
Appendices.1

§A1. Kuranishi structure.

In this book we use the moduli spaces of pseudo-holomorphic discs of various
kinds and their fundamental chains to define various operators, homomorphisms and
etc.. We need to appropriately perturb our moduli spaces so that they have “correct
dimension” (that is the index of the linearized operator of pseudo-holomorphic curve
equation) to define their fundamental chains.

A priori, our moduli spaces are not necessarily transversal. We use the gen-
eral framework developed in [FuOn99II] (See [LiTi98], [Rua99], [Sie96] for related
works.), where we introduced the notion of Kuranishi structure. Typical examples
of the space with Kuranishi structure are the moduli spaces of various kinds, in
which case Kuranishi neighborhoods are constructed using the finite dimensional
reduction of the differential equation defining the moduli space. However the def-
inition of Kuranishi structure applies to more general circumstances than that of
studying the moduli space.

In the framework of Kuranishi structures, we use a multisection of the obstruc-
tion bundle, as a multi-valued perturbation of the originally given equation, for the
construction of a perturbed moduli space of correct dimension and of the fundamen-
tal chain of the space. We call this fundamental chain a virtual fundamental chain.
This machinery works in many different circumstances arising in geometry. In this
section we give a rather complete and self-contained account on the story of Ku-
ranishi structures needed for the applications in this book. We provide most of the
proofs of the basic properties of the Kuranishi structure except the proof of some
technical lemma for which we refer to the original paper [FuOn99II]. The defini-
tion of Kuranishi structure (and that of multisection) is a rather elementary notion
whose understanding requires nothing more than basic knowledge of topology and
geometry.

Most of the contents of this appendix consist of a review of materials from
[FuOn99II]. So the reader who is familiar with Kuranishi structure does not need
to read §A1.1. However we add a few new points in subsections §A1.2, §A1.3 and
§A1.6 to those already in [FuOn99II]. Namely, we give the definition of the fiber
product of spaces with Kuranishi structure in §A1.2 and that of finite group action
on Kuranishi structure in §A1.3. Then in §A1.6, we discuss some special case of
stacks arising in relation to the finite group action.

The boundaries of various moduli spaces that we inductively construct arise
as the fiber product of other moduli spaces that are constructed in the earlier
induction steps. (See §29.) So the fiber product enters in an essential way in
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the precise description of the boundaries of the moduli spaces. We note that the
fiber product is also used in the compactification of the moduli space in a similar
inductive fashion in [FuOn99II] for the construction of Gromov-Witten invariant on
general symplectic manifolds. However for the case of Gromov-Witten invariants
one can work in the level of homology which enables us to choose perturbations (i.e.,
multisections) individually at each stage and hence the usage of fiber products in the
compactification was not so essential. On the other hand, in the circumstance of this
book where we need to work in the level of chains, it is the essential point to make
the system of multisections constructed in different inductive steps compatible to
one another. Therefore it is crucial to give the precise meaning of the compatibility
where a careful treatment of the fiber product of moduli spaces is needed in relation
to the transversality and the gluing.

A brief outline of the contents of this appendix is in order. We give a quick
review of the materials on the Kuranishi structure from [FuOn99II] in §A1.1 and
give the definition of fiber product in §A1.2 and that of a finite group action on the
Kuranishi structure in §A1.3. The action of a finite group and its quotient space
with Kuranishi structure is used in §41. Actually such a notion was already used in
[FuOn99II, §23] but we provide a more precise description which is needed in §41.

We add some discussions about the smoothness of the coordinate transformation
of the Kuranishi structure in §A1.4. In §A1.5 we examine several (counter) examples
which illustrate some delicate issues arising in the definitions of Kuranishi structures
and of orbifolds.

In §A1.6, we discuss a ‘purely ineffective’ version of orbifold. Namely a ‘space’
which is obtained by ‘gluing’ ‘quotient spaces’ M/G where the action of G on M
is trivial. Especially we study ‘vector bundles’ on such a ‘space’. Such a space
naturally appears when we study the subset X

∼=(Γ) of an orbifold X consisting of
the points whose isotropy groups are isomorphic to Γ. In §35 we need to study the
‘normal bundle’ of X

∼=(Γ) in X. We introduce such a notion in §A1.6. The story
we describe there can be regarded as a special case of the theory of stack, which is
due to Grothendick and is classical (goes back to 50’s or 60’s) at least in its scheme
version. So this is really not new. However we provide full details in an elementary
manner without using category theory, which is usually the common language used
in the definition of stacks. We believe this direct elementary approach is useful for
some of the readers who are not familiar to abstract algebraic geometry.

There were some technical errors in [FOOO00] and an error in [FuOn99II] related
to the materials of this section. All of these errors are corrected in this version and
none of them are essential. For the convenience of readers who already studied
[FOOO00], [FuOn99II], we identify these errors and their remedies in §A1.7. For
other readers, this section is not necessary to read.

A1.1. Review of the definition of the Kuranishi structure and multisec-
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tion.

First of all, we define the Kuranishi structure (with corners). Here we rephrase
the definitions in [FuOn99II] without using the phrase “smooth embedding of orb-
ifolds”. Let X be a compact metrizable space and p ∈ X.

Definition A1.1. A Kuranishi neighborhood of p in X is a quintet (Vp, Ep,Γp, √p, sp)
such that

(A1.2.1) Vp is a smooth manifold of finite dimension, which may or may not have
boundary or corner.
(A1.2.2) Ep is a real vector space of finite dimension.
(A1.2.3) Γp is a finite group acting smoothly and effectively on Vp and has a linear
representation on Ep.
(A1.2.4) sp is a Γp equivariant smooth map Vp → Ep.
(A1.2.5) √p is a homeomorphism from s−1

p (0)/Γp to a neighborhood of p in X.
We put Up = Vp/Γp and says that Up is a Kuranishi neighborhood. We sometimes
say that Vp is a Kuranishi neighborhood by an abuse of notation.

We call Ep × Vp → Vp the obstruction bundle and sp the Kuranishi map. For
x ∈ Vp, denote by (Γp)x the isotropy subgroup at x, i.e.,

(Γp)x = {∞ ∈ Γp|∞x = x}.

In case Vp has boundary or corners, we say that (Vp, Ep,Γp, √p, sp) is a Kuranishi
structure with boundary or corner.

Let us take a point op ∈ Vp with sp(op) = 0 and √([op]) = p. We may and will
assume that op is fixed by all elements of Γp.

Definition A1.3. Let (Vp, Ep,Γp, √p, sp), (Vq, Eq,Γq, √q, sq) be Kuranishi neigh-
borhoods of p ∈ X and q ∈ √p(s−1

p (0)/Γp), respectively. We say a triple (φ̂pq, φpq, hpq)
a coordinate change if

(A1.4.1) hpq is an injective homomorphism Γq → Γp.
(A1.4.2) φpq : Vpq → Vp is an hpq equivariant smooth embedding from a Γq

invariant open neighborhood Vpq of oq to Vp, such that the induced map φ
pq

:
Vpq/Γq → Vp/Γp is injective.
(A1.4.3) (φ̂pq, φpq) is an hpq equivariant embedding of vector bundles Eq ×Vpq →
Ep × Vp.
(A1.4.4) φ̂pq ◦ sq = sp ◦ φpq. Here and hereafter we sometimes regard sp as a
section sp : Vp → Ep × Vp of trivial bundle Ep × Vp → Vp.
(A1.4.5) √q = √p ◦ φ

pq
on (s−1

q (0) ∩ Vpq)/Γq. Here φ
pq

is as in (A1.4.2).
(A1.4.6) hpq restricts to an isomorphism (Γq)x → (Γp)φpq(x) for any x ∈ Vpq.
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Combining Condition (A1.4.6) and the injectivity of φ
pq

: Vpq/Γq → Vp/Γp, we
find

(A1.4.6’) If (∞φpq(Vpq)) ∩ (φpq(Vpq)) 6= ∅ and ∞ ∈ Γp, then ∞ ∈ hpq(Γq).

If we choose Vq sufficiently small, (A1.4.6) is equivalent to the condition that
hpq restricts to an isomorphism Γq = (Γq)oq → (Γp)φpq(oq). In our construction
of Kuranishi structure on the moduli spaces, Γp corresponds to the automorphism
group of the stable map possibly with marked points. Thus (A1.4.6) is satisfied in
our case.

Definition A1.5. A Kuranishi structure on X assigns a Kuranishi neighborhood
(Vp, Ep,Γp, √p, sp) for each p ∈ X and a coordinate change (φ̂pq, φpq, hpq) for each
q ∈ √p(s−1

p (0)/Γp) such that the following holds.

(A1.6.1) dimVp − rankEp is independent of p.
(A1.6.2) If r ∈ √q(s−1

q (0)/Γq), q ∈ √p(s−1
p (0)/Γp) then there exists ∞pqr ∈ Γp such

that

hpq ◦ hqr = ∞pqr · hpr · ∞−1
pqr, φpq ◦ φqr = ∞pqr · φpr, φ̂pq ◦ φ̂qr = ∞pqr · φ̂pr.

Here the second equality holds on φ−1
qr (Vpq)∩Vqr ∩Vpr and the third equality holds

on Er × (φ−1
qr (Vpq) ∩ Vqr ∩ Vpr).

We remark that (A1.6.2) is equivalent to the condition that

φ
pq
◦ φ

qr
= φ

pr
.

(We can prove this equivalence by using the effectivity of the Γp action.)
We can define the notion of germ of Kuranishi structure. But we do not use it

in this book. We regard two Kuranishi structures

({(Vp, Ep,Γp, √p, sp)p | p ∈ X}, {(φ̂pq, φpq, hpq) | p, q ∈ √p(s−1
p (0)/Γp)})

and

({(V 0
p , E0

p,Γ
0
p, √

0
p, s

0
p)p | p ∈ X}, {(φ̂0pq, φ

0
pq, h

0
pq) | p, q ∈ √0p(s

0−1
p (0)/Γp)})

are the same if and only if all the data are the same, namely Vp = V 0
p , Ep =

E0
p, · · · , hpq = h0pq.
We call dimVp − rankEp the virtual dimension (or dimension) of the Kuranishi

structure.
In case K ⊂ X we say U is a Kuranishi neighborhood of K if U = {Vpi/Γpi},

K ⊂
S

i √pi(s−1
pi

(0)/Γpi).
An orbifold structure on X is, by definition, a Kuranishi structure on X such

that Ep = 0 for all p.
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Example A1.7. Let W1 be a Banach manifold, W2 be a Banach space and let
F : W1 → W2 be a smooth (non-linear) Fredholm map. We assume that there is an
action of a discrete group G on W1 and also G has a linear representation on W2,
such that F is equivariant.

We consider the situation when X is a moduli space of solutions of an equation

(A1.8) F (w) = 0.

We assume that the action of G on the set of solutions of (A1.8) is properly discon-
tinuous. (We remark that the set of solutions of (A1.8) is locally compact since F
is Fredholm.)

We consider the space : X = {w ∈ W1 | F (w) = 0}/G. Typically (A1.8) is a
nonlinear elliptic partial differential equation.

In this situation, we can define a Kuranishi structure of X as follows.
Let w be a solution of (A1.8). We consider its linearized equation as follows. Let

u ∈ TwW1. We put

DwF (u) =
d

dt
F (w + tu)|t=0.

Here DwF : TwW1 → W2. (We identify T0W2
∼= W2.)

In case DwF : TwW1 → W2 is surjective, X is a smooth manifold in a neighbor-
hood of w by the implicit function theorem. Hence Vw (a Kuranishi neighborhood
of [w]) can be chosen as a neighborhood of w in X and Ew = 0.

We consider the case when DwF : TwW1 → W2 is not surjective but is a Fredholm
operator. We choose a finite dimensional linear subspace Ew ⊂ W2 such that

(A1.9) Im(DwF ) + Ew = W2.

We now define Vw to be the set of all u in a neighborhood U(w) of w such that

(A1.10) F (u) ≡ 0 mod Ew.

Γw is the set of automorphisms of w. Namely Γw = {g ∈ G | gw = w}. Since we
assumed that the action of G on the set of solutions of (A1.8) is properly discon-
tinuous, it follows that Γw is a finite group. If u satisfies (A1.10), we put

sw(u) = F (u) ∈ Ew.

Then sw defines a map Vw → Ew. If u ∈ Vw and sw(u) = 0, then u is a so-
lution of (A1.8) and hence its equivalence class √w(u) is an element of X. We
can choose Vw small enough so that (A1.9) and the implicit function theorem im-
ply that Vw is a smooth manifold. Thus we obtained a Kuranishi neighborhood
(Vw, Ew,Γw, √w, sw).

If w0 is in the image of √w, then we may choose Ew0 so that Ew0 ⊂ Ew. (See the
discussion at the end of §29.4.) In this case F (u) ≡ 0 mod Ew0 implies (A1.10).
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Hence Vw0 ∩ U(w) is a submanifold of Vw. Therefore by putting Vww0 = Vw0 ∩
U(w), we have φww0 : Vww0 → Vw. Moreover since Ew0 ⊂ Ew, we have a bundle
embedding φ̂ww0 . Furthermore, we may choose Vw enough small such that the group
of automorphism Γw0 of elements of Vw is contained in the group Γw, the group of
automorphism of w. We thus obtain a coordinate change (φ̂ww0 , φww0 , hww0).

We remark that in general dimVp 6= dimVq. So it may happen that the coor-
dinate change exists only in one direction. Our idea to obtain fundamental chain
for space with Kuranishi structure is to perturb the Kuranishi map sp so that it is
transversal to zero. The perturbed Kuranishi map should be compatible with co-
ordinate change. As in the usual proof of transversality theorem, we will construct
perturbation of Kuranishi map in each of the Kuranishi neighborhood inductively.
Since coordinate change may exist only in one direction, we need to find a clever
choice of the order of the Kuranishi neighborhoods to work out the induction. The
choice of good coordinate system below provides such a clever choice.

Lemma A1.11. ([FuOn99II, Lemma 6.3]) Let X be a space with Kuranishi struc-
ture. Then there exists a finite set P ⊂ X, an order < on P , and a Kuranishi
neighborhood (Vp, Ep,Γp, √p, sp) of p for each p ∈ P , with the following properties.

(A1.12.1) If q < p, √p(s−1
p (0)/Γp) ∩ √q(s−1

q (0)/Γq) 6= ∅, then there exists

(Vpq, φ̂pq, φpq, hpq)

where :
(A1.12.1.1) Vpq is a Γq invariant open subset of Vq such that Vpq/Γq contains
√−1

q (√p(s−1
p (0)/Γp) ∩ √q(s−1

q (0)/Γq)),
(A1.12.1.2) hpq is an injective homomorphism Γq → Γp with its image (Γp)φpq(q),
(A1.12.1.3) φpq : Vpq → Vp is an hpq equivariant smooth embedding such that the
induced map Vpq/Γq → Vp/Γp is injective,
(A1.12.1.4) (φ̂pq, φpq) is an hpq equivariant embedding of vector bundles Eq×Vpq →
Ep × Vp,
(A1.12.1.5) φ̂pq ◦ sq = sp ◦ φpq, √q = √p ◦ φ

pq
.

(A1.12.2) If r < q < p, √p(s−1
p (0)/Γp)∩√q(s−1

q (0)/Γq)∩√r(s−1
r (0)/Γr) 6= ∅, then

there exists ∞pqr ∈ Γp such that

hpq ◦ hqr = ∞pqr · hpr · ∞−1
pqr, φpq ◦ φqr = ∞pqr · φpr, φ̂pq ◦ φ̂qr = ∞pqr · φ̂pr.

Here the second equality holds on φ−1
qr (Vpq)∩ Vqr ∩ Vpr, and the third equality holds

on Er × (φ−1
qr (Vpq) ∩ Vqr ∩ Vpr).

(A1.12.3) [

p∈P

√p(s−1
p (0)/Γp) = X.
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We call {(Vp, Ep,Γp, √p, sp)}p∈P a good coordinate system.

The proof of Lemma A1.11 is rather technical and is omitted here. See [FuOn99II]
pp 957-958.

In this book we use virtual fundamental chains of the space with Kuranishi
structure. A virtual fundamental chain may be regarded as a chain of some infinite
dimensional space into which all the Kuranishi neighborhoods are embedded. How-
ever this picture is not so useful for our purpose of this book. We use the Kuranishi
structure over a space X from which there is a map to another space, say Y , and
use the virtual fundamental chain as a chain in the space Y . In our circumstances
the map will be an evaluation map from the moduli spaces.

Namely we work in the following situation.

Definition A1.13. Consider the situation of Lemma A1.11. Let Y be a topological
space. A family {fp} of Γp-equivariant continuous maps fp : Vp → Y is said to be
a strongly continuous map if

fp ◦ φpq = fq

on Vpq. A strongly continuous map induces a continuous map f : X → Y . We will
ambiguously denote f = {fp} when the meaning is clear.

When Y is a smooth manifold, a strongly continuous map f : X → Y is defined
to be smooth if all fp : Vp → Y are smooth. We say that it is weakly submersive if
each of fp is a submersion.

In the construction of this book, the evaluation maps from various moduli spaces
are weakly submersive, i.e., the restriction of the evaluation map to each boundary,
corner of the moduli space is also weakly submersive.

We need some more conditions for a space with Kuranishi structure X to have
a fundamental chain. Let

x ∈ √p(s−1
p (0)/Γp) ∩ √q(s−1

q (0)/Γq) ⊂ X,

where (Vp, Ep,Γp, √p, sp) and (Vq, Eq,Γq, √q, sq) are Kuranishi neighborhoods. Let
x = √p(xp) = √q(xq). We consider dxpsp : TxpVp → (Ep)xp and dxqsq : TxqVq →
(Eq)xq . They may be regarded as tangential complexes of our ‘moduli space’. In
fact if sp is transversal to 0 at xp, then X is a manifold in a neighborhood of xp

and TxpX = Ker(dxpsp). The condition below implies that the tangential complex
dxpsp : TxpVp → (Ep)xp can be glued to give a virtual bundle on X.

Consider the situation of Lemma A1.10. We identify a neighborhood of φpq(Vpq)
in Vp with a neighborhood of the zero section of the normal bundle NVpqVp →
Vpq, using an exponential map of an appropriate Riemannian metric. We take the
fiber derivative of the Kuranishi map sp along the fiber direction and obtain a
homomorphism

dfibersp : NVpqVp → Ep × Vpq

which is an hpq-equivariant bundle homomorphism.
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Definition A1.14. We say that the space with Kuranishi structure X has a tan-
gent bundle if dfibersp induces a bundle isomorphism

(A1.15) NVpqVp
∼=

Ep × Vpq

φ̂pq(Eq × Vpq)

as Γq-equivariant bundles on Vpq.

Note that Condition (A1.4.6) guarantees that the normal bundle of the smooth
orbifold embedding Vpq/Γq → Vp/Γp is defined as an orbi-bundle. (See Definition
A1.33 for the definition of orbi-bundle.)

We remark that the homomorphism (A1.15) does not depend on the choice of
Riemannian metric which we use to identify a given tubular neighborhood with an
open set of the normal bundle.

By definition, the following diagram commutes for each x ∈ φ−1
qr (Vpq)∩Vqr ∩Vpr.

(A1.16)

(NVqrVq)x
∞pqr·dφpq−−−−−−→ (NVprVp)x −−−−→ (NVpqVp)φqr(x)

y
y

y

Eq

φ̂qr,x(Er)

∞pqr·φ̂pq−−−−−→ Ep

φ̂pr,x(Er)
−−−−→ Ep

φ̂pq,φqr(x)(Eq)

Here and hereafter φ̂qp,x : Eq → Ep is the restriction of the bundle map φ̂pq to the
fiber of x.

Definition A1.17. Let X be a space with Kuranishi structure which has a tan-
gent bundle. We say that the Kuranishi structure on X is oriented if we have a
trivialization of

ΛtopE∗
p ⊗ ΛtopTVp

which is compatible with isomorphism (A1.15).

Example A1.18. Let us consider the situation of Example A1.7. We show that
this Kuranishi structure has a tangent bundle : Let w0 is in the image of √w. We
have Ew0 ⊂ Ew. Hence if u ∈ Vww0 ⊂ Vw then

TuVw = (DuP )−1(Ew), TuVw0 = (DuP )−1(Ew0).

Therefore, since Im(DvP ) + Ew0 = W2, an isomorphism

TuVw

TuVw0

∼=
Ew

Ew0

is induced by dF . The isomorphism (A1.15) is induced from this isomorphism. Since
the Kuranishi map is a restriction of F in this example, the above isomorphism is
induced by the Kuranishi map.
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Now we describe the construction of the virtual fundamental chain in [FuOn99II].
For this purpose we need the notion of multisection. We assume that Γ acts on a
manifold V and a vector space E. A symmetric group Sn of order n! acts on the
product En by

σ(x1, · · · , xn) = (xσ(1), · · · , xσ(n)).

Let Sn(E) be the quotient space En/Sn. Then Γ action on E induces one on
Sn(E). The map En → Enm defined by

(x1, · · · , xn) 7→ (x1, · · · , x1| {z }
m times

, x2, · · · , x2| {z }
m times

, · · · , xn, · · · , xn| {z }
m times

)

induces a Γ equivariant map Sn(E) → Snm(E).

Definition A1.19. An n-multisection s of π : E × V → V is a Γ-equivariant map
V → Sn(E). We say that it is liftable if there exists es = (es1, · · · , esn) : V → En

such that its composition with π : En → Sn(E) is s. (We do not assume es to be Γ
equivariant.) Each of es1, · · · , esn is said to be a branch of s.

If s : V → Sn(E) is an n multisection, then it induces an nm multisection for
each m by composing it with Sn(E) → Snm(E).

An n multisection s is said to be equivalent to an m multisection s0 if the induced
nm multisections coincide to each other. An equivalence class by this equivalence
relation is said to be a multisection.

A liftable multisection is said to be transversal to zero if each of its branch is
transversal to zero.

A family of multisections s≤ is said to converge to s as ≤ → 0 if there exists n such
that s≤ is represented by an n-multisection sn

≤ and sn
≤ converges to a representative

of s.

From now on we assume all the multisections are liftable unless otherwise stated.

Lemma A1.20. For any multisection s of π : E × V → V , which is transversal to
zero in a Kuranishi neighborhood of K ⊂ V/Γ, there exists a family of multisections
s≤ converging to s in the C0-sense such that s≤ is transversal to zero and s≤ = s in
a neighborhood of K.

Proof. Let m be the order of Γ. Let s be represented by π ◦ esn where esn : V → En.
Then, by the usual transversality theorem, there exists es≤ = (es≤,i)i=1,··· ,n which
converges to esn, is transversal to zero, and coincides with esn on eK. (Here eK ⊂ V
such that eK/Γ = K.) We define es≤ : V → Enm by (σ ◦es≤,i ◦σ−1)i=1,··· ,n, σ∈Γ. (Here
m = #Γ.) The equivalence class of es≤ is the required multisection. §

Definition A1.21. Let us consider the situation of Lemma A1.11. We assume
that our Kuranishi structure has a tangent bundle. Suppose p, q ∈ P , q < p and
suppose we have multisections s0p, s0q of Ep × Vp, Eq × Vq respectively. We now
define the compatibility between them.
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Now consider the embedding φpq : Vpq → Vp in (A1.12.1.3). We identify its
normal bundle NVpqVp with a tubular neighborhood of φpq(Vpq). For each x ∈ Vpq

we fix a splitting

(A1.22) Ep
∼= φ̂pq,x(Eq)⊕

Ep

φ̂pq,x(Eq)
.

For each y ∈ NVpqVp, we obtain an element 1(y) of Ep

φ̂pq,π(x)(Eq)
by using the

isomorphism (A1.15).
Then, on NVpqVp, we define a multisection s0q ⊕ 1 as follows. Let (es0q,1, · · · , es0q,n)

be a representative of s0q. We put (using (A1.22))

(es0q ⊕ 1)(y) = (es0q,1(π(y))⊕ 1(y), · · · , es0q,n(π(y))⊕ 1(y))

∈
√

φ̂pq,x(Eq)⊕
Ep

φ̂pq,π(y)(Eq)

!n

∼= En
p .

We denote by s0q ⊕ 1 the equivalence class of es0q ⊕ 1.
Now we say that s0p is compatible with s0q if the restriction of s0p to NVpqVp

coincides with s0q ⊕ 1.
We remark that the (single valued) section sp (that is a Kuranishi map) is com-

patible with sq in the sense defined above. This follows from the fact that (A1.15)
is induced by the fiber derivative of the Kuranishi map.

A multisection s = {s0p}p∈P is a compatible system of multisections (s0p : Vp →
Ep). If X is a space with Kuranishi structure, then a multisection of X is, by
definition, a multisection of its obstruction bundle.

Theorem A1.23. Consider the circumstance of Lemma A1.11. Suppose the Ku-
ranishi structure over X has a tangent bundle. Then there exists a family of mul-
tisections s≤ = {s0p,≤} such that it converges to {sp}p∈P (the Kuranishi map) and
such that s0p,≤ are transversal to 0 for all ≤ > 0.

Moreover if K ⊂ X is a compact set and if {s00p,≤} is a family of multisections in
a Kuranishi neighborhood of K that converges to {sp}p∈P and is transversal to 0
on K, then we can take the family {s0p,≤}p,≤ so that it coincides with {s00p,≤} on some
Kuranishi neighborhood of K.

Proof. We can construct {s0p,≤}p,≤ on Vp inductively on the order < on P . Each
inductive step is done by Lemma A1.20 as follows. Let us assume that {sq,≤}q∈P

is defined for q < p. Then, on the union of NVpqVp (q < p), the multisection
sp is already determined as es0q,≤ ⊕ 1 which was described in Definition A1.21. (If
r < q < p, then we can prove es0q,≤ ⊕ 1 = es0r,≤ ⊕ 1 on NVpqVp ∩ NVprVp by using
commutativity of (A1.16).) We can now construct es0p,≤ by Lemma A1.20. §
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Let Y be a topological space and {fp} (fp : Vp → Y ) be a strongly continuous
map. We will construct a virtual fundamental chain, which is a chain in Y using
the multisections s≤ produced in Theorem A1.23. This construction is now in order.

We put





^(s0p,≤)−1(0) = {y ∈ Vp | there exists a branch es0p,≤,i of s0p,≤,i such that es0p,≤,i(y) = 0},

(s0p,≤)
−1(0) = ^(s0p,≤)−1(0)/Γp.

The compatibility implies that

(A1.24) φ
pq




^(s0q,≤)−1(0) ∩ Vpq

Γq



 =
^(s0p,≤)−1(0) ∩ Γp · (NVpqVq)

Γp
,

where φ
pq

: Vpq/Γq → Vp/Γp. We put

((s0≤)
−1(0))set =

[

p∈P

(s0p,≤)
−1(0)/ ∼,

where ∼ implies that we identify y ∈ (s0q,≤)−1(0) with φ
pq

(y) ∈ (s0p,≤)−1(0).
For each p we choose np and es0p,≤ = (es0p,≤,1, · · · , es0p,≤,np

) : Vp → E
np
p such that

π ◦ es0p,≤ (where π : E
np
p → Snp(Ep) is the projection) is a representative of s0p,≤. For

y ∈ ^(s0p,≤)−1(0), we put

(A1.25) valp(π(y)) = #{i | es0p,≤,i(y) = 0},

where π : ^(s0p,≤)−1(0) → (s0p,≤)−1(0).

Lemma A1.26. ([FuOn99II] Lemma 6.9) For a generic choice of s0≤, the space
((s0≤)−1(0))set has a smooth triangulation such that for each simplex ∆m

a in the
triangulation, there exists pa such that ∆m

a ⊂ (s0pa,≤)−1(0) and valpa is constant on
Int∆m

a .

The proof is rather technical and is omitted, cf. [FuOn99II] p. 946.
Now assume that X is oriented. Let d be the virtual dimension of X. For each d

dimensional simplex ∆d
a of ((s0≤)−1(0))set we define its multiplicity as follows. (We

remark that the dimension of ((s0≤)−1(0))set is d by transversality.)

Definition A1.27. Let us consider the situation of Lemma A1.26. Let π(y) ∈
Int ∆d

a, where y ∈ Vpa and π : Vpa → Vpa/Γpa . Let es0p1,≤ = (es0pa,≤,1, · · · , es0pa,≤,npa
) :

Vpa → E
npa
pa be as in the definition of valpa . For each i with s0pa,≤,i(y) = 0 we define

≤i ∈ {±1} as follows. Since s≤ is transversal to 0 it follows that

dys0pa,≤,i : TyVpa → Epa
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is a surjection. Using the trivialization of

ΛtopE∗
pa
⊗ ΛtopTyVpa

induced by the orientation, we can assign an orientation on (dys0pa,≤,i)−1(0) as in
§45.1, Case (4) in Chapter 9. We put ≤i = 1 if this orientation on (dys0pa,≤,i)−1(0)
coincides with the one on ∆d

a and ≤i = −1 if not. Now we define

mul∆d
a

=
P

≤i

npa ·#Γpa

∈ Q,

here the sum in the numerator is taken over all i with s0pa,≤,i(y) = 0. Using the
fact that valpa is constant, we can prove that mul∆d

a
is independent of y ∈ ∆d

a.
Using the compatibility, we can prove that mul∆d

a
is independent of pa such that

∆m
a ⊂ (s0pa,≤)−1(0).

Now we give the definition of the virtual fundamental chain f∗[X] in Y .

Definition A1.28.

(A1.29) f∗[X] =
X

a

mul∆d
a
fpa∗[∆

d
a].

Here f∗[X] is a Q-singular chain of Y .

Next we consider the case where X has boundary or corner.

Definition A1.30. x ∈ X is said to be in the codimension k corner of X if x =
√p(πex) where ex ∈ Vp is in the codimension k corner of Vp and π : Vp → Vp/Γp is a
projection. (We remark that Vp is a manifold with corner.) We denote by @X the
set of all x in the codimension 1 corner (that is the boundary). We also write SkX
be the set of all elements of X in the codimension k corner.

We define a Kuranishi structure on SkX as follows : If p ∈ SkX and the Γp-action
induces an effective action on SkVp we take (SkVp, Ep,Γp, sp|SkVp) as its Kuranishi
neighborhood where SkVp is the codimension k corner of Vk.

If the induced Γp-action on SkVp is not effective, we increase both the Kuranishi
neighborhood and obstruction bundle by adding the same representation of Γp so
that the action to the Kuranishi neighborhood is effective. (This process requires
some care. See Remark A1.102.)

Lemma A1.31. Denote by @f = f |@X . Then

@f∗[X] = f∗[@X].

The proof is easy and is left to the reader. We can use Lemma A1.31 to show
the following.
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Lemma A1.32. If @X = ∅, then f∗[X] is a cycle. Its homology class is independent
of the choice of perturbation s≤.

Proof. The first half is immediate from Lemma A1.31. To prove the second half
we remark that X × [0, 1] has Kuranishi structure with boundary such that @(X ×
[0, 1]) = X × {0, 1}. Let us assume that we have two choices of s≤, say s0

≤ , s
1
≤ . We

can find s+
≤ on X× [0, 1] whose restriction to X×{t0} (t0 = 0, 1) coincides with st0

≤ .
(Theorem A1.23). Second half of Lemma A1.32 then is immediate from Lemma
A1.31. §

We next review the definition of bundle system in [FuOn99II]. (We used this
notion in §41, §42.)

Definition A1.33. Let X be a space with Kuranishi structure. A bundle system
on X is the following objects : Let (Vp, Ep,Γp, √p, sp) be a Kuranishi neighborhood
of p ∈ X.

(A1.34.1) For each p, we have a pair F1,p, F2,p of vector bundles over Vp such
that Γp acts on F1,p, F2,p.
(A1.34.2) If q ∈ √(Vp/Γp), then, for i = 0, 1, we have an hpq equivariant embed-
dings of vector bundles φ̂i,pq : Fi,q → Fi,p over φpq : Vq → Vp.

Moreover we have an isomorphism

Φpq :
F1,p|φpq(Vq)

φ̂1,pq(F1,q)
∼=

F2,p|φpq(Vq)

φ̂2,pq(F2,q)
.

(A1.34.3) If r ∈ √q(Vq/Γq) ⊆ √p(Vp/Γp), then φ̂i,pq ◦ φ̂i,qr = ∞pqr · φ̂i,pr.
(A1.34.4) If r ∈ √q(Vq/Γq) ⊆ √q(Vp/Γp), then the following diagram commutes.

0 −−−−→ F1,q|φqr(Vr)

φ̂1,pr(F1,r)

φ̂1,pq−−−−→ F1,p|∞pqr·φpr(Vr)

∞pqr·φ̂1,pr(F1,r)

π◦∞−1
pqr−−−−→ F1,p|φpq(Vq)

φ̂1,pq(F1,q)
−−−−→ 0

Φqr

y ∞pqr◦Φpr◦∞−1
pqr

y Φpq

y

0 −−−−→ F2,q|φqr(Vr)

φ̂2,pr(F2,r)

φ̂2,pq−−−−→ F2,p|∞pqr·φpr(Vr)

∞pqr·φ̂2,pr(F2,r)

π◦∞−1
pqr−−−−→ F2,p|φpq(Vq)

φ̂2,pq(F2,q)
−−−−→ 0

In case X is an orbifold, we call a pair (F1,p, φ̂1,pq) an orbi-bundle on X if it satis-
fies (A1.34) with F2,p = 0. In other words, an orbi-bundle is a pair ({F1,p}, {φ̂1,pq})
where F1,p is a Γp equivariant vector bundle on Vp and φ̂1,pq is an hpq-equivariant
isomorphism of vector bundles such that φ̂1,pq ◦ φ̂1,qr = ∞pqr · φ̂1,pr.

Example A1.35. If the Kuranishi structure on X has a tangent bundle, then
F1,p = TVp, F2,p = Ep× Vp define a bundle system. In fact the isomorphism Φpq is
isomorphism (A1.15). The commutativity in (A1.34.4) is commutativity of (A1.16).
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A1.2. Fiber product.

We next define a fiber product of Kuranishi structure. We assume that Yi are
smooth manifolds, Xi are the spaces with Kuranishi structures, and the notations
(V i

p , Ei
p,Γi

p, √
i
p, s

i
p;V i

pq, φ̂
i
pq, φ

i
pq, h

i
pq) are as in Lemma A1.11. (i = 1, · · · , I.) Let

{fi,pi} : Xi → Yi be smooth strongly continuous maps. We assume that they are
weakly submersive. We put Y =

Q
Yi. Let W be a manifold with corner and

f : W → Y be a smooth map. Let fi : Xi → Yi be the continuous map induced
from {fi,pi}. We put

(A1.36)

Z =
Y

i

Xi ×Y W :

=

(

((pi), p) ∈
Y

i

Xi ×W

ØØØØØ (f1(p1), · · · , fn(pn)) = f(p)

)

.

We will define a Kuranishi structure on Z.

Definition A1.37. Let ~p = ((pi), p) ∈ Z and V i
pi

be Kuranishi neighborhoods of
pi. We put

(A1.38) V~p :=

(

((xi), x) ∈
Y

i

V i
pi
×W

ØØØØØ (f1,p1(x1), · · · , fn,pn(xn)) = f(x)

)

.

Since fi,pi are submersions, it follows that V~p is a smooth manifold for each ~p. We
put E~p =

Q
Ei

pi
and Γ~p =

Q
Γi

pi
. It is easy to see that Γ~p acts on E~p × V~p → V~p.

We can define a map s~p : V~p → E~p using si
pi

in an obvious way. A map √~p :
(s~p)−1(0)/Γ~p → Z is induced from √i

pi
.

It is straightforward to check that (V~p, E~p,Γ~p, √~p, s~p) is a Kuranishi neighborhood
of ~p and that they are glued to define a Kuranishi structure on Z.

Lemma A1.39. If the Kuranishi structures on Xi have tangent bundles, so does
the Kuranishi structure on Z. If the Kuranishi structures on Xi, and the manifolds
Yi, W are oriented, so is the Kuranishi structure on Z.

Proof. Let qi < pi and xi ∈ √pi(s−1
pi

(0)/Γpi) ∩ √qi(s−1
qi

(0)/Γqi) ⊂ Xi. We put xi =
√pi(π(xi,pi)) = √qi(π(xi,qi)). We assume ~q = ((qi), q), ~x = ((xi), x), ~p = ((pi), p)
are elements of Z. By (A1.15), Kuranishi maps induce isomorphisms

(A1.40)
Txi,pi

V i
pi

(dxi,qi
φpiqi)(Txi,qi

V i
qi

)
∼=

Ei
pi

φ̂piqi,xi(Eqi |V i
piqi

)
.

We put ~x~p = ((xi,pi), x) ∈ V~p, ~x~q = ((xi,qi), x) ∈ V~q. Since there exist exact
sequences

0 → T~x(V~p) →
M

i

Txi,pi
V i

pi
⊕ TxW →

M

i

TxiYi → 0

0 → T~x(V~q) →
M

i

Txi,qi
V i

qi
⊕ TxW →

M

i

TxiYi → 0,
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it follows that we have an isomorphism

(A1.41)
T~x~p

V~p

(d~x~q
φ~p~q)(T~x~q

V~q)
∼=

M

i

Txi,pi
V i

pi

(dxi,qi
φpiqi)(Txi,qi

V i
qi

)
.

Therefore (A1.40) implies

(A1.42)
T~x~p

V~p

(d~x~p
φ~p~q)(T~x~q

V~q)
∼=

M

i

Ei
pi

φ̂piqi,xi(Eqi |V i
piqi

)
=

E~p

φ̂~p~q,~x(E~q|V~p~q
)
,

which is induced by the differential of the Kuranishi map. We have thus proved
existence of the tangent bundle. The proof of orientability is similar. §

We remark that the map Z → W is induced by a strongly continuous map, which
we write f̂ = (fi)×Y W .

Lemma A1.43. We assume that W and Y are compact without boundary and
orientation and @Xi = ∅. Then we have

f∗(PD(f1∗([X1])) ∪ · · · ∪ PD(fI∗([XI ]))) = ±PD(f̂∗([Z])).

Here PD is the Poincaré duality.

The proof is easy and is left to the reader. (We do not use Lemma A1.43 in this
book.)

Let fi : Xi → Y (i = 1, 2) be strongly continuous maps and Z = X1 ×Y X2 =
{(x1, x2) ∈ X1 × X2 | f1(x1) = f2(x2)}. If X1,X2 have Kuranishi structure and
f1, f2 are weakly submersive, then we may regard Z = (X1 × X2) ×Y 2 Y where
Y → Y 2, y 7→ (y, y). Then Z has a Kuranishi structure. Actually it is enough to
assume that one of f1,f2 is weakly submersive.

Remark A1.44. (1) We define fiber product only in case when fi are weakly
submersive. We can reduce the general case to this case by modifying the Ku-
ranishi structure. Namely, we can increase V i

pj
and Ei

pj
at the same time so

that fi,pj are submersions as follows. Let (V i
pj

, Ei
pj

,Γi
pj

, √i
pj

, si
pj

) be a Kuranishi
neighborhood of pj ∈ Xi. Consider the graph Γfi,pj

⊂ V i
pj
× Y and take its

tubular neighborhood U(Γfi,pj
). The normal bundle N(U(Γfi,pj

)), whose the unit
disc bundle is identified with U(Γfi,pj

), is naturally isomorphic to the restriction
of pr∗2TY , where pr` is the projection from V i

pj
× Y to the `-th factor. Then

(U(Γfi,pj
), pr∗2TY |U(Γfi,pj

),Γi
pj

, √i
pj
◦pr1, si

pj
⊕scan) is a Kuranishi neighborhood of

pj ∈ Xi. Here, Γi
pj

acts trivially on the second factor Y , and scan is the tautological
section of N(U(Γfi,pj

)) over U(Γfi,pj
). Since fi,pj coincides with pr2 ◦ (id, fi,pj ) and

the restriction of pr2 to U(Γfi,pj
) is clearly a submersion, we can make fi weakly
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submersive. Alternatively, we can use the above observation that the fiber product
X1 ×Y X2 is identified with Z = (X1 ×X2)f1×f2 ×Y×Y ∆Y , where ∆ : Y → Y × Y
is the diagonal embedding. We also remarked that this fiber product carries a Ku-
ranishi structure, if either f1 × f2 or ∆ is weakly submersive. Denote by U(Y ) a
tubular neighborhood of ∆(Y ) in Y × Y and by NY (Y × Y ) its normal bundle.
Then (U(Y ), NY (Y × Y ), scan) gives a Kuranishi structure of Y , where scan is the
tautological section. Note that U(Y ) → Y is an open embedding, especially a sub-
mersion. From this observation ∆ is weakly submersive. Thus Z carries a Kuranishi
structure.

(2) It seems possible to generalize the construction to the case when Y is not
necessarily a manifold but has a Kuranishi structure, under an appropriate assump-
tion. We would then have a category whose objects are the spaces with Kuranishi
structure and whose morphisms are a kind of strongly continuous smooth maps.
Such a category would be a smooth analog of the category of schemes or stacks.
(We remark that the fiber product of schemes is always well-defined and plays an
important role in the theory of schemes.) We are not trying to rigorously define it
in this book since we do not use it.

A1.3. Finite group action and the quotient space.

We next define the action of a finite group on the space with Kuranishi structure
and its quotient space. We used it in §§41,42.

Definition A1.45. Let ϕ : X → X be a homeomorphism of a space X with Ku-
ranishi structure. We say that it induces an automorphism of Kuranishi structure
if the following holds : Let p ∈ X and p0 = ϕ(p). Then, for the Kuranishi neighbor-
hoods (Vp, Ep,Γp, √p, sp), (Vp0 , Ep0 ,Γp0 , √p0 , sp0) of p and p0 respectively, there exist
ρp : Γp → Γp0 , ϕp : Vp → Vp0 , and ϕ̂p : Ep → Ep0 such that

(A1.46.1) ρp is an isomorphism of groups.
(A1.46.2) ϕp is a ρp equivariant diffeomorphism.
(A1.46.3) ϕ̂p is a ρp equivariant bundle isomorphism which covers ϕp.
(A1.46.4) sp0 ◦ ϕp = ϕ̂p ◦ sp.
(A1.46.5) The restriction of ϕp to s−1

p (0) induces a homeomorphism s−1
p (0)/Γp →

s−1
p0 (0)/Γp0 , which we write ϕ

p
. Then we have

√p0 ◦ ϕ
p

= ϕ ◦ √p.

We assume ρp, ϕp, ϕ̂p are compatible with the coordinate changes of Kuranishi
structure in the following sense : Let q ∈ √p(s−1

p (0)/Γp) and q0 ∈ √p0(s−1
p0 (0)/Γp0)

such that ϕ(q) = q0. Let (φ̂pq, φpq, hpq), (φ̂p0q0 , φp0q0 , hp0q0) be the coordinate changes.
Then there exists ∞pqp0q0 ∈ Γp0 with the following properties :
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(A1.47.1) ρp ◦ hpq = ∞pqp0q0 · (hp0q0 ◦ ρq) · ∞−1
pqp0q0 .

(A1.47.2) ϕp ◦ φpq = ∞pqp0q0 · (φp0q0 ◦ ϕq).
(A1.47.3) ϕ̂p ◦ φ̂pq = ∞pqp0q0 · (φ̂p0q0 ◦ ϕ̂q).

We call ((ρp, ϕp, ϕ̂p)p;ϕ) an automorphism of our Kuranishi structure.
We say an automorphism ((ρp, ϕp, ϕ̂p)p;ϕ) is conjugate to ((ρ0p, ϕ0p, ϕ̂0p)p;ϕ0) if

ϕ = ϕ0 and if there exists ∞p ∈ Γϕ(p) for each p such that

(A1.48.1) ρ0p = ∞p · ρp · ∞−1
p .

(A1.48.2) ϕ0p = ∞p · ϕp.
(A1.48.3) ϕ̂0p = ∞p · ϕ̂p.

The composition of the two automorphisms is defined by

((ρ1
p, ϕ

1
p, ϕ̂

1
p)p;ϕ1)◦((ρ2

p, ϕ
2
p, ϕ̂

2
p)p;ϕ2) = ((ρ1

ϕ2(p)◦ρ2
p, ϕ

1
ϕ2(p)◦ϕ2

p, ϕ̂
1
ϕ2(p)◦ϕ̂2

p)p;ϕ1◦ϕ2).

We can easily check that the right hand side is compatible with coordinate change
in the sense of (A1.47) if so is left hand side.

We can also easily check that the composition is compatible with the conjugation.
We say that the lift is orientation preserving if it is compatible with the trivial-

ization of ΛtopE∗
p ⊗ ΛtopTVp.

Let Aut(X) be the set of all conjugacy classes of the automorphisms of X and
Aut0(X) be the set of all conjugacy classes of the orientation preserving automor-
phisms of X. They become groups by composition.

Let G be a finite group which acts on a compact space X. We assume that X has
a Kuranishi structure. We say that G acts on X (as a space of Kuranishi structure)
if, for each element of g ∈ G, the homeomorphism x 7→ gx, X → X is lifted to an
automorphism g∗ of the Kuranishi structure and the composition of g∗ and h∗ is
conjugate to (gh)∗.

In other words an action of G to X is a homomorphism G → Aut(X).
An involution of a space with Kuranishi structure is a Z2 action.

Lemma A1.49. If a finite group G acts on a space X with Kuranishi structure
then the quotient space X/G has Kuranishi structure.

If X has a tangent bundle and the action preserves it, then the quotient space has
a tangent bundle. If X is oriented and the action preserves the orientation, then
the quotient space has an orientation.

Proof. We first assume that the action of G is effective.
Let g ∈ G and p ∈ X and (Vp, Ep,Γp, √p, sp) be its Kuranishi neighborhood. We

put
Gp = {g ∈ G | gp = p}.

By definition, the element g ∈ Gp induces

ϕg,p : Vp → Vp, ϕ̂g,p : Ep × Vp → Ep × Vp, ρg,p : Γp → Γp.
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We identify Gp = {ϕg,p | g ∈ Gp}.
Let Γ[p] be the group generated by Gp and Γp in the group of diffeomorphisms

of Vp.
We claim that an element of the group Γ[p] is written uniquely as a composition

g ◦ ∞ where g ∈ Gp and ∞ ∈ Γp. To prove the claim we proceed as follows.
For g1, g2 ∈ Gp, let ∞g1,g2 ∈ Γp be an elements such that

g1(g2(x)) = ∞g1,g2((g1g2)(x)).

Such ∞g1,g2 exists since the composition of g1 and g2 is conjugate to g1g2. It follows
that, the product ◦ on Γ[p] is given by the following formula

g1 ◦ g2 = ∞g1,g2 ◦ (g1g2), g ◦ ∞ = ρg,p(∞) ◦ g

for g, g1, g2 ∈ Gp and ∞ ∈ Γp. This implies our claim.
It follows that Γ[p] is a finite group. Moreover, there exists an exact sequence

(A1.50) 1 → Γp → Γ[p] → Gp → 1.

The action of each element of Gp on Γp induced by the exact sequence of (A1.50)
is given by g 7→ ρg,p. (Note g 7→ ρg,p is not a homomorphism.). The exact sequence
(A1.50) may not split. Actually ∞g1,g2 corresponds to the 2 cocycle which determines
the extension (A1.50).

We can lift the action of Γ[p] on Vp to its action on Ep × Vp since the relations
among the maps ϕ̂g,p (g ∈ Gp) and ∞ ∈ Γp are described by the same ρp,g and ∞g1,g2 .
The Kuranishi map sp : Vp → Ep is Γ[p] equivariant. Since Vp/Γ[p]

∼= (Vp/Γp)/Gp,
it follows that √p : s−1

p (0)/Γp → X induces √[p] : sp
−1(0)/Γ[p] → X/G which is

a homeomorphism onto a neighborhood of [p]. Thus we constructed a Kuranishi
neighborhood (Vp, Ep,Γ[p], √[p], sp) of [p] ∈ X/G.

It is straightforward to construct a coordinate change of this Kuranishi neigh-
borhood and to check the required properties in Definition A1.3 and Definition
A1.5. The proof about the tangent bundle and the orientation is obvious from their
definitions.

When G is not effective, we fix an effective finite dimensional representation
G → GL(E). We replace the Kuranishi neighborhood (Vp, Ep,Γp, √p, sp) by (Vp ×
E,Ep × E,Γp, √p, sp ⊕ id). Then the G-action on this Kuranishi neighborhood is
effective and hence the above construction applies. The proof of Lemma A1.49 is
now complete. §

Remark A1.51. (1) In the circumstance in Chapter 8 §38-43 where we use Propo-
sition A1.49, we can construct Kuranishi structure so that the Z2m action on the
moduli space is induced by an action on its Kuranishi structure.

(2) In the circumstance of Example A1.7, we assume that there exists a group G0

containing G as a normal subgroup of finite index and that G actions on W1, W2
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extend to G0 actions and F is G0 equivariant. Then we can choose the Kuranishi
structure on X = F−1(0)/G so that it becomes H equivariant where H = G0/G.
Moreover the quotient Kuranishi structure on X/H of Lemma A1.49 is isomorphic
to the Kuranishi structure on F−1(0)/G0.

(3) The definition of the group action can be generalized to the case of continuous
group in an obvious way, cf. §22 in [FuOn99II]. Then Lemma A1.49 is generalized
under the assumption that the action is proper and the isotropy group is finite. We
do not need this generalization in this book so we do not try to prove it.

A1.4. A remark on smoothness of coordinate transform.

In the definition of Kuranishi structure we require the coordinate transform φpq :
Vq → Vp to be smooth. (See (A1.4.2).) In the actual construction of Kuranishi
structure on the moduli space we use, this smoothness is apparent as far as the
points p, q lie in the interior of the moduli space. This corresponds to the case
where the domain of the corresponding stable map is nonsingular. The smoothness
is less apparent when they correspond to the stable map whose domain is singular.
In this subsection we clarify this point mainly for the completeness’ sake : this point
of the smoothness of the Kuranishi map s was already mentioned but not spelled out
in [FuOn99II, Remark 13.16]. (We remark that smoothness of coordinate change
was not used in [FuOn99II], since only 0 and 1 dimensional moduli space was used
there. In other words, in Situation 30.2 mentioned in §30, we do not need it.) The
authors would like to thank Melissa Liu who called our attention of this point during
her visit of Kyoto in 2003.

To highlight the main point, we consider the case of the moduli space Mk+1(β)
and restrict ourselves to the case discussed in §29.3. The discussion of the other
cases are similar.

Let pj = (Σ(j), ~z(j), w(j)), j = 1, 2 be two elements of Mk+1(β). We put the
following additional assumptions for simplicity of exposition :

(1) Σ(j) has exactly one boundary singular point and splits into

Σ(j) = Σ(j)
1 ∪ Σ(j)

0 ,

where each of Σ(j)
i is the disc.

(2) They are of the same combinatorial type, namely there exists a homeomor-
phism (Σ(1), ~z(1)) → (Σ(2), ~z(2)).

(3) The restriction of w(1) to Σ(1)
0 (resp. Σ(1)

1 ) is homotopic and close to the
restriction of w(2) to Σ(2)

0 (resp. Σ(2)
1 ) so that the inclusion (A1.52) below

holds.
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Without loss of generalities, we may assume that the zero-th marked points of
them are on Σ(1)

0 or Σ(2)
0 respectively, and let the double point be the `-th marked

point of Σ(1)
0 or Σ(2)

0 . We put

(Σ(j), ~z(j), w(j)) = (Σ(j)
1 , ~z(j)

1 , w(j)
1 )#(Σ(j)

0 , ~z(j)
0 , w(j)

0 )

and
(Σ(j)

1 , ~z(j)
1 , w(j)

1 ) ∈Mk1+1(β1), (Σ(j)
0 , ~z(j)

0 , w(j)
0 ) ∈Mk0+1(β0).

Following the notations of §29.3 we denote

(Σ(j)
i , ~z(j)

i ) = (X(t(j)i , `(j)i ), ~p (j),i), (i = 0, 1, j = 1, 2).

In §29.4, we took the finite dimensional spaces

E
(t(j)

i ,`(j)
i ,w(j)

i )
⊂ E0,p

(t(j)
i ,`(j)

i ,w(j)
i )

so that the map (29.26) becomes surjective. They determine the obstruction bundles

Epj = E(Σ(j),~z(j),w(j))
∼= E

(t(j)
1 ,`(j)

1 ,w(j)
1 )

⊕ E
(t(j)

0 ,`(j)
0 ,w(j)

0 )

and the Kuranishi neighborhood Upj is the set of solutions of the equation (29.22).
As in §29.4, we adopt the normalization put in Appendix of [FuOn99II], when at
least one of the marked Riemann surfaces Σ(j)

0 and Σ(j)
1 is unstable. Namely we add

an interior marked point z(j),int
i ∈ Int(Σ(j)

i ) where the maps w(j)
i is an immersion.

For each i, j we also take an (2n−2) dimensional submanifold Y (j)
i which intersects

with w(j)
i (Σ(j)

i ) transversely at w(j)
i (z(j),int

i ).
Now we assume that p2 ∈ Up1 . Then by the choice of Epj explained in §29.4 we

may assume

(A1.52) Ep2 ⊂ Ep1 .

(We identify the subspace Ep2 of
L

i E
0,p

(t(2)i ,`(2)i ,w(2)
i )

with a subspace of
L

i E
0,p

(t(1)i ,`(1)i ,w(1)
i )

via the parallel transport along the minimal geodesics as we did in §29.)
By (A1.52) we have

(A1.53) φp1,p2 : Up2 ⊂ Up1 .

(A1.53) provides our coordinate transformation. To show that it is smooth, we need
to put a coordinate chart on Upj . We review how the coordinate chart is defined in
§29.3. Let us put

p(i)
j = (Σ(j)

i , ~z(j)
i , w(j)

i ) ∈Mki+1(βi).
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We use
E

p(i)
j

= E
(t(j)

i ,`(j)
i ,w(j)

i )

as an obstruction bundle and obtain a Kuranishi neighborhood (U
p(i)

j
, E

p(i)
j

, s
p(i)

j
)

of p(i)
j in Mki+1(βi). (In the current case of our interest, the automorphism group

is trivial.) Then by construction we may take
(A1.54) Upj

∼= U
p(1)

j
×L U

p(0)
j
× (C,1]

for some large C. Here the last factor (C,1] is the smoothing parameter of the
singularity of Σ(j).

Let us discuss this parametrization more in detail in case the domain Σ(j)
i is

unstable. We assume k1 = 0, k0 = 1. In other words, we glue the 0-th (the only)
marked point of Σ(j)

1 to the 1-st marked point of Σ(j)
0 . (The 0-th marked point of

Σ(j)
0 will become the 0-th marked point of the glued disc.) This is the most delicate

case where both of the components are unstable. As we mentioned above we take
interior marked points z(j),int

i ∈ Int(Σ(j)
i ). We identify the domain Σ(j)

1 with
(A1.55.1) Z1 := {z ∈ C | |z| ≤ 1, Rez ≤ 0} ∪ {z ∈ C | |Imz| ≤ 1,Rez ≥ 0},
and Σ(j)

0 with
(A1.55.2) Z0 := {z ∈ C | |z| ≤ 1, Rez ≥ 0} ∪ {z ∈ C | |Imz| ≤ 1,Rez ≤ 0}.
Under this identification, z(j),int

i corresponds to 0 ∈ C, the 0-th (the only) marked
point of Σ(j)

1 to +1, and the first marked point of Σ(j)
0 to −1.

Since we consider a compact family, the 0-th marked point of Σ(j)
0 moves in a

compact subset of @Σ(j)
0 . We choose a constant C that is sufficiently large compared

to the distance of the 0-th marked point of Σ(j)
0 from the origin in Z− ∼= Σ(j)

0 .
For each T ≥ C we identify 5T +

√
−1s ∈ Σ(j)

1 with −5T +
√
−1s ∈ Σ(j)

0 to
obtain Σ(j)

T . We then perform the construction of §29 to obtain a map from Σ(j)
T to

M when the corresponding evaluation maps coincide. This defines a map
(A1.56) φp1,p2 : U

p(1)
2
×L U

p(0)
2
× (C,1] → U

p(1)
1
×L U

p(0)
1
× (C 0,1],

if C is sufficiently large compared to C 0. Under the identification (A1.54) this map
is nothing but (A1.53).

On the other hand, by the definition of Kuranishi neighborhoods, there exists a
coordinate change

φ
p(i)

1 ,p(i)
2

: U
p(i)

2
→ U

p(i)
1

.

We define
φ0p1,p2

: U
p(1)

2
×L U

p(0)
2
× (C,1] → U

p(1)
1
×L U

p(0)
1
× (C 0,1]

by
φ0p1,p2

(x1,x0, T ) = (φ
p(1)

1 ,p(1)
2

(x1), φp(0)
1 ,p(0)

2
(x0), T ).
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Proposition A1.57.
(A1.58.1) The restriction of φp1,p2 in (A1.56) induces a smooth map

U
p(1)

2
×L U

p(0)
2
× (C,1) → U

p(1)
1
×L U

p(0)
1
× (C 0,1).

(A1.58.2) At T = 1 the map φp1,p2 coincides with φ0p1,p2
.

(A1.58.3) There exist ck > 0 and Ck > 0 depending only on k such that
ØØφ0p1,p2

− φp1,p2

ØØ
Ck ≤ Ck exp(−ckT ).

The first two statement is obvious from construction given in §29.3. We will
prove (A1.58.3) later in this subsection.

Now we put
s = 1/T.

It easily follows that φp1,p2 is smooth with respect to this coordinate up to the
boundary of U

p(1)
2
×L U

p(0)
2
× (C,1].

Note the Ck norm in (A1.58.3) involves both the derivatives along Upj direction
and T direction.

Proof of Proposition A1.57. Recall we are considering only the case k1 = 0 and
k0 = 1. We use the notation introduced above and in §29.3. We first take a
relatively compact subset W (j)

i such that each element of E
p(i)

j
is supported in

it. (See (29.14.2).) We start with a family of pseudo-holomorphic maps w(j)
i,xi

parameterized by xi ∈ U
p(i)

2
. Then for sufficiently large T we obtain an approximate

solution
w(j)0

T ;x1,x0
= w(j)

1,x1
]T w(j)

0,x0
: Σ(j)

T −→ M

by gluing two maps using a partition of unity. (This is the map w0T defined just
below Figure 29.4.) Then by the argument of §29.3, we obtain a genuine solution
w(j)

T ;x1,x0
of the equation (29.22) parameterized by x1,x0 and T .

Now the main technical lemma we need to prove Proposition A1.57 is Lemma
A1.59 below which provides an estimate of difference between w0T ;x1,x0

and wT ;x1,x0

together with all of its derivatives. In order to define appropriate norm we use for
the estimates, we proceed as follows :

We take compact subsets Wi ⊂ Zi
∼= Σ(j)

i and take a finitely many but a big num-
ber N of points in it. We then consider the evaluation map evWi : Map(Σ(j)

T ,M) →
MN . We remark that our choice of Wi is independent of j = 1, 2. We may choose
it so that the restriction map

(x1,x0) 7→ evWi(w
(j)
1,x1

]T w(j)
0,x0

) ; U
p(1)

2
×L U

p(0)
2
→ MN

defines an embedding, for each T . (Note that if we choose Wi so that they are
disjoint from the neck region, this map does not depend on T .)
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Lemma A1.59.
ØØØØ

@k+`

@T k@x`
(evWi(w

(j)
T ;x1,x0

)− evWi(w
(j)0
T ;x1,x0

))
ØØØØ < Ck,` exp (−ck,`T ),

where ck,` > 0, Ck,` > 0. (Here and hereafter @`

@x` denotes the derivatives with
respect to x0,x1.)

Since the target of evWi is a manifold, it is an abuse of notation to write − in the
above formula. However since it will be proved that the two elements evWi(wT ;x1,x0)
and evWi(w0T ;x1,x0

) are sufficiently close to each other, we can obviously make sense
out of the expression via the exponential map.

Before proving Lemma A1.59, we now complete the proof of Proposition A1.57
using the lemma.

We note that since we chose Y (j)
i ’s so that they intersect at w(j)

i (z(j),int
i ) and set

z(j),int
i = 0 in the identification of Σ(j)

i
∼= Zi given in (A1.55), the two T -coordinates

for j = 1, 2 do not coincide. We now estimate their difference as T →1.
Consider the T -projection of the coordinate change φp1,p2 ,

T := prT ◦ φp1,p2 : (x1,x0, T ) 7→ T((x1,x0, T )).

In general T((x1,x0, T )) 6= T . However we now prove the estimate

(A1.60.1) |T((x1,x0, T ))− (T + h(x1,x0))|Ck < Ck exp (−ckT ),

for some smooth function h(x1,x0) on U
p(1)

2
× U

p(0)
2

. Here the Ck norm in the left
hand side includes both T and x0,x1 derivatives.

We first take the intersection of w(1)0
T ;x1,x0

(here j = 1) with Y (2)
i (here j = 2). We

thus fix a complex structure of the domain Σ(j)
T equipped with additional marked

points. We use it to obtain T0((x1,x0, T )). Using Lemma A1.59 we find

|T((x1,x0, T ))− T0((x1,x0, T ))| < Ck exp (−ckT ).

On the other hand, by construction, it is easy to see that

|T0((x1,x0, T ))− (T + h(x1,x0))|Ck < Ck exp (−ckT ),

where h(x1,x0) is a smooth function on U
p(1)

2
× U

p(0)
2

. Indeed we can prove this
inequality by using exponential decay estimate near the end of the biholomorphic
map Σ(1)

i → Σ(2)
i which sends z(1),int

i to z(2),int
i . We thus obtain (A1.60.1).

We next compare evWi(w
(1)0
T ;x1,x0

) with evWi(w
(2)0
T ;x01,x00

) where

(x01,x
0
0) = φp1,p2

(x1,x0).
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By the construction of coordinate change φp1,p2
and by (A1.60.1), we easily obtain

(A1.60.2)
ØØØØ

@k+`

@T k@x`
(evWi(w

(1)0
T ;x1,x0

)− evWi(w
(2)0
T ;x01,x00

))
ØØØØ < Ck,` exp (−ck,`T ).

Therefore (A1.60.1), (A1.60.2) and Lemma A1.59 immediately imply Proposition
A1.57. §

We can prove Lemma A1.59 in a straightforward way by examining the details
of the proof of §29.3. Since estimating the T -derivatives may not be so standard,
we give a detailed proof of the exponential estimates in Lemma A1.59 below for
completeness.

Before going to the proof, we recall that the method of the proof in §29.3 imi-
tates the one in [Fuk96II]. The proofs of surjectivity of the linearized operator in
Proposition 29.27 of this book and the one stated in [Fu96II, Lemma 8.5], follow
Donaldson’s ‘ ‘alternating method’ in [Don86]. The method of §29.3 is slightly dif-
ferent which uses the implicit function theorem. (However at the most important
ingredient, Lemma 29.32, of the proof, we use the same idea as the alternating
method.) In [Fu96II] the alternating method was used to study the linear part of
the equation, while Donaldson used the alternating method directly to solve non-
linear partial differential equation in his original argument [Don86] which is the
anti-self-dual equation for his case.

To see the T dependence of the construction in a transparent way, it seems sim-
pler to use the alternating method directly rather than to put a part of the proof in
a black box of functional analysis (that is implicit function theorem). All the tech-
niques involved in the proof have become by now standard since it first appeared
more than 20 years ago. For example, Donaldson’s paper [Don86] appeared in 1986
which has become a classic for those working on geometric PDE seriously. Neverthe-
less, we describe the main scheme of alternating method here in our circumstance.
After that, we examine details of the constructions used in the method and derive
the statement of Lemma A1.59. Especially we will explain how the T -derivatives
can be estimated in this way. It seems that the estimate of T -derivative is easier
if we use cylindrical coordinate than the standard coordinate near the nodal points
on the domain.

Now we are ready to prove Lemma A1.59.

Proof of Lemma A1.59. First of all, we may assume that the (2n− 2)-dimensional
submanifolds Y0, Y1 are totally geodesic with respect to the Riemannian metric. In
the following argument, we consider the space of mappings with the constraints
that w(zint

i ) ∈ Yi, i = 0, 1. Then the tangent vector at w is a section V of
(w∗TM,w|∗@ΣTL) such that V (zint

i ) ∈ Tw(zint
i )Yi. (Here Σ is either Σi, i = 0, 1

or ΣT .)
We start with the approximate solution w(j)0

T ;x1,x0
constructed in the proof of

Proposition A1.57. From now on we omit j and write w0T ;x1,x0
since we can work

for each of j separately for the proof of Lemma A1.59.
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(Cycle 0) We put
w0T ;x1,x0

= w0T ;x1,x0;0.

(There are no (Step 0-1) and (Step 0-2) in Cycle 0, because we already start with
the approximate solution. See the corresponding steps in the later cycle described
below.)
(Step 0-3) : (Apply @ operator to the approximate solution.) We consider
the @ derivative

@(w0T ;x1,x0;0) ∈ Γ(ΣT ; Λ0,1 ⊗ (w0T ;x1,x0;0)
∗TM).

This is exponentially small in the sense of Lemma 29.29. We denote it by Err0 :

Err0 = @(w0T ;x1,x0;0).

(Step 0-4) : (Decompose the error term into 2-pieces.) We use the operator
JS
∗,i (i = 0, 1) which was defined just below Figure 29.4 to obtain elements

Err0,i = J0
∗,i(Err0) ∈ Γ(Σi,Λ0,1 ⊗ (w0T ;x1,x0;0;i)

∗TM), i = 0, 1.

Here we put S = 0 in JS
∗,i. Let us explain the notation w0T ;x1,x0;0;i

. We remark that
J0
∗,i for i = 0, 1 are operators which decomposes the section into two pieces by a

partition of unity cuting along [−1, 1]× [0, 2].
Therefore after we cut the section into two, the support of the section J0

∗,1(Err0)
lies outside [5T + 1,1) × [0, 1] ⊂ Σ1. (Note that Σ1 is denoted by X(t1, `1) in
§29.3 and contains [0,1) × [0, 1].) We define a map w0T ;x1,x0;0;1

: Σ1 → M so
that it coincides with w0T ;x1,x0;0

outside [10T − 1,1) × [0, 1] where w0T ;x1,x0;0
is

defined, and extend it over [10T − 1,1) × [0, 1] by an appropriate partition of
unity via the exponential map at the corresponding nodal point. We also define
w0T ;x1,x0;0;0

: Σ0 → M in a similar way. Note that the part [10T − 1,1) × [0, 1] is
not used in (Step n-2) and (Step n-4) so it does not matter how we extend as far
as we choose it so that its T -derivatives etc are exponentially small. We can check
this point inductively on n, the number of cycles.

By a reason we will explain later (after (A1.62)) we complete the 0-th cycle here
and enter to the next cycle, (Cycle 1).

(Cycle 1)
(Step 1-1) : (Solve the equations on the 2-parts.) We apply a version of
Lemma 29.20 here. Namely we use the surjectivity of

(A1.61) π ◦Dw0
T ;x1,x0;0;1,w0

T ;x1,x0;0;0
@ : X → E0,p

Σ1
/E1 ⊕ E0,p

Σ0
/E0.

We remark (A1.61) is slightly different from the operator appearing in Lemma 29.20.
That is, we use w0T ;x1,x0;0;i

in place of wi which was used in Lemma 29.20. The
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reason of this difference is that we are doing a nonlinear version of the alternating
argument of Donaldson while Lemma 29.20 was used for its linear version. However
since the difference between them is exponentially small, (A1.61) is still surjective.

We apply a right inverse of (A1.61) to (Err0,1,Err0,0). We then obtain

V1,i ∈ Γ((Σi, z
int
i ), ((w0T ;x1,x0;0;i)

∗TM,TYi)), i = 0, 1.

(Step 1-2) : (Glue the solutions.) We use (V1,1, V1,0) in the same way as we
constructed w0T just below Figure 29.4. More precisely, we glue them as in (29.23).
(We take S = 2T in (29.3).) We then obtain an element of

Γ((ΣT , zint
1 , zint

0 ), ((w0T ;x1,x0;0)
∗TM,TY1, TY0).

Applying the exponential map expw0
T ;x1,x0;0

thereto, we obtain a new map

w0T ;x1,x0;1 : ΣT → M,

such that w0T ;x1,x0;1
(zint

i ) ∈ Yi, i = 0, 1. We remark that we use a partition of unity
cutting along [2T − 1, 2T + 1] × [0, 1] ⊂ ΣT which corresponds to [7T − 1, 7T +
1] × [0, 1] ⊂ Σ0. This region is by 2T farther to the direction towards the end
than the region cut along which we used a partition of unity in (Step n-4). This
difference of 2T is the crucial ingredient which makes the error term drop by the
order exponentially small with respect to T . This point appears both in Donaldson’s
argument [Don86] and in the proof of Lemma 29.32 by the similar fashion.
(Step 1-3) : (Apply @ operator to the approximate solution.) We consider
the @ derivative

Err1 = @(w0T ;x1,x0;1) ∈ Γ(ΣT ; Λ0,1 ⊗ (w0T ;x1,x0;1)
∗TM)

in the same way as (Step 0-3).
(Step 1-4) : (Decompose the error term into 2-pieces.) We use the operator
JS
∗,i (i = 0, 1) in the same way as (Step 0-4) to obtain element

Err1,i = J0
∗,i(Err1) ∈ Γ(Σi,Λ0,1 ⊗ (w0T ;x1,x0;1;i)

∗TM), i = 0, 1.

The maps w0T ;x1,x0;1;i
are defined in the same way as Step 0-4.

Now we come back to the same situation as Step 1-1. So we can start the next
cycle :

(Cycle 2) (Step 2-1) => (Step 2-2) => (Step 2-3) => (Step 2-4)

and proceed to (Cycle n) in the same way.
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In the same way as [Don86] (with its minor adaptation to the Bott-Morse case
in [Fuk96]) we can show that the limit

lim
n→1

(w0T ;x1,x0;n)

is a pseudo-holomorphic map which is our desired wT ;x1,x0 .
We remark that at the beginning of each (Cycle n) we have elements of

(A1.62) Γ(Σi,Λ0,1 ⊗ (w0T ;x1,x0;n−1;i)
∗TM), i = 0, 1.

Here the domain Σi is independent of T . The bundle (w0T ;x1,x0;n−1;i)∗TM may
depend on T . But the difference is small in the exponential order of T (as we can
prove inductively at the same time). So they can be identified to each other by
taking a trivialization of the tangent bundle of the target space M locally. Namely
for each cycle we start with elements of (A1.62) and at the end of the cycle we obtain
an element of the same function space. So it makes sense to take T derivation at
each cycle. (This is the reason why we start each of the cycle as we described
above.)

Now we are in the position to estimate the T derivatives of the sections appearing
at each step. (The estimates of the terms which do not involve T derivatives are
quite obvious from the description above.)

We first consider (Step n-2), (Step n-3) and (Step n-4). We remark that these
steps are local processes, which are gluing sections by partitions of unity, applying
exponential maps, and applying the @ operator. None of these processes themselves
involve the T -parameter. but some functions etc appearing in the processes contain
the T parameter. Therefore they become the sources where non zero T -derivatives
can appear. By examining the construction, we can check that there are two sources
from which such non zero T -derivatives can appear :

(A) We use partitions of unity that depend on T . Taking the T -derivatives of the
terms involving the partitions of unity generate terms of the form @kχT /dT k. Such
terms are bounded in C1 norm. Therefore multiplying them is a bounded operator.
We then note that we multiply the derivatives to a section whose exponential decay
is already established by an earlier stage of induction. Therefore these terms can
be estimated in the exponential order.

(B) The maps w0T ;x1,x0;n
or w0T ;x1,x0;n;i (i = 0, 1) appear in the course of the

construction. They are T -dependent because T appears at the earlier stage of
induction. However we can inductively prove that they are exponentially small
in local weighted W 1,p norm used here. (See §29.3 for the definition of the norm.)
Therefore by taking the T -derivative we obtain a multiplication operator by a section
whose local W 1,p norm is of exponentially small order. Using the boundedness of
the product map W 1,p ×W 1,p → Lp we conclude that the resulting terms in this
way is also exponentially small.
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We next consider (Step n-1). This step is slightly more non-trivial since it is
non-local and uses the right inverse of (A1.61). To study this step, we consider
the T -derivative of (A1.61). We remark that the leading term of (A1.61) is the
Cauchy-Riemann operator and does not contain T . The 0-th order part of the
operator (A1.61) does contain T because the maps w0T ;x1,x0;n;i contain T . By the
same reason as (B) above, the T -derivative of (A1.61) is a multiplication operator
by a section whose weighted W 1,p norm is exponentially small. Here we note that
the function spaces in (A1.61) do not depend on T at all in (Step n-1). Thus by a
standard argument (for example by using the Neumann series) we can find its right
inverse whose T derivatives are exponentially small with respect to the operator
norm for the operators Lp → W 1,p).

Therefore the proof of Lemma A1.59 is now complete. §

Remark A1.63. If we identify the double of the glued discs with a closed Riemann
surface, then the glued surface is regarded locally (around the singular point) as a
solution of z1z2 = r, where r = exp(−cT ). So (A1.58.3) can be written as

ØØØØ
@kφp1,p2

@rk

ØØØØ < rck−k.

This is the same type of estimate which is satisfied by a function such as f(r) = r∏.
In that sense our estimate is natural. On the other hand, it is not enough for the
smoothness of φp1,p2 with respect to (a power of) r. Our choice of coordinate here
is

r = e−1/s.

In this coordinate f(s) = e−∏/s is certainly smooth.
One might expect the smoothness of φp1,p2 with respect to some power of r.

(This seems to be the case when we can work in the category of real algebraic
geometry, for example.) We do not try to improve our estimate here since a sharper
estimate is not necessary for our purpose, though such an estimate looks interesting
of its own. The authors have recently learned (at the year 2007) that several people
are trying to prove this sharper estimate.

A1.5. Some counter examples.

Example A1.64. We first give an example related to the definition of the tangent
bundle (Definition A1.14). Let X = [−2, 2]. We put V1 = C × [−1, 2], E1 = C,
Γ1 = {1}. We define s1(z, t) = z2 and √1(0, t) = t, √1 : s−1

1 (0) → X. We next put
V2 = [−2, 0] E2 = 0, Γ2 = {1}, s2 ≡ 0. √2(t) = t.

The coordinate change φ12 is t 7→ (0, t), [−1, 0] = V12 → C× [−1, 0] ⊂ V1.
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This defines a Kuranishi structure on X. The normal bundle NV12V1 is obviously
trivial. Hence it is isomorphic to E1/φ̂12(E2). So the isomorphism (A1.5) exists
but is not induced by s.

The multiplicity at {2} is 2 and at {−2} is 1. The virtual fundamental chain
is not homologous to zero. Therefore, by Lemma A1.31, we can not modify our
Kuranishi structure of X outside the boundary, so that it has a tangent bundle.

Example A1.65. We next consider compatibility condition (A1.6.2). Let us con-
sider an orbifold C/Z2 where Z2 action is by z 7→ −z. We find that (C/Z2) \ {0}
is isomorphic to C \ {0} as an orbifold. We glue it with (C ∪ {1}) \ {0} to obtain
an orbifold X. This is an example of bad orbifold, that is, an orbifold that is not a
global quotient of a manifold by a discrete group action.

A coordinate at 0 is given by V0/Γ0 = C/Z2. Let pt = [exp(2πt
√
−1)] ∈ C/Z2.

A small disc IntD2 with trivial Γ, is its coordinate chart. The coordinate change
from this chart to V0/Γ0 is given by

(A1.66) z 7→ ± exp(2πt
√
−1) + z.

Here we may choose either + or − in the above formula.
Let us move t from 0 to 1 continuously. If we do not put ∞pqr in compatibility

condition (A1.6.2) then we can not change ± in (A1.66). Namely if we fix it for
some t then we are not allowed to change it. However t = 0 and t = 1/2 corresponds
to the same point. This is a contradiction. Namely we need to include ∞pqr = −1
to Definition A1.5 (A1.6.2) to include this example to an orbifold.

We remark that we need ∞pp0,qq0 etc. in Definition A1.45 by the same reason.

Remark A1.67. An orbifold can be regarded as a groupoid which is a category all
of whose morphisms are isomorphisms. (This fact is classical and goes back to the
early days when the theory of stack was started by Grothendieck. As the first and
fourth named authors mentioned in [FuOn99I], the theory of Kuranishi structure is
an analog of the theory of stack.)

A map between two orbifolds corresponds to a functor between the two categories.
In the category theory, it is crucial to tell the notion of two objects, morphisms etc.
being equal from that of being isomorphic. The condition (A1.6.2) corresponds to
the condition that two functors are equivalent (that is, isomorphic). The isomor-
phism with ∞pqr ≡ 1 exactly corresponds to the equality. In order to define the
notion of stack we need to glue local objects. The compatibility condition of gluing
maps is, by definition, that the composition of gluing maps is equivalent to the third
composition map. This coincides with the condition (A1.6.2) in our definition. In
fact, our exposition would be more systematic, if we used the notion of 2-category.
However since we do not need this abstraction for the applications in this book, we
do not use the language of 2-category but state the gluing condition explicitly as
the coincidence condition of equivalence classes.
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We next provide an example related to the discussion in §35. Let X be an orbifold
and Γ be a finite group. We define

X
∼=(Γ) = {x ∈ X | Ix

∼= Γ}.

In §35 we need to consider a normal bundle NX∼=(Γ)X of X
∼=(Γ) in X. At first

sight, one might expect that there exists a vector bundle NX∼=(Γ)X over the topo-
logical space X

∼=(Γ) together with a Γ action on NX∼=(Γ)X such that NX∼=(Γ)X/Γ
is diffeomorphic to a neighborhood of X

∼=(Γ) in X. However such a vector bundle
NX∼=(Γ)X does not exist in general. In fact we have the following counter example.

Example A1.68. We consider Cn × S1 with Zp action defined by

(A1.69) [k] · (z, [t]) = (exp(2π
√
−1k/p)z, [t]).

Here [k] ∈ Z mod p, [t] ∈ R/Z = S1.
We define an isomorphism

F : (Cn × S1)/Zp → (Cn × S1)/Zp

by
F ([z, [t]]) = [exp(2π

√
−1t/p)z, [t]].

We take two copies (Cn ×D2
±)/Zp of (Cn ×D2)/Zp where Zp action is similar to

(A1.69). We identify

(Cn × S1)/Zp = (Cn × @D2
+)/Zp

with
(Cn × S1)/Zp = (Cn × @D2

−)/Zp

by F and obtain an orbifold X.
In this example X

∼=(Zp) = S2. The normal bundle NX∼=(Zp)X does not exist
since F does not lift to a bundle isomorphism : Cn × S1 → Cn × S1.

A1.6. Singular locus as a stack and its normal bundle.

As Example A1.68 shows, the normal bundle of the singular locus X
∼=(Γ) does

not exist as a vector bundle with a Γ action, in general. On the other hand, in §35
we need to use normal bundle X

∼=(Γ) to define normally conical perturbations. For
this purpose we define a notion of normal bundle in the sense of stack. We restrict
our discussion of the stack to the case we use for this purpose. Related material
is discussed in various references such as [Bry93], [Gir70]. The discussion here is
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related to the phenomenon that occurs when we remove the effectivity of the Γp

action from (A1.2.3).

A1.6.1. Sheaves of category over a group.
Let G be a group. We consider the category G which has only one object ∗ and

morphism G(∗, ∗) = G. Let M be a topological space and U = {Ui | i ∈ I} be
an open covering of M . We assume that Ui1 ∩ · · · ∩ Uik (i1, · · · , ik ∈ I) are either
empty or contractible. Namely we take a good covering.

Definition A1.70. (1) A sheaf of category of G on (M,U) consists of pair

({hij}, {∞ijk})

of an isomorphism

hij : G → G for each Ui ∩ Uj 6= ∅

and an element
∞ijk ∈ G for each Ui ∩ Uj ∩ Uk 6= ∅

such that the following compatibility conditions (A1.71.1) and (A1.71.2) hold for
every Ui ∩ Uj ∩ Uk ∩ Ul 6= ∅ :

(A1.71.1) hij ◦ hjk = ∞ijk · hik · ∞−1
ijk.

(A1.71.2) ∞ijk · ∞ikl = hij(∞jkl) · ∞ijl.

See Figure A1.1. (We will explain how (A1.71) follows from the definition of a stack
in the categorical context in Remark A1.81 (5).)

Figure A1.1



32 FUKAYA, OH, OHTA, ONO

(2) ({hij}, {∞ijk}) is said to be isomorphic to ({h0ij}, {∞0ijk}) if there exist √i ∈
Aut(G) for each i, µij ∈ G for each Ui ∩Uj 6= ∅, h00ij ∈ Aut(G) for each Ui ∩Uj 6= ∅,
and ∞00ijk ∈ G for each Ui ∩ Uj ∩ Uk 6= ∅ such that

h00ij = √i ◦ hij ◦ √−1
j ,(A1.72.1)

∞00ijk = √i(∞ijk),(A1.72.2)

µij · h00ij · µ−1
ij = h0ij ,(A1.72.3)

µij · h00ij(µjk) · ∞00ijk = ∞0ijk · µik.(A1.72.4)

See Figure A1.2. We call a pair ({µij}, {√i}) an isomorphism : ({hij}, {∞ijk}) →
({h0ij}, {∞0ijk}). We will prove in Lemma A1.75 that we can compose isomorphism
and ‘isomorphic’ defines an equivalence relation.

Figure A1.2

(3) We denote by Sh((M,U);G) the set of all isomorphism classes of sheaf of
categories of G on (M,U).

To illustrate the meaning of (A1.71) we show the following :

Lemma A1.73. Let {Yi}i be a collection of sets on each of which G acts effec-
tively and there is a point with trivial isotropy group. Let hij : G → G be group
isomorphisms, ∞ijk elements of G, and φij : Yj → Yi be the maps that are injective
and hij-equivariant. Suppose

(A1.74) φij ◦ φjk = ∞ijk · φik.

Then ∞ijk satisfies (A1.71).
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Proof. Let g ∈ G, and y ∈ Yk with trivial isotropy group. Then φik(y) also has a
trivial isotropy group because φik are assumed to be injective and hik-equivariant.

Again by the hij-equivariance of the map φik, we obtain

∞ijk · hik(g) · φik(y) = ∞ijk · φik(g · y) = φij(φjk(g · y))
= hij(hjk(g)) · φij(φjk(y)) = hij(hjk(g)) · ∞ijk · φik(y).

Because φik(y) has a trivial isotropy group, (A1.71.1) follows.
Similarly for y ∈ Yl we calculate

hij(∞jkl) · ∞ijl · φil(y) = hij(∞jkl) · φij(φjl(y)) = φij(∞jkl · φjl(y))
= φij(φjk(φkl(y))) = ∞ijk · φik(φkl(y)) = ∞ijk · ∞ikl · φil(y).

This implies (A1.71.2). §

In the definition of Kuranishi structure the groups Γp are assumed to be a finite
group and the space Vp is a smooth manifold. One can show that effectivity of
the action of Γp automatically implies existence of a point with trivial isotropy
group. And we also assume that the map φpq is an hpq-equivariant embedding and
in particular injective. Therefore the same argument used in the proof of Lemma
A1.73, implies that ∞pqr in Definition A1.5 satisfies (A1.71.2).

Lemma A1.75. The relation ‘isomorphism’ in Definition A1.70 is an equivalence
relation.

Proof. We use notation of (A1.72) and put

(h00ij , ∞
00
ijk) = (1, √i)∗(hij , ∞ijk), (h0ij , ∞

0
ijk) = (µij , 1)∗(h00ij , ∞

00
ijk).

We also put (µij , 1)∗ ◦ (1, √i)∗ = (µij , √i)∗.
We remark that

(A1.76) (1, √i)∗ ◦ (1, √0i)∗ = (1, √i ◦ √0i)∗.

We next claim

(A1.77) (µij , 1)∗ ◦ (µ0ij , 1)∗ = (µij · µ0ij , 1)∗.

Let us prove (A1.77). We put

(µ0ij , 1)∗(h1
ij , ∞

1
ijk) = (h2

ij , ∞
2
ijk), (µij , 1)∗(h2

ij , ∞
2
ijk) = (h3

ij , ∞
3
ijk).

Then
h2

ij = µ0ij · h1
ij · (µ0ij)−1,

∞2
ijk = µ0ij · h1

ij(µ
0
jk) · ∞1

ijk · (µ0ik)−1.
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Therefore we have
h3

ij = µij · µ0ij · h1
ij · (µ0ij)−1 · µ−1

ij

and

∞3
ijk = µij · h2

ij(µjk) · ∞2
ijk · µ−1

ik

= µij · µ0ij · h1
ij(µjk) · (µ0ij)−1 · µ0ij · h1

ij(µ
0
jk) · ∞1

ijk · (µ0ik)−1 · µ−1
ik

= µij · µ0ij · h1
ij(µjk · µ0jk) · ∞1

ijk · (µik · µ0ik)−1.

(A1.77) is proved.
We next claim

(A1.78) (1, √i)∗ ◦ (µij , 1)∗ = (√i(µij), √i)∗.

Let us prove (A1.78). We put

(µij , 1)∗(h1
ij , ∞

1
ijk) = (h2

ij , ∞
2
ijk), (1, √i)∗(h2

ij , ∞
2
ijk) = (h3

ij , ∞
3
ijk).

Then
h2

ij = µij · h1
ij · µ−1

ij ,

∞2
ijk = µij · h1

ij(µjk) · ∞1
ijk · (µik)−1.

Therefore we have

h3
ij = √i ◦ (µij · h1

ij · µ−1
ij ) ◦ √−1

j = √i(µij) · (√i ◦ h1
ij ◦ √−1

j ) · √i(µij)−1

and
∞3

ijk = √i(µij) · √i(h1
ij(µjk)) · √i(∞1

ijk) · √i(µik)−1.

We next put

(1, √i)∗(h1
ij , ∞

1
ijk) = (h4

ij , ∞
4
ijk), (√i(µij), 1)∗(h4

ij , ∞
4
ijk) = (h5

ij , ∞
5
ijk).

Then
h4

ij = √i ◦ h1
ij ◦ √−1

j , ∞4
ijk = √i(∞1

ijk).

Therefore h5
ij = h3

ij and

∞5
ijk = √i(µij) · h4

ij(√j(µjk)) · ∞4
ijk · √i(µik)−1

= √i(µij) · √i(h1
ij(µjk)) · √i(∞1

ijk) · √i(µik)−1 = ∞3
ijk.

(A1.78) is proved.
(A1.76), (A1.77) and (A1.78) imply that we can compose isomorphisms. Hence

the relation ‘isomorphic’ is transitive.
On the other hand, (A1.76) and (A1.77) imply that each isomorphism has an

inverse. Hence the relation ‘isomorphic’ is reflexive. §
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Remark 1.79. We assume (hij , ∞ijk) satisfies (A1.71). We define (h0ij , ∞0ijk) by
(A1.72). We can check that (h0ij , ∞0ijk) satisfies (A1.71), in a similar way as the
above calculation. For example we consider the case √i = 1 and check (A1.71.2) as
follows. We have

∞0ijk · ∞0ikl

= µij · hij(µjk) · ∞ijk · hik(µkl) · ∞ikl · µ−1
il

= µij · hij(µjk) · ∞ijk · hik(µkl) · ∞−1
ijk · hij(∞jkl) · ∞ijl · µ−1

il .

On the other hand, we have

h0ij(∞
0
jkl) · ∞0ijl

= µij · hij(µjk · hjk(µkl) · ∞jkl · µ−1
jl ) · µ−1

ij · µij · hij(µjl) · ∞ijl · µ−1
il

= µij · hij(µjk) · ∞ijk · hik(µkl) · ∞−1
ijk · hij(∞jkl) · hij(µ−1

jl ) · µ−1
ij

· µij · hij(µjl) · ∞ijl · µ−1
il .

Hence follows (A1.71.2).

Definition A1.80. Let U 0 = {U 0
j | j ∈ J} be another covering of M and let

i(·) : j 7→ i(j) be a map J → I such that U 0
j ⊆ Ui(j). We define a map :

i(·)∗ : Sh((M,U);G) → Sh((M,U 0);G)

by
i(·)∗([{hi1i2}, {∞i1i2i3}]) = [{h0j1j2}, {∞

0
j1j2j3}]

where
h0j1j2 = hi(j1)i(j2), ∞0j1j2j3 = ∞i(j1)i(j2)i(j3).

We thus obtain an inductive system U 7→ Sh((M,U);G). We use inductive limit
with respect to this inductive system and define :

Sh(M,G) = lim
−→

Sh((M,U);G).

An element of Sh(M,G) is said to be a sheaf of category G on M .

Remark A1.81. (1) There is more general notion that is a stack. It is defined by
Grothendieck ([Grot62], [Grot71]). See also [Bry93], [Gir70]. We only consider the
case when the stalk is independent of the point and is the category G.

(2) In case when G is commutative, (A1.71.1) implies

hij ◦ hjk = hik.
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Therefore it defines a G local system G. Then (A1.71.2) becomes

∞ijk + ∞ikl = hij(∞jkl) + ∞ijl.

Namely {∞ijk} defines a Čech cocycle in Č 2(U ,G).
Next we assume that ({hij}, {∞ijk}) is isomorphic to ({h0ij}, {∞0ijk}). Then (A1.72.1)

and (A1.72.2) imply that the induced local system is isomorphic and {∞00ijk} is the
same Čech cocycle as {∞ijk} under this isomorphism. (A1.72.3) and (A1.72.4) imply
that

∞0ijk − ∞00ijk = µij + h00ij(µjk)− µik.

Namely {∞0ijk} is cohomologous to {∞00ijk}.
Thus

Sh(M,G) ∼=
[

G:G local systems

Ȟ 2(M ;G)

in the abelian case.
(3) Usually (but not always) the effectivity of the (finite) group Γp action on Vp

is assumed when one defines the notion of a chart (Vp,Γp, √p) of an orbifold. On
the other hand, there is no such assumptions for stacks.

Note (A1.71.1) is the same formula as the first formula of (A1.6.2) in the definition
of Kuranishi structure. In (A1.6.2) we assumed only the existence of ∞pqr. Namely
it is not a part of the structure. Also the formula corresponding to (A1.71.2) is not
in Definition A1.5. On the other hand, in Definition A1.70 we include ∞ijk as a part
of the structure.

Actually, in the situation of Definition A1.5 where the Γp action is assumed to
be effective, the element ∞pqr satisfying (A1.6.2) is unique if it exists. Moreover a
formula corresponding to (A1.71.2) can be proved. (Lemma A1.73.)

In our situation where the G action on M is trivial, ∞ijk is not determined from
the other data and so we include it as a part of the structure. Also (A1.71.2) is put
as a part of conditions.

When the notion of orbifold was discovered by Satake [Sat56], he assumed the
effectivity of the action of Γp. When Thurston renamed Satake’s V-manifold as orb-
ifold, he did not change its mathematical contents and still assumed the effectivity
of Γp. The authors here include the effectivity of Γp as a part of the definition of
orbifold, since it is confusing to change the definition, 50 years after its discovery,
and after it had been used in various branches of mathematics.

(4) Consider the situation of Definition A1.45. Then in a similar way as Lemma
A1.73, we can prove

(A1.82) ∞pqp0q0 · hp0q0(∞qrq0r0) · ∞p0q0r0 = ρp(∞pqr) · ∞prp0r0

where ϕ(p) = p0, ϕ(q) = q0, ϕ(r) = r0, q ∈ √p(s−1
p (0)/Γp), r ∈ √q(s−1

q (0)/Γq). Since
(A1.82) is automatic, we did not put it as a part of assumptions in Definition A1.45.
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In the situation where effectivity of the Γp action is not assumed, (A1.82) will not
be automatic.

(5) Using the language of category theory, we can rewrite the definition of
Sh(M,G), as follows. (Our discussion below is informal since we do not use it
in this book.)

We first define a category O(M). Its object is an open set of M . There is no
morphisms from U to V if U is not a subset of V . If U ⊂ V , there exists exactly
one morphism from U to V .

We next consider the 2-category G as follows. There is only one object in it. The
category of morphism from this object to itself is G.

Then an element of Sh(M,G) is regarded as a pseudo-functor from O(M) to G,
in the sense of [Grot71] Exposé VI 8.

Let us explain how a pseudo-functor O(M) → G is related to an element of
Sh(X,G). A pseudo-functor O(M) → G first assigns a functor FUV : G → G for
each U ⊂ V . Such a functor is nothing but a homomorphism φUV : G → G.

If U3 ⊂ U2 ⊂ U1, then the pseudo-functor associate a natural transformation

TU3U2U1 : FU3U1 → FU3U2 ◦ FU2U1

which is (in our situation) automatically an equivalence. By definition of the cat-
egory G, such a natural transformation is given by an element ∞U3U2U1 ∈ G such
that

∞U3U2U1 · φU3U1 = φU3U2 ◦ φU2U1 .

This formula corresponds to (A1.71.1).
For the pair (FUV , ∞U3U2U1) to be a pseudo-functor we need to assume a compat-

ibility condition between them, that is the commutativity of the following diagram
for each U4 ⊂ U3 ⊂ U2 ⊂ U1.

FU4U3 ◦ FU3U1

TU4U3U1←−−−−− FU4U1

TU4U2U1−−−−−→ FU4U2 ◦ FU2U1y(FU4U3 )∗(TU3U2U1 ) (FU2U1 )∗(TU4U3U2 )

y

FU4U3 ◦ FU3U2 ◦ FU2U1 FU4U3 ◦ FU3U2 ◦ FU2U1 .

(See [FGIKNV05] Definition 3.10 (iv)(b) or [Grot71] Exposé VI Proposition 7.4.)
The commutativity of this diagram is equivalent to

∞U4U3U2 · ∞U4U2U1 = φU4U3(∞U3U2U1) · ∞U4U3U1 .

This formula is the same as (A1.71.2). (A1.71.1) is a consequence of the fact that
TU3U2U1 is a natural transformation.

We remark that, in the definition of pseudo-functor in [FGIKNV05] Definition
3.10, there are other conditions (ii), (iv)(a). In our situation, it will become

hii(g) = ∞iii · g · ∞−1
iii , ∞iij = ∞iii, ∞ijj = hij(∞jjj).
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They follow from (A1.71). In fact the first formula follows from (A1.71.1) by putting
i = j = k. The second formula follows from (A1.71.2) by putting i = j = k. The
third formula follows from (A1.71.2) by putting j = k = l.

We can continue and rewrite (A1.72) using category theory. We do not try to
do it here. In fact the theory of stack which is well established is based on category
theory, and in this subsection we try to give a self-contained account of the part of
it which we need, without using category theory.

(6) We did not assume

hii = id, hij ◦ hji = id,

in Definition A1.70.
There seems to be a version which assumes the above identities together with

∞ijk = ∞−1
ikj , ∞ijk = hij(∞jki).

In the abelian case, these conditions will become the condition that hij···k is anti-
symmetric with respect to the change of indices. It is well known that we have the
same Čech cohomology, whether or not we assume the anti-symmetricity.

A1.6.2. The normal bundle of the singular locus X
∼=(Γ).

Now we apply the above discussion of stacks to the circumstance given in §35 in
relation to the study of normal bundles of the singular locus X

∼=(Γ).

Example-Definition A1.83. Let G be a finite group acting effectively and smoothly
on a smooth manifold eX. Consider the orbifold X = eX/G. Let Γ be an abstract
group. We put

X
∼=(Γ) = {x ∈ eX | Ix

∼= Γ}/G,

where
Ix = {g ∈ G | gx = x}.

It follows from (A1.84) below that X
∼=(Γ) is a smooth manifold.

We now give a construction of an element of Sh(X∼=(Γ), G). Decompose X
∼=(Γ)

according to the conjugacy classes of Ix and study each of them separately. For
each subgroup Γ0 ⊂ G with Γ0

∼= Γ, we consider

eX=(Γ0) = {x ∈ eX | Ix = Γ0}.

Denote the normalizer of Γ0 by

N(Γ0) = {g ∈ G | gΓ0g
−1 = Γ0}.

Then H(Γ0) = N(Γ0)/Γ0 acts freely on eX=(Γ0) and by definition we have

(A1.84) X
∼=(Γ) =

[

Γ0

eX=(Γ0)/H(Γ0),
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where the union is taken over all conjugacy classes of subgroups of G isomorphic to
Γ. We have an exact sequence

(A1.85) 1 −→ Γ0 −→ N(Γ0) −→ H(Γ0) −→ 1.

We choose a sufficiently fine good covering U = {Ui | i ∈ I} of X
∼=(Γ) and a lift

eUi ⊂ eX=(Γ0) of Ui so that the projection eX → X restricts to a homeomorphism
from eUi to Ui.

For each i, j with Ui ∩ Uj 6= ∅ there exists a unique hij ∈ H(Γ0) such that
eUi ∩ (hij

eUj) 6= ∅. We remark that hij · hjk = hik in H(Γ0), if Ui ∩ Uj ∩ Uk 6= ∅.
We choose lifts ehij ∈ N(Γ0) of hij .
We define hij : Γ0 → Γ0 by

hij(g) = ehij · g · eh
−1

ij .

We define ∞ijk ∈ Γ0 by
∞ijk · ehik = ehij · ehjk.

Then it is easy to check (A1.71).
We can generalize the construction above and include the case of orbifold which

is not necessarily a quotient of manifold globally. We do not discuss it here since
we do not use it in the main application (the proof of Proposition 35.52).

We remark that we can choose ∞ijk = 1 if the exact sequence (A1.85) splits. But
this is not always the case.

Example A1.86. Let us consider the orbifold X in Example A1.68. Then X
∼=(Γ) =

S2. The Zp local system is necessarily trivial on S2. So

Sh(S2; Zp) ∼= Ȟ 2(S2; Zp) ∼= Zp.

The element thereof defined in Example-Definition A1.83 is the generator of Zp and
hence is nonzero.

Lemma A1.87. The element of Sh(X∼=(Γ), G) represented by (hij , ∞ijk) is inde-
pendent of various choices involved in the construction.

Proof. We first fix U = {Ui | i ∈ I}. We change eUi to αi
eUi where αi ∈ N(Γ0). We

also change ehij to
eh
00
ij = αi · ehij · α−1

j .

Then hij ∈ Aut(G) is transformed to

h00ij = ad(αi) ◦ hij ◦ ad(αj)−1,
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where ad : N(Γ0) → Aut(Γ0) is defined by ad(g)(g0) = g · g0 · g−1. We put √i =
ad(αi) and µij = 1. Then (A1.72.1), (A1.72.3) are satisfied and hence defines an
isomorphism.

We also have
∞00ijk = αi · ∞ijk · α−1

i = √i(∞ijk).

Therefore the isomorphism class is independent of the choice of eUi.
We next fix eUi and change the lift ehij ∈ N(Γ0) of hij . We put

eh
0
ij = µij · ehij .

Then we have

∞0ijk = eh
0
ij · eh

0
jk · (eh

0
ik)−1 = µij · hij(µjk) · ∞ijk · µ−1

ik

as required. The invariance under the refinement of the covering is easy to prove. §

Definition A1.88. We call the structure defined by ({hij}, {∞ijk}) in Example
A1.83, the standard stack structure on X

∼=(Γ).

Going back to the general case of topological space M , we next define a vector
bundle on the stack defined by an element of Sh(M,G). Let ({hij}, {∞ijk}) ∈
Sh((M,U), G).

Definition A1.89. A vector bundle on ({hij}, {∞ijk}) ∈ Sh((M,U), G) is a pair
({Fi}, {gij}) such that Fi is a vector bundle on Ui with G action and gij is an
hij-equivariant bundle isomorphism

gij : Fj |Ui∩Uj
→ Fi|Ui∩Uj

such that :

(A1.90) gij ◦ gjk = ∞ijk · gik.

We assume that ({µij}, {√i}) is an isomorphism ({hij}, {∞ijk}) → ({h0ij}, {∞0ijk}).
An isomorphism from a vector bundle F = ({Fi}, {gij}) on ({hij}, {∞ijk}) to a vec-
tor bundle F 0 = ({F 0i}, {g0ij}) on ({h0ij}, {∞0ijk}) is a family {φi}i∈I of √i-equivariant
isomorphisms of vector bundles

φi : Fi → F 0i

such that

(A1.91) g0ij ◦ φj = µij · (φi ◦ gij).

We say {φi}i∈I is an isomorphism : F → F 0 over ({µij}, {√i}).
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Lemma A1.92. The relation ‘isomorphic’ in Definition A1.89 is an equivalence
relation.

Proof. Let (µij , √i)∗(h1
ij , ∞

1
ijk) = (h2

ij , ∞
2
ijk) and (µ0ij , √0i)∗(h2

ij , ∞
2
ijk) = (h3

ij , ∞
3
ijk).

Let Fc = ({F c
i }, {gc

ij}) be a vector bundle on ({hc
ij}, {∞c

ijk}) and {φi}i∈I : F1 → F2

and {φ0i}i∈I : F2 → F3 be isomorphisms over ({µij}, {√i}), ({µ0ij}, {√0i}), respec-
tively. Then we can check easily by calculation that {φ0i ◦ φi}i∈I is an isomorphism
: F1 → F3 over ({µ0ij}, {√0i}) ◦ ({µij}, {√i}) = ({µ0ij · √0i(µij)}, {√0i ◦ √i}). §

Lemma A1.93. Let F = ({Fi}, {gij}) be a vector bundle on ({hij}, {∞ijk}) and
let ({µij}, {√i}) be an isomorphism ({hij}, {∞ijk}) → ({h0ij}, {∞0ijk}). Let F 0i be a
G-equivariant vector bundle on Ui and let φi : Fi → F 0i be a √i-equivariant bundle
isomorphism. We define g0ij by (A1.91).

Then ({F 0i}, {g0ij}) is a vector bundle on ({h0ij}, {∞0ijk}).

Proof. It is easy to see that g0ij is h0ij equivariant. So it suffices to check (A1.90) for
g0ij and ∞0ijk.

We may divide the cases into (µij , √i) = (1, √i) and (µij , √i) = (µij , 1).
In case (µij , √i) = (1, √i) we have

g0ij ◦ g0jk ◦ φk = φi ◦ gij ◦ gjk = φi(∞ijk · gik)

= √i(∞ijk) · φi ◦ gik = ∞0ijk · g0ik ◦ φk

as required.
In case (µij , √i) = (µij , 1) we have

g0ij ◦ g0jk ◦ φk = g0ij ◦ (µjk · (φj ◦ gjk))

= h0ij(µjk) · µij · φi ◦ (gij ◦ gjk)

= µij · hij(µjk) · ∞ijk · µ−1
ik · (g0ik ◦ φk)

= ∞0ijk · (g0ik ◦ φk),

as required. The proof of the lemma is now complete. §

We next discuss how a vector bundle behaves under the refinement of the cover-
ing. Let

i(·)∗([{hi1i2}, {∞i1i2i3}]) = [{h0j1j2}, {∞
0
j1j2j3}].

See Definition A1.80. Then a vector bundle ({Fi}, {gi1i2}) on ({hi1i2}, {∞i1i2i3})
induces ({F 0j}, {g0j1j2}) on ({h0j1j2}, {∞

0
j1j2j3}) by

g0j1j2 = gi(j1)i(j2)|U 0
j1j2

.

Therefore we can define a notion of a vector bundle on a pair (M, [{hij}, {∞ijk}])
where [{hij}, {∞ijk}] ∈ Sh(M,G).
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Definition A1.94. We consider the situation of Example-Definition A1.83 and use
the notations there. We will define the normal bundle NX∼=(Γ)X over X

∼=(Γ) with
the standard stack structure.

We identify Ui ⊆ X
∼=(Γ) with eUi ⊂ eX=(Γ0) by the projection and put Fi =

NeUi

eX, the normal bundle of eUi in eX. Γ0 (⊂ G) action on eX induces one on Fi.
We next define gij . We have

(eh
−1

ij
eUi) ∩ eUj ⊂ eUj

∼= Uj .

We identify (eh
−1

ij )eUi ∩ eUj with Ui ∩ Uj . Then an open embedding

ehij · : Ui ∩ Uj → eUi
∼= Ui

is induced. It extends to a map eX → eX. We then have

gij := (ehij ·)∗ : Fj |Ui∩Uj = Neh−1
ij

eUi

eX → Fi = NeUi

eX.

Since
ehij · ehjk = ∞ijk · ehik,

we have (A1.90).
We put NX∼=(Γ)X = ({Fi}, {gij}) which we call the normal bundle of X

∼=(Γ).
We can generalize the construction above and include the case of orbifold which

is not necessarily a quotient of manifold globally. We do not discuss this here since
we do not use it in our main application (the proof of Proposition 35.52).

Lemma A1.95. ({Fi}, {gij}) in Definition A1.94 is independent of the choices
involved in the construction up to isomorphism.

Proof. We use the notation of the proof of Lemma A1.87.
We first change eUi to αi · eUi. Then we have

αi· : NeUi

eX → Nαi·eUi

eX.

It induces
φi = (αi·)∗ : Fi → F 0i .

Since √i = ad(αi) it follows that φi is √i equivariant.

eh
0
ij = αi · ehij · α−1

j

implies that
g0ij ◦ φj = φi ◦ gij .
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Since µij = 1 in this case, we obtain the required isomorphism.
We next fix eUi and change the lift ehij to

(A1.96) eh
0
ij = µij · ehij .

In this case we have Fi = F 0i and φi = identity. (A1.96) implies

g0ij = (eh
0
ij)∗ = µij · (ehij)∗ = µij · gij .

The invariance under the refinement of the covering is easy to prove. §

Example A1.97. In the situation of Example A1.68, the normal bundle does not
exist as a (usual) vector bundle on S2. But it exists over S2 with (nontrivial) stack
structure, which corresponds to the generator of Ȟ 2(S2; Zp).

Definition A1.98. We consider the situation of Example-Definition A1.83 and
let eE be a G equivariant vector bundle on eX. It induces an orbi-bundle E on
X = eX/G. We will define a vector bundle E|X∼=(Γ) on X

∼=(Γ). We use the notation
of Example-Definition A1.83 and of Definition A1.94.

We put
Ei = eE|eUi

and regard it as a vector bundle on Ui.
As in Definition A1.94, we have an open embedding

ehij · : Ui ∩ Uj → eUi
∼= Ui.

Since ehij ∈ G it induces a bundle map

gij : Ej |Ui∩Uj → Ei.

It follows that gij satisfies the required relation in the same way as Definition A1.94.
We define

E|X∼=(Γ) = ({Ei}, {gij})

and call it the restriction of E to X
∼=(Γ).

We can generalize the construction to the case of orbifold which may not be
globally a quotient.

In the same way as Lemma A1.95, we can prove that ({Ei}, {gij}) is independent
of the choices up to isomorphism.

Let F = ({Fi}, {gij}) be a vector bundle over ({hij}, {∞ijk}) ∈ Sh(X,G). As-
sume that the G action on the fibers of Fi is effective. We are going to define an
orbifold structure on F/G. We define an equivalence relation ∼ on

S
i Fi as follows.
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(Here Fi also denotes the total space of the vector bundle Fi.) Let x ∈ Fi and
y ∈ Fj . Then x ∼ y if and only if one of the following holds.

(1) i = j, x = ∞y for some ∞ ∈ G.
(2) π(x) ∈ Ui ∩Uj , y = ∞ · gji(x) for some ∞ ∈ G. Here π : Fi → Ui, π : Fj → Uj

are the projections.

It is easy to see that ∼ is an equivalence relation. We put

|F/G| =
[

i

Fi/ ∼

and define a quotient topology on it. π : Ei → Ui ⊂ X induces a map

π : |F/G| → X.

Let F be the fiber of the vector bundle Fi. F is a vector space on which G acts
effectively.

Lemma A1.99. |F/G| has a structure of orbifold. We denote it by F/G. If F is
isomorphic to F 0, then F/G is diffeomorphic to F 0/G as an orbifold.

π : F/G → X is a locally trivial fiber bundle whose fiber is F/G and the structure
group is the group of orbifold diffeomorphisms of F/G.

Proof. We fix an order on the set of indices I. Let p ∈ |F/G|. We put

I(p) = {i ∈ I | p = [x], x ∈ Fi}.
Let i = i(p) = inf I(p). We put

Vp =
\

j∈I(p)

π−1(Vji).

Here Vji is the image of Uji ⊂ eUi by eX → X. G acts on Vp. There is a map
√p : Vp/G → |F/G| which sends x mod G ∈ Vp/G to the equivalence class of x in
|F/G|. We take (Vp, G, √p) as the orbifold chart of p.

Let q ∈ √p(Vp/G). Let j = i(q). Since I(q) ⊇ I(p), it follows that j = i(q) ≤
i(p) = i.

By definition
gij(Vq) ⊆ Vp.

Hence (hpq, φpq) := (hij , gij) : (G, Vq) → (G, Vp) gives a coordinate change of the
orbifold. By definition we have

hpq ◦ hqr = ∞pqr · hpr · ∞−1
pqr, φpq ◦ φqr = ∞pqr · φpr

where
∞pqr = ∞i(p)i(q)i(r).

We thus defined an orbifold structure on |F/G|.
We omit the proof of the other part of the lemma and leave it to the interested

readers. §
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Lemma A1.100. (Tubular neighborhood theorem) Consider the situation of Example-
Definition A1.83. Then (NX∼=(Γ)X)/Γ is diffeomorphic to a neighborhood of X

∼=(Γ)
in X as an orbifold.

Proof. We use the notation of Definition A1.94. We recall that
NX∼=(Γ)X = ({Ei}, {gij})

where Ei = NeUi

eX.
Let χ : [0,1) → [0, ≤) be a diffeomorphism which is identity in a neighborhood

of 0.
We take a G invariant Riemannian metric on eX and use the exponential map to

identify Ei = NeUi

eX with a neighborhood eUi in eX by

expi : v 7→ exp
µ

χ(kvk)
kvk v

∂
.

We use also the notation of the proof of Lemma A1.99. Let p = [v] ∈ |(NX∼=(Γ)X)/Γ|
and i = i(p). Now expi defines a smooth map

fp : Vp → eX.

Here we recall

Vp =




v ∈ NeUi

eX

ØØØØØØ
π(v) ∈

\

j∈I(p)

(Vji)




 .

It is easy to check that fp defines a diffeomorphism from (NX∼=(Γ)X)/Γ to an open
neighborhood X

∼=(Γ) in X as an orbifold. §

We remark that various operations of vector bundle such as Whitney sum, tensor
product, Hom bundle, symmetric tensor product, etc. can be generalized to the case
of vector bundle on [{hij}, {∞ijk}] ∈ Sh(M ;G). For example, if F = ({Fi}, {gF

ij})
and E = ({Ei}, {gE

ij}) are vector bundles on ({hij}, {∞ijk}) then Hom(F , E) =
({Hom(Fi, Ei)}, {gij}) where

gij(uj) = gE
ij ◦ uj ◦ (gF

ij)
−1.

We use the next lemma in §35.

Lemma A1.101. Let E = ({Ei}, {gij}) be a vector bundle on ({hij}, {∞ijk}) ∈
Sh(M,G). We put

EG
i = {v ∈ Ei | ∀∞ ∈ G ∞v = v}.

Then they are glued by gij to define a vector bundle on the topological space M (in
the usual sense).

Proof. Let gG
ij : EG

i |Uij → EG
j be the restriction of gij . Then, since G action on EG

i

is trivial, it follows from (A1.90) that
gG

ij ◦ gG
jk = gG

ik.

The lemma follows. §
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Remark A1.102. In some situation we need to consider subspaces Yp ⊂ Vp of a
space X with Kuranishi structure (Vp, Ep,Γp, √p, sp) and put a Kuranishi structure
on the subspace. When the action of Γp is not effective, we need to add some Γp

vector space Fp to both Yp and obstruction bundle Ep of each Kuranishi neighbor-
hood, in order to define a Kuranishi structure on the subspace ∪pYp. We need some
care to carry this out. Namely we should glue those vector spaces by a family of
linear isomorphisms gpq : Upq → Hom(Fq, Fp) so that

gpq ◦ gqr = ∞pqr · gpr

where ∞pqr is the one appearing in (A1.6.2). For example, in the case of Kuranishi
structure with corners, we define Kuranishi structure on codimension k corner SkX
as follows. We take the normal bundle to SkX and add the normal bundle to both
SkVp and the obstruction bundle in order to make the Γp action effective.

A1.7. Some errors in the earlier versions and corrections thereof.

A1.7.i) In Definition A1.1, we consider only a trivial bundle Ep × Vp → Vp

as an obstruction bundle. It is not necessarily trivial as an equivariant bundle.
In [FuOn99II] we allowed more general bundle. The two definitions however are
equivalent, since locally any bundle is trivial and Kuranishi neighborhood of a point
can be chosen arbitrary small.

A1.7.ii) In the preprint version [FOOO00] of this book, Definition A1.3 were
loosely stated, when we rephrase Definition 5.3 in [FuOn99II] without using the word
“smooth embedding of orbifolds”. In Condition (A1.4.2), we should require that the
induced map Vpq/Γq → Vp/Γp is an injective map. We also add Condition (A1.4.6).
Note that Condition (A1.4.6) holds, if the hpq-equivariant smooth embedding φpq :
Vpq → Vp induces a smooth embedding of orbifolds in the sense of p. 941 in
[FuOn99II]. Thus Definition A1.3 above (with (A1.4.6) included) is equivalent to
Definition 5.3 of [FuOn99II].

A1.7.iii) In Definition A1.5 (1.6.2) we include ∞pqr in the formula. In (A2.1.11) of
[FOOO00], the term ∞pqr is missing. This is an error as Example A1.65 illustrates.
On the other hand, the corresponding definition, Definition 5.3 in [FuOn99II], is
correct as it is. See Remark A1.67 which is related to this point.

A1.7.iv) We point out that Definition A1.14 is slightly different from the corre-
sponding one in [FuOn99II]. Namely in [FuOn99II] the isomorphism (A1.15) is not
required to be induced by the differential of the Kuranishi map but only existence
of such an isomorphism for which the diagram (A1.16) commutes. In fact, our proof
of Theorem 6.4 in [FuOnII99] implicitly uses the condition that (A1.15) is induced
by dfibersp.
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Therefore this is an error and Definition A1.14 is the correct definition of the
tangent bundle. (See §A1.5.) Example A1.64 illustrates a space X with Kuranishi
structure that has not the tangent bundle in the sense of this book but does in the
sense of [FuOn99II]. We need to exclude X in Example A1.64 so that cobordism
invariance of virtual fundamental cycle to hold.

In all the applications of the Kuranishi structure with tangent bundle to the
moduli problems in [FuOn99II] and in this book, the isomorphism (A1.15) is induced
by the differential of the Kuranishi map. So this error does not cause any problem.

In the proof of the existence of compatible multisection (Theorem A1.23) we
extend multisection in a compatible way. Namely we require the compatibility
condition in Definition A1.21. The original Kuranishi map is compatible in the
sense there only if (A1.5) is induced by the Kuranishi map. When the original
Kuranishi map is not compatible then we can not perturb it so that it is compatible.
So (A1.5) should be induced by the Kuranishi map to prove Theorem A1.23. In
(6.4.4) of [FuOn99II] the same compatibility condition was required.

If we consider the Kuranishi structure constructed in §29, both the normal bundle
and the quotient of obstruction bundle are isomorphic to the difference of the two
choices of E appearing (29.16). Therefore, the isomorphism (A1.5) is obtained by
the differential of s.

A1.7.v) In [FOOO00 §A3] we used normal bundle to NX∼=(Γ)X in a similar way
as §35 of this book. At the time of writing [FOOO00], the authors overlooked the
fact that the normal bundle to NX∼=(Γ)X, in the sense of the usual vector bundle
divided by Γ, may not exist. We have given rather detailed discussion on the vector
bundle over stack in §A1.6 and rectify this error in §35 of this book .
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