # 0. We remark that 4, is not injective. For example A*(Z) =2 Z™ (where m

is the number of irreducible components of D) and H?(X;Z) = Z™~". In fact we
have the exact sequence

0 — Hy(X;Z) — Ho(X, X\ D;Z) — Hy(X \ D;Z) = Z" — 0.
On the other hand, since Hy(N(D); ON (D)) = H?*"~2(N (D)) & H?"~2(D), (where
N(D) is a regular neighborhood of D in X) we have Ho(X, X \ D;Q) = Q™
A Q).

We denote the set of A -cycles by A¥(A,) = A* @z A,. The following is a
generalization of Proposition 3.2 [FOOO3].

Proposition 3.1. We have the canonical inclusion
A(Ag) x HY(L(w); Ag) = Muearaet(L(w)).

Proposition 3.1 will be proved in section 7. We remark that the map 4, : A*(Z) —
HF(X;Z) is not injective. Therefore, the gauge equivalence relation (See Defini-
tion 16.1 [FOOO2].) on the left hand side is nontrivial. So the right hand side
is not Myeak,def(L(1)), the set of gauge equivalence classes of the elements of

—

Mweak,def(L(u))-
For b € @, A*(A), u € Int P, we define
PO“(b,b) : H' (L(u); Ay) — Ay

by

POU(b,b) = Z Twmﬂ/gﬂqg;g,k(b(@z; b®k) N [L(w)]. (3.1)

B,k

We remark that the summation on right hand side includes the term where £ = 0.
The term corresponding thereto is

3 T2 s (b5F) A [L(w)] = PO (b)
k,B
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which is nothing but the potential function in the sense of section 3 [FOOO3].
Namely we have the identity

PO (0,5) = PO (b). (3.2)
This function (3.1) is also a special case of the potential function we discussed in
section 2. (We will not use the variable e in this section.)

We put
szwa[Da], b:Zaszez

Here e; (i = 1,---,n) is a basis of H'(L(u);Z). (See [FOOO3] Lemma 3.3.) We
also put u = (u1, -+ ,uy,), and y; = €. (See the end of section 1.) We next discuss
a generalization of [FOOO3| Theorem 3.5.

To state it we need some notations.

Definition 3.2. A discrete submonoid of R>¢ is a subset G C R>( such that

(1) G is discrete.
(2) If g1, g0 then g1 + g2 € G. 0 € G.

Hereafter we say discrete submonoid in place of discrete submonoid of R>q for
simplicity.

For any discrete subset X of R>( there exists a discrete submonoid containing
it. The discrete submonoid G generated by X is, by definition, the smallest one
among them. We write G = (X).

Compare Condition 6.11 [FOOO2]. In [FOOO2] we considered G C Rx>g X 2Z.
Since we do not use the grading parameter e we consider G C R>¢ in this paper.

Definition 3.3. Let C; be an R vector space. We denote by C;(Ag) the completion
of C; ® Ag. Let G be a discrete submonoid.
(1) An element z of C;(Ag) is said to be G-gapped if
T = Z xgT?
geG

where z4 € C;.
(2) A filtered Ay module homomorphism f : C1(Ag) — Ca(Ao) is said to be
G-gapped if there exists R linear maps f, : C; — Cs for g € G such that

flx) =Y T7fy(a).
geG

Here we extend f, to f, : Ci(Ag) — C2(Ao) in an obvious way.

The G-gappedness of potential functions, of filtered A, structures, and etc. can
be defined in a similar way.
We define

G(X)=({wnp|p e m(X) is realized by a holomorphic sphere}). (3.3)

Denote by Ghuk a discrete submonoid containing G(X).
We put

POG(b) =Y Tyt gy (3.4)
=1

and call it the leading order potential function.
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Theorem 3.4. Let X be an arbitrary compact toric manifold and L(u) as above
and b € A(Ay) a Goux gapped element. Then there exist ¢, € Q, €' € Z>o,

P € Gpuk and p, > 0, such that Z:’;l et >0 and
POU(b;5) — POG(D) = > couy ™" - yn” T Tee (3.5)
o=1

where
m m
!/ ) / )
Uy = g ek, Lo = g e l;. (3.6)
i=1 i=1
If there are infinitely many non-zero c,’s, we have

lim p, = oo. (3.7)

g— 00

Theorem 3.4 is proved in section 7. (3.7) slightly improves corresponding state-
ment in Theorem 3.5 [FOO03].

We regard PO as a function of w; and y; and write PO (w1, -+ , wB; Y1, , Yn)-
(Here B =Y, rank A*.) Then Theorem 3.4, especially (3.7), implies the following

Lemma 3.5. The potential function
PO (wr, - s wpiyr, - yn) : (M) X (14+AL)" — Ao
is extended to a function : (Ay)B x (Ag)™ — Ay.

We remark that 1 + A is the set of elements 1 + 2 € Ag with z € AL . It
coincides with the image of exp : Ay — Ag. We denote the extension by the same
symbol PO,

Actually, we can extend the domain of the potential function to (Ag)? x (Ag '\
A)™. Let wy,--- ,w,, be the parameter corresponding to A%. (m is the number
of irreducible components.) We put w; = e¥i and consider the ring

1 —-1 -1 -1
A()[mh'" 7mm7m1 st 0 Wiy, 0t yWBY1,Y1 5 Yns Yp ] (38)

We take its completion with respect to the norm induced by the non-Archimedean
norm of Ay and denote it by

-1 -1
AO{mvm YW, Y, Y }
In other words, its element is an infinite sum

2 : €k,1 €k,m  €k,m+1 er,B_ fr,1 fr,n
a/k?ml ...7mm wm+1 wB yl ...yn
k

where ey ; € Z (1 <m), ex; € Z>o (1 >m), fri € Z, ar, € Ao and
kli_)rgo or(ax) = oo.
The ring (3.8) is called a strictly convergent power series ring. See [BGR]. We have
PO € Ao{rw, w1 w,y,y '} (3.9)
In particular, (3.9) implies that the potential function
(mh... S, Wit 1, s WB, Y1, 7yn)
— fpi)(mh. MO, Wit 1, , WB, Y1, 7yn)
is defined on (Ag \ Ay)™ x (Ag)B=™ x (Ag \ Ay)™.
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We can further improve (3.9) to Theorem 3.11. To make the precise statement
on this we need some preparation.

First recall that P is convex and so IntP is contractible. Therefore we have a
T™-bundle isomorphism

U HIntP) = T™ x IntP.

For example we can construct such an isomorphism by first picking a reference point
Urer and identifying a fiber =1 (tref) = L(uref) with 7™ and then using the parallel
transport with respect to the natural affine connection associated the Lagrangian
smooth fibration 77! (IntP) — IntP. (See [W], [Dui].) Then ¥ induces a natural
isomorphism

Yy 1= (U|p-10)* : H(T™Z) — H' (L(u); Z).

Now we choose a basis {e;} of HY(T™;Z) and x; for i = 1,--- ,n the associated
coordinates. We then denote y; = €. We note that {e;} and z; (and so y;) depend
only on T". Using the isomorphism 1),, we can push-forward them to H(L(u);Z)
which are nothing but the coordinates associated to the basis

{Yulei) hr<icn

of H'(L(u);Z) mentioned in the end of section 1.
We denote the variable

yi(u) = T~ %y oth, ! (3.10)
and consider the ring
Afog, - 0nt wnpn, o wp, ya(u), oy (u) 7.
By definition we have a ring isomorphism, again denoted by ,,,
Yt Ao, w,y, g7 = A, T wy(u),y(w) T g T () 0 Yy
Furthermore by definition, we have a ring isomorphism
Yur s Aoy, o wgr, o we, y(u), ey (u) 7Y
— Afror, - wp g, we, g (), g (@)

given by 1y 4 = ¥y 0 b, ' or more explicitly by

(i (w) = Ty ()

for any two u, v’ € IntP. (Compare the discussion just below Remark 5.13
[FOOO?)]) Clearly ’(/}u”,u’ [e] ’(/}u’,u = Q/Ju",u-

Now we define a family of valuations v¥. parameterized by v € Int P on the ring
Ao, ot w,y, y~1] by the formula

u j : €k,1 €k,m  €k,m+1 er,B fr,1 fr,n
UT( akml ...,mm wm+1 ...wB yl yn )
k

= mf{or(ar) + (fi,u) [ a, # O}
We note that by definition we have
o7 (Yi) = wi. (3.12)
We remark that v% is independent of the choice of the basis {e;} of H(T";Z).

(3.11)
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Definition 3.6. We define a function

op(z) = inf{v}(z) | v € IntP}
on the ring Afro, =1 w,y,y 1] which defines a non-Archimedean valuation. We
denote its completion by A {ro, =1 w,y,y~1}. We put

Ag {0t w, g,y = {o € AM{w, v w,y, g7 [ op(z) 2 0}
If we denote
Agfro, ot w gy = {z e A, w, g,y | vi(x) > 0}
C AP, w,y,y Y,

we have
Agfro 0w,y y ™ = () Ag{w, 0w,y (3.13)
ueP
Define the variable
zj(w) = Ty (w) s -y () o
forj=1,---,m.

The following lemma follows from the definition (3.10) of y;(u).

Lemma 3.7. The expression
zj(u) oy € My, y™'}

is independent of u € Int P. We denote this common variable by z;. Furthermore
we have

v (25) = £ (u). (3.14)
In particular z; € AF{y,y~1}.

Proof. From (3.10), we have y;(u) o ¢, = T~ "'y;. Therefore we have
(yl (u)vj'I e yn(u)vj’") 0y = T_<Uj)u> 1_‘[3/:)J7
i=1

for j =1,--- ,m. Recalling ¢;(u) = (vj,u) — A, we obtain

2j(w) 0 = T (g1 ()7 - yu(u)') 0 py = T~ [Ty
=1

which shows independence of .
We evaluate

0 (z(w) o) = (T [Tu") = —A5 + D vjavt(vi)
i=1

i=1

=N+ D> i = (vj,u) — A = €;(u)
i=1

where we use (3.12) for the third equality and the definition of ¢; for the last.
Finally since ¢;(u) > 0 for u € IntP, the last statement follows. This finishes the
proof. O
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Remark 3.8. We note that the variables z;, 7 = 1,--- ,m depend on IntP and the
vectors {vj}j=1,..m. Recall the latter is the set of one dimensional generators of
the fan X associated to the toric manifold X = Xy, which determines the complex
structure on X. On the other hand the moment polytope P is determined by the
symplectic structure of X. In other words, the variables depend on both complex
structure and symplectic structure.

We consider formal power series of the form
o0
e €L €L e N
§ :akmllm ’mn/z,mwnizfiﬂ . .ka,lefk,l . ZTJZc,m7 (3.15)
k=1

with the conditions

ap € Ao, lim vr(ax) = oo,
k—oo
Z i <m,
CLi € .
ZZO 1>m,
ka' S ZZO-

Lemma 3.9. Any formal power series of the form (3.15) is an element of the ring
Af{ro, w=t w, g,y '}

Conversely any element of AL {vw, =1 w,y,y~1} can be written in the form of
(3.15).

Proof. Consider a monomial
_ e €m . Emt1 ep, f1 "
giamll.', 3mm wm+1 wB yl y£ .

Then we have the valuation

7 (€) = vr(a) + (f, u).

Put
c=inf {(f,u) | u € Int P}. (3.16)
Since P is a convex polytope, we can take a vertex u’ of P such that
¢ = (f,u’).

There exist n faces 9;, P, ¢ = 1,--- ,n such that
{u"} = (9, P. (3.17)
i=1

Since X is a smooth toric manifold, the corresponding fan is regular and so
j=1,---,n forms a Z-basis of M. (See section 2.1 [Ful], for example.) Therefore
we have

f: (flv"' 7fn) = Zblﬁm
i=1
for some b; € Z. By definition of ¢ (3.16), we have
b; > 0.
And we can express

= aT ) 1 oL ppemagptmtl LB L .
E=aT ] o w, w2
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Here we use the facts that z;(u) = T4y (u)vir -y, (u)¥n, zi(uw) o, = 2z do
not depend on u and £;, (u®) = 0 by (3.17). We have

o (aT ) = vy(a) + (f,u°) = vp(a) + c.
If v%.(£) > 0 for all u € IntP, then

0 . w
or(aT)) = vp(a) + ¢ = uelglf“cPUT(é-) > 0.

Therefore & is of the form (3.15).
For the converse, we first obtain
O arof? - g S Pl ) = r(a) + 0 G (W),
j=1
from (3.14). Since a € Ag, f; > 0 and £;(uw) > 0 for all v € IntP, vr(a) +
S i (w) f; > 0 for all u € IntP and so

=1
vp(arf' - wimw w2y > 0.
This prove the converse and hence the proof of the lemma. ([

Remark 3.10. (1) We remark that the representation (3.15) of an element
€ Al {ro,;v= w,y,y '} is not unique. The non-uniqueness is due to the
fact that z;’s in Al {ro, 0~ w,y,y~ !} satisfy the quantum Stanley-Reisner
relation. (See Proposition 5.5 [FOOQ3].)

(2) The proof of Lemma 3.9 implies the following : A monomial of the form
(3.15) is a monomial in AY{to,r0~! w,y,y~1} and vice versa.

(3) The discussion above shows that the moment polytope P is closely related
to the Berkovich spectrum [Ber], [KS] of Al {t,r0~1 w,y,y~ 1}

Now we can state the following theorem whose proof we will postpone until
section 9.

Theorem 3.11. The function PO o 1, lies in
Ag {0t w,y,y 7t
and is independent of u.

We denote the common function by BO.
Now we can generalize the result of section 3 [FOOO3] as follows. Using Lemma
3.5 and the idea of Cho (see section 11 [FOOO3]) we can define Floer cohomology

HF((L(u),b,r), (L(u), b,); Ao)

for any (b,z) € H(X;Ao) x H*(L(u); Ag) = (Ag)B x (Ag)™. See sections 8 and 11.
The following is the generalization of Theorem 3.9 [FOOO3].

Theorem 3.12. Let (b,r) € (Ag)? x (Ag)". We assume

8;;?([),;) =0 (3.18)
fori=1,--- n. Then we have
HF((L(uo),b,7), (L(uo), b, x); Ao) = H(T™; Ag). (3.19)
If we assume
OBO (6,x) =0 mod TV (3.20)

(9331‘
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then we have
Theorem 3.12 will be proved in section 7. We next define :

Definition 3.13. Let L(u) be a Lagrangian fiber of a compact toric manifold
(X,w). We say that L(u) is bulk-balanced if there exist sequences w;, P;, b;, t;, N;
and u; with the following properties.

(1) (X,w;) is a sequence toric manifolds such that lim; . w; = w.

(2) P; is a moment polytope of (X,w;). It converges to the moment polytope
P of (X,w).

(3) u; € P; and lim; o0 u; = u.

(4) b; € A(AL(C)), 1 € H' (L(u;); A0(C)), N; € Ry

(5)
HF((L(u;), b3,8:), (L(w), by, 1:); Ao (C)/TN?) 22 H(T™; A (C) /TN,

(6) lim;_,oo N; = 0.

Remark 3.14. (1) Definition 3.13 is related to Definitions 3.10 [FOOO3]. Namely
it is easy to see that
“Strongly balanced” = “balanced”=- “bulk-balanced”

On the other hand the three notions are all different. (See Example 9.17
[FOOO3] and section 5 of the present paper.)

(2) We can generalize Theorem 3.12 to the case b € A(A¢(C)) in place of
b e A(A(C)). See section 11.

The next result is a generalization of Proposition 3.11 [FOOO3]| which will be
proved in section 8.

Proposition 3.15. Suppose that L(u) C X is bulk-balanced. Then L(u) is non-
displaceable.
Moreover if ¥ : X — X is a Hamiltonian diffeomorphism such that (L(u)) is
transversal to L(u), then
#((L(u)) N L(u)) = 2". (3.22)
It seems reasonable to expect the following converse to this proposition.

Conjecture 3.16. If L(u) is a non-displaceable fiber of a compact toric manifold
then L(u) is bulk-balanced.

The next definition is related to Definition 4.10 [FOOO3].

Definition 3.17. Let L(u) be a Lagrangian fiber of a compact toric manifold

(X,w). The bulk PO-threshold, @buu{(L(u)) is 2rN where N is the supremum of

the numbers N; such that there exist w;, P;, b;, r;, and u; satisfying Definition 3.13
(1) - (5).
Remark 3.18. In Definition 4.10 [FOOO3] we defined two closely related numbers
E(L(u)), €(L(u)). It is easy to see

€(L(u)) < E(L(w)) < € (L(w). (3.23)

The equalities in (3.23) do not hold in general. (See Example 9.17 [FOOO3] and
section 5.)
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We recall that the displacement energy e(L) of a Lagrangian submanifold L C
X is the infimum of the Hofer distance dist(v,id) ([H]) between identity and a
Hamiltonian isotopy ¥ : X — X such that (L) N L = (. (See Definition 4.9
[FOOO03].)

We will prove the following in section 8.
Theorem 3.19.

—bulk

e(L) = & (L(u)). (3.24)

It would be interesting to see if the following holds :
Conjecture 3.20. The equality holds in (3.24).

4. ELIMINATION OF HIGHER ORDER TERMS BY BULK DEFORMATIONS

The purpose of this section is to apply the result of the last section to locate
bulk-balanced Lagrangian fibers. We first recall the notion of leading term equa-
tion. We denote by Ag{y,y '} the completion of the Laurent polynomial ring
Aoly1,y7 %, yn, ¥ ] with respect to the non-Archimedean norm. For each fixed
b € pA(A4) and u, we have

PO (0591, ,yn) € Aofy,y ™'}
We also put
POy (1, yn) = PO“(b3y1, -+, yn)
and regard PO} as an element of Ag{y,y 1}

Henceforth we write y” for y}* - - - yU» with ¥ = (vy, - ,vn).
Let o; = dl; = (vi1,- - Vi) € HiI(L(u);Z) 2 Z" = Ny (i =1,--- ,m) as in the
end of section 1. We define S; € Ry by S; < S;41 and
{Si11=1,2,--- L}y ={l;(uw) |i=1,2,--- ,m}. (4.1)
We re-enumerate the set {0y, | Ay = S} as
{1, Ta ) (4.2)

Let A" C Ng = R" be the R-vector space generated by @y, for I! < I, r =
1,---,a(l'). We remark that A;" is defined over Q. Namely A;- N Q™ generates A

)

as an R vector space. Denote by K the smallest integer I such that Al* = Ng. We
put d(I) = dim 4} — dim A} |, d(1) = dim A7
We remark
{U,l=1,---  K,r=1,--- ,a()} C{t; |i=1,--- ,m}.
Henceforth we assume ! < K whenever we write ¥ . For each (I,r) we define the
integer i(l,7) € {1,--- ,m} by
17177‘ = ’Ui(l,r)- (43)

Renumbering 4;, if necessary, we can enumerate them so that

{v;]i=1,---,m}

:{ﬁlﬂ' |l:17 5K7T: 1a 70’(1)}\{51 |7’:K+1a 7m}
for some 1 < K <m —1.

Recall we have chosen a basis e; of H'(L(u);Z) in the end of section 1. It can
be identified with a basis of Mg = H*(L(u);R). Denote its dual basis on Ng by e}

(4.4)
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We choose a basis e; ; of Ng such that e ,--- , e} ;) forms a Q-basis of Aft and
that each of ¥; lies in €P, | Zej .
We put
K d()
e;( = Z Z ai;(l,s)e;y
=1 s=1

(a@,s);; € Q). Regarding e and e]_ as functions on Mg, this equation can be
written as

K d(l)
i = Z Z ai;(l,s)zl,s
=1 s=1
with z; = €] and z; s = e/ ;- If we associate y; s = e”>¢, it is contained in a finite
field extension of Q[y1,y7 %, ,Yn, ¥, '] and satisfies
K d(@)
Ai:(1,s
Y = H H yl,s“ ) (4.5)
1=1s=1
We put Ul,r = (Ul,r;la T avl,r;n) €zZ".

Lemma 4.1. The product

Vi,r;1 Vi,rin

yv’v" =1 c Un
is a monomial of yi s for I <1, s < d(l').
Proof. By the definition of A7, @, is an element of A" and so

77[,1‘ = Z Cl,r;l/,sezk/ys
I<l,s<d(l’)

for some integer ¢; ;v 5. Therefore

= C T; ’,s

Yyl = H yl/z7,s 1
V<l,s<d(l’)
and the lemma follows. O
We put

a(l)
(POY) =D ¢y (4.6)
r=1

By Lemma 4.1, (BOy); can be written as a Laurent polynomial of y; ¢ for I’ <1,
s < d(l") with its coeflicients are scalers i.e., elements of R.
Now we consider the equation

Yk =0 (4.7)

with & = 1,---,n for y; from Ay . By changing the coordinates to y; s (I =
1,---,K,s=1,--- ,d(l)), (4.7) becomes

(4.8)
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Lemma 4.2. The equation (4.8) has a solution with y; s from Ag(R) \ AL(R) if
and only if (4.7) has a solution with yy € Ag(R) \ A (R).

If R is algebraically closed, then the ratio between the numbers of solutions
counted with multiplicity is equal to the degree of field extension

Q[y1,1,yfj,“- 7yK,d(K)7y1;}d(K)] (Qlyryr ,yn,yﬁl]} .
Proof. This is obvious from the form of the change of coordinate (4.5). O

Definition 4.3. The leading term equation of (4.7) or of (4.8) is the system of

equations
O(BOp )i
——= =0 4.9
ayl,s ( )

with y; s from R\ {0} forI=1,--- K, s=1,---,d(l).

We remark that (4.7) is an equation for yy,--- ,y, € Ag. On the other hand, the
equation (4.9) is one for y; s € R\ {0}. The following lemma describes the relation
between these two equations.

Lemma 4.4. Let y; s € Ao(R) \ AL (R) be a solution of (4.8). We define y, ; €
C\{0} by yi,s =7, s mod Ay(R). ThenT, . solves the leading term equation (4.9).

The proof is easy. (See sections 8,9 [FOOO3].)
We remark that the discussion above applies to the leading order potential func-
tion POy (See (3.4)) without changes. See sections 8,9 [FOOO3].

Lemma 4.5. The leading term equation of PO (b, y) is independent of b € A(A4).
Moreover it coincides with the leading term equation of PO .

Proof. The first half follows from Theorem 3.4. The second half follows from The-
orem 3.5 [FOOO3|. O

We denote by Ag{y.x,y} the completion of Aglys 1, yl_}, LYK A(K) y;{}d(K)]
with respect to the non-Archimedean norm. It is a finite field extension of Ag{y,y '}

Definition 4.6. We say that (X,w) is rational if clw] € H?*(X;Q) for some ¢ €
R\ {0}. We say that a Lagrangian submanifold L C X is rational if {wN g | g €
Hy(X,L;Z)} C R is isomorphic to Z or {0}.

We remark that only rational symplectic manifold (X,w) carries a rational La-
grangian submanifold L. (In the general situation mo(X, L) is used sometimes in
the definition of rationality of L. In our case of toric fibers, they are equivalent.)

Now we state the main result of this section.

Theorem 4.7. The following two conditions on u are equivalent to each other :
(1) The leading term equation of POy has a solution y; s € R\ {0}.
(2) There exists b € A(Ay(R)) such that POy has a critical point on (Ag(R) \
AL(R))".

Corollary 4.8. If the leading term equation of POG has a solution then L(u) is
bulk-balanced.

Proof of Theorem 4.7. The proof of (2) = (1) is a consequence of Lemmata 4.2,
4.4 and 4.5. The rest of this section is devoted to the proof of the converse.
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Let v11," -, 0K a(x) be a solution of the leading term equation. We remark
91,5 € R\ {0} C Ag(R) \ Ay (R). We will fix vy, s during the proof of Theorem 4.7
and find b such that ; , is a critical point of POy. We also require b to have the
form

K a(l)
b= Z Z bl rZi(l,r) (410)
1=1r=1
where b, € A;. (Here and hereafter in this section we omit R in A4 (R) and etc.)
Note i(l,7) < m and so deg D;,,) = 2. In other words, we use b in the second
cohomology H?(X;A) (more precisely b € A%(A)) only to prove Theorem 4.7.
We first consider the case when X is Fano. In this case we can calculate
POU(b; y) explicitly as follows.

Proposition 4.9. Suppose X is Fano and b is as in (4.10). Then

K a(l)
POU(b,y) = > > exp(by,) Ty + Z T4y (4.11)
l=1r=1 i=K+1
We will prove Proposition 4.9 in section 7.
We put
1 d) K d(l)
Ez’(l,r) = Z Z ’Ul,r;l’,sef/,sa v = Z Z'Ui;l,se?:s-
I'=1 s=1 =1 s=1

Lemma 4.10. Ify; s € R\ {0} is a solution of the leading term equation, then

8% K a(l)
o P ) =33 (b 3 k) T
=l' r=1 (412)
+ Z ’Ui;l/’sTgi’(u)Um.
i=K+1
Here r =Y (logy;)e; and v; is determined from v, s by (4.5).
Proof. Differentiating (4.11), we obtain
K a(l)
IPOY
‘s 140, —b,,Tl il s y Ui
e 22 zz( IR I ) s
+ Z Ui;l’,sTei(u)y
i=K+1
On the other hand, the leading term equation is
a(l) )
0= Z Ul,r;l/,s‘)vi(l"r)
r=1
Therefore (4.12) follows. O

To highlight the idea of the proof, we first consider the rational case. In this
case, by rescaling the symplectic form w to cw by some ¢ € Ry, we may assume
that w is integral, i.e.,

{wNB/2r | B € Hy(X, L(u); Z)} € Z.
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It follows that S, ¢;(u) € Z. Thus, we can reduce the coefficient rings from the
universal Novikov rings Ay, Ay, A to the following rings respectively :

A= R[[T]), AR :=TR[[T)], Ag":=R[T)[T""].
Here R[[T]] is the formal power series ring.
We also consider pairs (b,b) only from A%(AP*) x H'(L(u); Al"). Under these
restrictions, the exponents of T appearing in our discussion following always become
integers.

Lemma 4.11. Suppose X is Fano and L(u) is rational. For each k,l,r, there
exists by (k) € A" such that

K a(l)
b(k) = Z Z b1, (k) Di(1,r)
l=1r=1
has the following property.
%amg (b(k);xr) =0 mod T*. (4.13)
ayl,s
fort=1,--- K, s=1,---,d(l). Herex="> (logy;)e;. We also have
by(k+1) =b;,.(k) mod TH 5. (4.14)

Proof. The proof is by an induction over k. If k¥ < 51, we apply Lemma 4.10 to
b = b(k) = 0 and obtain

IPO
Dy
Hence (4.13) holds for k < S;.

Now suppose k& > S; and assume b(k — 1) with the required property. By the
induction hypothesis we may put

RO
ayl’ .8

for some Ep s € R. Let E= ZElgsef,,s € Np = N ®z R.

Dy s (b(k);x) =0 mod T°'.

Dy s (b(k—1);1) =T"Ey , mod TF, (4.15)

Sublemma 4.12. E is contained in the vector space generated by {ezs | S <

k, s=1,--,d()}.

Proof. This is a consequence of (4.12). O
By Sublemma 4.12, we can express E as
—E=Y an"ri, (4.16)
Si<k

for some ¢;,, € R. Note ¥,,, I < lo, r < a(l) span the vector space
At =spang{ef, |1 <lo, s=1,---,d()}.
We define b; (k) by
b1 (k) = by (k — 1) + e (070) TR0 Dy g .

Since k — S; > 0 it follows k — S; € Z, by the integrality hypothesis of w. Namely
bi-(k) € AP'. Lemma 4.10, (4.15) and (4.16) imply (4.13). This finishes the
induction steps and so the proof of Lemma 4.11 is complete. O
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Now we consider
b= lim b(k).
The right hand side converges by (4.14) and so b is well-defined as an element of
pA(AP?) and satisfies
IPO
lsT b; = O
D, Byrrs (b;x)

as required. Thus Theorem 4.7 is proved for the case where X is Fano and L(u) is
rational.

We now turn to the case where X is not necessarily Fano or L(u) not necessarily
rational. We will still use an induction argument but we need to choose the discrete
submonoids of R that we work with carefully to carry out the induction.

Let G(X) be as in (3.3). We define :

G(L(w)) = ({w[B]/27 | B € ma(X, L(u)) is realized by a holomorphic disc}).
(4.17)

Definition 4.13. Let G(X) be as in (3.3). We define Gpyi to be the discrete
submonoid of R generated by G(X) and the subset

{A=81rxeG(L(u), I=1,---,K,A>8}CR; CR.
Condition 4.14. We consider

K a(l)

b=> "> b, Digr) € A(AL(R)) (4.18)

=1 r=1

such that all b; , are Gpuk-gapped.

The main geometric input to the proof of the non-Fano case of Theorem 4.7 is
the following.

Proposition 4.15. We assume b satisfies Condition 4.14 and consider
b’ = b+ cT Dy, (4.19)
with ¢ € R, A € Gpu, | < K. Then we have
PO"(b';y) — PO“(b;y)
= ¢AMHian Wybian 4 Z cp THATlian (W y T
= (4.20)
[e.e]
e
h=1 o
Here cp,cho € R, po € Gouik. Moreover there exists el € Z>o such that ¥, =
Selv;, b =% e l; and Y, el > 0.
We prove Proposition 4.15 in section 7.
Definition 4.16. We enumerate elements of Gy so that
Grux ={\}]j=0,1,2,---}

where 0 = A5 < A\ < Ay <.,
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(1) For k > 1, we define A§™"{y..,y-'}x to be a subspace of Ag{yu., v}
consisting of elements of the form

K oo .
ZZTS[HJ' (RICIRIE TR IEEE vyl,d(l)ay;;(l)) (4.21)
=1 j=k

where each Pj; is a Laurent polynomial of y1 1, - ,y;40) With R coeffi-

cients, i.e.,
P € Rlyi, 1,911 » Y@y, y;cll(l)]-
We put G {yus, yi! Yo = AF™ (g, v )
(2) We define Ngb““‘(k) to be the set of elements of the form

K d(l) oo

S5 S e,

I=1 s=1 j=k

from Ng ®g Ao with ¢ ; € R.
Lemma 4.17. If b satisfies Condition 4.14 then POy € Agb““‘ {Yus, Ui}

Proof. This will follow from Theorem 3.4. It is easy to see POY € AT {y...,y'}
from the definitions of PO and Gpu. So it suffices to show that the right hand side
of (3.5) in Theorem 3.4 lies in Agb““‘ {Yux, Yt }. We consider a term cc,yﬁg e (Wtpe
thereof. Let o, =Y, ! #; as in (3.6). We put
lo =sup{l | Ir ef,(l’r) #0}.

Then

coyva € R[yl,lv yl_j7 5 Ylo,d(lo)s yl_o,ld(lo)]'
On the other hand

=Y ebli(u) > Ly () = Si,
because ¢ > 0 and 3, ¢t > 0 and €™ + 0 for some r. Therefore
é/a (U) - Slo € Gbulk'
It follows that
cgyﬁ;TE;(u)erU c Agbulk{y**’y;*l}

as required. ([l

We now state the following lemma

Lemma 4.18. If ‘B lies in Aon“lk{y**,y;*l}k for some k € Z>q, so does @f‘?— for
the same k and so
K d)

> w SHe— o ; , € NSt (k) (4.22)

I'=1 s=1

fore=(c11,- ek ak)) € (R\{O})

Proof. By the form (4.21) of the elements from Ag Uk L sy Yrak T, the first state-
ment immediately follows. Then the last statement follows from the definition of
Ngbulk (k). O
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Proposition 4.19. There exists a sequence

K a(l)
=33 bia(k) D (4.23)
1=1r=1
that satisfies Condition 4.14 and
W apoy.
S N ), € NS 0), (4.21)
I=1s=1
Moreover
b
b(k+1)—b(k)=0 mod T*A,. (4.25)

Proof. We prove this by induction over k. The case kK = 0 follows from Lemma
4.17. (b(0) =0.)
Suppose we have found b(k) as in the proposition. Then we have

K d() 8(_]39 K d(l)
Z Z 0 s it 1} (nej s = Z Z Cls kTSlJr)‘ke mod Ng"‘“k (k+1)
I'=1s=1 8 =1 s=1

with Cls,k € R.
Since {T;y ) | I <1} spans A} for all | < K by definition, we can find a;,x € R

such that
dQ)

chskelg Zalrkvz(l7) € A,

Therefore by definition of N§"* (k) we have

K d(l) K a(l)
ZZCZGkTSHFAke ZzalrkT +A kv(lr) GNGb““‘(kJrl)
=1 s=1 =1 r=1
Thus
K d0)  apou
b(k
3D e e
I’=1 s=1
4.2
K _a(l) ) (4.26)
= ZZQZ’T’kTSl_‘—)\kﬁi(l,T) mod Ngbulk(k.+ 1)
1=1r=1
We now put

b (k + 1) = by (k) — Teag . (n7i0m) 7L,
Lemma 4.20. Let b(k) be as in the induction hypothesis above. If A = )\Z,:,, then
the second and the third terms of (4.20) are contained in AS* ™ {yur, Yy bri1-
Proof. We first consider
ChThA2+fi(z,7~)(U)y@:(z,r) (4.27)
which is in the second term of (4.20). (h > 2.) We remark that

eny™ 0 € Rlyia, Yty Yawy Yo

On the other hand,
RN + Ly (w) — Sp = hA}
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is contained in Gy and so must be equal to )\l,;, for some k' > k since h > 2.

Therefore (4.27) is contained in A" {y..,y5! Yx i1, as required.
We next consider

e TN (W 402 To (4.28)
which is in the third term of (4.20). (h > 1.) We have @, = Y el ;, £ = > el ;.
We put

lo = sup{l | Ir eXb™) #£ 0}.
Then
Chot™ € RIYL1I YL TS s Yio.d(lo)s Yy () )
On the other hand, since

Co(w) =Y elliu) = Ligg,m (1) = Sig

it follows that
0 (u) + po — Siy € Gou \ {0}
Therefore
R + € (u) + po — Sty > Al
and so equal to A2, for some &’ > k. Hence (4.28) is contained in AOGb““‘ (Yoo Y Frt 1,

as required.
The proof of Lemma 4.20 is complete. ([

Then Proposition 4.15, (4.26), Lemma 4.18 and Lemma 4.20 imply that (4.24)
is satisfied for k + 1. The proof of Proposition 4.19 is complete. O

Now we are ready to complete the proof of Theorem 4.7. By (4.25)
klim b(k)=1b
converges. Then (4.24) implies

IPO,
p— O7
s (n)

as required. (I

Yi,s

We next show that the proof of Theorem 4.7 also provides a way to calculate

bulk PBO-threshold @bulk(L(u)) from the leading term equation.

Theorem 4.21. The following two conditions for N are equivalent to each other.
(1) There exists (b,b) € A(Ay) x HY(L(u); Ag) such that
HF((L(uo), b,1), (L(uo), b,5); Ao/TV) 2= H(T™; Ao /TV). (4.29)
(2) We put lp = max{l | S; < N'}. Then there exist v, ; € R\ {0} for 1 <o,
j=1,---,d(l) which solve the leading term equation (4.9) for 1 <l,.

Corollary 4.22. If the statement (2) of Theorem 4.21 holds then @bulk(L(u)) >

2N

Proof of Theorem 4.21. The proof of (1) = (2) is similar to one in Theorem 4.7.
If (2) is satisfied, we can repeat the proof of Theorem 4.7 up to the order N to
find b such that (3.20) is satisfied. Then, (1) follows from Theorem 3.12. O
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5. TWO POINTS BLOW UP OF CP? : AN EXAMPLE

Our main example is the two-points blow up X, of CP2. We take its Kihler
form wq g such that the moment polytope is

Pop={(ur,u2) |[0<u; <1,0<up; <1—a,8<uy+up <1} (5.1)
Here
(a,0) e A={(a,8) |0< e, 3, a+pf <1} (5.2)

We remark that Ry A is the Kéhler cone of Xs.

In Example 9.17 [FOOO3] we studied this example in the case
1l—«a 1
8= T, g < Q. (53)
We continue the study this time involving bulk deformations.
We consider the point

=), e (s150) (5.4
and compute

PO (01, 2) = T (y2 +y3 ") + T (y1 +vaye) + TPy Myp L (5.5)
We note that (5.4) implies

f<u<l—p0—u. (5.6)
Therefore the leading term equation is
1-y2=0, 14y=0. (5.7)

Namely (y1,—1) is its solution for any y;. Therefore Theorem 4.7 implies :
Proposition 5.1. L(u) C (X2,wq.g) s bulk-balanced if (5.3) and (5.4) are satisfied.
Theorem 1.1 for k£ = 2 will then follow from Proposition 3.15.

Proof of Theorem 1.1. The case k = 2 (the two points blow up) is already proved.
We consider £ = 3. We blow up (X2,wqs ) at the fixed point corresponding to
(1,0) € P, 3. Then we have a toric Kahler structure on X3 whose moment polytope
is
{(ul,u2) € Paﬁ | u <1-— 6}.
We have
BOG(y1,y2) = Ty +v5 ") + T (1 + y192)

w1 o (5.8)
+ TPyt Ty

We remark that

1-f—-u<l—ec—u
if € is sufficiently small. Therefore the leading term equation at (5.4) is again (5.7).
Therefore we can apply Theorem 4.7 to show that all L(u) satisfying (5.4) are
bulk-balanced. Thus Theorem 1.1 is proved for k = 3.

We can blow up again at the fixed point corresponding to (1 — €,0). We can
then prove the case k¥ = 4. (We remark that this time our toric manifold is not
Fano. We never used the property X to be Fano in the above discussion.) We can
continue arbitrary many times to complete the proof of Theorem 1.1. O
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Below we will examine the effect of bulk deformations more explicitly for the
example of two points blow up. We consider the divisor

Dy =7 ({(u1,uz) € P|uy =0})

and let
b = wT"[Dy] € A*(A4). (5.9)
By Proposition 4.9, we have :

PO (bus Y1, y2) =T (exp(bui)y2 + 5 ")

L (5.10)
+T(y1 + y1ye) + TPy tys t
We study the equation
PO opO
. bw Ky Y1, = bw ks Y1, =0. 5.11
i (buw,x;Y1,Y2) 9%s (buw,k;Y1,Y2) (5.11)

We put yo = —1 4 cT#, y; = d, with ¢,d € Ag \ A;. Taking the inequality (5.6)
into account, we obtain

cTH 4 d2T1P=2u =0 mod Tmax{m1-4-2u}
—2¢TH + wT* +dT* P =0 mod Tmax{mru—F}

(Case 1) p=r <u-—p.

We have c = w/2, p =1—-0—2u. d = +/-2/w. u=(1-0)/2—-kK/2 =
(1+ «)/4—k/2. Tt implies 1/3 < u < (1 + «)/4. The equation for (c,d) has 2
solutions. They are both simple. Hence in the same way as the proof of Theorem 9.4
[FOOO3] (the strongly non-degenerate case) we can show that these two solutions
correspond to the solutions of (5.11).

(5.12)

(Case 2) p=u— 3 < k.
We have d = 2¢, 1 — 8 — 2u = p. Hence u = 1/3. We can show that there are 3
solutions of (5.11) in the same way.

(Case 3) Kk =u— 03 < fi.
We have d = —w. Then g =1— 8 —2u. ¢ = —w~ 2. Hence u < 1/3. We can
show that there is 1 solution of (5.11) in the same way.

(Case 4) kK =u— 0 = p.
We have —2c+w+d=0and 1 — 8 —2u = p. Hence u =1/3. k = a/2 —1/6.

d*(d+w)+2=0. (5.13)

This has three simple roots unless

4 3
— 2=0. 14
57 W + 0 (5.14)

When & is small Case 1 and Case 3 occur. There are two fibers with nontrivial
Floer cohomology (on (5.4)), that is ((8 + &, 8) and ((1 + «)/4 — k/2,3)). They
move from (8,0), (1 + «)/4,0) to (1/3,8). Then, when k = «/2 — 1/6, Case 4
occurs. If K > a/2 —1/6 then Case 2 occurs and bulk deformation does not change
the ‘secondary’ leading term equation (5.13).

It might be interesting to observe that it actually occurs that the ‘secondary’
leading term equation (5.13) has multiple roots. That is the case where (5.14)
is satisfied. (We remark that the example where there is a multiple root for the
leading term equation was found in [OsTy].)
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6. OPERATOR ¢ IN THE TORIC CASE

In this section and the next, we study the moduli space of holomorphic discs and
its effects on the operator q and on the potential function PO (b;y1,- -, yn)-

Let u € Int P and § € Hy(X,L(u);Z). We denote by Mp¥,(L(u), 3) the
moduli space of stable maps from bordered Riemann surfaces of genus zero with
k + 1 boundary marked points and /¢ interior marked points, in homology class .
(See section 3 [FOOO1]. We require the boundary marked points to respect the
cyclic order of S = dD2. (In other words, we consider the main component in the
sense of section 3 [FOOO01].)) We assume k > 0. Then M2, (L(u), §) is compact.
(See sections 13.2 and 32.1 [FOOO2], for the reason why we need to assume k > 0
for compactness.)

We denote an element of MY, (L(u), 3) by

(27507{Zz+|1:1;"' 76},{Zi|i:0717"’ ’k})

where ¥ is a connected genus zero bordered semi-stable curve, ¢ : (X,0%) —
(X, L(u)) is a holomorphic map and z;" € IntY and 2; € 0%. Let Mgfif:feg(L(u), B)
be its subset consisting of all maps from a smooth disc. (Namely the stable map
without disc or sphere bubble.)

We have the following proposition. Let §; € Ho(X,L(u);Z) (i = 1,--- ,m) be
the classes with u(5;) = 2 and

1 7=y,

0 7.

We recall from [CO] that the spin structure of L(u) induced from the torus T" =
R™/Z™ as its orbit is called the standard spin structure.

ﬁiij—{

Proposition 6.1. (1) If u(B) <0, or u(B) =0, B8 # 0, then Mkmjilféreg(ll(u),ﬁ)

s empty. _
(2) If w(B) =2, B# Br, -, B then M (L(u), B) is empty.
(3) Fori=1,---,m, we have

MEG™TE(L(w), B;) = M (L(u), 5;), o)
MEF™(L(u), Bi) = Mig™ ¥ (L(u), §;) x Conf(¢; D). '

Here Conf((; D?) is a compactification of
{(Zf_a 722_) | Zz+ S IntDQaZj_ 7& Zj+ fO’I"i 7&]}

(See Remark 6.2.) Moreover MP§™(L(u), 3;) is Fredholm regular. Further-
more the evaluation map

ev : M‘f}?}i“(L(U),ﬂi) — L(u)

is an orientation preserving diffeomorphism if we equip L(u) with the stan-
dard spin structure. .

(4) For any B3, the moduli space MYy **(L(u), B) is Fredholm regular. More-
over

ev : M?;in’reg(L(u),ﬂ) — L(u)

is a submersion.
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(5) If./\/li‘?i“(L(u), B) is not empty then there exist k; € Z>o and a; € Ho(X;Z)

such that
B = Z kiBi + Z aj
7 J

and o  is realized by a holomorphic sphere. There is at least one nonzero

k.

Remark 6.2. We define the compactification of Conf(¢; D?) as follows. We con-
sider X = C, L = S'. Let 3; be the generator of Hy(X; L) which is represented
by a holomorphic disc. Then, clearly M7 (L; 81) is identified with Conf(¢; D?).
Hence Mo.¢(L; 41) is a compactification of it. We use this compactification.

Proposition 6.1 follows easily from Theorem 10.1 [FOOO3] which in turn follows
from [CO] as we explained in section 10 [FOOO3].

We next discuss Kuranishi structure of Mglj‘lne(L(uLﬁ) In section 17, 18
[FOOOL1] or section 29 [FOO0O2], we defined a Kuranishi structure on kmfllnz(L(u), B).
In our toric case, this structure can be chosen to be T™ equivariant in the follow-
ing sense. Let (V,E,T',1,s) be a Kuranishi chart (see section 5 [FO] and sec-
tion A1 [FOO02]). Here V C RY is an open set with a linear action of a finite
group I', £ — V is a I' equivariant vector bundle, s its I'-equivariant section and
P s7H0)/T — MPY,(L(u), B) is a homeomorphism onto an open set. Then
we have a T™ action on V, F which commutes with I" action, such that s is T™
equivariant. Moreover 1 is T™ equivariant. Here the T™ action is induced by one
on X. (We recall that L(u) is 7™ invariant.) The construction of such Kuranishi
structure is obvious from construction given in section 29 [FOOO2]. We use the
T™ equivariance of ¢ and the fact that T™ action is free on L(u) to conclude that
the T™ action on V is free.

Let {D, | a =1,---, B} be the basis of A(Z). (Each D, corresponds to a face
of P.) We note that each of D, is a T™ invariant submanifold. Let

o™ MY (L(u), B) — X
be the evaluation map at the i-th interior marked point. (¢ =1,--- ,£.) Namely

v ((Z, 0 {5}, {2i}) = ().
Weput B = {1,---, B}. We denote by Map(¢, B) the set of all mapsp : {1,--- ,¢} —
B. We write |p| =/{ if p € Map(¢, B).
We define a fiber product

l
ffnfllr,lé(L(u%ﬂ?p) = Ikn-ﬁlll?é(L(u)’ﬂ)(evif‘t,---,evizm) X xe HDP(Z) (62)
=1

Here the right hand side is the set of all ((Z,¢, {2}, {2:}), (p1,- -+ ,p¢)) such that
(Ev ' {Z:r}v {Zl}) € gen—ﬁlll,lé(L(u)vﬂ)a p;i € Dp(i)a and that QD(Z:F) = Di-
We define

evs s M, (L(w), B) — L(u)
by

evi (2, ¢, {Zj_}v {zi}) = »(zi).
It induces )

evi : MY (L(u), B;p) — L(u)
in an obvious way.
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Lemma 6.3. M (L(u), 3;p) has a Kuranishi structure such that each Kuran-
ishi chart is T™-equivariant and the coordinate change preserves the T™ action.
Moreover the evaluation map

ev = (€U076’01, e ,e’l)k) : I];lilll?e(‘[’(u)vﬂvp) - L(u)k+1

is weakly submersive and T™-equivariant. Our Kuranishi structure has a tangent
bundle and is oriented.

Proof. The fiber product of Kuranishi structures is defined in section A1.2 [FOOO2].
Since the maps we used here to define the fiber product are all T™-equivariant it
follows that the Kuranishi structure on the fiber product is T™-equivariant. The
orientability is proved in Chapter 9 [FOOO2]. The fact that ev is well defined and
is weakly submersive is proved in section 29 [FOOO2] also. O

We next describe the boundary of our Kuranishi structure. For the description,
we need to prepare some notations. We denote the set of shuffles of ¢ elements by

Shuff(¢) = {(L1,Lo) | Ly ULy = {1,--- , £}, Ly NLy = 0}. (6.3)
We will define a map
Split : Shuff(¢) x Map(¢, B) — U Map(ly, B) x Map(¢2, B), (6.4)
Ly +Llo=F

as follows : Let p € Map(¢, B) and (LL1,Ls) € Shuff(¢). We put ¢; = #(L;) and
let i; : {1,---,¢;} = L, be the order preserving bijection. We consider the map
p,; : {1,--+ ,£;} — B defined by p;(i) = p(i;(i)), and set

Spllt((L17L2)7 p) = (p17 p2)
We now define a gluing map, associated to
Li,L2), main main
Glueg, i e Mg, (L(0), B Py )evy X eo, Mg, (L(w), B3 )
— MR (L(w), B p)
below. Herek:k1+k271,€:€1+€2, /Biﬁl +ﬂg, andi:1,~~~ ,kg. Let
Sj = ((Z(])? ) {Zi(])}a {Zl,(j)}) € Mgfiri,ﬁj (L(u)a ﬁj; pj)
J=1,2. We glue 2 (1) € 931 with z; () € ¥ to obtain
Y=Y #i Y.

Suppose (S1,Ss) is an element of the fiber product in the left hand side of (6.5).
Namely we assume

(6.5)

Py (20,)) = P2 (2i(2))-
This defines a holomorphic map
p=pm#Hippe) XX
by putting ¢ = ¢(;) on ;.
Let m € L;. Then ij(c) = m, i; : {1,---,¢;} = L; be the order preserving
bijection. We define the m-th interior marked point 2t of ¢ as zi“(tj) €X; CX.
We define the boundary marked points (zo, 21, - , zk) by

(20,21, -+, 2k) = (20,(2)s " > Zim1,(2) Z1,(1) """ Pk, (1)) Zid1,(2)> " " * > Zha,(2))-

Now we put
S = ((E, ©s {Z;‘_}v {Zl})
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and

(L1,L2),p _
Glue&}fz;?ﬂ,kz;i;ﬁl,ﬁz (Sl’ 82) =S.

Lemma 6.4. The boundary of Mglfif;‘é(L(u),ﬁ; p) is isomorphic to the union of
the images of Glueg"le’ii)lﬁmi;ﬂlﬂg fork=ki+ke—1, =101+, 0= 01+ Do,
and 1 =1,--- ko as a space with Kuranishi structure. The isomorphism preserves
the T™ action.

The isomorphism commutes with the evaluation maps at the boundary marked
points.

The lemma directly follows from our construction of the Kuranishi structure we
gave in section 29 [FOOO02].

Let & be the symmetric group of £ elements. It acts on M’}f“jiﬂg(L(u),ﬂ) by
changing the indices of interior marked points. It also acts on Map(¢, B) by o-p =
poo~ L. Then for ¢ € &, we have

e s M (L(u), B;p) — M (L(u), B50 - p). (6.6)
We next generalize Lemma 10.2 [FOOO3] to our situation. Let
forgety : MR (L(u), 55 p) — MTF™(L(u), 3 p) (6.7)

be the forgetful map which forgets all the boundary marked points except the 0-
th one. We may choose our Kuranishi structures so that (6.7) is compatible with
forget, in the same sense as Lemma 31.8 [FOOO2].

Lemma 6.5. For each given E > 0 and {y, there exists a system of multisections
S8 k+1,0p ON ./\/lzn_‘:iﬂe(L(u),ﬁ; p) for BNw < E, £ < Ly, p € Map(¢, B). They have
the following properties :

(1) They are transversal to 0.

(2) They are invariant under the T™ action.

(3) The multisection sg j+1,¢,p s the pull-back of the multisection sg1.0,p by the
forgetful map (6.7).

(4) The restriction of 83 k+1,0,p to the image of Glue%,le’jﬁs)ﬁcz;i;ﬁl,ﬁg is the fiber
product of the multisections S8, k;+1,6,p, J = 1,2 with respect to the iden-
tification of the boundary given in Lemma 6.4.

(5) For £ =0 the multisection sg 11,09 coincides with one defined in Lemma
10.2 [FOOO03].

(6) The map (6.6) preserves our system of multisections.

Proof. The proof is similar to the proof of Lemma 10.2 [FOOO3]. We define
83 k+1,0,p for p € Map({, B) by a double induction over ¢ and wN 3. The case £ =0
is proved in Lemma 10.2 [FOOOQ3]. Condition (4) above determines the multisection
on the boundary. T™ equivariance implies that evg : M;anif;lgeg(lj(u), B;p)irkttir —
L(u) is a submersion. Here

MPERES(L(w), 5 p) 4102 = (55441,0p) " (0).

This fact and the induction hypothesis imply that the multisection we defined by
(4) on the boundary of our moduli space is automatically transversal. (This is
the important point that makes the proof of Lemma 6.5 easier than corresponding
general discussion given in section 30 [FOOQOZ2]. See section 10 [FOOO3] for more
discussion about this point.)
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Thus we have defined a multisection on a neighborhood of the boundary. We
can extend it to the interior so that it satisfies (1) and (2) in the following way
: We first take the quotient (V/T™, E/T™) of our Kuranishi chart. Since the 7™
action is free on V the quotient space is a manifold on which I" acts. Thus we can
use the standard result of the theory of Kuranishi structure to define a transversal
multisection on this chart where the multisection is already defined. We lift it
to V and obtain a required multisection there. In this way we can construct the
multisection inductively on the Kuranishi charts using the good coordinate system.
(See section Al [FOOO02].)

To show (6) it suffices to take the quotient by the action of symmetric group
and work out the induction on the quotient spaces. The proof of Lemma 6.5 is now
complete. O

Corollary 6.6. gljif;’z(L(u),ﬁ; p)°er+te s empty, if one of the following con-
ditions are satisfied.

(1) u(B) =>2;(2n —dim Dy, —2) < 0.

(2) u(B) —>2(2n —dim Dy, —2) =0 and 3 # 0.
Proof. We may assume k = 0, by Lemma 6.5 (3).

We first consider the case of 3 = 0. All the holomorphic curves in this homotopy
class are constant maps. Then our moduli space is empty for £ > 0, since L(u)ND =
(). This implies the lemma for the case 8 = 0.

We next consider the case § # 0. The virtual dimension of ./\/lrf;‘?in(L(u), G;p)
(which is, by definition, its dimension as a space with Kuranishi structure) is

n+pu(B) =Y (2n —dim Dy, —2) — 2. (6.8)

By the transversality (Lemma 6.5 (1)) and 7™ equivariance (Lemma 6.5 (2)), we
find that (6.8) is not smaller than dim L(u) = n if the perturbed moduli space is
nonempty. (We use 3 # 0 here : If 5 = 0 the virtual dimension of ./\/li‘;lgin(L(u), Bo)
is n — 2 but it is nonempty.) This finishes the proof of the lemma for the case

8 #£0. O
We now assume
w(B) =Y (2n — dim Dy, —2) =2, (6.9)
and 3 # 0. Then
T (L), ;)
has a virtual fundamental cycle, by Corollary 6.6. We introduce the following
invariant

Definition 6.7. We define ¢(3;p) € Q by
(B P)[L(u)] = evon ((MEF (L(w), B; p)*717)).

Lemma 6.8. The number ¢(8;p) is independent of the choice of the system of
multisections sg 41 satisfying (1) - (6) of Proposition 6.5.

The proof is the same as the proof of Lemma 10.7 [FOOO3] and so is omitted.

Remark 6.9. The independence of open Gromov-Witten invariant such as ¢(3; p)
was proved in [KL] by taking equivariant perturbations in the situation where an
appropriate S'-action exists.
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We use the above moduli spaces to define the operators qg.r ¢ as follows. Let
p € Map(¢, B). We put

D(p) = Dp1) @ -+ @ Dp(e).
Let hy,--- , hy be differential forms on L(u). We put
> (deghi +1) — p(B) + > (20— dim Dy, —2) +2=d
where we note that
deg MY (L(u), B; p)***»] = codim[MTF™ (L(u), B; p)* 7]
=—u(B)+ Y _(2n—dim Dy, —2) +2.
(See (6.8).) We then define a differential form of degree d on L(u) by

1
a4 e (D(P)ih1, -+ i) = E(evo)!(evh coyevg) (hy Ao AN hy), (6.10)

here evq, ev; are the maps

(evo, -, ev) s MR (L(u), B p)* 4% — L{u)*+!

and (evp): is the integration along the fiber. More precisely we use (6.10) for
(8,6,%) # (0,0,0), (0,0,1) and we put

q0.0.1(h) = (=1)"T9 " 1dh  qo00(hy, hy) = (—1)de8m(deshat Dy A py,
We use T™-equivariance to show that
evo : MR (L(u), 3 p)* 0% — L(u)

is a proper submersion. Hence the integration along the fiber is well-defined and
gives rise to smooth forms. (It is fairly obvious that the integration along the fiber
on the zero set of a transversal multisection is well defined and that it satisfies
Stokes’ theorem. See section 12 [Fu3], section 33 [FOOO2] or section 12 of present
paper.) Let Q(L(u)) be the de Rham complex of L(u).

Definition 6.10. We put

aik =D TP gl )
B

By restricting q%:” to By A C By A we obtain
G+ Eo(A2)) @ By(Q(L(w)[1)) — QL)1)
of degree 1 — p(8) and
Ak : Ee(A(M)(R) @ Br((QUL(w)) & Ao(R))[1]) — ((L(w)) ® Ao(R))[1].
Proposition 6.11. qgf}f,k satisfies (2.2).
Proof. For p € Map(¢, B), (IL1,Ly) € Shuff(¢) we put
Split((L1, Le), p) = (Split((L1, L2), )1, Split((L1, L2), p)2)
It is easy to see that the coproduct A(D(p)) is given by the formula

2!
INE S D S S
(L1,L2)€Shuff(¢) 7L |!##{La|!

Then (6.4) and (6.5) imply (2.2) in the same way as section 13 [FOOO2]. O

D(Split((IL1,Lz), p)1)@D(Split((LL1, Lz), p)2).
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Now for b € A%(AL), we define
m{ by ) = q(e e, - ha). (6.11)

Here
e =1+b+b®@b+---.

Proposition 6.11 implies that mkDT’b defines a structure of filtered A, algebra on
Q(L(w))-

Lemma 6.12. (Q(L(u)) & Ag(R), {m&®°Yy22 ) is homotopy equivalent to the fil-
tered Ao algebra defined by (2.6).

The proof of the this lemma is the same as that of Lemma 37.55 [FOOO2] and
is omitted here. We refer readers thereto for the details. In fact we do not need to
use Lemma 6.12 for our applications. We can just use the de Rham version without
involving the singular homology version.

We take a canonical model of (Q(L(u)), {mZR’b},;“;O) to obtain a filtered Ao
algebra (H(L(u); Ag(R)), {m{*c"12 ) The canonical model in the situation
where we include bulk deformations can be defined also by using section 32 [FOOO2]
as follows. In Corollary 32.40 [FOOO2] we reinterpreted the operator ¢ as follows
: We define

q°(D(op(p)); z1,- -+ s 2k) = (=1)"q(D(p); z1, -+, Tk)- (6.12)
Here
(op(p))(i) = p(£ — 1)

if p € Map(¢, B). We do not discuss sign * here. In our case where deg D; is even
and deg x; is odd, there is no such a sign factor, i.e., (—1)* = 1. We regard q° as a
homomorphism

EA(A+(R)[2] — @ Hom(Bu(Q(L(w))[1]), AL(w)[1]) ® Ag(R).  (6.13)
k

We regard EA(A+(R))[2] as a filtered Lo algebra with trivial operations. The
right hand side of (6.13) is identified with Hochschild complex of differential graded
algebra Q(L(u)). So it is a differential graded Lie algebra. Then the formula (2.6)
which we proved in Lemma 6.11 is equivalent to saying that (6.13) is a filtered L
homomorphism. This is Proposition 32.34 [FOOO2].

Let H(L(u);R) be the de Rham cohomology of L(u). Then it has the structure
of A, algebra.

Remark 6.13. We remark that in our case where L(u) is a torus, this A, structure
is formal. Namely there is no higher operations my for k£ > 2. In other words, The
cohomology ring, H(L(u);R), is homotopy equivalent to the de Rham complex as
an A algebra defined by (6.10).

We identify
P Hom(Bi(H(L(uw):R)[1)), H(L(u): R)[1])
k
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with the Hochschild complex of H(L(u);R). In Theorem 32.41 [FOOO2] we defined
a homotopy equivalence of L., algebras
D Hom(By.(QL(w))[1]), 2AL(w))[1])
k

(6.14)
— @D Hom(By(H (L(u); R)[1]), H(L(u); R)[1]).
k

(We will review some part of the construction of (6.14) at the beginning of the next
section.)

Remark 6.14. The domain and the target of (6.14) are both differential graded
Lie algebras. However the homotopy equivalence is one as an L., algebra and is
not as a differential graded Lie algebra homomorphism.

We compose two (filtered) Lo, homomorphisms (6.13) and (6.14)®@A(R) to ob-
tain

q°"? : B(A(A (R))[2)) — @D Hom(By(H (L(u); Ao(R))[1]), H (L(u); Ao(R))[1]).
k

We reinterpret q“®™° in the opposite direction as (6.12) to obtain
ik Ee(AAL(R))[2]) © Bi(H(L(u); Ao(R))[1]) = H(L(u); Ao(R))[1].

It can be decomposed as
q?flkn = Z T"““’/Q’Tq%‘?}fk-
B

We use this to obtain a filtered A, structure my“*" = qs(e®,--+) as in (6.11) on
H(L(u); A(R)) for b € A
7. CALCULATION OF POTENTIAL FUNCTION WITH BULK

We define a potential function PO as we discussed in section 3. In this section
we study and will partially calculate it. The next lemma is used for this purpose.

Lemma 7.1. Let r € H'(L(u);A), B € Ho(X,L;Z), and p € Map(¢, B). We
assume (6.9). Then we have

can c ﬂ; p

where PD([L(u)]) is the Poincaré dual to the fundamental class [L(u)] € Hy,(L(u);Z).

@8 Nw)* - PD([L(u)).

Proof. The proof is similar to that of Lemma 10.8 [FOOO3] and proceed as follows.
Let i be a harmonic representative of the class r. We first prove

[ atmn - n = P g0 .y
L(w) o

The proof is the same as that of Formula (10.7) [FOOO3], using Definition 6.7.
We next use (7.1) to calculate operations in the canonical model. According
to the construction of section 32.4 [FOOO2] and at the end of this section of this

can

paper, the operator 450k induced on the canonical model is a sum :

a5 (DP)ir, 1) =Y _ar(h,--- ,h). (7.2)
N
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Explanation of the formula (7.2) is in order. The right hand side is a sum over T
T" consists of the following data :

(1) |T'| is a tree together with an isotopy type of its embedding to R?. ( It
determines cyclic order to each of the sets of edges containing a vertex. In
other words we fix its ribbon structure.)

(2) Each of the vertex |I'| is either exterior or interior.

(3) Each of the exterior vertices has only one edge. The set of the exterior
vertices is numbered from 0 to & which respect the counter-clockwise cyclic
order of R?, that is the order induced by the orientation of R2.

(4) Each of the interior vertices is either of the type @ or C. Let ng (), C§(T)
be the set of interior vertices of type @ (= quantum) or C' (= classical),
respectively.

(5) The set {1,---,¢} is divided into a disjoint union UveCf‘f’(F) I,.

(6) To the vertex v of type @, an element 3, € Ho(X;L(u);Z) such that
MBI (L (), 3,) # 0, B, # 0 is chosen.

(7) The vertex v of type @ with k, + 1 edges is assigned the A, operation
q%f;zv,kq, (D(PI,U)Z -++), where k, > 0 and p; = (P(Uu(1), -+ s p(Lo(#10))-
Here we identify I, C {1,---,¢} with an order preserving injective map
I, {1, - #L,} = {1,--- ,{}.

(8) The vertex v of type C has exactly 3 edges. We assign the wedge product
mp g, = £A to it. (We remark 8y = 0. So the operations my g, are
operations of Q(L(u)), that is the differential graded algebra regarded as
an A algebra. In particular my g, = 0 for k& > 3.)

We take a T™-invariant Riemannian metric on L(u) and hence the Green operator
(or the propagator)

G : QF(L(u)) — Q1 (L(u))
is also T™-invariant. We identify H(L(u);R) to the space of harmonic forms and
let

IT: Q(L(u)) — H*(L(u);R) € QF(L(u))

be the harmonic projection. They satisfies the relation :

—(doG+God)=1id—1I

We assign the Green operator G to each of the interior edges, that is the edges
which do not contain exterior vertex. We assign II to the edge which contains the
zero-th exterior vertex. We define qr(h, - ,h) by composing operations assigned
to the vertices and edges according to the way they are connected. More precisely,
we first define

fF(ha T >h) € Q(L(u))
by the induction of the number of vertices as follows.

If there is a unique interior vertex v then

fr(h, -+ h) = q%ﬁ%,ku (D(sz)§h7"' ,h),
when v is of type @ and
fr(h,h) = h A h,
when v is of type C.

We next assume that I' has more than one interior vertices. Let vj,5; be the
unique edge which is joined with the zero’s exterior vertex. We remove vj,s¢, zero’s
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exterior vertex, and the edge joining them from [T'|. Let [I'¢[,--- , |[I', | be the clo-

sure of the connected component of it. (The number of the connected components
is ky,,.,, that is the number of edges of vjag¢ minus 1.) The other data consisting T’
induces ones on I'; in an obvious way. We then put

fr(h, - h) = q%ffast Lopan Koy (D(plvlast)ﬂ(frl(h» ey h),
G, (e h)),
when v1,4¢ is of type @ and
fo(h, -+ h) = G(fr,(h, -+ s h)) AG(fry(hs -+ ),
when vy, is of type C.
We then define
qr(h,--- ,h) =T o fr(h,--- ,h).
We have thus defined qr(h,--- ,h). (7.2) is its sum over I' such that

> B=p

veCF (T)
This finishes the description of (7.2). Let us go back to the proof of Lemma 7.1.

Sublemma 7.2. In our situation the nonzero qr appears only in the case of T’
which has only one interior vertex.

Proof. We remark that since L(u) is a torus the wedge product between harmonic
forms is again harmonic. Therefore application of the Green operator to the wedge
product gets zero. Namely if there is an interior vertex of type C which is not the
vertex et (that is the vertex which is joined by an edge to the zero’s exterior
vertex), then qr is zero.

We next consider the vertices of type . Consider

() — Z@n —dim Dy, —2) (7.3)

for each v € C(? (T"). We remark that 5, # 0. Hence (7.3) is not smaller than 2 for
each v.

On the other hand the sum of (7.3) over vertices of type @ is 2. This is a
consequence of (6.9) which we assumed. It follows that there is only one vertex of

type Q.
To complete the proof of the sublemma it suffices to consider the case where v,
is of type C' and there is another interior vertex of type . In such a case we have

ar(h, -+ h) = (G5} x—1(D(P); hy -+ h)) Ah) (7.4)
Using @ and the above argument we have
a5 k—1 (D(P); hy -+, h) € Q*(L(w)).

Hence Gq4f% 1 (D(p); h,--- ,h) € Q"*(L(u)) = 0. Therefore (7.4) is zero. The
proof of Sublemma, 7.2 is now complete. O

The above discussion implies that the only nonzero term in (7.2) is (7.1). The
proof of Lemma 7.1 is complete. (]



38 K. FUKAYA, Y.-G. OH, H. OHTA, K. ONO

Proof of Proposition 3.1. This is an immediate consequence of Corollary 6.6. In
can,b

fact it implies that m;"™""(b,--- ,b) can be only degree 0, that is proportional to
PDIL(u)]. |

Proof of Theorem 3.4. Let b = Zle boDy, b, € AL. We assume b, is Gpuk-

gapped. We have
b = Z Z P D(p).
£ peEMap(l,B)

bP = H bp(j)-
J

Here

We have :
PO (b35) = 3 BPTI g | (D(p)ib, - ,b).
B,p,k
By the degree counting the sum is nonzero only when (6.9) is satisfied. Therefore
by Lemma 7.1 we have

KIlpl!
B.p;k
1 PTBNw/2m (75)
=2 ot T (B p) exp(b N 95).
Bp T

The sum of the cases 8 =f; (i =1,--- ,m) and |p| = 0 is POy (b).
We next study other terms for |p| # 0. We first consider the case 5 = §;, £ # 0.
Then the corresponding term is a sum of the terms written as

Tt WHey T (7.6)
Here ¢ € Q and p is a sum of the numbers which appears as an exponents of b,
for various a. It is nonzero since ¢ # 0 and b, € A;. Therefore p € Gpun \ {0}.
Therefore (7.6) is of the form appearing in the right hand side of (3.5).
We next consider the case 8 # 8; (i = 1,---,m). We assume ¢(8;p) # 0 in
addition. Then by Proposition 6.1 (5) we have e’ and p such that

SNw i
o :Ze £;(u) + p.

Here ¢’ € Z>p and Y e’ > 0 and p is a sum of symplectic areas of holomorphic
spheres divided by 27. Thus the corresponding term is a sum of the terms

T 6%(U)+ﬂ+n’y2 e'v; ]

Here ¢ € Q and p’ is a sum of the numbers that appear as the exponents of b, for
various a. This is exactly of the form in the right hand side of (3.5).

Finally we prove (3.7). We first fix 3. There can be infinitely many terms
contributing to q5',. Namely it is possible that £ — co. The exponent of any such

term is not smaller than

5. i (7.7)

where
pPo = inf(Gbulk \ {0})
(7.7) goes to infinity as £ — co.
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We next consider the case where infinitely many different 5’s contribute to g3l
We denote the §8’s by 38,. Suppose qc‘m is nonzero. The term corresponding

'Y 'Y
thereto in (3.5) is of the form :
che/v(“)“’”yf”’l ey (7.8)
such that df’, = (v} ;,---,v) ). We study £ (u) and p., and prove that p, goes to

infinity.
We apply Proposition 6.1 (5) and obtain

ny = Z ki,'yﬂi + Z Qry g
i=1 J

‘We have

and

a~ 5 N |w
Py = Z WTH + (a sum of exponents appearing in b).
j

If (k1,y, - kny) € Z" is bounded as v — oo, then }_; v, ; € Ha(X;Z) is neces-
sarily unbounded. Therefore

a5 N W]
J

goes to infinity, as required.
We next assume that (kq,, - ,kn~) € Z" is unbounded. Then the sum of its

Maslov indices
Z kiu(Bi) = 2 Z ki~
i=1 i=1

is unbounded. (We remark k; , > 0.) Therefore one of the following occurs.

(a) [>2; c1(X) Ny 4| is unbounded.
(b) p(By) is unbounded.

In case (a), > ; ay,j € H2(X;Z) is unbounded. Therefore
y = Z Q5 M w
J

goes to infinity, as required.
For the case of (b), we have

dim M (L(w); By) = 205 + 1+ pu(By) —
On the other hand,
dim rf;‘?in(L(u);ﬁA, 'p)=n
since q. ¢, &, (P; b) is nonzero. Therefore

é'Y
(degp; —2) = pu(By) —
j=1
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goes to infinity. Hence £, goes to infinity. It follows that

Py = Lypo

goes to infinity, as required.
The proof of Theorem 3.4 is now complete. (]

Proof of Proposition 4.9. We assume that b is as (4.10). We remark that D;q ) €
H?(D;Z). Therefore a dimension counting argument shows that only 3 with u(3) =
2 contributes to PO (b;b). Then by the assumption that X is Fano we derive that

only f;’s for (i =1,--- ,m) contribute among those (’s.
Thus we have obtained
m 1 .
O%(b;b) = —pPTEM (B p)y . 7.9
B0 =35 o (5::p) (79)

We next calculate ¢(3;; p). By definition we have
c(Bi; P)[L(w)] = evon (MY (L(u), B; p)*e1tp)

and
Ipl

el (L (), 5:p) = MERNL(w). 0) xxor ]| Do)
j:l
We consider
evg : M?}S‘“(L(U)aﬁ) — L(u).

It is a diffeomorphism by Proposition 6.1. We fix py € L(u) and let {} is evg *(po)-
Since [¢] = 3; it follows that

1 j=i,
0 j#i.
We remark that the number ¢(5;; p) is well defined, that is, independent of the
perturbation. So we can perform the calculation in the homology level to find that

(] N D(p(4)) = {

1 i) = ¢ for all 5
P(j) i forall j, (7.10)
0 otherwise.

c(Bi;p) = {
Thus (7.9) is equal to
Zexp(bi)TKi(“)yﬁ".
i=1

By using the decomposition of b; in (4.10), the proof of Proposition 4.9 is complete.
O

Proof of Proposition 4.15. We assume that b satisfies Condition 4.14. Again by
dimension counting only 8 with u(8) = 2 contributes to PO“(b;b). In Proposition
4.15 we do not assume that X is Fano. So the homology classes § other than (;
(i=1,--+,m) may contribute.

We first study the contribution of §;. We put

Po(bsb) = 3 3 6P (s py 7

|
— < Ipl!
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(7.10) holds also in our case. Therefore we have

m

PBo(b';5) — Po(b;b) = > (exp(b]) — exp(b,)) Ty

i=1
= (exp(by(,ry + cT’\) — exp(bi(lyr)))TSlyﬁiU,r)'
This is of the form of the sum of the first 2 terms of the right hand side of (4.20).

We next study the contribution of 3 # ;. We assume u(3) = 2 and M™¥1(L(u); 3) #
?. We put

Z| |,bPTﬁﬂw/% ¢(B;p) exp(b N IP).

We write
m
B=D eshitd g,
i=1 i

as in Proposition 6.1 (5). Then

w] = Zefg&(u) + ZO‘BJ N [w
i=1 j

We have eg >0and ), eg > 0. Moreover, since § # §; (i =1,--- ,m) it follows
that 3, ag; # 0. (We use u(3) = 2 to prove this.) Therefore

pPp = Zaﬁj w]/2m > 0.
Hence

Balb'30) — Balb55) = 303 T Ao i

o h=1

where ¢, 5, € R and p/ is a sum of exponents of T in b. This corresponds to the
third term of (4.20). In fact £, = 3, ejli, po = pl, + pp-
Now Proposition 4.15 follows if we rewrite

PO(b';5) — PO(b;5) = (Po(b';5) — Po(b;5)) + > (Pa(b':0) — By (b;D)).
B

8. FLOER COHOMOLOGY AND NON-DISPLACEMENT OF LAGRANGIAN
SUBMANIFOLDS

In this section we discuss how we apply Floer cohomology and the potential
function to the study of non-displacement property of Lagrangian submanifolds.
Especially we will prove Proposition 3.15 and Theorem 3.19. The argument of this
section is a minor modification and combination of the one given in [FOOO3] except
that we integrate bulk deformations into the argument therein. (The way to use
bulk deformation in the study of non-displacement of Lagrangian submanifold is
described in section 13 [FOOO2].) This generalization is quite straightforward. We
however gives details in order to make this paper as self-contained as possible for
readers’ convenience. To avoid too much repetition of the materials from [FOOO2]
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or [FOOO03], we will use the de Rham cohomology version instead of the singular
cohomology version of filtered A, algebra associated to a Lagrangian submanifolds
in some part of this section. De Rham version is suitable for the purpose of present
paper since we can easily realize exact unit in de Rham theory. We are using weak
bounding cochain which is easier to handle in case exact unit (rather than homotopy
unit) exits.

In this section we put R = C. We write Ag, Ay, A in place of Ay(C), A4 (C),
A(C) respectively, in this section.

We first explain how we enlarge the deformation parameters (b,r) of Floer co-
homology to

A(A4) x H'(L(u); Ag) D A(A4) x H'(L(u); As),

by including b € H'(L(u); Ag) D H*(L(u); Ay) as in [FOOO3] where we borrowed
the idea of Cho [Cho] of considering Floer cohomology twisted with flat non-unitary
line bundles in the study of displacement problem of Lagrangian submanifolds.

Definition 8.1. Let
L= Z;Zel € H'(L(uo); Ao) (8.1)

and
L ="rio + &+ (8.2)
where r;0 € C and r; + € A;. We put

00 Z:n
1.0
Di0 = exp(ri0) = Z ;ﬁ eC.

n=0
Let p : Hi(L(u); Z) — C\ {0} be the representation defined by p(e;) = b;.0.
Definition 8.2. We define
drp " BeA(AL)[2] @ Bi(H(L(u); Ao)[1] — H(L(u); Ao)[1].
by

apN 8,80 -
q;akn N Z U ey . e Tﬁﬂw/Zﬂq%LjZk.

‘We then define :

mz,can ;( Z qcan N 6;+ z16P+ cee 6;+5Ekel+)7 (83)
and
OU(b,rs) = > A (vhah). (8-4)
0,k
We define

a7 - Be(AML)[2]) ® Br((Q(L(u) ® Ao)[1]) — (L (u)) & Ao)[1]-

b .
and m;’* in the same way.

Lemma 8.3. (1) mzx, mz €AY define structures of a filtered Ao, algebra on

Q(L(u))®Ao and on H(L(u); Ag), respectively.
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(2) Let SPO™ : HY(L(u);Ag) — Ag be the extended potential function as in
Lemma 3.5. Then we have

PO, (b;r4) = POU(b;1)
if (8.2) holds.
Proof. The proof of (1) is the same as that of Proposition 11.2 [FOOO3]. The proof

of (2) is the same as the proof of Lemma 3.8 [FOO03]. O
Definition 8.4.
Ker mU-eont
HF((L(u),b,1), (L(u), b,1); Ag) := b
mm;’
We remark
Ker m{“™* _ Ker m{"*
Im mi”c“"’zc " Im mi”x ’

Proof of Theorem 3.12. Based on the above definition the proof goes in the same
way as the proof of Theorem 3.9 [FOOO3]. O

We next prove Proposition 3.15 and Theorem 3.19. Again the proofs will be
similar to the proofs of Proposition 3.11 and Theorem 4.11 [FOOO3] in which
we use a variant of Theorem 2.5 that also employs Floer cohomology twisted by
non-unitary flat bundles (whose holonomy is p as above).

Now we provide the details of the above mentioned proofs.

Let ¥ : X — X be a Hamiltonian isotopy with ¢y = identity. We put 1 = 1.
We consider the pair

LO = L(u), LW = 4(L(u))
such that L™ is transversal to L(®). By perturbing ¢, a bit, we may assume the
following :
Condition 8.5. If p € L(u) N4 (L(u)) then

bi(p) ¢ 1 (OP) (8.5)
for any t € [0, 1].
We put ¢ J = J; where J is the standard complex structure of X. Then Jy = J

and J; = . (J).
Let p,q € L(O N LM, We consider the homotopy class of maps

p:Rx[0,1] - X (8.6)
such that

(1) lim,—— oo p(7,) = p, lim,— 400 9(7, 1) = ¢.
(2) ¢(1,0) € L), p(1,1) € LW

We denote by m (LM, LO): p q) the set of all such homotopy classes. We then
define maps

W?(L(l)aL(O);pa T) X 71—2([’(1)7[’(0); r, q) - WQ(L(1)7L(O);pa q)a
mo(X; L) x (LW, L p, q) — ma (LD, LO; p, ), (8.7)
mo (LY, L p, q) x mo(X; LO) — mp (LW L p, q),
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as follows. The map in the first line is an obvious concatenation. To define the map
in the second line we first fix a base point pg € L. Let ¢ : R x [0,1] — X rep-
resent an element of o (LM, L();p ¢) and ¢ : D> — X an element of mo(X; L),
respectively. (¢(1) = po and ¢(0D?) ¢ L™M.) We take a path v joining py and
©(0,1) in L. We take the boundary connected sum (R x [0, 1])#D? of R x [0, 1]
and D? along (0,1) and 1, which is nothing but R x [0, 1]. We use v to obtain the
map ¢#~,¢ : R x [0,1] = (R x [0,1])#D? — X joining ¢ and ¢. The homotopy
class of p#-¢ is independent of v since m; (LMY acts trivially on mo(X; L), (We
use the fact that L) is a torus here.) We thus defined the map in the second line.
The map in the third line is defined in the same way.
We denote the maps in (8.7) by #.

Remark 8.6. (1) We here use the set mo (LM, LO); p, q) of homotopy classes.
In the last two sections we use homology group Ha(X, L(u);Z). In fact
Hy(X,L(u);Z) = m(X, L(u)) in our situation and so we can instead use
the latter.

(2) The definition of # above is rather ad hoc since we use the fact that L")
is a torus. In the general case we use the set of I' equivalence classes of
the elements of mo(L™M), L(9;p, q) in place of mo(LM), L) p, q) itself. (See
Definition-Proposition 4.9 [FOO02].)

Definition 8.7. We consider the moduli space of maps (8.6) satisfying (1), (2)
above, in homotopy class B € m (L(l), LO);p, q), and satisfying the equation :

92 4, (8“’) 0. (8.8)
or

We denote it by
M (LD L0 p,g; B).

We put k; marked points (7; < ,1) on {(7,1) | 7 € R}, ko marked points (7; ) ,0) on
{(r,0) | 7 € R}, and ¢ marked points (7;,t;) on R x (0,1). We number the k1 + ko
marked points so that it respects to the counter-clockwise cyclic order. The totality

of such (i, {(r{", 1)}, {(r”),0)}, {(7i, £:)}) is denoted by
MZ%F (L(l) 7,0 ),p,q B).

We divide this space by the R action induced by the translation of 7 direction to ob-
tain M™8(LM), LO); p, ¢; B), and M5, (LW, L©); p, g; B). Finally we compactify
them to obtain M(LM, L) p, ¢; ), and My, kot (LD LO p g: B).

See Definition 12.24 [FOOO2] (the case £ = 0) and section 13.8 [FOOO2] for the
detail.

Remark 8.8. In [FOO02] we defined My, , (LM, LO; [0, wi], [l4,wa]). The
choice of [wq] and B uniquely determines [ws] by the relatlon [w1]#B = [we], but
there could be more than one element B € my(LM | L) p, q) satisfying [wq]#B =
[we]. This is because the equivalence class [¢,, w] is not the homotopy class but
the equivalence class of a weaker relation. But the number of such classes B for
which M(L(l) LO:p g;B) # 0 is finite by Gromov’s compactness. Therefore
My 1o (LD LO [0, w01], [€4, w2]) is a finite union of M(LM, L) p, q; B) with B
satlsfymg [wl]#B [wa
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We define the evaluation map
ev = (ev™ ev™ ev@) s My, oo (LY, L p s B) — X x (L(u)* x (L(u))*o,
as follows.
LAY, 0} (7, 1)) = o((72,0)),
FAE 01 A ) = v (70, 0)), (89)
FAED, 0} A 10} = ¢ (i, 14).

and the latter is ¢.)

Lemma 8.9. Mkl,ko;g(L(l), LO:p g B) has an oriented Kuranishi structure with
corners. Its boundary is isomorphic to the union of the follows three kinds of fiber
products as spaces with Kuranishi structure.

(1)
Mg o (LD, L0 p,rs BY) x My o (LD, L, g; B”)

where ki + ki = kj, ¢' + 0" = {, B'#B" = B. The product is the direct
product.

M 110 (L(w); B') evo X0 Mk;',ko;é"(L(l)yL(O);p,Q;B”)-

Here 3' € mo(X;LW) = mo(X;L(u)), Ky + kY = ki +1, £/ + 0" = ¢,
B'#B" = B. The fiber product is taken over L) = L(u) by using evy :
Mgy 41(L(u); ') — L(u) and evgl) : Mklll’ko;gu(L(l),L(O);p,q;BH) —
LM, Herei=1,--- k.

Mg (LD, L p, g3 B') co® Xevo Mg 100 (L(u); 67).

Here " € ma(X; L) =2 mo(X; L(u)), kb + kil = ko + 1, £/ + 0" = ¢,
B'#p" = B. The fiber product is taken over L\®) = L(u) by using evy :
Mk()/«i»l;Z”(L(u);ﬁH) — L(’LL) and eUZ(O) : Mkl,k[’);é’(L(l)7L(0);p7q;B/) -
Lo,

Lemma 8.9 is proved in section 29.4 [FOOO02].

Definition 8.10. We next take p € Map(¢, B) and define

¢
Mkl,ko;Z(L(l), L(O)vpa q; B; p) = Mkl,ko;l(L(l)v L(O),pa q; B) evt X H Dp(z) (810)
i=1
It is a space with oriented Kuranishi structure with corners.

We remark that Condition 8.5 implies that if p = ¢, B = By = 0 then the set
M(LD, LO): p, p; By) is empty.

Lemma 8.11. The boundary of ./\/lkl,ko;g(L(l),L(O);p,q;B;p) is a union of the
following three types of fiber product as a space with Kuranishi structure.
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(1)
My e (LD, L5 p,rs B pr) x Mg ggraen (LY, L7, g3 B py).
Here the notations are the same as Lemma 8.9 (1) and

(1, P2) = Split((Ly, Lz), p) (8.11)

for some (IL1,Ly) € Shuff(¢).

(2)
Mt 1,0 (L(w); 65 P1) evo X oD Mk;',ko;e”(L(l),L(o);p,Q;B";pz)~
Here the notations are the same as Lemma 8.9 (2) and (8.11).

3)
Mgy g (LY, L5 p g By py) eo® Xevg Migiaen (L(w); 875 ps)-

Here the notations are the same as Lemma 8.9 (3) and (8.11).

The proof is immediate from Lemma 8.9. We remark that by our definition of
evaluation map evi"® the homology class 3/, 3” in (2), (3) above are nonzero.

We now construct a virtual fundamental chains on the moduli space (8.10). We
remark that we already defined a system of multisections on My1.¢(L(u); 8;p) in
Lemma 6.5.

Lemma 8.12. There exists a system of multisections (8.10) which are compatible to
one another and to the multisections provided in Lemma 6.5 under the identification
of the boundaries given in Lemma 8.11.

Proof. We construct multisections on the moduli space (8.10) by induction over k
and | s

We remark that the boundary condition for (8.8) is not 7" equivariant anymore
. while the boundary L(®) = L(u) is T" invariant, L(") = ¢(L(u)) is not. So there
is no way to define a T™-action on our moduli space (8.10).

We however remark that evy in (2) and (3) of Lemma 8.11 is a submersion after
perturbation. This is a consequence of (2) of Lemma 6.5. Moreover the fiber prod-
uct in (1) of Lemma 8.11 is actually a direct product. Therefore the perturbation
near the boundary at each step of the induction is automatically transversal by the
induction hypothesis. Therefore we can extend the perturbation by the standard
theory of Kuranishi structure and multisection. This implies Lemma 8.12. (]

We are now ready to define Floer cohomology with bulk deformation denoted by
HF((LW,,9.(1)), (L, b,1); Ao).

Let us use the notation of Definition 8.1. We have a representation p : w1 (L(u)) —
C\ {0}. We choose a flat C-bundle (£, V) whose holonomy representation is p. It
determines flat C bundles on L(®, LM which we denote by £(®) and £, respec-
tively. The fiber of £) at p is denoted by ,C;(,j ).

Definition 8.13. We define

CF((LW,p), (LW, p);Ao) = € Hom(LY, LY) @c A,
peEL(MNLO)

With elements p € L) N L equipped with the degree 0 or 1 according to the
parity of Maslov index, it becomes a Zs-graded free Ag-module.
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We are now ready to define an operator t, following section 13.8 [FOOO02]. We
first define

Comp : mo (LM, L; p. q) x Hom(ﬁéo), E;l)) — Hom(ﬁgo), L’gl))
Let B =[] € m(LM, LO;p,q), 0 € Hom([lg)),ﬁz(,l)).
7+ (7, 7) defines a path joining p to ¢ in LU). Let
Paly,p : L) — L) (8.12)

be the parallel transport along this path with respect to the flat connection V.
Since V is flat this is independent of the choice of the representative ¢ but depends
only on B. We define

Comp(B,0) = Palg, g oo o Paly ;. (8.13)
Lemma 8.14. Let B € my(LW, LO:p q), B € mo(LM,LO):q,7) and B; €
T (X, L), o € Hom(LY, £V). Then we have
Comp(B#B’, ) = Comp(B’, Comp(B, o)),

Comp(Bo#B, o) = p(Bo)Comp(B, o),
Comp(B#01,0) = p(f1)Comp(B, ).

The proof is easy and so omitted.

Definition 8.15. Let B € mo(L™M, L©: p,q), p € Map(t, B) and b (i = 1,--- | k;)
be differential forms on LY. We define
1 1 0 0
tp,kl,ko;Z;B(D(p); hj(L )7 e 7h](<;1); o3 hj(L )7 T 7h](¢0))
_ 1
T
€ Hom(ﬁflo), Eél)) ®c Ag.

Tme/Qﬂ—Comp(B,U)/ ev(l)*h(l) /\eU(O)*h(O) (814)
Moy g6 (L, L sp,q; B;p)

Here
G — p@) o .. (4)
h97 =Ry Xy

is a differential form on (L(j))kf.

Cpk1,kost = E :tp,kl,ko;z;B
B

converges in non-Archimedean topology by the energy estimate (see section 22.5
[FOOO02]) and defines

ki it EeA(AL)[2] ® B, (ALM) & Ao)[1])
® CF((LWM, p), (L, p); Ag) ® B, (ALY) & Ag)[1])
- CF((L(l)a p)a (L(O)a p)a AO)

The following is a slight modification of Theorem 13.71 [FOOO2].



48 K. FUKAYA, Y.-G. OH, H. OHTA, K. ONO
Proposition 8.16. Let y € A(A})[2], x € By, (QLM)® Ag)[1]), and let z €
By, (UL & Ag)[1]), v € CF((LW, p), (L), p); Ay). Then, we have
_ (22) dog’ x31) fdeg’ x4 deg y(*1)
0= Z (_1)degyc1 g Xe, co &
C1,C2
Ly e (x5 ©4,(yE? 9 xE) 9 x5¥) 9 v @ 2)
+ Z (_1)deg ygzlﬂ) deg’ xg;l)+deg' xgzll)—&-deg y(czlzl)
c1,¢2,¢3 (8.15)
LS @ xEY e yi? oxi? ove i) ©20?)
+ Z (71)(dcg yg‘;g)Jrl)(dcg' x+deg’ videg’ zg;;l))ercg yg:l)
C1,C3

LG e (xeve (@0 @0,y @ 20%) ©20Y)).

3

Proof. The 1st, 2nd and 3rd terms correspond to (2), (1) and (3) of Lemma 8.11
respectively. The associated weights of symplectic area behave correctly under the
composition rules in Lemma 8.14. The proposition follows from Stokes’ formula.
(We do not discuss sign here, since the sign will be trivial for the case of our interest
where the degrees of ambient cohomology classes are even and the degrees of the
cohomology classes of Lagrangian submanifold are odd.) (I

Lemma 8.17. [fx =x; ® 1 ® xo where 1 is the degree 0 form 1, then
Ly®xuez) =0. (8.16)
The same holds if z =21 ® 1 ® zs.

Proof. This is an immediate consequence of the definition. O

Using the algebraic formalism developed in section 32.7 [FOOO2] we can define
TR kst BeA(NL)[2] © Bry (H(LW; Ag)[1])
® CF((L™M, p), (L', p); o) ® By, (H(LM; Ag)[1])
— CF((LY, p), (L, p); Ao),
such that (8.15), (8.16) hold when v and q is replaced by t*™ and q°*".

Definition 8.18. Let b € A(A}), r € H'(L(u),Ag). We use the notations of
Definition 8.1 and define

395 CF((LW, p), (L1, p); No) — CF((LW, p), (L, p); o)
by
§%F(v) = tZ‘m(eb Ret Ruet).
By taking a harmonic representative of r; we also have
5% (v) =t (e" ® e @ v @ ett).

Lemma 8.19.
§%F 0 5% = 0.
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Proof. We remark that Ae® = e’ ®e® and Aet+ = ef+ ®@ef+. Therefore Proposition
8.16 implies
0 :t;‘m(eb ® et ® t;‘m(eb Rt QuRet)®et)
+ t,c)an(eb Qe ® q;an(eb ® e?+) Qe Qv ® eIJr)
+ (_l)degv+1tlc)an(eb et Qv et ® q’c)an(eb ® e;+) Q epr).
Since q5""(e® ® e*+) is a (harmonic) 0 form, Lemma 8.17 implies that the second
and the third terms vanish. This proves the lemma. O

Definition 8.20.
Ker §%¢

HE (LD, b, (), (L, 0,0): Ao) = 7 s
We recall we are considering the Hamiltonian isotopic pair
LO = L(u), LW =¢(L(u)).
For this case, we prove
Proposition 8.21. We have
HF((LM,0,9.(x)), (L, 0,5); A) = HF((L(u),b,5), (L(u), b,7); A).
Remark 8.22. We use A coefficients instead of Aj coefficients in Proposition 8.21.

Proof. We can prove Proposition 8.21 in the same way as sections 13, 22, 32 of
[FOOO02]. We will give an alternative proof here using de Rham theory. Let
be the Hamiltonian isotopy such that iy is the identity and 1, is ¥. We put
L® = gy (L(w)).

Let x : R — [0,1] be a smooth function such that x(7) = 0 for 7 sufficiently
small and x(7) = 1 for 7 sufficiently large. We choose a two-parameter family of
compatible almost complex structures {J;;}-; by

J bt = ’l/)z(X(T)J
Then it satisfies the following :

(1) Jr¢ = J; for sufficiently large 7.
(2) Jry = J for sufﬁ(nently small 7.
( ) T,1 — wx T)*
(4) J

Let p € L(O) N LM, We consider maps ¢ : R x [0,1] — X such that

(1) limr— oo (7, ) = p.

(2) lim,_,_ o o(7,t) converges to a point in L(®) independent of t.

(3) o(1,0) € LO | o(r,1) € LK),
We denote by 5 (L(l), LO): &, p) the set of homotopy classes of such maps. There
are obvious maps

o (LW, L0, p) x ma (LY, L p, q) — (LM, LO; %, q),
mo(X; L) x ma (LW, L 5, p) — mo(LY | LO): ), (8.17)
T (LW, 1O %, p) x o (X; L) — (LY 1O 4 p).

(We here use the fact that the action of 7 (L®)) on ma(X; L) is trivial.) We
denote (8.17) by #-.
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Definition 8.23. We consider the moduli space of maps satisfying (1) - (3) above
and of homotopy class Cy € mo(L(®), L(); % p) and satisfying the following equation

O dp\
>t + Ty <at)_0' (8.18)

We denote it by

ME(LN L0 p; Cy).
We also consider the moduli spaces with maps with interior and boundary marked
points and their compactifications. We then get the moduli space

My kot (LD LO 5 pr €.

We remark that we do not divide by R action since (8.18) is not invariant under
the translation. We can define an evaluation map

ev = (0™, v, ev®) s My 1oLV, LOs,ps C) — X (LO)1 s (LO)o
in a similar way as (8 9) as follows :

o (oA, DEAEY, 0L 1)}) = o(7”,0)),

@ (e A YA 0L t)) = vl (el D), (8.19)

evi™ (o, {(7\Y, D1 A, 0} (i t0)}) = ¥y L (o (70, 1)),
Moreover there is another evaluation map
€0 oot My ko (L, L0 4,p; Cy ) — L(u)
defined by
ev-s(p) = lim_o(7,2).

Using fiber product with the cycle D(p) we define My, r,.c(LXY), L% p; Oy ;p)
in the same way as above.

Lemma 8.24. Mkl,ko;g(L(l), LO):« p; Cy;p) has an oriented Kuranishi structure
with boundary. Its boundary is a union of the following four types of fiber products
as the space with Kuranishi structure.

(1)
Mg g (L8 L5, g3 Cipy ) x Mgy e (L0, L5 q,py B”; py).
Here the notations are the same as Lemma 8.9 (1) and (8.11).
(2)
Mg 10 (L(W); B5P1) ewy X, 0 Mgt gz (LD, LO 5, p: O py).
Here the notations are the same as Lemma 8.9 (2) and (8.11).
3)
Mgy igser (LD, L5, pi € s py) eo® Xevo Mg (L(u); B"; pa)-
Here the notations are the same as Lemma 8.9 (3) and (8.11).
(4)
Mg iz (L(w); 8591 evy Xev_ oo Mg o (LY, LO 55, py €5 py),
where K + Kk} = k;, £ + 0" = £, p'#CY = C and (8.11).
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The proof is the same as one in section 29.4 [FOO02].

Lemma 8.25. There exists a system of multisections on /\/lklyko;g(L(l), LO): s p: Cy; p)
so that it is compatible with one constructed before at the boundaries described in
Lemma 8.24.

Proof. We can still use the fact evg is a submersion on the perturbed moduli space
to perform the inductive construction of multisection in the same way as the proof
of Lemma 8.12. O

For C, € mp(L™M, L) x,p), we define p(C,) € Hom(ﬁz(,o), [,1(71)) by
p(Cy) = Paly,c, o Paly . (8.20)

Here we use the notation of (8.12).

Lemma 8.26. Let C; € T (LW, L% p), B' € m(LM,LO;p q) and B; €
73(X, LY)). Then we have
Comp(B’, p(C1)) = p(C4#B'),
p(Bo#Cy) = p(Bo)p(Cy), p(Cy#61) = p(B1)p(Cy)-

The proof is easy and is left to the reader. ‘

Now let Cy € mo(LW, LO); %, p), p € Map(¢, B) and let hz(-j) (i=1,---,kj) be
differential forms on LU) and h also a differential form on L(u). We define

fio ot D)o )i )

1

= Ep(C+) evW* W A e b A er @ p© (8.21)

/Mkl,ko;e(L“)-,L<°>;*,p;C+;p)
€ Hom(/il(,o), Ez(,l)) ® A.
Here
R — hgj) NI, hl(ci)
is a differential form on (L)%, It induces
foy + BIQLW) & Ag)[1]) @ (AL (w)) ® A)[1] @ B((AL™) & Ao)[1])
— @ Hom(ﬁéo), Eél)) ® A.
peLMALO)
Now we define
P QL) ® A — CF(LW, p), (L, p): A)
by
f(h) = T/ o (e @ et @ h®@etr). (8.22)
Ct
We remark that w N Cy /27 may not be positive in this case since (8.18) is 7-
dependent.

The fact that the right hand side converges in non-Archimedean topology follows
from the energy estimate. See section 22.5 [FOOO2].

Lemma 8.27. { is a chain map.

Proof. With Lemmata 8.24, 8.25, 8.26, the proof is similar to the proof of Lemmata
8.15, 8.17 and 8.19. O
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We next define the chain map of the opposite direction. Let p € L(O 0 L) We
consider maps ¢ : R x [0,1] — X such that

(1) lim,—, o (T, t) = p.

(2) lim, 4o (7, t) converges to a point in L(®) and is independent of .

(3) ¢(7,0) € LO, (r,1) € LK),
We denote by mo (L™, L) p ) the set of homotopy classes of such maps. There
are obvious maps

1o (LY, L, q) x mo (LW, L g, ) — ma(LY, L0 p, %),
mo(X; L) x Wg(L(l),L(O);p, %) — mo (LM, LO: p, %), (8.23)
(L, L p ) x (X5 LO) — ma (LY, LOsp, ).

We denote them by #.

Definition 8.28. We consider the moduli space of maps satisfying (1) - (3) above
and of homotopy class C_ € my (LM, L(O): p, +) and satisfying the following equation

dp dp\
ot (at) =0. (8.24)
We denote it by

ME(LW L p s CL).

We include interior and boundary marked points and compactify it. We then get
the moduli space My, x,.0(L™M), LO;p x;C_).

We define evaluation maps
ev = (evt, ev™, ev®) Mkl’ko;g(L(l),L(O);p7*;C,) — Xt x (LW)k (L(O))k",
and
€Vico ¢ Mk1,k0;f(L(1)7 L(O)§P7 *] C*) - L<u)
Here
evoo(p) = lim o(7,1).
Using evt we take fiber product with D(p) and obtain My, j,.c(LM, L p x; C_; p).

Lemma 8.29. My, 1,.«(LY, L) p x:C_;p) has an oriented Kuranishi structure
with boundary. Its boundary is a union of the following four types of fiber product
as the space with Kuranishi structure.

(1)
Mg s (LD p gy By py) x My s (LY, L q,5,C” 1 py).
Here the notations are the same as Lemma 8.9 (1) and (8.11).

(2)
Mg 10 (L(); B5P1) ewy X, 00 Mgt ez (LD, L p x; C 5 py).

Here the notations are the same as Lemma 8.9 (2) and (8.11).
(3)
Mkl,kg;f/(L(l)a L(O);pv *3 Cl,a pl) ev(® Xevy Mk6/+1;£” (L('LL), 5”; p2)'

Here the notations are the same as Lemma 8.9 (3) and (8.11).
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(4)
Mt e (LD, L0 p 4 CLipy)ew o Xew My 1y (L(w); 875 P2),
where K} + Kk} =k, ' + 0" ={, B'#C” = C_ and (8.11).

The proof is the same as one in [FOOO2] section 29.4.
We define

Comp : mo (LM, L p, ) x Hom (LY, £{V) — C
as follows. Let o € Hom(ﬁéo),ﬁz(;l)) and C_ € (LM, L) p ). Then
Comp(C_,0)v = Paly,c_ oo oPaly . (v), (8.25)

where v € Liim, ., _ o(r) and we use the notation of (8.12).

Let o € Hom(ﬁg,o),ﬁz(,l)), C_ € m(LMW,LO): q %), B' € mo(LW, LO): p ) and
B; € ma(X, LU)). Then we have

Comp(B’, Comp(C_,0)) = Comp(B'#C_, o),
Comp(fo#C-, o) = p(o)Comp(C_, 7), (8.26)
Comp(C_#ph,0) = p(B1)Comp(C-, 7).

Now let C_ € (LM, L©: p, %), p € Map(f, B) and b (i =1,--- , k;) be differ-
ential forms on L) and o € H om(ﬁéo), Ez(,l)). We will define an element
gekskoc_ (DO Ao h o n® o ) e QL) @A (8.27)
We will define it as
g@;khko;C, (D(p)’ h’gl)7 e ah/(gll)v ag; h§0)7 e 7h]((;(())))

1 (8.28)
= EComp(C,7 ) ((ev400)1) (0D * A A (O pO)y,
Here (ev4o0)r is the integration along the fiber of the map
€Vtoo Mkl,ko;f(L(l)v L(O);Z% * C_; p)s - L(’LL) (829>

of the appropriately perturbed moduli space. More precise definition is in order.

We can inductively define a multisection on My, go.c(LM, L p +; C_;p) so
that this is transversal to 0 and is compatible with other multisections we have
constructed in the earlier stage of induction. We can prove it in the same way as
Lemma 8.25.

However it is impossible to make the evaluation map (8.29) a submersion in
general by the obvious dimensional reason if we just use multisections over the
moduli space Mkl’ko;g(L(l),L(o);p,*;C’,;p) : We need to enlarge the base by
considering a continuous family of multisections. This method was introduced
in section 33 [FOOO2| for example and the form we need here is detailed in
section 12 [Fu3]. We recall the detail of this construction in Appendix of the
present paper for readers’ convenience. More precisely we take M, = L(u)kotk1
M = Mkhko;g(L(l),L(O);p,*;C_;p), M; = L(u), evs = (ev™, ev), evy, = evyoo
and apply Definition 12.16. Then, the next lemma follows from Lemma 12.19 in
Appendix.
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Lemma 8.30. There exists a continuous family {s,} of multisections on our moduli
space My, ko (LY L p x; B;p) so that it is compatible in the sense of Defini-
tion 12.12 and is also compatible with the multisections constructed before in the
inductive process at the boundaries described in Lemma 8.29. Moreover (8.29) is a
submersion.

By Definition 12.16, the integration along the fiber (8.28) (or smooth correspon-
dence map) is defined. Now we have finished the description of the element (8.27).
This assignment induces a homomorphism

g5 - B(QULM) B Ag)[1]) ® P HomLl, L) @c A | @ B(QL) & Ag)[1])
peLMNLO)
— (QUL(u)) ® A)[1].

Now we define

g: CF((LY, p), (L, p); A) — Q(L(u))®A
by

g(o) = Z TNO-/2"q5(e® ® ¥ @ 0 @ eF+). (8.30)

B

With these preparation, we can prove the following lemma in the same way as
Lemma 8.27 using Lemmata 12.18 and 12.20. So its proof is omitted.

Lemma 8.31. g is a chain map.
Proposition 8.32. fog and gof are chain homotopic to the identity.

Proof. We will prove that g o f is chain homotopic to the identity. Let Sy be a
sufficiently large positive number. (Say Sp = 10.) For S > Sy we put

_ Jx(=7=5) 7<0,
xs(7) = {X(T—S) T>0.

We will extend it to 0 < § < Sy so that xo(7) = 0.
We consider maps ¢ : R x [0,1] — X such that the following holds :

(1) lim,— _o @(7,t) converges to a point in L(u) and is independent of ¢.

(2) lim,— 400 ¢(T,t) converges to a point in L(u) and is independent of t.

(3) @(7,0) € L), p(r,1) € LX),
We denote by w2 (LM, L(O); %, x; §) the set of homotopy classes of such maps. There
exists a natural isomorphism 7y (LM, L) % % ) & 7o (X, L(u)),

[e] = [¢],  where ¢'(1,8) = ¥ 1 (o7 1))

Here we recall L") = o1 (L(u)), L®) = L(u). Therefore we will denote an element
of mo(L™M, L) % x; S) again by 3 as for the case of mo(X, L(u)).
We have the obvious gluing maps

7o (LM, L %, p) x mo(LW, LO;p, % 8) — ma(LW, LO; % %: ),
ma(X; L(l)) X 7T2(L(1)7 LO: ok x; S) — 71'2(L(1), L)k «; S), (8.31)
772(L(1)7 L s S) x mo(X; L(O)) — 7T2(L(1), LO: s« S)

which we denote all by #.
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We consider a three-parameter family of compatible almost complex structures
Js ¢ given by
Isrt = Yixar) -
Then it satisfies :
J_r_s+ 7 is sufficiently small and S > Sy,
Jr_st 7 is sufficiently large and S > S,

Jsrs=1J t=0, (8.32)
Wi t=1,
J S =0.

Definition 8.33. Consider the moduli space of maps satisfying (1) - (3) above and
of homotopy class 3 € mo(L(®, L(M; %, %) and satisfying the following equation
Iy Iy
— +Jdsi| = ) =0. 8.33
(%) s

For each 0 < S < 0o, we denote the moduli space by
MGELWD, LO %, % 5)

We also put
MEE (LW, L+, x; B)
- U U s (@ L0, p; ) x Mree(LM), 1O p,x; C7))
peLMNLO) O\ #C" =4
and define
ML DO x Bipara) = ) ({9} x MGELD, L%, % 8)).

Se0,4+0]

We can also include interior and boundary marked points and compactify the cor-
responding moduli space which then gives rise to the moduli space

Mkl,ko;l(L(l)v L(O)v *, k] 6;])0,7‘&).
We define evaluation maps
ev = (ev™, o™, ev®) : Mkhko;g(L(l),L(O); s, % 0) — X x (LWYk x (LO))yko,
and
Vo0 : My ot (L1, L0555 8) — L(u).
Here
ioo(p) = lim o(7,1).

Using ev™ we take fiber product with D(p) and obtain My, ,.c(LXY), L) % %; 3; para; p).

Lemma 8.34. M;ﬁ,ko;g(L(l), LO): % «: 3; para; p) has an oriented Kuranishi struc-
ture with corners. Its boundary is a union of the following siz types of fiber products
as the space with Kuranishi structure :

(1)
Mg 130 (L(w); B'5P1) evp X0 Mg oz (LD, LO x5 para; B py).

Here the notations are the same as Lemma 8.9 (2) and (8.11).
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(2)
Mo (LY, LO 5 s para; 85p1) ) Xewy Migriser (L(u); B73Py).

Here the notations are the same as Lemma 8.9 (3) and (8.11).

(3)
Mgt s (L LO 5w B para; py) e, o Xevg Migrirgs1ser (L(w); 8739y,

where Kk + K} = k;, £/ + 0" = £, B'#8" = 3 and (8.11).
(4)

Mk’1+kl’)+1;2’ (L(u)a ﬁ/; pl)evg Xev_ oo Mk'l’,k(/{;l” (L(l)a L(O); *, k] 5//;]9&7"&; p2)7

where kj + k] =kj, ' + 0" ={, B'#B" = 3 and (8.11).
(5)

Mki,k{];l’ (L(l)v L(O)a *,D;P1s C;) X Mk'l’,k()';f”(L(l)a L(O);pv *; Pa; CZ)

where K + k] =k, £/ + 0" ={, CL#C” = and (8.11).
(6) A space ka1+k0+2;g(L(u);ﬂ;p). There exists an R action on it such that
the quotient space is My, 1ry+2.0(L(w); 55 p).

Proof. The proof is similar to the proofs of Lemma 8.29 etc.

We remark that the case S = oo corresponds to (5).

The case when S = 0 corresponds to (6). In fact xo(7,t) = 0. So the boundary
condition reduces ¢(J(R x [0,1])) C L(u) and the equation (8.33) is J holomorphic-
ity. The 7-translations define an R-action on the moduli space at the part S = 0.
The quotient space is the moduli space of holomorphic discs with boundary and
interior marked points.

To construct a Kuranishi chart in a neighborhood of S = oo, we need to choose
a smooth structure of [0, 00] at co. We can do this so that the coordinate change of
the Kuranishi structure is smooth using the standard exponential decay estimate :
Namely, for a sufficiently large S, every element of Mg®(L™), L) %, x; 3), together
with its S-derivatives, is close to an element of Mggg(L<1>, LO: s« ) in the order
of Ce™®%. We can prove this estimate in a way similar to the proof of Lemma A1.58
section A.1 [FOOO2]. O

Lemma 8.35. There exists a continuous family s of multisections on our moduli
space Mkl,ko;g(L(l),L(o); x,%; 3; para; p) such that it is compatible in the sense of
Definition 12.12 and also compatible with the one constructed before in the induction
process at the boundaries described in Lemma 8.34. Moreover evis are submersions
on the moduli space perturbed by this family.

Proof. The proof is the same as the proof of Lemma 8.30. O

We use mo (LM, LO); % %) = 1o (X, L(u)) to define p : mo(LM), LO); %, %, 5) —
C\ {0}, as the composition

mo(LW LO % %, 8) — mo(X, L(u)) — m (L(u)) - C\ {0}.

There is an obvious compatibility relation of this p and other p’s and Comp’s we
defined before through #.
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Now let 8 € mo(LMW, L % S), p € Map(f, B) and h¥?) (i = 1,--- k;) be

differential forms on L) and h is another differential form on L(u). We will define
an element

Basen e (D) 1Y, B bV ) € Q(L(w))@A. (8.34)
by
D50 o (D(P); Y, - - ah;(cll); i %, - 7h;(€?,))
= %p(ﬂ)((ev+oo)1)(ev(1)*h(1) Aev* h A ev@*p0), (555
Here (evio0)r is the integration along fiber of the map
Vo0t Mpy kot (LY, IO % % 8; para; p)* — L(u) (8.36)

of our moduli space which is perturbed by the continuous family s of perturba-
tions given in Lemma 8.35. More precisely we apply Definition 12.16 to M, =
L(u)bot1H0 My = L(u), M = My, koL, LO: 5, %; B; para; p), and evs =
(ev®M ev_oo,ev®), evy = evyo. We then obtain (8.36).
The family of the maps bg,¢.x, %, induce a homomorphism
bs : BI(QLM) & Ag)[1]) @ (2(L(w) ® A))[1] © BI(Q(LY) & Ao))[1])

~

— Q(L(u))[1]®A.
Now we define
b:QL(u)®A — Q(L(u) ® A
by
h(h) =D T/ Ths(e® @ et @ h@ etr). (8.37)
8
Lemma 8.36. § is a chain homotopy from the identity to g o f.

Proof. Lemma 12.18 implies that doh+ hod is a sum of terms which are obtained
from each of (1) - (6) of Lemma 8.34 in the same way as (8.35), (8.37).

Using the fact q,(e®, ef+) is a harmonic zero form in the same way as the proof
of Lemma 8.19, we can show that the contributions of (1) and (2) vanish. The
contributions of (3) and (4) are

(m{* —d)oh
and

o (my* —d)
respectively. The contribution of (5) is g o f. The contribution of (6) vanishes in
the case when 3 # 0, because of extra R symmetry. The case 8 = 0 gives rise to

the identity.
In sum, we use Stokes’ formula to conclude

hom* +miFoh=gof—id

We use the composition formula in Appendix (Lemma 12.20) to prove the above
formulae. The proof of Lemma 8.36 is now complete. (]

We have thus proved that go f is chain homotopic to the identity. We can prove
f o g is chain homotopic to identity in the same way. The proof of Proposition 8.32
is now complete. O
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The proof of Proposition 8.21 is complete. Hence we have also completed the
proof of Proposition 3.15 also. O

Remark 8.37. We gave the proof of the above proposition using de Rham co-
homology. In [FOOO2] we gave a proof based on singular cohomology. Strictly
speaking we only discussed in the case when b € H'(L(u);A;) in [FOOO2]. But
using Cho’s idea of shifting the constant term by non-unitary flat connection, the
proof of [FOOO2] can be easily generalized to the present situation of H*(L(u); Ag).
In fact Theorem 2.5 was proved in section 13 or 22 [FOOO2] by proving a statement
similar to Proposition 8.21 from which we can derive Proposition 3.15.

Since we use de Rham cohomology to calculate the potential function in this
paper, we need to rely on Lemma 6.12 to get results on the displacement out of the
proof in [FOOO2], which uses the singular cohomology version.

The approach using de Rham cohomology is shorter but we cannot treat the
results with Q-coefficients, at least at the time of writing this article. Theretofore
we need to use singular homology version for that purpose. It might be possible to
develop the @ de Rham theory for the purpose. We remark that by Lemma 6.8,
POU(b;y1,- - ,yn) is defined over the Q coefficients. To study quantum cohomol-
ogy QH(X;Ao(Q)) this de Rham version will be enough.

Proof of Theorem 3.19. This is a straightforward combination of the proofs of Propo-
sition 3.15 and Theorem J [FOOO2]. O
9. DOMAIN OF DEFINITION OF POTENTIAL FUNCTION WITH BULK

The purpose of this section is to prove Theorem 3.11. Theorem 3.11 is not used
in the other part of this paper except in section 11 but will be used in Part III of
this series of papers.

Proof of Theorem 3.11. We recall that D1, --- , D,, are of complex codimension one
in X and Dy, 41, -+, Dp are of higher complex codimension. Let p € Map(¢, B).
We put

IPlnigh = #{J | P(j) > m}.
Lemma 9.1. For any E we have

SuP{|P|high ‘ c(ﬁap) 7é Oa Bﬁw < E} < C(E)7
where C(E) depends only on E and X.

Proof. If |p|nignt = N and ¢(3, p) # 0 then 2N < p(3) by the dimension counting.
The lemma then follows from Proposition 6.1 (5) and Gromov’s compactness. [

We denote by Map(¢4, B\ m) be the set of the maps {1,--- ,4} — B\'m =
{m+1,---,B}. We put

M, = UMGP(@aE\m)'
£y

For p, € Map({4,B\m) and {y,--- ,{,, we define p = ({1,--- , ;P ) by

il +- -+l <i <l +---+ 4,

N ¥
B(H) = {p+(i =) it > 4 (9.1)
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Lemma 9.2. Ifp = ({1, - ,ln;py) then

m

c(p; B) = c(py; B) [ [ (BN Di)"

i=1
Proof. By the dimensional reason
dim My jp ((L(u); B;p4) =n
and ¢(p, ;) is the degree of the map
evy : My jp, | (L(u); Bipy) — L(u). (9.2)

Note My |p, | (L(u); B;p, ) after perturbation is a space with triangulation and the
weight in Q, which is defined by the multiplicity and the order of the isotropy group.
So it has a fundamental cycle over Q.

We fix a regular value py € L(u) of (9.2). Let

evg ' (po) = {wj | =1, K}
be its preimage. Each of its elements contributes to c¢(p,;3) by €; € Q so that
e = cp 9).

We remark that our counting problem to calculate ¢(p; ) is well-defined in the
sense of Lemma 6.8. Therefore we can perform the calculation in the homology
level to find that each of ¢; contributes ¢; [T/, (8N D;)% to ¢(p;3). The lemma
follows. O

Now we are ready to complete the proof of Theorem 3.11. By Lemmata 7.1,
(7.5), 9.2 and 6.5 (6), we find

PO (w1, ,wp;r)
_Z Z Z (€1+ +€m+|P+|)!) Wp, (1) " Wp, (Ipy )
Ol b1+ + Ly +py))!

| |
B pyEMy b b m!lp- [

Tere(p, ) (Hw . Dn"') Wl ulrep©3n)  (03)
i=1
P+75 w/2n
=Y > S wp, ) wp, (p, p T

|
A Ip4|!

m?le . mfanmm (u)a,@ﬂel L. yn(u)aﬁﬁen'
By Lemma 9.1 this series converges on vi-adic topology for any wu.

Remark 9.3. In the second equality in (9.3) we use

o I
w;
k=0

(9.4) is actually the definition of the formal variable tv;. If we replace the formal
variable w; by a number ¢; € C and w; by ¢; = e¢% € C, then the second equality
(9.3) still holds. However the convergence in the left hand side of

S k
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is with respect to the usual Archimedean topology of C and is not with respect to
the non-Archimedean topology we are using here.

Now we examine the dependence of this sum on w’s. Firstly, through the isomor-
phism ¢, : H*(T™;Z) — H*(L(u);Z), we may regard 3 or §; are independent of
u and so are the coefficients a;’s. Secondly by the structure theorem, Proposition
6.1, the moduli spaces associated to a given [ are all isomorphic and so can be
canonically identified when u € IntP varies. Thirdly the two factors T°7%/27 and

y1(uw)?80er ...y (u)?P7en depending on u can be combined into
m
A2y ()50 gy ()21 = [ (25/(w))
j=1

where 3 =3_,_, a;8; in Ha(X, L(u)) and then Lemma 3.7 showed that z;(u) o 1y
are independent of u € IntP. Therefore the composition PO o 1), are a function
defined on A(Ay) x HY(T™; Ag) independent of u’s.

The proof of Theorem 3.11 is complete. (]

We recall that X is nef if and only if every holomorphic sphere w : §? — X
satisfies w,[S?] N e1(X) > 0. In the nef case we can prove the following statement
which is somewhat similar to Proposition 4.11.

Proposition 9.4. If X is nef and b is as in (4.10), then we have

K a(l)

POU(biy) = > > T (exp(by;)+er;(6)y™ 0+ > T4 (14ci(b))y™, (9.5)

I=1 j=1 i=K+1
where ¢;(b), ¢ ;(b) € Ay,
Proof. Let 3 € Ha(X,L(u);Z) with u(8) = 2. We assume MP™(L(u), 8) is

nonempty. Let
m
RS
i=1 j

be as in Proposition 6.1 (5). Since ao; Ne1(X) > 0 by assumption, it follows from
the condition p(8) = 2 that there exists unique ¢ such that k; = 1 and other k; is
zero. Moreover o; Ne¢i(X) = 0. Hence if 5 is not §; then

B=pi+ Z Q.
J
This G contributes
CTZj ajﬂ[w]/QﬂTEi(u)y'D'i ,
to POU(b;y). The rest of the proof is the same as the proof of Proposition 4.11. O

10. EULER VECTOR FIELD

The formula (9.3) derived in the previous section yields an interesting conse-
quence that is related to the Euler vector field on a Frobenius manifold and to our
potential function. In Part IIT of this series of papers, we will further discuss the
Frobenius manifold structure on the quantum cohomology and on the Jacobian ring
of our potential function and their relationship. (See Remark 10.3.)
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For i = 1,--- B let d; be the degree of D; € A. (That is twice of the real
codimension of the corresponding faces of P.) In case d; = 2 (that is i < m) we
put

2r; = [Di] N pipu) € 2.
Here pp(y) € Hom(me(X, L(u)); Z) = H*(X, L(u); Z) is the Maslov index.

Definition 10.1. We define the Euler vector field € on A by

B m
d; 0 0

QE - ]. - I~ P~

3 (%) maw X
i=m+1 i=1

Theorem 10.2. The directional derivative O™ along the vector field € satisfies
E(POY) = PO,

Proof. The proof is similar to the proof of a similar identity for the case of the
Gromov-Witten potentials. (See [Dub] for example.) Let

B
d; 0
Gi= ) (1‘ 2> Wi

(3

i=m-+1
m
¢ = Z”a%i’
i=1
mou,l = Z]\/I C(l;-:_;“ﬂ)wp+(1) ""LUp+(‘p+|),
[S
%97572 _ ;+,fﬂD1 L mngm~

Since dim/\/lly‘p”(L(u),ﬂ; p.) = n, it follows that

n—2+ prw(B) + Z(Q —degp, (i) = n.

Therefore
u PL(w) (B u
€ (PO5,) = (1 - 7“2) )> POG ;-

On the other hand, we have

E(30} ) = P oy,
by definition. Theorem 10.2 now follows from (9.3). O
Remark 10.3. In Part III of this series of papers, we will prove the isomorphism
AP —1
@1 (H(X;Ap),Ub) = o {y.y~} : (10.1)
( OOy L . n)
yl 6?!1 . k) b

for arbitrary compact toric manifold (which is not necessarily Fano). Here the
product U® in the left hand side is defined by the formula

oo
Tomw/QTr
(@ U agag)pp = >, Y 5 GWa.ers(ar, a2, 05, b®")
a€Hy(X;Z) £=0 ’
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where
GWeam (e, -+, em) :/ ev (e X - X ¢y),
Mo (@)
M, («) is the moduli space of the stable maps of genus 0 with m marked points in
homology class a, and ev : M., (o) — X™ is the evaluation map. ((,)pp denotes
the Poincaré duality.)
The isomorphism (10.1) is defined as follows. We choose a lift

@Hd(X; Ag) = H(Ao) C A(Ao).
d£0
Using its basis f, we write the element of H(\o) as >, waf,. Then (10.1) sends f,

) (30) o]

We can prove that this map is a ring isomorphism by an argument which elaborates
the discussion outlined in Remark 5.14 [FOOO3]. We will work it out in detail in
Part III.

We will also prove in Part III that if O, has only nondegenerate critical point,
then (10.1) sends Poincaré duality to the residue pairing. Here residue pairing is
defined as follows : By nondegeneracy assumption we have a ring isomorphism

AP —1
por {g{’y J oAz [ A (10.2)
(yi 0y; cri=1 ,TL) pECrit(POy,)

(See Proposition 6.9 [FOOO3]. Tt can be generalized to the non-Fano case.) Here
Crit(Oy,) is the set of critical points of PO,. Let 1, be the unit € A in the factor
corresponding to p. We then put

0 if p#q,
<1pv 1q>res = { 1 ifp =
det Hess, PO} p=gq.

Here

w_ (PP
Hess, POy = (33:,813) (¥)
is the Hessian matrix at r = (x1, -+ ,&n), € = b, €% = y;, and (T*yq,--- , T4 y,) =
p. Then we have :
(¢,0)pD = (®(c), ®(0))res (10.3)
The proof of (10.3), which we will give in Part III, uses the moduli space of
pseudo-holomorphic annuli bordered to our Lagrangian fiber L(u).
In the mean time, here we illustrate the identity (10.3) for the simple case X =
CP', b =0. (See [Ta.) Its moment polytope is [0,1]. The potential function is :
PO (y) =Ty +T" "y~ ".

The critical points are given at w = 1/2 and y = 1. We denote them by pi,p_
respectively. We have

Hessm‘}ﬁ?D(l)/2 =272 Hess,_ ‘439(1)/2 = —27/2,
(Note we here take x = logy as a variable.) Therefore

<1p+’ 1p+>rcs = T71/2/2, <1p—v 1p—>rcs = —T71/2/2, <1p+’ 1p—>rcs =0.
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We consider PD[pt] € H?(CP') and identify it with [x#~1(0)]. Then the isomor-

phism (10.1) sends PDIpt] to T"y mod (y aqgi.;)g ) At u = 1/2, the latter becomes

T%/?%(1,, — 1, ) in the Jacobian ring, which can be easily seen from the identity
1
72 = L) - -T2

On the other hand PD[CP'] € H°(CP") is the unit and so becomes 1,, +1, . We
have
<T1/2(1p+ —1p ) lpy +1p hres = 1.
This is consistent with the corresponding pairing
(PD[pt], PD[CP'))pp = (PD[pt] U PD[CP'])N[CP'] =1
in the quantum cohomology side.
We recall that collection of a product structure on the tangent space, residue

pairing, Euler vector field, and the unit consists of the data which determine Saito’s
flat structure (that is, the structure of Frobenius manifold) [Sa].

11. DEFORMATION BY b € A(Ay)

In sections 4 and 8, we used the bulk deformation of Lagrangian Floer cohomol-
ogy by the divisor cycles b € A(Ay). Actually using the result of section 9, most
of the argument there can be generalized to the case when b € A(Ag) by a minor
modification. In this section we discuss this and some new phenomena appearing
in the deformation by b € A(Ag). In this section we consider the case R = C. (See
Remark 11.5, however.) We write Ag etc. in place of Ag(C) etc.. We first remark
that the potential function POy (y1,- - ,yn) = PO“(b;y1, - ,yn) itself is defined
for b € A(Ao) in section 9. But the definition of the leading term equation(4.6),
Definition 4.3 need some minor modification which is in order. We put

b= b.Ds € A(Ao)
and consider its zero order term
b, =b, mod Ay
where b, € C. We put
a(l)

(‘BDE)Z = ZeXp(Ei(l,r))yﬁl’r € C[yl,h e ay;;(l)]' (11-1)
r=1
We define the leading term equation for
OPOY

s 11.2
Y B s (11.2)

for b € A(Ag) in the same way as Definition 4.3 by using (11.1) in place of (4.6).
We remark that only b,, @ = 1,--- ,m appears in (11.1). In other words, coef-

ficients of the cohomology classes D, of degree > 2 do not affect the leading term
equation.

Lemma 11.1. Lemma 4.4 holds for b € A(Ap) also.

Proof. The formula (9.3) implies that the coefficient of y”r (r = 1,---,a(l)) in
POY is T exp(b;(;,r)). The rest of the proof is the same as the proof of Lemma
4.4. O
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The leading term equation is of the form
a(l) B B
0=">exp(by,))y™ .-
r=1

By varying b; the coefficients exp(b;) can assume all elements from C \ {0}.

Definition 11.2. A system of polynomial equations

(1)
0= Z Ci(l,r)yvlmﬁlm
r=1

with Cjy € C\ {0}, 1 =1,--- K is called a generalized leading term equation.
Now Theorem 4.7 is generalized as follows.

Proposition 11.3. The following two conditions for u are equivalent to each other.

(1) There exists a generalized leading term equation of POy, which has a so-
lution y; ; € C\ {0}.
(2) There exists b € H(Ag) such that POy has a critical point on (Ao \ Ap)™.

Proof. (2) = (1) follows from Lemma 11.1. Let us assume that the generalized
leading term equation with Cj(; ) as a coefficient has a solution py; ; € C\ {0}. We

put Eiu” = log Cy(;,r)- Then we can add higher order term in the same way as the
proof of Theorem 4.7 to obtain b such that vy; , is a solution of (11.2). g

Proposition 11.4. Theorem 3.12 holds for b € A(Ag).

Proof. Using a similar formula as (9.3) the proof is the same as the proof of Theorem
3.12 given in section 8. We omit the detail. O

Remark 11.5. Let R be a field such that Q € R C C. Even if we assume
b=>b,D, € A(Ao(R)), it does not imply

(BO) € Rlyr- v o) (11.3)

In fact exp(bj(,)) may not be an element of R. (This point is related to Remark
9.3.) An appropriate condition for (11.3) to hold is

exp(b;) € Ao(R)
fori=1,---,m.
Example 11.6. We put
P ={(u1,u2) | 0 <wuy,ug, up +us <1, ug <2/3}

P is a moment polytope of monotone one point blow up of CP2. We consider
u = (1/3,1/3). L(u) is a monotone Lagrangian submanifold. We put

Dy = 7w ({(u1,us) € P | uy =0}).
Let b. = (logc)[Ds]. where ¢ € C\ {0}. Proposition 4.9 implies
PO (be;y1,52) =T (g1 + ey + 95" + (1y2) ™).
Thus the critical point is given by

1— y1—2y2—1 =0=c— y2—2 _ y1—1y2—2
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The first equation gives y2 = y; 2. Hence the second equation becomes
c—yi —y3 =0. (11.4)

(11.4) has a nonzero multiple root y; = —3/4 if ¢ = —27/256.
Namely if b = (log(—27/256))[D-], then POy has a degenerate critical point of
type As.

Example 11.7. We again consider the example of two points blow up in section
5. Namely its moment polytope is (5.1) with § = 1_70‘ We consider the point u =
(8,8). We put Dy = 7 ({(u1,u2) € P | ug = 0}), and consider b, = (log c)[D2].
We have

PO (be;y1,y2) = T (eya +y5 " +y1 +y1ye) + T Py tyy

The (generalized) leading term equation is
c—y3 Py =0=1+1.
It has a nonzero solution (1 — ¢, —1) if ¢ # 1. Hence there exists b such that

HF((L(u), (b, b)), (L(u), (bc,b)); A) # 0

if and only if ¢ # 1.

If we deform only by b € Ay then ¢ = 1. Namely there is no such b with
nontrivial Floer cohomology. We remark that L(u) is bulk-balanced in the sense of
Definition 3.13 since it is a limit of balanced fibers.

The authors do not know an example of L(u) that carries a pair (b,b) with
be A(Ag), b € HY(L; Ay) for which we have

HE((L(u), (b,)), (L(u), (b,0)); A) # 0,
but which is not bulk-balanced in the sense of Definition 3.13.

12. APPENDIX : CONTINUOUS FAMILY OF MULTISECTIONS

In this section we review the techniques of using a continuous family of multi-
sections and integration along the fiber on their zero sets so that smooth corre-
spondence by spaces with Kuranishi structure induces a map between de Rham
complex.

This technique is not new and is known to various people. In fact [Ru], section 16
[Ful] use a similar technique and section 33 [FOOO2], [Fu2], [Fu3] contain almost
the same argument as we describe below. We include the details here for reader’s
convenience which we used in section 8.

Let M be a space with Kuranishi structure and ev, : M — M, ev; : M — M,
be strongly continuous smooth maps. (See Definition 6.6 [FO] and the description
below.) (Here s and ¢ stand for source and target, respectively.) We assume our
smooth manifolds M, M; are compact and oriented without boundary. We also
assume M has a tangent bundle and is oriented in the sense of Kuranishi structure.
(See Definition Al1.14 [FOOO2] and the description below.)

Remark 12.1. We may relax the orientability assumption above by using local
coefficients in the same way as section A2 [FOOO2]. We do not discuss it here since
we do not need this generalization in this paper.
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We include the case when M has a boundary or corner. We assume that ew,
is weakly submersive. (See Al.13 [FOOO2] and the description below.) In this
situation we will construct the map

(M; evg, evy), : QF M, — QF+dim Me—dim My p (12.1)

We call (12.1), the smooth correspondence map associated to (M;evs, evy).
The space M is covered by a finite number of Kuranishi charts (Vy, Eo, Lo, Yo, Sa),
a € 2. They satisfy the following :

Condition 12.2. (1) V,, is a smooth manifold (with boundaries or corners)
and I’y is a finite group acting effectively on V.
(2) pr, : Eq — V, is a finite dimensional vector bundle on which I',, acts so
that pr, is I'o- equivariant.
(3) sq is a T, equivariant section of E,,.
(4) g : 55%(0)/T, — M is a homeomorphism to its image.

[

(5) The union of ¥, (s;(0)/T,) for various « is M.

We assume that {(Va, Eo,Ta, Ya,Sa) | @ € A} is a good coordinate system,
in the sense of Definition 6.1 [FO] or Lemma A1.11 [FOOO2]. This means the
following : The set 2 has a partial order <, where either a; < as or as < a1 holds
for ap,ap € A if

Yo (52, (0)/Tar) Ntbay (55, (0)/Tay) # 0.
Let aj, 00 € A and a3 < ag. Then, there exists a I'y,-invariant open subset
Vag,a1 C Va,, a smooth embedding
Pasg,ar : Vas,ar — Vas
and a bundle map
Pas,on - E0£1|Va2ﬂ1 — E,,.

which covers @q,, o, Moreover there exists an injective homomorphism

~

Pag,or i Tay = Lay-
We require that they satisfies the following

Condition 12.3. (1) The maps Ya,,a1s Pas,a; A€ aa%al—equivariant.

(2) Yas,a, and :ﬁaz’al induce an embedding of orbifold
. Veas,an - Ve

Poson o = (12.2)
(3) We have
Sas © Pas,ar = Pas,an © Sas -
(4) We have
Vas ©Pay,ar = Yo
on

Vaz,ar N 3;11 (O)
I, ’

1
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(5) If oy < g < g then

Pas,az © Paz,ar = Pas,ars
—1
on 900(2,041 (V()‘37a2)'
90&3,042 o (paz,al = ‘pas,alﬂ
and
= = =
<‘00437(12 © spaz,al - ¢O¢3,(¥17

hold in the similar sense.
(6) Vozz,al/ral contains w&ll (Yo, (3;11 (0)/Ta;) Nta, (3;21 (0)/Tay))-

Condition 12.4. The condition that M has a tangent bundle means the following
: the differential of s,, in the direction of the normal bundle induces a bundle
isomorphism
p TVa, WEQ,alEaz

— .
TV(X27(X1 Eal
We say M is oriented if V,,, E,, is oriented, the I', action is orientation preserving,
and ds,, is orientation preserving.

A strongly continuous smooth map ev; : M — M, is a family of I, invariant

smooth maps

evt;a : Va — Mt (123)
which induces

€U Vo /T'o — M,
such that
%t;az © @ag,(xl = ﬁt;Oél

on Vo, 0, /Ta. (Note Ty, action on M, is trivial.) evs : M — M, consists of a
similar family, evs,o : Vo — M.

Our assumption that ev; is weakly submersive means that each of evy, in (12.3)
is a submersion.

We next review on the multisections. (See section 3 [FO].) Let (Vi,, Eq, Lo, Y0, Sa)
be a Kuranishi chart of M. For x € V,, we consider the fiber E, , of the bundle
FE,. at x. We take its [ copies and consider the direct product E(llw We take the
quotient thereof by the action of symmetric group of order I! and let S'(E, ) be
the quotient space. There exists a map

tmy, : Sl(Ea,z) - Slm(Eoz,m)a

which sends [a1,- -, a] to
[ala"' s A1y, Ay ,al}~
——— N——
m copies m copies

A smooth multisection s of the orbibundle

Ey—V,

Uw:m

and s; which maps = € U; to s;(z) € S§'%(E,,). They are required to have the
following properties.

consists of an open covering
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Condition 12.5. (1) U; is T'p-invariant. s; is I'y-equivariant. (We remark
that there exists an obvious map

v Sli(Ea,x) — &h (EOCWI)

for each v € T',,.)
(2) If z € U; NU; then we have

tmy, (si(x)) = tmy, (s(2)) € SV (Ea o).

(3) s; is liftable and smooth in the following sense. For each x there exists a
smooth section §; of E, @ --- @ E, in a neighborhood of = such that
—_———

l; times

Si(y) = (si1(), - s (W), si(y) = [sin(y),- - si0, (W)]- (12.4)
We identify two multisections ({U;}, {s:}, {l:}), {U/}, {s:}, {li}) if
tmy, (si(x)) = tmyy (s)(2) € S (Ea,va)

on U; N U]’». We say s; ; to be a branch of s; in the situation of (12.4).

We next discuss continuous family of multisections and their transversality. Let
W, be a finite dimensional smooth oriented manifold and consider the pull-back
bundle

By — Wa XV,

under the projection 7, : W, x V,, — V. The action of I, on W, is, by definition,
trivial.

Definition 12.6. (1) A W,-parameterized family s,, of multisections is by def-
inition a multisection of 7} E,.
(2) We fix a metric of our bundle E,. We say s, is e-close to s,, in C° topology
if the following holds. Let (w,x) € W, x V,,. Then for any branch s, ; ; of
5, We have

[80i,5(w,+) = 8a(-- )0 <€

in a neighborhood of z.

(3) sq is said to be transversal to 0 if any branch s, ; ; of s, is transversal to
0.

(4) Let fo : Vo — M be a T'y-equivariant smooth map. We assume that s, is
transversal to 0. We then say that f,| ssl(0) s a submersion if the following
holds : Let (w,x) € W4 xV,. Then for any branch s, ; ; of s, the restriction

of

faoma : Wy xV, —> M
to

{(w,2) | 84,i,;(w,z) =0} (12.5)
is a submersion. We remark that (12.5) is a smooth manifold by our as-
sumption.

Remark 12.7. In case M has a boundary or a corner, so does (12.5). In this case
we require that the restriction of f,, to each of the stratum of (12.5) is a submersion.
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Lemma 12.8. We assume that f, : Vo — M is a submersion. Then there exists
Wy such that for any € there exists a W, -parameterized family s, of multisections
which is € close to s, transversal to 0 and such that fa|5;1(0) is a submersion.

If s, is already given and satisfies the required condition on a neighborhood of a
T’y invariant compact set K, C V,, then we may extend it to the whole V,, without
changing it on K.

In the course of the proof of Lemma 12.8 we need to shrink V,, slightly. We do
not mention it explicitly.

Proof. We may choose W, to be a vector space of sufficiently large dimension so
that there exists a surjective bundle map

Sur: W, x Vo, — E,. (12.6)

We remark that (12.6) is not necessarily I',-equivariant. We put
s (w, z) = Sur(w, z) + s4(z).
We put
5(0?) (’LU, 1‘) = b/lsla(wv SC), T 7795;(1”7 SC)}

where Ty, = {71, -+ ,74}- 53 defines a multisection on W, x V,, which is transversal
to 0 by construction. Moreover since (5&2))_1(0) — V, is a submersion it follows
from assumption that fa|(5<2)),1(0) is a submersion. By replacing W, to a small

neighborhood of 0, we can choose 5&2) which is sufficiently close to s,,.

The last part of the lemma can be proved by using an appropriate partition of
unity in the same way as section 3 [FO]. O

Now let 8, be a smooth differential form of compact support on V,,. We assume
that 6, is I'y-invariant. Let f, : V, — M be a I, equivariant submersion. (The
I', action on M is trivial.) Let s, satisfy the conclusion of Lemma 12.8. We put
a smooth measure w, on W, of compact support with total mass 1. By fixing an
orientation on W, we regard w, as a differential form of top degree. We have

/Wu wa = 1. (12.7)

We next define integration along the fiber
((Vou Ea; Faa 1/104» Sa)a (Waa Wa); S5a, fa)*(ea) S Qdeg 9a+dimM—dimM(M).

Let (U;,584,;) be a representative of s,. Namely {U; | i € I} is an open covering of
Wy x Vo and s, is represented by s, ; on U;. By the definition of the multisection,
U; is I'-invariant. We may shrink U,, if necessary, so that there exists a lifting
ga,i = (ga,i,la s ,ga’“i) as in (124)

Let {x; | i € I} be a partition of unity subordinate to the covering {U; | i € I}.
By replacing y; with its average over I', we may assume Y; is ['p-invariant.

We put

§,1,4(0) = {(w,2) € Ui | Faij(w,x) = 0}. (12.8)
By assumption %;,IL ;(0) is a smooth manifold and
fao 7ra|§;1i L) :ngi’j(()) — M (12.9)

is a submersion.
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Definition 12.9. We define
((Vm Ey. T, Yo, 504)7 (Wavwa)vﬁm fa)*(ea)

I 1;
1 ‘1 .
= 2 g e o el oG e Aol o)

i=1 j=1

(12.10)

Here (fooma|z—1 (0))! Is the integration along fiber of the smooth submersion (12.9).

Lemma 12.10. The right hand side of (12.10) depends only on (Vu, B, T, Ya, Sa),
Wa,Wa), Sa, fa, and 8, but independent of the following choices :

(1) The choice of representatives ({U;},5a,i) 0f S4-

(2) The lifting 5q.;.

(3) The partition of unity x;.

Proof. The proof is straightforward generalization of the proof of well-definedness
of integration on manifold, which can be found in the text book of manifold theory,
and is left to the leader. O

So far we have been working on one Kuranishi chart (Vi,, Eq,Tq, ¥a, Sa). We
next describe the compatibility conditions among the W,-parameterized families
of multisections for various a. During the construction we need to shrink V,, a bit
several times. We will not mention explicitly this point henceforth.

Let ay < az. We use an appropriate I'y, invariant Riemannian metric on V,, to
define the exponential map

EXPoy 0y & Pog.ay BeVan — Va. (12.11)

(Here BV, is the e neighborhood of the zero section of TV,,.)

We identify a neighborhood of the image of (12.11) with ¢}, , BcVa,/Ta,. and
denote it by Ue(Vay,aqy /Tay)-

Using the projection

PrVQZ,al tUe(Vas,a1 /Tar) = Voo /Ty

we extend the orbibundle Ey, to Uc(Va,,a:/Ta;). Also we extend the embedding
Eo, — @ty .00 Eay, (Which is induced by $ay.ay) 10 Ue(Vag,ay /Tay)-

We fix a ' ,-invariant inner product of the bundles E,. We then have a bundle
isomorphism
P ,an Py

E,,
on U:(Vay,a, /Tay)- We can use Condition 12.4 to modify Exp,, ,, in (12.11) so
that the following is satisfied.

Condition 12.11. If y = Exp,, ,, () € Uc(Vay,a,/Ta,) then
S0y (§ mod TV,,) = Sa,(y) mod E,,. (12.13)

Let us explain the notation of (12.13). We remark that § € T, . (2)Va, for
xz =Pr(g) € Vay,a,. Hence

Eo, > E,, & (12.12)

Vs

Ty (@)

] d TV,
Y mo 1 € TV,

Therefore
(Baz)gay 0, (@)

dsq,(y mod TV, ) €
Z(y 1) (Eal);c
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(12.13) claims that it coincides with s,, modulo (Fy,)..
We remark that Condition 12.4 implies that

d . d .
% (Expag,al (ty)) |t:0 = %5012 (Expag,al (ty)) |ti0 mod Eal .

Therefore we can use implicit function theorem to modify Exp,, ,, so that Condi-
tion 12.11 holds.

Let Wy, be a finite dimensional manifold and s,, be a multisection of 7, Eq,
on Wy, x V,,,. We put W, =W,, x W, where W' is to be defined later.

Definition 12.12. A multisection s,, of W,, x V,, is said to be compatible with
Sq, if the following holds for each y = Exp,,, o, (7) € Uc(Vay,a1 /Tay)-

Sa, (W, W), y) = 54, (W, Pr(§)) ® dsa,(§ mod TV,,). (12.14)

We remark that s, (w, Pr(7)) is a multisection of 7}, E, and dsq, (§ mod T'V,, )
is a (single valued) section. Therefore using (12.12) the right hand side of (12.14)
is an element of S'(E,,), (r = Pr(§)), and hence is regarded as a multisection of
73, Ea,. In other words, we omit @q,. o, in (12.14).

Condition 12.11 implies that the original Kuranishi map s,, satisfies the compat-
ibility condition (12.14). We use this and (the proof of) Lemma 12.8 and prove the
following. Let ev; : M — M; be a weakly submersive strongly smooth map. We
choose a good coordinate system (Vy, Eqo, T, %a, So) and let evy o : Vo — My be a
local representative of evy.

Lemma 12.13. We have W,, such that for each € there exists s, a Wy -parameterized
family of multisections with the following properties.

(1) sq is transversal to 0.

(2) evialg-1(g) s a submersion.

(3) 54 is € close to Sq.

(4) 84, is compatible with sq, for each a; < as.

If {so} is already defined and satisfies (1) - (4) on a neighborhood of a compact set
K C M, then we may choose s, without changing it on K.

Proof. The proof is by induction on a. (We remark that 2 (the totality of a’s) is
partially ordered.) For minimal o we use Lemma 12.8 to prove existence of s,. If
we have constructed s,/ for every o smaller than «, then we use (12.14) to define
S on a neighborhood of the images of V, o for various o < a. They coincide on
the overlapped part by the induction hypothesis and Condition 12.3. Condition
12.11 then implies that this is still € close to s,. Therefore we can use Lemma 12.8
(the relative version) to extend it and obtain s,. (We choose W' at this step.)
The proof of the last statement is similar. O

We choose measures w, on W, such that the measure wq, is a direct product
measure wy, X w on W, x W' if a1 < as.

We next choose a partition of unity x, subordinate to our Kuranishi charts. To
define the notion of partition of unity, we need some notation. For oy < a, we take
the normal bundle Ny, . Vo, of ¥a;a,(Vaja,) in Va,. Let Pra,a, @ Ny, o, Vo, —
Vaya, be the projection. We fix a I'y, -invariant positive definite metric of Ny, . Vo,
and let 74,0, @ Ny, .. Vo, — [0,00) be the norm with respect to this metric. We

@l
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fix a sufficiently small ¢ and let x° : R — [0, 1] be a smooth function such that

0 t>5
S(4) = =
X (®) {1 t<6/2.

Let Us(Va,a,/Ta,) be the image of the exponential map. Namely
U5(Va1az/ra1) = {EXp(U) | v e NValaQ VOéz/FCH | Taras (U) < 6}
We push out our function r4,q, t0 Us(Va,a,/Ta,) and denote it by the same sym-
bol. Tt is called a tubular distance function. We assume appropriate compatibility
condition for various tubular neighborhoods and tubular distance functions. See
[Ma] and section 35.2 [FOOO2].
Let x € V,,. We put
Aoy ={ay |2 € Vo, o, oy >a}
Ay ={a_ | [z modTy] € Us(Vaa /Ta ), a_ < a}.
For a_ € A, _ we take z,_ such that Exp(z,_ ) = z.

Definition 12.14. A system {yx, | @ € 2} of I',-equivariant smooth functions
Xa : Vo — [0,1] of compact support is said to be a partition of unity subordinate
to our Kuranishi chart if :

Xa(x) + Z X(s(rozaf (Ta_))Xa_ (Proqaz (xaf)) + Z Xagt (Soour,a(x)) =1L
a_€%gp, ap €Ay 4

Lemma 12.15. There exists a partition of unity subordinate to our Kuranishi

chart.

Proof. We may assume that 2 is a finite set since M is compact. By shrinking
V., if necessary we may assume that there exists V such that V_ is a relatively
compact subset of V,, and that E,, ©qa, 0., Sa, etc restricted to V still defines a
good coordinate system. We take a I',, invariant smooth function x/, on V, which
has compact support and satisfies x/, = 1 on V. We define

ha(r) = xo(2)+ Z Xé(rozaf(xaf))X:x,(Prmaz(xaf))"' Z X/cy+(‘»0a+7a($>)-
a_ €Uy ayp €E™_y 4

Using compatibility of tubular neighborhoods and tubular distance functions, we
can show that h, is I',, invariant and

hOlz (90027@1 (.T)) = h’al (I)
if z € Vi, 0, Therefore
Xa(®) = Xo(2)/ha(@)

has the required properties. O

Now we consider the situation we start with. Namely we have two strongly
continuous smooth maps

evs : M — My, evy : M — M,

and ev; is weakly submersive. Let h be a differential form on M;. We choose

(Vo Ea, Ty Vo, Sa), (Wa,wa), o which satisfies (1) - (4) of Lemma 12.13. We also
choose a partition of unity x, subordinate to our Kuranishi chart. We put

00 = Xalevs o my) h (12.15)

which is a differential form on W, x V.
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Definition 12.16. We define
(M7 e'Us, evt)*(h) = Z((VOU FOA; E(xv wom 3(1)7 (WOM w(x)asav evt,a)*(aa)' (1216)

[e3

This is a smooth differential form on M;.

Remark 12.17. (1) Actually the right hand side of (12.16) depends on the
choice of (Vy, Ea, T, Ya, Sa)y Wa, wa ), 5. We write s to demonstrate this
choice and write (M; evs, ev,s)«(h).

(2) The right hand side of (12.16) is independent of the choice of partition
of unity. The proof is similar to the well-definiedness of integration on
manifolds.

In case M has a boundary OM, the choices (V, Eq,Ta, Yo, Sa);, Wa,wa), Sa
on M induces one for OM. We then have the following :

Lemma 12.18 (Stokes’ theorem). We have
d((M;evs, evy, 8)«(h)) = (M; evs, evy, 8) . (dh) + (OM; evs, eve, )« (h).  (12.17)

We will discuss the sign at the end of this section.

Proof. Using the partition of unity y, it suffices to consider the case when M has
only one Kuranishi chart V,,. We use the open covering U; of V,, and the partition
of unity again to see that we need only to study on one U;. In that case (12.17) is
immediate from the usual Stokes’ formula. (]

We consider the following situation. We assume M is a space with Kuranishi
structure with corners. Let 9. M, c=1,--- ,C be a decomposition of the boundary
OM into components. The intersection 9.M N J M is a codimension 2 stratum of
M if it is nonempty. We denote it by d..-M. (Actually there may be a case where
there is a self intersection of 0,M with itself. If it occurs there is a codimension 2
stratum of M corresponding to the self intersection points. We write it as 9..M.)
0.M is regarded as a space with Kuranishi structure which we denote by the same
symbol. (This is slightly imprecise in case there is a self intersection. Since the way
to handle it is rather obvious we do not discuss it here.) The boundary of 9.M is
the union of 9. M for various ¢. (Actually we include the case ¢’ = ¢. In that case
we take two copies of 0..M, which become components of the boundary of 9.M.)

Now we have the following :

Lemma 12.19. If there ezists data s. as in Remark 12.17 (1) on each of 0. M.
We assume that the restriction of 5. to Qe M coincides with the restriction of 5.
to 0. M. We assume a similar compatibility at the self intersection Oz M.

Then there exists a datum s on M whose restriction to 0.M 1is s. for each c.

Proof. Using the compatibility condition we assumed we can define s in a neighbor-
hood of the union d.M over c¢. We can then extend it by using Lemma 12.13. O

We next discuss composition of smooth correspondences. We consider the fol-
lowing situation. Let

evs;st 1 Mg — Mo, eVt + Mg — M,
be as before such that ev; s is weakly submersive. Let

€Vpips 1 Mypg — M, Vg : Mypg — My
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be a similar diagram such that evs..s is weakly submersive. We use the fact that
evs.yrs is weakly submersive to define the fiber product

Mrs EVs;rs Xe'us;st Mst

as a space with Kuranishi structure. We write it as M,;. We have a diagram of
strongly continuous smooth maps

€Vppt : Mypy — My, eVt Mpy — M.

It is easy to see that evy,; is weakly submersive.

We next make choices 5%, 5™ for My and M,,. It is easy to see that it
determines a choice s"t for M.

Now we have :

Lemma 12.20 (Composition formula). We have the following formula for each
differential form h on M,..

(Mrt; €Vpirt, evf;ﬂ“hﬁ”)*(h)

, . _ , (12.18)
= ((MS ; evs;st7 evt;,sh56 )* o (M7S; e/Ur;rm evs;,rsa 5T6)*)(h)-

Proof. Using a partition of unity it suffices to study locally on M"*, M3t In that
case it suffices to consider the case of usual manifold, which is well-known. O

We finally discuss the signs in Lemmas 12.18 and 12.20. It is rather cumbersome
to fix appropriate sign convention and show those lemmata with sign. So, instead,
we use the trick of section 53.3 [FOOO2] (see also section 13 [Fu3]) to reduce the
orientation problem to the case which is already discussed in Chapter 9 [FOOO02],
as follows.

For generic w € W, the space 5;71i,j(0) N({w} x U;) is a smooth manifold. Hence
the right hand side of (12.10) can be regarded as an average of the correspondence
by 5;,12-7]-(0) N ({w} x U;) over w. We can also represent the smooth form h by an
appropriate average (with respect to certain smooth measure) of a family of currents
realized by smooth singular chains. So, as far as sign concerns, it suffices to consider
a current realized by a smooth singular chain. Then the right hand side of (12.10)
turn out to be a current realized by a smooth singular chain which is obtained from
a smooth singular chain on M by a transversal smooth correspondence. In fact,
we may assume that all the fiber products appearing here are transversal, since it
suffices to discuss the sign at the generic point where the transversality holds. Thus
the problem reduces to find a sign convention (and orientation) for correspondence
of the singular chains by a smooth manifold. In the situation of our application,
such sign convention (singular homology version) was determined and analyzed in
detail in Chapter 9 [FOOO2]. Especially the existence of an appropriate orientation
that is consistent with the sign appearing in A, formulae etc. was proved there.
Therefore we can prove that there is a sign (orientation) convention which induces
all the formulae we need with sign, in our de Rham version, as well. See section
53.3 [FOOO2] or section 13 [Fu3] for detail.
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