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§0. Introduction

Many important works in the symplectic geometry and topology are regarded as
the symplectization or the quantization of the corresponding results in the ordinary
geometry and topology. One outstanding example is the celebrated Arnold con-
jecture which concerns the number of fixed points of a symplectic diffeomorphism
or that of intersection points of two Lagrangian submanifolds. The homological
version of the conjecture has been proved in various cases (see [F11-5], [02,3,6],
[On] and [PSS], and [O7] for a survey and references on the Arnold conjecture and
the Floer homology). The estimate (in its homological version) predicted by the
Arnold conjecture can be regarded as the symplectization or the quantization of the
Morse inequality, and conversely the latter can be considered as the semi-classical
limit and so a consequence of the former. From now on, we will use the term
“quantization” for the similar causes that appear below.

To illustrate this statement, we consider the cotangent bundle of a given com-
pact manifold and the graphs of exact one forms. The graph of an exact one form
becomes a Lagrangian submanifold of the cotangent bundle with respect to the
canonical symplectic structure. Then Floer’s result on the Lagrangian intersec-
tions [F11,3] will imply the Morse inequality. The Lagrangian intersection theory
is indeed the intersection theoretic version of the Morse theory, while the Lefsechtz
intersection theory is that of the degree theory of generic vector fields.

The principle that the symplectic topology and geometry of the cotangent bundle
(or more generally that of symplectic manifolds) is the quantization of the ordinary
topology and geometry of the base, is a general principle which can be applied
to many other situations. The equivalence of the two often holds, when there oc-
curs the absence of the quantum contribution (or the non-existence of the bubbling
phenomena). In this paper, we will provide another example of this principle in
which we prove that the rational homotopy type of a compact manifold M can be
described by the moduli space of pseudo holomorphic disks with appropriate La-
grangian boundary conditions in its cotangent bundle T* M. The precise statement
of our result is in Section 1.

Our result paves the way to applying the A®-structure introduced by the first
author [Fu2] to the study of the estimate, in terms of the rational homotopy in-
variant of the base manifold, of the number of intersections of the zero section in
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the cotangent bundle and its Hamiltonian deformation. This enables us to go one
step further, beyond the existing homological estimate in the literature, towards
the proof of the original Arnold conjecture which states that the number of the
intersections will be greater than or equal to the Morse number of M. Viterbo
[V] and Eliashberg-Gromov [EG] have also studied this kind of estimate using the
generating functions of Lagrangian submanifolds.

Furthermore the analytical details similar to ours in this paper will be required
in the various versions of the Floer theory in the symplectic geometry and our
proof will also serve there as a cornerstone with obvious but maybe technically
tedious modifications. We refer to [PSS] or [RT2] for the announcement of similar
analytical results in the context of Hamiltonian diffeomorphisms, and to [O8] for
further applications of the Floer theory to the symplectic topology based on such
analytic results as one in this paper.

Now we review some of the previous results related to the result in this paper.
Floer [F11-4] defined and studied Floer homology of the general pair (Lg, L) of
Lagrangian submanifolds on a given symplectic manifold (P,w), essentially under
the assumption ma(P) = {e} and m1(L;) = {e}. Under this assumption, Floer
proved that Floer homology is well defined and invariant under the Hamiltonian
deformation of L’s. He also proved, under the assumption mo(P, Lo) = {e}, that if
L, is a Hamiltonian deformation of Lg, then a (slightly modified) Floer homology
of the intersection of the two Lagrangian submanifolds is the ordinary homology of
the Lagrangian submanifold Lg. Floer’s proof (without change) can be applied to
the case of the cotangent bundle P = T*M and to the graphs L of exact one-forms,
where the assumption mo(P, L) = {e} is automatically satisfied. Subsequently the
second author of the present paper relaxed Floer’s assumption and developed the
Floer theory for the class of monotone Lagrangian submanifolds, which includes
the Floer’s as a special case (See [02,3,6]). One difference of the general monotone
case from the Floer’s is the existence of non-trivial quantum contribution which
changes the Floer homology from the ordinary homology. We refer to [O6] for some
application of the study of the quantum contribution to the symplectic topology of
Lagrangian embeddings.

In the mean time, inspired by a talk by Donaldson [D], the first author further
studied Lagrangian intersections and pseudo holomorphic curves where there are
involved 3 Lagrangian submanifolds or more (this problem is also related to the
study of the (gauge theory) Floer homology of 3-manifolds with boundary as was
discussed in [Ful,2,4]), and discovered an A> structure on the Floer homology.
A structure was first discovered by Stasheff in the study of homotopy theoretic
structures in the algebraic topology ([St1]).

As is discussed in [Fu2,3|, the construction of the A structure on the Floer
homology is parallel to that of quantum ring discussed in [R], [RT1] and [KM]:
Roughly speaking, the A structure on the Floer homology is the 0-loop correlation
function of the (topological) open string while the quantum ring (and the quantum
higher Massey product defined in [Fu3]) is the O-loop correlation function of the
(topological) closed string. Similar A% structures are discovered independently by
various physicists in the context of the string theory and also by M. Kontsevitch
[Kol,2]. The operad structure discussed by various mathematicians (see [Gel, [St2],
[HL]) is that corresponding to our A structure in the closed string.

The first author next applied the same construction of this A®® structure in
the context of the Morse theory. The basic idea is to use several Morse functions
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simultaneously and to study the corresponding ordinary differential equations given
by the gradient vector fields on arbitrary trees, which will produce an A% structure
on the ordinary homology group (more precisely on the Morse homology). We call
these constructions the Morse homotopy theory. The idea using several Morse
functions simultaneously to deduce more information of the topology of manifolds,
was independently discovered also by M. Betz and R. Cohen [BC]. It turns out
that this A* structure thus constructed on the (co)homology group (in the case
of rational coefficient) is the Morse homotopy analogue of the De-Rham homotopy
theory of D.Sullivan [Su]. Therefore by the result of D. Sullivan [Su] and D.Quillen
[Q], it follows that A structure determines the rational homotopy type of the
manifold.

The main goal of this paper is to show that the Morse homotopy theory on a
manifold M which uses trees as the graphs is equivalent to the open string theory
of 0-loop on its cotangent bundle. In the mathematical language, the topological
open string theory of 0-loop means the study of pseudo holomorphic disks with
Lagrangian boundary condition. Therefore our main result (Theorem 1.7) implies
that the rational homotopy type of a manifold can be described also by the pseudo
holomorphic disks in its cotangent bundle.

We would like to mention here some more results which are relevant to the
present paper. In [W2], Witten discussed a relation of the 0-loop open string theory
to the noncommutative geometry of A. Connes [Co] and hinted for example, that
coefficients of the g-th composition map in the A% structure on Floer homology
has a cyclic symmetry which can be related to the theory of cyclic cohomology in
the noncommutative geometry. Compare this also with Kontsevitch’s paper [Kol].
Subsequently, Witten expanded this point of view to include the higher loop case
in [W4], namely the case of Riemann surfaces of higher genus, and discovered that
the Chern-Simons perturbation theory developed in [AS], [Ba], [GMM] and [Kol]
can be described by the higher genus correlation function of open strings on the
cotangent bundle. Our point of view that the open string theory is the quantization
of the Morse theory can be also applied to the case of general Riemann surfaces:
The higher loop correlation function in the topological open string theory on the
cotangent bundle is the quantization of the Morse homotopy of general graphs of
higher loop on the base manifold. We refer to [Fu6], especially Section 8, in regard
to this point of view. A more systematic study of open strings of higher loop is the
subject of future research.

The organization of this paper is as follows. In Section 1, we give the definitions
of the two moduli spaces, one that of graph flows in the Morse theory and the other
that of pseudo-holomorphic discs in the symplectic geometry, and state our main
result which asserts their equivalence. In Section 2, we give a brief summary of
the A% structure and explain what our main result means to the A structure.
Sections 3 to 17 of the paper are devoted to the proof of the main theorem. Those
sections are divided into two parts.

Part I is devoted to the case in which we concern three Lagrangians and three
Morse functions. In this case, our main theorem asserts that studying the zero-
dimensional part of the moduli-space of pseudo holomorphic disks with the corre-
sponding Lagrangian boundary condition gives rise to the cup product of the base
manifold. Part I is mainly of the analytic nature. The similar analytic argument
will be required in Part II where the general case is studied. In Part II, we will
not repeat those analytic details we provide in Part I, but focus only on the new
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phenomena we need to handle with. The contents of each sections of Part I and
IT are in order. In Section 3, we provide the appropriate analytical set up of the
Sobolev space we use, and re-state the main theorem in the case of the three La-
grangians. In Section 4, to each given element of the moduli space of the graph
flows, we explicitly construct a map from a disk to the cotangent bundle which is
approximately (pseudo)-holomorphic. Section 5 is devoted to the error estimate of
these approximate solutions. In Section 6, we prove that the linearized operators of
the approximate solutions are surjective, when the moduli space of the graph flow
in the Morse theory satisfy appropriate transversality condition. The (Fredholm)
inverse of this linearized equation is studied in Section 7 where we establish various
estimates we need later. Using the estimates in Section 8, we find an exact solution
in a neighborhood of the approximate solution defined in Section 3. In Section 9,
we prove that every pseudo holomorphic disk in our moduli space is obtained in
this way (in the semi-classical limit). This completes the proof of the main theorem
in the case of three Lagrangians.

One main new phenomenon we must take care of in the general case is that the
domains of the equations have moduli themselves. In the case of pseudo holomor-
phic disks, the space of conformal structures on the disc with £ marked points on its
boundary has moduli when the number of marked points are bigger than 3, while
the conformal structure is unique if the number of point is 3 or less. Similarly in
the case of the Morse theory, we need to consider the moduli space of metrics on
the corresponding trees. Therefore to compare the moduli space of pseudo holo-
morphic disks with that of graph flows, we also need to incorporate these moduli
of the conformal structures on the disk with k£ marked points on its boundary and
of the metric structures of the relevant graphs.

In Section 10, we study the stratification of the moduli space of metric structures
of the graph. This stratification also induces the corresponding stratification on the
moduli space of the graph flow. In Section 11, we construct approximate solutions of
the pseudo holomorphic curve equation in a way similar to Section 4, where we need
to work on each of the strata separately. Because of the moduli of the domains, the
construction of approximate solutions is more delicate than in Section 3. In Section
12 and 13, we construct exact solutions of pseudo holomorphic curve equation out
of these approximate solutions on each stratum. The main point we need to discuss
at this stage is to prove that the linearized operators at the approximate solutions
are surjective. Again this will follow from an appropriate transversality condition
of the moduli space of the graph flows. This transversality is carefully discussed
in Section 12 and exact solutions of the pseudo holomorphic curve equation are
constructed in Section 13.

By now, we have found diffeomorphisms between the two moduli spaces in each
stratum. Section 14, 15, 16 and 17 are devoted to the proof that these diffeomor-
phisms can be glued to construct a global diffeomorphism between the two moduli
spaces of pseudo holomorphic disks and of graph flows. We do this in three steps.
First, we provide an identification of the moduli space of conformal structures on
the disc with k& marked points on its boundary and that of metric structures on
the trees (with k exterior edges). Stasheff proved in [St1] that the latter is home-
omorphic to the Euclidean space. We re-prove his theorem and also show that the
natural cell decompositions in the two moduli spaces are dual to each other under
the above identification. This argument involves the theory of quadratic differen-
tials and the triangulation of the moduli space of marked Riemann surface (See
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[Mu], [Hal, [P], [Str] for some explanations on these subjects. Our case is the real
version of those in the literature). This result, in particular, implies that the mod-
uli space of metric structures on the graphs is a manifold. Using this, we define
a smooth structure on the moduli space of graph flows in Section 15. Finally in
Section 16 and 17, we complete the proof of the main theorem.

Both authors would like to thank Newton Institute for its hospitality, where
they both stayed and where the present work was initiated. They would also like
to thank K. Ono for some helpful discussions.

§1. Statement of the main results

In this section, we define two moduli spaces of our concern, one in the Morse
theory and the other in the symplectic geometry.

To describe the Morse theory side, we first introduce the moduli space of metric
Ribbon trees.

Definition 1.1. A ribbon treeis a pair (T),i) such that T'is a treeand i : T — D? C C
is an embedding which satisfy the following :

(1.1.1) No vertex of T" has 2-edges.
(1.1.2) If v € T is a vertex with one edge, then i(v) € D?.
(1.1.3) i(T) N dD? consists of vertices with one edge.

Figure 1.1

We identify two pairs (7,4) and (7”,¢'), if T and T’ are isomorphic and ¢ and ¢’
are isotopic. Let Gy be the set of all triples (T,4,v1) where (T,4) is as above,
vy € TNOD? and T N OD? consists of k points.

We remark that choosing v1 € T N dD? is equivalent to choosing an order of
T N 9D? which is compatible with the cyclic order of 0D? = S*.

Definition 1.2. We call a vertex an interior vertex if it has more than 2 edges
attached to it and call it an exterior vertexr otherwise. We call an edge an interior
edge if both of its vertices are interior and call it exterior otherwise. Let CL (T
be the set of all exterior edges and C} ,(T) be the set of all interior edges. C?_,(T)

wnt ext
and C9 ,(T) stand for the set of exterior and interior vertices respectively.

For each t = (T,i,v1) € Gy, let Gr(t) be the set of all maps £ : C} ,(T) — R™.
We put Gri, = e, Gr(t) and define a topology on it as follows:

Let ¢; € Gr(t). We assume that lim; ., ¢;(e) converges to ¢ (e) for all e €
CL .(T). Let t = (T',i',v1) € G}, be the ribbon tree obtained by collapsing all the
edges e in T such that o, (e) = 0. We define /o, : C} (T") — R* by the restriction
of /. We then say that the limit of ¢; € Gr(t) is {,. From the definition, it is easy
to see that Gy, = Uy, G7(t) provides a cell decomposition of Gry. Stasheff [St1]
proved that Gr; is homeomorphic to RF~3. We give an alternative proof of this
statement later in Section 14, where we also explicitly provide a smooth structure
on Gry.
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We next introduce the moduli space T, of disks with k£ marked points on the
boundary as follows: We define

’ Ty .
{<Z17"'7zk>e(aD2)k Z#Z 117&] }

21,--- , 21 respects the cyclic order of §D?

Lok = N
We use the counter clockwise cyclic ordering for S* = dD?2. Here (zy1,--- ,21) ~
(24, , z,) if and only if there exists a biholomorphic map ¢ : D? — D? such that
o(2;) = z;.

Lemma 1.3. T is homeomorphic to RF=3,

Proof. Tt is well known that there exists a unique bi-holomorphic map ¢ : D? — D?
such that ¢(z1) = 1, p(22) =v—1, ¢(z3) = —1. Hence we have

Tok = (24, - ,2) € (ODH)F3 | Im 2; <0,
Re z; > Re zj41

Then the map : Tpr — Top—1 (24, ,2x) — (24, ,2x—1) is a fiber bundle and
its fiber is homeomorphic to R. Lemma 1.3 then immediately follows. [

Our main result of this paper identifies two moduli spaces, one is related to
Morse theory, and the other is related to symplectic geometry more specifically to
the Lagrangian intersection theory. We next define those moduli spaces.

Let f1, -, fr be C*°-functions on M, and g be a Riemannian metric on M. We
assume that f;y; — f; is a Morse function for each i. (Here we put fr+1 = f1.) An
element of My (M : f.p) is a pair ((T,i,v1,€),I) of elements of (T,i,vq,¢) € Gry,
and a map I : T' — M satisfying the Conditions (1.2.1), (1.2.2), (1.2.3) below.

(1.2.1) I is continuous, I(v;) = p;.

Before stating two other conditions, let us fix some notations. The set D? —i(T)

has k connected components. We denote them by D; where the closure D; contains
v; and v;11. We define a metric on 7" such that the exterior edge is isometric to
(—00,0] and the interior edge e is isometric to [0, ¢].
For each e € C},,(T) we fix its orientation with respect to which the 2 vertices
i(e) and o(e) are determined so that e goes from i(e) to o(e). Note that for each
given edge e there are two of the domains D; such that its closure contains e. We
define the integers lef(e) and 7ig(e) so that the closure of Dj.f(.) contains e and
Dicgey is on the left side of e with respect to the orientation of e and R2. The
definition of rig(e) is similar (Figure 1.2). There are k exterior vertices. Let e;’s
be the exterior edges containing v;. Then we may set lef(e;) =i+ 1, rig(e;) = i.

Figure 1.2

Now two other conditions for ((T}i,v1,£),1) to be an element of My (M : f,7)
are given as follows:
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(1.2.2) Let e; € C?

X

, and identify e; ~ (—o00,0]. Then

dlle,
i = —grad(fit1 — fi)-

(1.2.3) Let e € C},, and identify e ~ [0, £(e)]. Then

dlle,

dt - _gra‘d(flef(e) - frig(e))'

We have a natural projection
T Mg(M : f.p) — Gry.

Theorem 1.4. For generic fi1,---, fx, the space Mg(M : ﬁﬁ) is a C'*°-manifold

of dimension
k

S” lps) — (k= Ln + (k - 3)
i=1
such that ™ becomes a smooth map where n = dim M.

Here u(p;) = p1(4,,,—f,)(pi) is the Morse index of the critical point p; of fi 11 — f;
fori=1,---n( mod n). This theorem was stated without proof in [Fu2, 3, 5]. We
will prove it in §15.

We next define another moduli space M ;(T*M : A, P*) in the symplectic geom-
etry side. We let A§ be the graph of edf; C T*M. This is a Lagrangian submanifold.
For each critical point p of f; — f;, we can associate a point z¢ in the intersection
A§ N AS. Namely for a critical point p; of fi11 — fi, we put z§ = (p;, edf;(p;)) which
is a point in the intersection A M Af, ;.

We now take an almost complex structure J that is compatible to the standard
symplectic form w on T* M and define

Definition 1.5. The moduli space M ;(T*M : A€, 7€) consists of the pairs ([z1,- - , 2], w)
of elements ([21, -+ , 2] € Tox and a map w : D* — T*X satisfying the following
conditions (1.3.1), (1.3.2) and (1.3.3) (We remark that dD? — {zy,-- , 2} consists

of k connected components.): Let 9;D? be the component whose closure contains

z; and z;41.

(1.3.1) w(z;) = ps.
(1.3.2) w(9;(D?)) C AS.
(1.3.3) JoTw =Two J.

Again there is a natural map
M (T*M : K¢, 7€) — Top.

Theorem 1.6. For generic f;, the space M ;(T*M Ke,fe) is a C* manifold of

dimension
k

> upi) — (k—1)n+ (k—3)

i=1
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where wu(p;) are the same integers as in Theorem 1.4.

The proof of this theorem in general involves a transversality argument under the
perturbation of boundary conditions rather than under the perturbation of almost
complex structures, and some index calculation. See [O4, 5] for this transversality
argument for & = 0 case and [O8] for an index calculation relevant to the dimension
formula in this theorem. We will not give the complete proof of Theorem 1.6 here,
because in the case of our main theorem in which e will be assumed to be sufficiently
small, we can prove it in a different way (during the proof of main theorem.)

We now restrict ourselves to the canonical almost complex structure J = J, on
T*M that is naturally induced from the Levi-Civita connection of the metric g on
M. From now on, we will always assume, unless otherwise specified, that J is this
canonical almost complex structure. We first note that if a Riemannian metric
g is given to M, the associated Levi-Civita connection induces a natural almost
complex structure on T M, which we denote by J, and which we call the canonical
almost complex structure (in terms of the metric g on M). We are going to fix
the Riemannian metric ¢ on M once and for all. This canonical almost complex
structure has the following properties:

(1.4.1) J, is compatible to the canonical symplectic structure w on T M.
(1.4.2) For every (¢q,p) € T*M, J, maps the vertical tangent vectors to horizontal
vectors with respect to the Levi-Civita connection of g.
(1.4.3) On the zero section oy C T*M, J, assigns to each v € T M C Tiq0)(T* M)
the cotangent vector Jy(v) = g(v,) € TyM C T40)(T*M). Here we use the
canonical splitting

Tiq0)(T*"M) =T,M ©T; M.

Now we are ready to state our main theorem.

Theorem 1.7. Let J = J,; be the canonical almost complex structure on T™M
associated to the metric g on M. For each generic f: (fi) and for sufficiently
small €, we have an oriented diffeomorphism Mg(M : f,p) >~ M j(T*M : A, ).

§2. A*-structures

Here we briefly discuss the definition of A°°-category and show that our main
theorem provides an isomorphism between two A°-categories, one in the Morse
theory and the other in the Lagrangian intersection theory. We refer to [Fu2, 3, 5]
for more details on the A*°-category.

Definition 2.1. An A*°-category € consists a set OB the set of objects and a cochain
complex C*(a,b) for each a,b € OB (that is the set of morphisms) and a map

" : C*(co, 1) ® -+ ® C* (g1, cx) — C*(co, k) (2.1)

of degree —(k — 2) such that
(A — (1) gt d) (0@ @) = S 010 ¢ (@1 D) Oe)
(2]

In the case in which there is only one object, the A°°-category is called an A°°-
algebra (This notion was introduced by Stasheff [St1].)
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Our moduli spaces defined in Section 1 can be used to define A*-categories.
More precisely, we will define topological A°°-categories as follows.

Definition 2.2. A topological A*°-category consists of a topological space D5 and a
chain complex C/(a,b) for each pair a,b in a Baire subset of OB2. We assume that
they satisfy the properties in Definition 2.1 if (¢q,--- ,¢x) is contained in a Baire
subset of OB*. We also assume that ¢* is locally constant with respect to ¢; where
it is defined.

We first consider the case of the Morse theory and define an A* category
IMS(M) for each Riemannian manifold M. Our object in this case is the set
of all smooth functions C'°°(M). For almost all pair f,g € C*°(M), the difference
f —gis a Morse function and its gradient flow is a Morse-Smale flow. Hence we can
define its Morse-Witten complex C,(M : f — g). Recall that the group C(M : h)
is defined by

Cr(M : h) = the free abelian group genererated by Crity(h)

where Crity(h) is the set of critical points of the Morse index k (See [Mi], [F13],
[W1] or [Sc| for more details). Let us then define the dual complex

C*(f,9) = Hom (Cy(M : f — g),Z).

Note that this dual complex can be canonically identified with Caimar—x(M : —(f —
9)) = Cdaimm—k(M, g — f) and so we will take

C*(f,9) = Caimmr—r(M : g — f)

as the definition in this paper.

Now our k-th composition map ¢* is defined as follows: For each p; € Crit(M, fiy1—
fi) fori =1,--- ,k+ 1( mod n = dim M), we count the number of the zero di-
mensional component which can be shown to be compact (and so finite) later. We
denote this number by §M (M : f, p). In terms of the definition

C*(fis fig1) = Crnes(M = fi1 — [i),

p; has degree n—pus,, ,—fy(pi) fori =1,--- kand pp1 € Co(f1, fr) = Cu(fr1, fr)
has degree fi(s, . ,—f,)(Pr+1). Therefore from the dimension formula in Theorem 1.4

which can be re-written for (fi, -, fr+1) as
k
dimM (M : f,5) = p(prs1) — Y _(n— + (k- 2),
j=1

we derive that dim M (M : f,) = 0 when
deg (pr+1) Zdeg (p5) —2). (2.2)

Now we define our k-th composition map ¢* by

(] ® - © i) = S My (M : FB)[prs] (2.3)
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where the sum is taken over all (py,-- -, pry1) satisfying (2.2). Using Theorem 1.4
and the description of compactification of M,(M : f,ﬁ), one can prove by the
standard compactness and cobordism argument that they satisfy the axiom of the
A category in Definition 2.1 (See [Fu2] for some details.)

We next discuss the A> category in the side of the Lagrangian intersection the-
ory. The construction is based on the Floer homology of Lagrangian intersections.
There is some difficulty in defining the Floer homology for the general Lagrangian
submanifolds in general symplectic manifolds as pointed out by the second author
[O2] (even if we assume that the symplectic manifold is semi positive), which re-
quires various restrictions on the Lagrangian submanifolds. To avoid such trouble
in this paper, we consider only the case in which the Lagrangian is the graphs of
exact one forms in the cotangent bundle, which is relevant to our main theorem.
As we mentioned in the introduction, the construction of the Floer homology is
well-defined in this case. Now the definition of the A> category & (T*M), is as
follows:

Its objects are graphs A; of exact one forms df. For two objects Ay, Ay, we
define the morphisms

C* (A, Ag) = CF*(Ag, Ag)

where CF* (A, Ay) is the Floer’s cochain complex with an appropriate grading.

Recall that as an abelian group CF*(A¢, A,) can be identified with C'F,,_(Ag, Af)
(by a chain isomorphism) that is generated by the intersections of the two La-
grangians Ay, and Ay,. Now we are ready to define the (higher) composition ¢*.
Let z; € A;NA;41) regarded as an element in C*(A;, A;j+1). We define similarly as
in the case of the Morse theory

F(r] @ @) =D 4My(M 2 fip)[wrga). (2.4)

Again the sum is taken over those x; = (pj, df;(p;))’s where p;’s satisfy (2.2), which
will imply that M ;(M : f_‘: Z) is 0-dimensional. Furthermore by the same kind of
degree counting as in the case of Morse theory, it follows that ¢* has degree —(k —2)
if we provide the grading on C*(Af, A4) transfered from the Morse grading above.
To establish that the map ¢* is really well-defined and satisfies the axioms in
Definition 2.2 with Z-coefficients in general, we need to prove a more general version
of the index formula than in Theorem 1.6, which will replace the Morse index p(p;)
by the Maslov-type index of the Lagrangian intersections, and to study coherent
orientations and compactification of the moduli space. This itself should constitute
a nontrivial amount of work and so we will just use our main theorem to transfer
here the corresponding results in the Morse theory (which is much easier to prove)
for the case in which f;’s are sufficiently small. We will refer elsewhere for the
complete proof of the fact that ¢*’s satisfy all the axioms of the A category.

At least, we can state here the following result which is an immediate translation
of our main theorem.

Theorem 2.3. MS(M) is isomorphic to a sub-category of SY(T*M)o.

Remark 2.4. Although we call GY(T* M )y and MS(M) A> categories, they are in
fact very close to A algebras. This is because there exist canonical isomorphisms
between the objects in the above A*-categories.
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PART I: CUP PRODUCT

§3. Preliminaries

In this Part I, we will consider M, (M : f.7) and M;(T*M : K, ) for the case
k = 3. We first recall the definitions of My(M : f.P) and M (T*M : K, %) for
k = 3, where

— —

f= (f1,f2,f3)717: (p17P2ap),A = (A17A27A3) and 7 = ($1,$2a$3)-

For a given tree T' with 3 edges,

Figure 3.1

we identify (or give coordinates of) each edge with (—o0,0]. For each given metric

g on M, we consider the map
I:T—M

such that the restriction x; = I|., to each edge e satisfies the equation

D = —grady(fiy1 — fi) (3.1)
lim x;(7) = p; ’
where e; is the edge between i*" and (i + 1)®® domains with i counted mod 3. By
definition, My (M : f,p) is the set of all such maps I as above. Geometrically, one
can also identify this set with

3
ﬂ Wo. (fir1 — fi)
i=1
where W, (h) is the unstable manifold of the gradient flow of the function h at the
critical point p € M.

Next, we describe Mj(T*M : A,#). We denote by D? the closed unit disc
and let {21, 22,23} C dD? be three distinct fixed points in 9D? in the cyclic order
with respect to the orientation of dD? induced from the complex orientation of
D? c C. Tt is convenient and essential for the later analysis to conformally identify
D?\{z1, 23, 23} with a domain, denoted by ©, with 3 cylindrical ends:

Figure 3.2

We denote the three boundary components of © by ¢;,¢; and /3 denoted as in
Figure 3.2. We will also denote by oco; the point at infinity in © that corresponds
to the point z; in D? under the given conformal identification.
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Now for a given almost complex structure J that is compatible with the canonical
symplectic structure w on X = T*M, we define the set

My =M;(X:A)

:{w:@—>X|5JU}:0,’UJ(€i)CAi and /

wrw < oo}
©

and for given ¥ = (1, x2, x3) with z; € A; N Ajyq,
M(2) = My(X : A, Z) = {w e Ms(X : A) | w(oo;) = a3, i = 1,2,3}.
We will be particularly interested in the Lagrangians
A§ := Graph(edf;), 1=1,2,3

for a small positive parameter ¢ > 0. We also fix the canonical almost complex
structure J = J, associated to the metric g on M.
The main goal of Part I is to prove the following theorem.

Theorem 3.1. Let g be a fized Riemannian metric on g and J = J, be the associ-
ated canonical almost complex structure on T*M defined as in (1.4). Suppose that
fi+1— fi are Morse functions and that the unstable manifolds W, (fix1— fi) of the

gradient flow of f;’s for i =1,2,3( mod 3) intersect transversely, i.e., we have

3
<W1;(fi+1 —fi)) MA in MxMxM
=1

where A C M x M x M 1is the diagonal A ={(q,q,q) | q € M}. Then there exists
some €y > 0 such that for any 0 < € < €y and for any generic choice of J, we have
a diffeomorphism

O My (M : f,p) = Ms(X : A5, 7) := M§

where
AS = (AT, A5, A5) 7€ = (27,25, 75).

Here we note that if € is sufficiently small, there is a natural one-to-one corre-
spondence between the sets Crit(f;y1 — f;) and A, NA§. The z§’s above are those
corresponding to p;’s respectively. In fact, we have

x; = (pi, edfi(pi)).

We will prove this theorem by a version of the gluing construction to produce
elements in M j(X : A€, ) whose images are close to those in M (M : f.P). There
are two subtleties in this proof: The first one is to deal with a degeneration into one
dimensional objects, which requires delicate estimates involving weighted norms in
the proof. The second is more serious, in that it is not obvious at all at first sight
what we should glue near the intersection point of the gradient lines to produce
approximate solutions. In most of other gluing problems, it has been quite clear to
guess what the appropriate approximate solutions should be.
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Now we explain the analytic set-up we are going to use in the gluing construction
mentioned above. We denote by ©; the i*" cylindrical region of © and give the
coordinates (7,t) on ©; = (—o0,0) x [0,1]. We also denote

0,0)={2€0;| —o<T< =0}, i=1,2,3
3
@0(5):@\Um

and
@,(51,52) = {Z c @z | -0y < T < —51}

for §’s positive. We choose a metric on X = T* M, which is compatible to the sym-
plectic structure w so that the Lagrangians A; are totally geodesic near intersection
points. Note that when we consider a family of Lagrangians A§, we have to vary the
metric to make the latter condition satisfied. If w(oo;) = x;, i = 1,2, 3 uniformly,
then we can express

w(T,t) = exp,, £(7,1)

for some £ that satisfies Lagrangian boundary conditions
£(1,0) € Ty Ay, &(7,1) € Ty Njia. (3:2)

This is because we require that A;’s are totally geodesic near the intersection point
with respect to the metric g. We now define

FhP = FLP(X A 2) = {w 10 — X |w(l;) C Ay, w=exp,,  with

1€

0:(R)|1,p,e <00 for some R > O}

where we define the norm || - |1, . as follows:

l€llo.ne = ( /@ 2 ﬂp)l/p

1/p
el = ([ e +emoep) ™.

Similarly for one forms n € Q' (w*TX), we define

1/p
0,p,e = (/ 6271;’?7‘;;)
S

2=p|p|P 2—2p p L/p
17p7e=< L€ Tl e Ian) :

One crucial point of taking these norms is that the ordinary Sobolev norm of the

rescaled &, §(u) := £(%) is the same as the weighted norm of ¢, i.e

and

7]

7]

1€llk.p = Nk p.c-
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The same applies to . Choosing right weighted norms is the most convenient way
of dealing with the singular limit problem as ours. As in [F11], one can prove that
FLP becomes a Banach manifold modeled by WP (w*T X),

WP (w*TX) = {€ € Aw*TX) | £(4;) C TA;, |€]1p.c < o0}
and the map
8y : FIP — HP(w*TX) := LP(AVVT*0 @ w*TX)

becomes a smooth section of the vector bundle

T HP — FLP
where B B

H = ) HP(w'TX).
weFLP

The following propositions will be the main tools to prove Theorem 3.1, which are
well-known tools in the literature. Here, we adapt Theorem 3.34 and Proposition
3.35 in [MS] to our purpose.

Proposition 3.2 [Theorem 3.34, [MS]] Let p > 2. Then for every constant
co > 0, there exist constants § > 0 and C' > 0 such that the following holds. Let
w:0O — X be a map in FOP and

Qu : H? — TWFrP = WP (w* T X)

be a right inverse of

Dy, = Do j(w) : Ty FP — ﬁf
such that Dy, o Q = id and
|Qull < co, [[Dw|

2 < co, 05wl 6.

Then for every § € Ker D, with ||£||1,p. < 0, there exists a section £ =Qune
WP (w*TX) such that

91(expy, (€ + Qun) = 0, [Qunllp.e < ClIIs(expy, €)llope-

Proposition 3.3 [Proposition 3.35 [MS]]| Let p > 2. Then for every constant
co > 0 there exists a constant 6 > 0 such that the following holds. Let w : © — X
and Q. : H? — Tw}"el*p such that w € fel’p, Dy,oQy = id and

1Qull < co, [|Dw

0,pe < Co-
If wy = exp,, (&) and wy = exp,,(&1) are J-holomorphic maps such that &, & €
WP (w*TX) satisfy

||50||1,p,6 <9, ||fl||1,p,6 < co,
and

1€1 = &olloe <60, &1 — &0 € Im Qs
then
woy = wWq.

The following lemma is also useful in later computations, which is a standard
fact in symplectic geometry. We omit the proof.
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Lemma 3.4 Let g and h be a two smooth functions on M and G and H be their
lifts to T*M i.e
G(z) = g(mx) (resp. H(x) = h(mz)).

Then the Poisson bracket {G, H} satisfies
{G,H} =0
and so their Hamiltonian flows ¢! and ¢ commute. In particular, we have
(¢ Xe = Xa (3.3)

64. Construction of approximate solutions

We divide © into 4 main regions and 3 intermediate regions which vary depending
on ¢ > (0. We will fix a positive constant « such that

O<ax<l1
in the rest of the paper. With this constant «, we consider for i = 1,2, 3,
91(6%) ={2€0;|—0<T< —i}

and

0 () = O\ U1 0 (=)
We will describe the possible approximate solutions w. on each of these regions
separately and then interpolate them on the remaining regions of ©.
We start with the regions ©; (E%), i = 1,2,3. For each given Morse function h
on M C T*M, we define the Hamiltonian H : X — R by
H(z) := h(mx)

where 7 : T* M — M is the canonical projection. We denote by ¢? the Hamiltonian
flow of H. In the regions ©; (E%), we just define

wi(z) = wi(r +it) = 65 8%, (aer)) (4.1)

for each given I € M(M : f, ), where we recall
Xi = I|62 .

One can easily check that w, satisfies the required boundary condition

wi(r,0) € AL, wi(r,1) € ALy, i =1,2,3,

To describe the part of w® on @0(6%), we first re-scale a neighborhood of each

given intersection point & € NP W, (fiy1 — fi) C M C T*M in X = T*M. We
consider the exponential map

exp, : 1, X — X
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and denote _
AS = Lexp, '(AS) N Ba-a(0) C T X.

1

One can easily see that as € — 0,

A = Ay ={(g,p) € T,X =R*™ | p=Vf;(2)}

(3

uniformly on compact sets. We will first construct a holomorphic map
Wo:0 > C"2R*™ =T, X
with boundary conditions
Wo(l;) C Ay, i=1,2,3,

and with appropriate asymptotic conditions at each end, which we now describe.
Since we are going to glue the part w§ on @0(6%) to w{’s defined in (4.1), the
asymptotic conditions of w§ should match those (rescaled by €) obtained from

wi (& +it) = 6l ol (e ™),

We identify T, X with C™ so that T, M C T,X becomes the real plane R" and
J T, M C T, X becomes the imaginary plane i - R™ C C". We denote the real and
imaginary parts of v € C"™ by Re v and Im v respectively. With this notation, it is
now easy to check that we have

lim 2m {exp; ! (wf (& +it))} = UV fira(2) = Vi(2) + Vile).  (42)
Therefore, a natural candidate for the needed asymptotic condition will be

lim Im m0|@i(7', t) = t(VfH_l(IL‘) — sz($)) + sz(l‘) (4.3)

T——00

uniformly over ¢ € [0, 1]. We now prove that this is precisely the natural asymptotic
condition we should impose on wy.

Proposition 4.1. The solution set of w; : © — C™ satisfying
g =0, (L) C A,
TEIEIOOIIH wole, (7,t) = t(V fiy1(x) — V fi(z)) + Vfi(z), (4.4)
for1=1,2,3

is unique (if it exists) up to addition by real constant vectors.

PROOF. Suppose that wy and w(, be two such solutions. We consider the difference
map
E=wy—wy:0—C".

Since A; are affine spaces given by

A =A{(q,p) eR* =C" | p=V/i(x)},
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¢ satisfies
¢W;)) c R, i=1,2,3.

Furthermore, it also satisfies the asymptotic condition

lim Im {lg, =0 uniformly.
T—00

Therefore £ : © — C" is a holomorphic map such that
Im ¢Jpe =0

and |Im | is bounded on ©. Applying the maximum principle to the harmonic
map Im & on © into C", we conclude

Imé=0 on ©
which will in turn imply that
& = areal constant vector.

This finishes the proof. [

Now, we will remove the non-uniqueness in this proposition by imposing the
following balancing condition (4.7). This will be important in finding a good ap-
proximate solution which enables us to obtain necessary error estimates. Since wq
is holomorphic and satisfies

0,(m:t) =tV fir1(x) — Vfi(x)) + V fi(z)

lim Im wy
T——00

which is a “linear” function on ¢, Wy must satisfy
|wo(7,t) = vj + iV fj (@) + (T +it)(V fiza(z) = Vfi(z))] — 0 (4.5)

uniformly as 7 — oo for some vectors v; € R", j = 1,2,3. We note that the
direction vectors (V fit1(z) — V fi(z)) satisfy

(Via(z) = Vi(z) + (Vf3(x) = Vf2(2)) + (Vfi(z) = Vfs(x)) = 0. (4.6)

We remove the ambiguity in Proposition 4.1 by imposing the condition

3
lim > " Re d@ole, (1,t) =0 (4.7)

j=1

which can be always achieved, due to (4.6), by choosing appropriate real vectors
Uj’S in (4.5).

It remains to prove the existence of a solution to (4.4). For the notational
convenience, we denote
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and then the span of u;’s satisfy
dimg spang{uy, ug, uz} =2

because uj + uz +u3 = 0 from (4.6). By the uniqueness theorem, it will be enough
(if possible) to construct a solution of (4.4) such that

Image wo C Spanc{ui,us,us} + iV fi(z).
We denote the affine space of complex dimension 2
W := Spanc{uy, ug,us} + iV f1(z) C C".

We will assume without loss of any generality that V fi(xz) = 0 and so W becomes
a subspace. In this way, we have reduced the existence problem to one in W = C2.
If we denote

V = Spang{uy,us,us} C R,

we have

W = Ve +iVfi(z)

where V¢ is the complexification of V. We now consider two complex projection
T, W — W
such that Image 7; are one dimensional and

w1 = projection along u; = Vfa(x) — Vfi(x)
Ty = projection along ug = Vfs3(z) — V().

By identifying the images of m;’s with C, we have coordinates which we denote by
(’/T 1,7 2) S (CQ.

To determine wy : © — W C C™, it will be enough to determine its coordinate
functions m; o wg : © — C. Denote

V,=V+i-Vfiz) =123,

Then it follows

We will now seek holomorphic functions
a : © — C, k=1,2,

such that

{ ar(f),a1(l2) € m(V) = mi(Va)
a1(€3) C 7T1(‘/2)
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and

az(ﬁg),ag(&g) C 7T2(V2).
Then we will choose wg : © — W C C™ such that
wo(z) = (a1(2), az(2))

in coordinates (71, 72) of W. By the conformal identification of © with D?\{z1, 29, 23},
the above description of finding a; is equivalent to finding holomorphic map

{ ag(ﬁl) C7T2(‘71)

ay : D2\{zz,23} —C

with
{ ai(LU{z}Uly) C m(x:/l) (48.1)
a1(€3) - 7T1(Vé)
and
ay(zz) = —0o0, a1(z3) = o0. (4.8.2)

The existence of such functions immediately follows from the Riemann mapping
theorem. In fact, there exists one dimensional family of such functions. Similarly,
we find a holomorphic function

as:©® —C
such that _
lq) C Vi
{%( 1) C ma (V1) _ (4.9.1)
CLQ(€2 U 63 U {22}) C 7T2(‘/2)
and
CLQ(Zg) = —0Q, CLQ(Zl) = OQ. (492)

Finally, we need to check that the map wg : © — C defined by

wo(2) = (a1(z),a2(z))

in coordinates (71, m2) of W indeed satisfy all the requirements in Proposition 4.1,
especially the asymptotic conditions. To check the asymptotic conditions, we recall
that since © has cylindrical ends with the same width, it follows from the properties
of the Riemann map that both a; and a, are asymptotically linear at each end.
More precisely, the functions a; must satisfy

a1|e, (7,t) — b(T +it)
atle,(1,t) — —b(T + it) as |7| — oo (4.10)

for a constant b € C. Similar conditions must hold for as.
Now, we consider the asymptotic conditions of wq at each point of z1, 29 and z3.
First at 21 € dD?, we have, from (4.8.1), (4.9.2) and the asymptotic linearity of az,

ai(z1) € m (V1) (4.11.1)
as(T +it) ~ b(T +it) as || — oo. (4.11.2)
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We interpret these conditions for wq in the standard coordinates on ©4. It is easy
to check that (4.11.1) implies that the image of wy is asymptotically tangent to
span{iu; } and (4.11.2) implies that w is asymptotically linear which are precisely
the conditions for wy to satisfy on ©1. Similar consideration applies to z; and so
on O,. It remains to prove the asymptotic condition on ©3. At z3, we have

al(ﬁg) C 7T1(‘73), al(él) C 7T1(‘71)

and
az(3) C ma(Va), az(f1) C ma(V1).

Moreover both a; and as are asymptotically linear at z3. It now follows from these
that wy also satisfies the required asymptotic condition on ©3. This finishes the
proof of the existence of solutions satisfying the equation in Proposition 4.1.

Remark 4.2. Originally, we found the solution wg by a different method, which first
solves the minimization problem of the harmonic energy

/ Dwl?
0;(R)

for large fixed R > 0 with appropriate boundary conditions and then proves the
minimizer must be holomorphic. Then wy can be obtained as the limit as R — oo.
This method is possible because we require that wo satisfy the totally geodesic La-
grangian boundary condition given by A; in C™ (See some remnants of this method
in the proof of Lemma 16.3). Only after we proved the uniqueness result Proposition
4.1, we have been able to find the above elementary method.

Now, we use wy : © — C" to construct the portion on ©g (6%) of our approximate
solution
w®:0 — X.

It would be very natural to define
by
w(#) = exp, edo(2).

Unfortunately, this does not quite satisfy the boundary conditions
wS‘gi C Af-.

For the moment ignore this fact and proceed defining w*. Finally, we interpolate w;
12

e e

with w§ for each i = 1,2, 3 on the region@i(
B : (—o00,0] — R such that

). We choose a cut-off function

=0 for—-1<7<0
=1 forT < -2
-2< p'(r) <0.
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We denote
~c 1 —1 € .
w; 1= < eXp, " Wy, 1=1,2,3,

and complete the definition of w® = w*! by

oLt ol (xiler)) for z € ©;(Z)
w(z) = w (z) = { Pe ewp(2) for z € Og(%
exp, €(wo(z) + B(evT)(wf(2) — wo(2))
for z € ©;(%, 2).
(4.12)
It remains to justify the fact that this is a good approximate solution although it
does not quite satisfy the boundary conditions on the regions

©i(x)
First we note that since wy is asymptotically linear and so |ewq(z )\ ~ =% on
00(%), exp, €to(z) — x as e — 0 uniformly over Og(Z ) for all z € n3_ W, (fi+1—

[j)- Hence, one can correct w® on the image by a Cl-small perturbatlons so that it
satisfies the correct boundary condition. Because of this, we will pretend that w¢
defined in (4.12) satisfies the correct boundary conditions.

Remark 4.3. Tt is important to note that because of (4.6), the images of ewy(z)
converges to the three lines intersecting at the origin in the Hausdorff sense as
¢ — 0, which are in the directions of grad(f;+1 — fi)(z) for ¢« = 1,2,3. This point
will be important in Section 6 and 7.

Figure 4.1
§5. Error estimates

We start with the regions ©;(2) for i = 1,2,3. In terms of the coordinates (7,t)
on O;, we have

J8w

on ©;

or

a 1
0w = 5‘

where the left hand side is the norm taken in ACDT*0 ® (w)*TX and the right
hand side is the one taken in (w)*T'X. Therefore, we will compute the right hand
side instead of |0 w®|. For notational convenience, we denote

wi(T,t) == we,(1,t) = ¢f’+1 ¢e(1 t)(XZ(ET)) on ©,.
We compute

dw; fisr
67_ :6T¢et+ OT¢€(1 t)(Xz(ET))

= €T¢f1+1 o Tqbe(il_t)(—grad(fiﬂ — fi)(xi(eT))
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where the second equality comes from (3.1). And

ow; _ fz+1 Ji1
5 = XFu (Wi) = €T X, ((6e™)” Hws))

- 6XF7+1( ) eXqu (wl) = EX(Fi+1—Fi)(wi)
— el oTol (X(Fi+l,pi)(xi(67)))

where we used the identities
f1+l X
(QS ) Fiq Fiiq

Xy — Xa = Xa_¢)-

Therefore we have

Qs 19 = —eTli o T, (grad(fir — £ (xi(e)))
+eJTel o Tolly Xk (Xi(eT))

= =Tl o Tl TX (k1 gy (xileT))
+eJTli o Td)f(il_t)X(FinF') (xi(eT))

= =Tl o Toly {IX(riry = (017 0 00 )T Xir sy P Oxiler)).
Here we used Lemma 3.4 and the identity
JX(Fipy ) = grad(fit1 — fi)
on M C T*M. Since we have

o5 —id|en, |65, —idler < Ce

where C' is the constant depending only on f = (f1, f2, f3), we have

)

J’X(Fi+1—Fi) (¢fl+1 ¢5(1 t)) J'X(Fi+1—Fi) (Xl(eT))

‘sz _i_Jawl

< Ce

For the simplicity of exposition, we denote

Yie = JX(F1-F) — ((bflﬂ ¢e(1 t)) S X(Fipa-F)
f’L 1
( (d) * ¢ e(1— t)) ) : X(Fi+1*Fz‘)
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and then, we have
_ » _ i
”(9Jw€||o,p,e,®i(€%) = /@.(1) € P’aJ’we|p

<o [ pliuen)

(<)
oA

:C'pe2// |Yi.e|P (xi(er))drdt
0 —o00
1 p—2e ¢

—cre [ [ MPutoNdod, o= er
0 J—oo

1 0
< e / / Y; el (xi(0))dodt

0 —00
0
|X(Fi+1—Fi)

< CPesup |J — (¢ o ¢f§1—t>)*J|p($)/ “balo))de

rxeM _

Here it is easy to see that

sup [ J — (90" 0 611y )" | < Ce,
rzeM

and so we have

0
’X(Fi+1*Fz‘)

B2, oy < CPE 7 / P(xs(0))do. (5.1)

Since JX(p,.,—r,) = grad(fiy1 — fi) on M C T*M and the gradient trajectory
Xi = I|., converges exponentially to p; as ¢ — —oo, we have

|X(Fi+1—Fi) ‘ (XZ(U)) = O(e—Ca) (52)

as |s| — oo. However the region of o where (5.2) is valid will depend on I € M(M :

f,ﬁ), because M(M : f,ﬁ) may not be compact in general due to the splitting of
trajectories:

Figure 5.1
However, as described in [Fu3], the compactification of M (M : f,p) has only finitely
many strata and the minimal stratum is compact. To effectively describe the non-
compactness of M(M : f, P), we introduce the variance of the energy, an analogue

of which was previously used by Floer in the context of Floer homology (see [Lemma
2.1, F3]).
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Lemma 5.1. The function V : M(M : f,ﬁ) — R defined by
2
()| ar

3 0
V(I):Z%/ 2| 1,
j=1 J-oo

is everywhere defined and proper.

PROOF. The integral converges for each I € M because of the exponential decay
of the gradient trajectories at nondegenerate critical points. Now, we prove the
properness. It will be enough to prove that the set V~1([0, K]) is compact for any
K > 0. Suppose the contrary. Since the non-compactness arises by the splitting of
trajectories, there must exist a sequence I* € V~1([0, K]) and 7, — oo such that
for some j = 1,2, 3, say j = 1, the sequence of maps

T = Ik|el(7' — Tk)

(locally) converges to a gradient trajectory x : R — M of fo — fi1. From this, it
follows that the integral

%/_OOO 72’ (Ik)'\el(T)rdT = %/_T;(T_Tk)z‘ (%], (7 — 7) 2dr

goes to +00 as k — oo, which gives a contradiction to
V() <K

for all k.
O

It is obvious that

MO fop) = |J vi((0,K])

K>0

and we denote
Muc(M : F,5) = V[0, K]) = {I € M(M : ,5) | V(D) < K.

By restricting to M for each K > 0, we will have the uniform exponential decay
at each triple p'= (p1, p2,p3) of critical points. More precisely, there exists

R=R(K)>0

such that we have
| I'le,(0)] < Ce™ 7, (5.3)

forallc < —R, I € Mg and j = 1,2,3. Therefore, we conclude

197w < CY(K)et™? (5:4)

p
0,p,6,0:(%) =

from (5.1) for all I € Mg, where

CLI) =8 sup [ 1Xriom)
EMK JO

P(xi(0))dodt. (5.5)
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Again for I € My (M : f, ), we now estimate HEJMGHQP,Q@O(%). From the defini-

tion of d;, we have

0 yw§ = 07 exp, (ewp)

D exp, ewy+ JDexp, € wyo1
2

D exp, (i) o eDWy + JD exp,, (i) o eDwg o i
2

Dwy + (exp,(ewp))*J o Dwg o Z)

2
(exp, (ewo))*J — J(x)
2

= eD exp, (ewy) (

=eD expx(e@0)< ) o Dwgoi

where we used the fact _
a]O’[EO =0, Jo = J(w)

for the fourth identity. By the standard facts on the exponential map and the fact
that |wo(7,t)| grows linearly with respect to |7| — oo, we have

|(exp,,(ewp))*J — Jo| < Cletwo| < Ce' ™ (5.6)

on ©;(-%). Hence it follows
‘5J’LU8| < Ce?™

and so
Bowgl? o = / P[P
0 0,p,6,00(zx) 60(5%)
<P / 2tr—ap — cpe2+P*apArea(@o (i))
O0(2) ‘
< Cb2Hp=(ptla (5.7)

where the last inequality follows from that
Area(@o(}a)) ~ L.

We note that the estimate (5.7) holds uniformly over all I € M not just for I € M.
Now, we need the estimates on the intermediate regions

€ ) e

ei( 1 i), i=1,2,3.

Using the canonical coordinates on ©;, we again estimate % +J % instead of

[0we|. On ©;(=, =), we have

2 — eDexp, (9 + e (e7) (@ — To) + Hle7) (G — )

€ 0. ows W
68% =eDexp, (8(;‘;‘ —i—,@(eaT)( gzb — %))
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Hence, from the equation % 8“’0 +Joy 8“’0 =0,

aT Jag; =eDexp, ((expgC J—Jo )aw“) + el teDexp, (B (e¥7)(ws — wo))

+ 66(6‘17){ (D exp, (

(Dexpx (3w0) + JD exp, (f’w))}

For the first term, we note as in (5.6)

|exp} J = Jo| < Cle(o(2) + Ble*r)(@(2) - o (2) )|

From (4.2) and (4.3), we conclude
[wi(z) — wo(zﬂei(%&,%) <C
uniformly as ¢ — 0. Therefore, we have on ©; (La 6%)

|exph J — Jo| < Clewg| < Cet™

and so
‘eD exp, ((expaj J —Jp) 8“’0)‘ < Cer e,

For the second term in (5.8), we immediately have from (5.9)
€+ D exp, (8 (€)@ — )| < Cel .

Therefore, we have from (5.10)

ow
2—p 0
/@i(%&,%)e eDexp, ((expmJ Jo)—— v )
< CP2tr—(ptl)a
and from (5.11)
/. 7P| D exp, (8 (e*7) (@ — @)
Oi(zw, =)

< OPe2tra—a _ op 2+ (p—1)a

)+ ID e, (222))

(5.8)

(5.10)

(5.11)

(5.12)

(5.13)

For the third term in (5.8), we consider two terms in the parenthesis separately.

We first recall the definition of w§

w5 = +(exp,)” wf

and so
wi = exp, (ews).
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We also have
Dexp, ( ) + JDexp, (agif)
= Dexp, (e(ilo(2) + B(e)) (@ (2) — To(=)) (%2 )
+IDexp, (e(o(2) + Alen) (@ () — o(2))) (%5 )
= (% + %)
+ (Dexp, e(io() + A )@ () — (=) = Dexp, (e (=) (5%)
+ (D exp, (elio(z) + Ber ) (@(2) — =)
— IDexp, (i (2))) (%)

where we used the identity

€
ow;

5 and

L = Dexp, (e (2))

ow;

155 = D exp, (ews(z)) ot

Therefore,

‘Dexpx< )—l—JDepr( )‘ ‘

Hpammmw+m«m @—%@)
@)

(2] + ) o

— Dexp, (ew;

However as in (5.4) one can estimate

o

where C3(K') depends only on K. On the other hand, we have
€| D exp,, (e(wo(2) + B(e*T)(wi(2) — wo(2))) — D exp, (ewi(2))|
< Ce|D? exp, | - [e(1 — B(e7)) (w5 (2) — Wo(2)]
< Celi5 (2) — wWo(2)]-

ows P
| < CR(K)e' P (5.15)

( (!76&

Hence
/ o, 2P (e\D exp, (e(wo(z) + B(eT)(ws (2) — wp(2))
Oi(zw, o
" et (5] + 5

~ p
<crew [ e - a5 + | %)
©:(ch )
< CPeFtra (5.16)
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Combining (5.12), (5.13), (5.15) and (5.16), we have

0,(%.%)

€

P
ow* Ow*
or +J o

< CP(K) (62+p—(p+1)a 4 2tpDa | dtp 62+p—a)

Using the fact
O0<axl

we have obtained

p—2| dw* Ow*
/ € } or +J ot
Oi(zw %)

Now, summing up (5.4), (5.7) and (5.17), we have obtained

"< op () HDe (5.17)

18 5welff .. < (CP(K)eHP + Che2HP= e 4 OF ()=o),

Hence, we have finally proved the following estimates.

Proposition 5.2. For each given K > 0, the approximate solutions defined as in
(4.9) satisfy the estimate

24+ (p—1)

105w |ope < Cse 7 (5.18)

for all I € Mg (M : f,7).

Now, we would like to extend the estimate (5.18) for all I € M(M : f,7) to
prove the following main estimate of this section.

Proposition 5.3. There exists ea > 0 such that for 0 < € < €2, the approximate
solutions defined as in (4.9) satisfy the estimate

2+(p—1a

HngE 0,p,e€ S CGE P (519)

for all T € M. In particular, we have
105w lope — 0 ase—0

uniformly over I € M = M(M : f,p).

PROOF. Tt will be enough to have the estimate of the kind (5.19) for I’s in M\ Mg
for sufficiently large K > 0. We go back to the integral in (5.1)

0 0
/ Xt P (xi(0))dor = / X ris "L (0))do

The following is a consequence of the standard concentration compactness prin-
ciple whose proof we leave to readers.
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Lemma 5.4. Suppose that {I;,} € M(M : f,p) be a sequence such that
N
L — 19+ > 1L
=1

in the weak topology, where IS is an element in M(M : fj and each I%, is a
gradient trajectory of (fix1 — fi) for some i = 1,2,3 connecting two critical points
of fix1 — fi. Denote by

3 0
WD) =3 [ X Pl (0))do

W= [ X (T(0))do

for I € M(fix1— fi),i=1,2,3. Then we have

N
Jim W(I) = W)+ > W(IL). (5.20)
{=1

Figure 5.2

With this lemma, we proceed the proof of Proposition 5.3. We recall that the
compactification M of M = M(M : f, ) has only finitely many strata M\ M and
the minimal stratum, denoted by M?, is compact. We extend the definitions of W
to the whole compactification M of M by defining

N
W(I) =W+ > W)
=1

for I =1°U (Ué\;l I*) where we define

P(I%0))do for £=1,---N.

W(Ie) = / |X(F11+1_Fi)

By this definition, it follows from the uniform exponential decay that W is uniformly
bounded on the minimal strata because they are compact. We denote by Ry an
upper bound of W|M?Y. Consider the stratum, denoted by M?, of the next higher
order. Then we have

MO = FT\M,
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By the estimates similar to (5.4), (in fact easier than that), that for any fixed
K > 0, there exists a constant Ry = R1(K) > 0, €; > 0 such that

W(I) < R, (5.21)

for all I € M}, and for all 0 < € < ¢;.
On the other hand, Lemma 5.4 proves that for sufficiently large K > 0, we have

W(I) < Ro+94 (5.22)

for some ¢ > 0 for all I € MY\ ML.. Combining (5.21) and (5.22), we have proven
that there exists some Ry > 0 such that

W (I) < Ry

for all I € M!. By considering the stratum of next order and by repeating the
above arguments, we finish the proof of Proposition 5.3. O

§6. Construction of the right inverse

We begin by rephrasing the transversality condition of
W, (fix1 — fi) 1=1,2,3.
To simplify notations, we again denote
Xi =1le;, : (—00,0) = M

for each .
I:T— M, Ie M(M : f,p),

and denote
WP == WHP (\*TM)

which is the Sobolev space of the W*P-sections of x*T M. We define

kp ._ k,p k,p k,p
W= {(Cx17cxz7c><3) € Wx1 X sz x Wxs

CX1 (0) = CXQ (0) = CX3 (O)}
The space VVI]g P should be interpreted as a singular limit as ¢ — 0 of the spaces
Tpe FEP = WEP((w)*TX).

We will restrict to & = 1 from now on. Our transversality assumption on W (fi+1—
fi) is equivalent to saying that the operator

. 1,p p P D
LI.WI —>LX1><LX?><LX3

Ly (CXI » Cxas st) = (Lx1 (CX1)7 Ly, (Cx2)7 Ly, (st))

is surjective, where the operator

. 1,p D
Ly, : WP — L.
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is defined to be the linearization operator
in = VT + Vgrad (fi+1 — fz)

of the equation
X +egrad (fit1 — fi)(x) = 0.

By considering the L2-adjoint of the operator Ly, it is also equivalent to the fact
that the equation

{ —Vicy, + grad (fir1 — fi)CXi =0 (6.1)

Cx1 (0) * Cxe (0) t Cxs (0) =0,
has only the trivial solution.

Now, we follow the strategy used in [F1] (or also see [MS]), i.e., first find an
approximate right inverse

Qe : HP. — WP ((wf)*TX)

of the operator D, := D9 (w,) for € sufficiently small such that

. 1
|Qell < C7, | Dye 0 Qe —id]| <

5 (6.2)

where we recall that ﬁfu is defined as
HE. = LP(AODT*O @, (w)*TX).
Under these conditions, the composition
Dy o Qe : ﬁ,ﬁ}e — ﬁﬁ)e
is invertible and a right inverse of D,, will be given by

Que :=Qco (Dw6 © Qe)_l‘

Now, we construct the approximate right inverse ).. We decompose © as before and
describe the portion of £ = Q.(n) on ©;(2) first for each given n € HE.. On 0,(2),
we use the coordinates (7,t) and identify H?. = L2 (AOVT*0 @ (w®)*TX) with
LP . (w!TX) in the standard way similar to the identification used in Section 4. We
recall that on ©;(%), w® was defined by

we(r,t) = ¢l 0 ¢Fi (xiler))

which can be rewritten as

w(r,1) = &7 0 ¢ (XE (), X5 (7) = xaler).

We note that x¢ is a trajectory of the gradient flow of —e(fit1 — fi).
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Given n € H2. = LP((w)*TX), we define the triple
bS = (b, b3, b5)

X

bE.(T t) _ T(¢ff+1 o ¢£€1—t))7177(7', t) for + < _%
n 0 otherwise .

Since we(r,t) = ¢/i*" o ¢5(1 p(Xi(eT)), we have
b € LP((x§)"TX x [0,1]) := L%,

where x§(7) = x;(e7). We will now study the following equation in detail in the
proof of Proposition 6.1 below:

VTCLZE- + J(Vt + GVX(Fi+1—Fi))az€' e bg
a(r,0),a5(r,1) CTM C TX and af(0,t) € TM
i ag(0,t)dt = [ ag(0,t)dt = [ a5(0,t)dt.

We define, for each i = 1,2, 3,

WP = {a@ € W' ((x)*TX x [0,1]) | aS(r,0),aS(r,1) € TM C TX}

X
and
WP = {(a$, a$, a§) erp X Wlp X W VP ag(0,t) € ToM C T X
1 1 1
and / a$(0,t)dt = / a5(0,t)dt = / a5(0,t)dt}

0 0 0

We equip W}? with the norm | - ||1,p.. Similarly we define
LY. = Lil X LQQ X Lp

and equip it with the norm || - ||o,p,c. Now consider the operator

ZN)Ie : W}g” — EII)E
by

Dye(ai, a3, a§> = (Dxiaiv DXEG’;v ngag)

where

Dyea§ = Voaf + J(Vi+ VX (k- r))as
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Proposition 6.1. Suppose that W, (fix1— fi) for i =1,2,3 intersect transversely
and so the equation (6.1) has no non-trivial solution. Then there exists e > 0 such
that if 0 < € < ea, the following hold:

(1)-
Ker Dy = {(a$, a$,a5) € W}gp | a$’s are independent of ¢ and satisfy

the equation V,ai + eVgrad (f;+1 — fi)a; = 0}

(ii). Dy is surjective and
(7). there exists Cs > 0 independent of € such that for any a° = (a§,a$,a§) €
(Ker D)+ C W}E’p, we have

18 [11,p.e < Csl[Dre(@)llop.e (6.4)

and so that there exists a right inverse @Ie of 1516 such that

DrcoQr =id and ||Qr|| < Cs. (6.5)

Proof. We separate the proof into 3 parts.
Proof of (i). Suppose that

—¢

@ = (a$,a$,ay) € Ker Dye € WEP

i.e, satisfies the equation
VTCLE + J(Vt + GVX(Fi+1—Fi))a§ =0
as(r,0), aS(r,1) € TM ¢ TX and  af(0,t) € TM (6.6)
Jiy a5(0,t) dt = [ a5(0,t)dt = [ a5(0,¢)dt € TM.

Following the idea in [F2] and [Appendix, O6], we decompose

a; = c; +dj

where ¢ (resp. df) is the horizontal (resp. vertical) component of (1€)*T(T*M) in
terms of the splitting
T(T*M)|ps = TM & T*M.

Then (c§, d) must satisfy the equation

79 1

Vrc§ 4+ Vids + eVgrad (fip1 — fi)c§ (6.7)
V,dS — Vit =0 (6.8)
ds(r,0) =0,d5(r,1) =0 (6.9)
d5(0,t) = d5(0,t) = d§(0,t) =0 (6.10)
L f0c10tdt f0c20tdt focgotdt (6.11)

Here we identify V(. d§ € VT -(T*M) = T7. M with J(V () df) € Tre M using the
canonical decomposition of T(T*M)|p;. We now consider the function

€ __ 1 € €
B; = §<di(7)adi(7)>
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and then a straightforward computation using the boundary condition (6.9) yields

d2ﬂ’f € € € €
L = V| + V] — e(ds(7), Vgrad (fiss — f)Vrd).

(See [Appendix, O6] for this computation.) Again using (6.9) and the Poincaré
inequality, we have
152 < CIVedi 2.

Therefore we have

d2 3¢
df; > IV di|* + [IVed;||* = Cel[Verad (fisr = fi)lloo | Ved5|2]| V-5 2

and so if we choose € so that

Ce|Verad (fir1 — fi)llo < % (6.12)
we get
d2f8i€>1v(152>1de2_1 € 0
a2 > 5V i||2—202H $° = 5520 >0,

. . . . ¢ oydy |
which shows that §f is a convex function. Since @© € W;*, we have

lim_B5(7) = 0 (6.13)
and (6.10) implies
B5(0) =0. (6.14)

We fix any e satisfying (6.12) so that 55 becomes a convex function. Then (6.13),
(6.14) and the convexity of (f together imply that 5 = 0 which in turn proves
di = 0. Then this and (6.7) imply that ¢ is t-independent and it satisfies the
equation

V¢ + eVgrad (fiy1 — fi)ef =0.
This together with (6.11) proves (i).

Proof of (ii). To prove the surjectivity, it is enough to prove
Coker Dje = {0}.

Using the L?-inner product, we first derive the L?-adjoint equation of (6.6). The
L2-cokernel element is characterized by the condition

0= (Dyed,b°)
3 0 1

—Z/ /(VTa§+J<Vt+6VX(Fi+1Fi))af»,bf)
j=17—00 0

for any @ = (a§,a$,a§) € /I/Ivfllgp. Since b will be smooth (by elliptic regularity!), a
simple computation by integration by parts, using the fact that J is parallel along
M C T*M, shows that b° satisfies the equation

b(1,0), b5(1,1) e TM C TX

(6)1(0, ) are independent of t and ~ $°°_ (b5)1(0,1) = 0.
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where b¢ll is the horizontal component of b¢. As before, we decompose b = (€€, f¢) €
TX =TM & T*M and then (€5, ff) satisfies

1

—Vre§ + Viff + eVerad (firr — fi) ff =0
~Vrff = Vie; =0
f§(7,0) =0, ff(,1) = 0

e$(0,-) are independent of ¢ and ef + €5 +e§ =0

Again we consider the function

% (m) = 3{fi (1), f5 (7))
and then ¢ can be shown to satisfy as before

2, €
A > e (6.19)
lim ~; =0. (6.20)
T——00
Since €£(0, -) are independent of ¢t from (6.18), V;e(0,¢) = 0 which in turn implies
by (6.16)
V. fe(r,0) = 0.

Therefore we have

dvg
dr

(Tv 0) = <fz€(77 0)7 va;(T7 0)) =0. (6‘21)

Combining (6.19), (6.20) and (6.21), we conclude (by strong maximum principle!)
v = 0 and hence
fe=o0. (6.22)

Substitution of this into (6.14) proves that ef satisfies

{ —V. €5+ eVgrad (fiz1 — fi)ef =0
€1 (0) + e5(0) + €5(0) = 0.

Therefore if we re-scale ef and define

€5 will satisfy
{ —Voe§ + Vegrad (fiy1 — fi)ef =0
€7(0) 4+ €5(0) + €5(0) = 0.
Now the transversality hypothesis that (6.1) has only the trivial solution implies
that
e; =0 and hence ef =0. (6.23)

)

Now (6.22) and (6.23) show that Coker Djc = 0 and so prove the surjectivity.
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Proof of (iii). We may assume without loss of any generality, by replacing f; by
eafi in (i) and (ii), that e2 = 1. Then (i) and (ii) implies the estimate

la"llp < Csll D1 o (6.24)

for all @' € (Ker D7)+ ¢ Wll’p. It would be enough to prove (6.4) for

€= 2%, for each nonnegative integer k.

To prove this, we define
a‘(o,s) =a(%,2) for0<s< 2%,—00 <o <0.

Now we extend a by reflection to 0 < s < Qk—l,lz Under the decomposition a¢ =
b¢ + c*, the conjugation with respect to the canonical almost complex structure is
nothing but the linear map a® = b¢ + ¢ — b — c*. Then we define

a(o,t) = b(0,t) = (0,557 — 1) for 5 <t < gy

After then we extend this to the whole ¢ € [0, 1] in an obvious way, which we again
denote by @ = a(o,t). From the construction, it is easy to check that a € W}’p.
It is now crucial to observe that since we have proven in (i) that the elements in
Ker D re are independent of ¢, the extension a¢ can be easily proven to be still in

Nl
(Ker DI) . Therefore we have the estimate

@1 < Cs||Dra o,

from (6.24). However by the periodicity of @€, this implies

a1 po<e<e < Csl|Draclopo<i<e:

Scaling back to (7,t) € (—o0,0] x [0, 1], this is equivalent to the required estimate
(6.4). This finally finishes the proof of Proposition 6.1. [

We now proceed the construction of Q.. For each given n € ﬁfve, we define

b = (b5, b5, bS) on ©\Oy (&) as in (6.3) and apply the operator Qe to b° to define

€

ac = (af,as,as) € W}e’p

by o
ac = Qe (b%). (6.25)

In particular, we have
b = Dy (af) = Vra§ + J(Vi + €VX(p,, p))as (6.26)
and so by definition of b$ in (6.3),

VTa§ + J(Vt + EVX(Fi+1—F1;))a762 =0
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for—%<7§0and

a;(0,t) e T,M C T, X and

1 1 1 (6.27)
/0 (a7)(0,t)dt = /0 (a5)(0,t)dt = /0 (a5)(0,t)dt € T,M
where we recall
x1(0) = x2(0) = x3(0) =2 and a(0,t) € T, X.
Using, a¢, we now define
E(r,t) = T(¢l 0 0% ) (af(7,1) (6.28)

on ©;(%) fori=1,2,3.

We next describe the portion of & restricted to £ \@0( 1.)- As before, we identify
(T, X, J(x)) with (C", Jy) and consider the linearization of 0:

Dgd : WhP(@gTC™) — LP(QOY g TCn) (6.29)

Lemma 6.1. The linearization operator Dg_0 in (6.29) is invertible.

PROOF. First note that the kernel element of Dg, is described by the equation

06=0
£(6;) c TA; = R"
1€][1.p < 00

from which it follows by the maximum principle that
Ker Dg,0 = {0}.
Next, we prove _
Coker Dy, 0 = {0},
which will finish the proof. Using the L2-inner product, one can identify the dual
of LP(QOD (@ TC™)) with
1 1

LYQWO (grTC™)), =+ = =1.
( (woT'C™)) ?

Then the element n € LI(Q10 (w5 TC™)) which is in Coker Dg,0 is characterized
by the equation

{ Re [ (0¢,n) =0 for all £ € WP (6.30)

11llo.q < o0,

where (, ) is the standard Hermitian inner product on C”. Since 7 is smooth by
the elliptic regularity, we integrate by parts to get

Re/@(@ﬁ,n) = —Re/@(ﬁ,@m —l—Re/@@(f, n)idz (6.31)
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where z = z + iy is the standard coordinates of © considered as a subset in C.
Using the fact that N
;) CcTA=R",

we derive the equation from (6.30) and (6.31),
an=20
nle,C TA; = R™
17llo,q < o0

By the same way as in the case of Ker D3y, we conclude Coker Dg,d = {0}. This
finishes the proof. [J

Lemma 6.2 implies that there exists the inverse
Qo : LP(QOV(@5TC™)) — WhHP(@5TC™)
of Dg,0 such that

D@OEO Qo = id, Qo o D@OE =id and ||QOH < Cg.

Using this, we are ready to describe the portion of £ on @0(}). Given n € ﬁfue,

we first define L 5
_ { Dexp; (w(2))n(z) on O(55=)

n(z) :== (6.32)

0 otherwise.

Then 77 is a section of the bundle
QY ((ew(2))*TC™) not QY ((ewy)*TC™)

where
1

@(2) = = expy ! (w'(2)).
€
However, we have shown in Remark 4.3 that
w(z) — Wy as e€—0 inthe C'— topology.

Therefore, we will just pretend 77 is an element in QO ((ewy)*TC™).
Now, we define the portion of £ on @o(e%) by

§(2) = D exp, (eo) Q5 () (et (2))

where
Q5+ LP(QOD((ewo)*TC™)) — WP ((et) *TC")

is the operator obtained from

Qo : LP (V) (@o)*TC™) — WP ((iwo)*TC™)

Q6(0)(2) = Qo () (ewo(2)) := Qo(C © €)(wo(2))
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where ¢ o € is the element in Q1 (wsTC") defined by

Coe(z) = oe(wo(z)) := ((ewo(2)).

One can easily check that the norms of Qf and @ are the same.
Again we note that & does not quite satisfy the right boundary conditions

€l CcTAS  i=1,2,3

but we ignore this in the same reason as before.
fi+1

Finally, we recall from Remark 4.3 that exp ewy(z) and ¢, gzﬁz (1-1)(xi(€T)) are
Cl-close to each other as ¢ — 0 on @(6%, 6%) Therefore if we denote by I, (z)

and II(2) the parallel translations along the shortest geodesics from

Sl 0 0l (xiler)) (= exp, €if(2))

and
exp, €(wo(z))

to
exp, €(wo(z) + B(e*T)(we(z) — wo(z))

respectively, it follows that
Ty —idflcr or |[Te —id||cr < Ce'™ (6.33)
Now, we define the operator

Qe : HY — WHP((w®)*TX)

by
T( ;fi“ o gb?{:t))af.(ﬂ t) =: £X§ for m < 6%
Dexp,, (o) (Qo () (Wo(2)) for 2 € ©p(L)
§:= Qe(n) =
Be*T) oo (2) (Exs) + (1 — B(e*m)) o (2)( D exp,(ewo)(Qo(n))
for z¢€ @0(6%, 6%)
(6.34)
For the simplicity of exposition, we have denoted
Exe = T(¢7" " 0 6fl, as(r,1) (6.35)
X ¢ (1))@ (7, 7). .

§7. Estimates of the inverse

The main result in this section will be the following.
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Proposition 7.1. There exists €3 > 0 such that if 0 < € < €3, the operator Q. :
HP — WEP((w)*TX) defined as in (6.54) satisfies the estimates (6.2).

PROOF. The boundedness of ). is easy to see from definition and so its proof will
be omitted. Let ||Q.| < C1p. Therefore to prove the proposition we should prove
that for any n € LP2(A®VT*0 @ (w)*TX), we have

1
[1Dwe€ = nllope = 5 l1llo,p.e

where £ = Q(n) is defined as in (6.31).
We will estimate norms || - ||o,p,e Separately in each region considered before.
We start with the region ©;(Z%). In terms of the coordinates (7,t) on 0;(2),
we have

D& = DO j(we) - €
= (Vo +JV){+ Vi J - &
By the definition of w® in (4.9), of af in (6.3) and (6.25) and of ¢ in (6.34), it is

easy to see that
d

st == hin S (A5 5) (7.1)
where A{ 5 (—00,0] x [0,1] — X for § € (—¢,€) is a family of maps such that
Nalrt) = xaler) = xi(r) and | Ny =
io(m 1) =xiler) = xi(r) and —5| Aj;=d]

on 91(6%) Therefore, a straightforward computation, using the properties of the
Levi-Civita connection, (7.1) and Lemma 3.4, gives rise to the identities

VoE = T(¢ 0ol ,))V- (7.2)

and
Vie = T(67" 0 01" ) eV X (s ) (@) + Viat |- (7.3)

Hence
(Vo JV,)E = T(gzﬁifi“oqﬁffi_t)){v a5 0p )" (Vta eV X (5 ) )}
Substituting (6.25) into this, we get
(Tt V)¢ == T(o5 og(lt ) (657 00" )T~ ) (Viaf+eV X (1, —ripaf)+5 |
on ©;(%). Recalling the definition (6.3) of b, we have on ©;(2)

n="T(¢"" 0 dd" ) )bS (7.4)

and so
Dye(r,t) —(7,t) = T(¢;"*! (ﬁgl t)){( it o df{i_t))*J — J) X

(vta; + eVX(FiH,Fi)aE)} + YV, JE(T 1) (7.5)
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The first term in (7.5) has norm bounded by
Crie(|4af] + |V X (., ry)a] )

By summing the LP-norm over ¢ = 1,2, 3, we obtain from (6.4) and (6.25)
3
D Cue
i=1

<Crz€l|a|l1,p,e
SCSCIQ‘ngeHLp,e' (7.6)

’vtaﬂ + E‘VX(Fi+1*Fi)aﬂ

H07pvevei(e%)

For the second term |VyJ - £(7,t)| in (7.5), we note that
V| = [Vi(J(w(7,1)))] < Ce

and so V;J - &(7,t) has the norm as a one form

3
ST €2 o Z /@ AT
=1

eo‘)

cory [ e op s cvalal,,,
S

< CPeCL[BS e
< CT3e” [l p,c

and hence,
3
Z ||vt‘] 5”0 06,0 (% 2 ) < Cp €p||77”}0),p,e' (77)
Combining (7.5), (7.6) and (7.7), we have obtained

1Dwe€ = ll5 , coneo(z) S (C8C12€” + Cla€e)InlG e < CTa” MG pe- (7-8)

Next, we estimate

[ Duwe§ —n|
Since & = D exp, (ewy)Qo(77) on Op(=), we have

Diye§ = Dy (D exp, (ewo)Qo(1))-

07p76790(€%) :

We give the standard coordinates (z,y) on ©g(=) as a subset of C and compute

D& = (Vyp+ IV, +V,J)E
= (Va + JVy + VyJ)(D exp,(€wo)Qo(7))
= (Va + JVy) (D exp, (ewo))Qo(7)
+ D exp, (ewo)(Vy + (exp, (€wp)) "I Vy)Qo(7)
+ VyJ - Dexp, (ewy)Qo(7). (7.9)
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First note that we have

V(D exp,(ewo)) - Qo(n)| < [V(Dexp, (ewo))||Qo(7)]
< Ce' Qo) (7.10)

on G)(E%), where the second inequality follows from the inequality
|ewo| < Ce'™

and from the standard property of the exponential map. Using (7.10), the first
term of (7.9) can be estimated as

H(vm + JVy)Desz(GaO))QO(ﬁ)Hgm’e,go(e%)
- / L TN D e () QD
Oo(%
= [ eereriaumr
O0()

— orerre / Qo(lp
Oo(zw)

< CPEPY Qo) ,, < Clse® P17, (7.11)
On the other hand, we have

b= [ i
©

_/@ . )|DexP;1(w6(Z))77(Z)|pd8 from (6.32)
olzew

17

< ¥, / in(z)[Pdz
[SHY¢ 3

2e*

By substituting this into (7.11), we obtain
(V + T9,)(D e, (i) QIL,, . o

< Cf50f66pp°‘/ 2P |n(2)|Pdz.

O0(52x

and hence,

(Ve + TV, ) (D exp, (w0)) Qo()lo p,e.00(2) < Cr5Ci6¢ *nllope  (7.12)

For the third term in (7.9), we immediately get

IVy - D exp,(ei0) Qo (Mo p.e.o(2) < Crre' ™ *[nllop,c.o2 (7.13)

For the second term in (7.9), we rewrite

D exp, (ewy)(Vy + (exp, (€wp))*TVy)Qo (7))
= Dexp,(ew)(Va + JoVy)Qo(77) + D exp, (ewo)((D exp, (ewp))*J — Jo)Qo(7)
where Jy = J(z)

= Dexp, (ewo) D, © Qo(7) + D exp, (ewo ) ((D exp, (ewo))™J — Jo)Qo(7)
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By the same way as before, the second term here can be estimated

1D exp,, (ewo) (D expy (e@o)* T = Jo)Qo(Mlo p.e.00() < Cise' “llnll  (7.14)
On the other hand, we have
Dexp, (eiy) (Day © Qo(il) ) = Dexp, (eif) i) since D, 0 Qo = id
= D exp, (ewo) D exp, ' (w)n

=1+ (D exp,(ewo) D exp, ' (w) —id) - 9
(7.15)

Hence, combining (7.10), (7.12), (7.13), (7.14) and (7.15), we have obtained
||Dw€€_77H0p6@0( 1) < C1196(1 a)pHnHOpe (716)

Finally we need to estimate D,,<£& — 1 on the intermediate regions ©; ( o ea) We
recall

§ = Quln) = BN (2) (€, () + (1 = B 7)Mo (2) (D exp, (€@)(Qo()))

for z € ©;(&, 2 ). Therefore,

D€ =1 = Dy { BT o (2) (s (2)) |
+ Due { (1 = B(e™r)) o (2)(D exp, (o) (Qo())) } =7
= 3 (e"7) (T (2)6, (2) — o(=) (D exp, (€ifo) (Qo (7))
+ B(e7) D (Moo ()6, (2))) + (1 = (7)) Do (Ta(2) (D exp (¢60) Q0 () —

Here, the first term can be easily estimated as before to get

€3 (e22) (Hoo(z)fx, — To(2)(D exp, (50)(Qo(M) I, . o0 (4 4
< G306, 0- (7.17)

To estimate the second term, we consider the regions
0i(L,5%) and (5%, 2)
separately. First, consider the region ©; ( o 5 53). In this region, we recall that

=0

7

and so

Dy<a; = 0.

i 1

Now, using the fact

HDwe . Hoo(z) — HOO(Z)DU}: Cc1 < 02161—04
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and
||Dwe . Ho(z) - HO(Z)DU)gHCl < Cglel_a,

we have
8D (Tae2) (610 () + (1 = BlE7)) Duse (Mo (2)(D exp (i) Qo () )‘”Ho 01 5e)

< 1B ) o (2) Dusger, + (1= B 7)o () Duss (D exp, (o) Qo)) = 1l 6.1

F Oyl

On the other hand, by writing
B(e 7)o () Dusg ., + (1= B 7))o () Dy (D exp, (€0 Qo (7)) — 1
= B(e™7) (Moo (2) Dz, = ) + (1 = B(e7)) (To(2) Dug (D exp eifio) Qo)) — 1)

and then using the estimates similar to (7.8) and (7.16) to each term above, we can
obtain

18(%7 ) Moo (2) D &x; + (1 = B(%7)) Mo (2) Dug (D exp, (€wo) Qo (1) = 1llg , (1 s

e 2eX)

< Che? = In||p o (7.18)

Similar estimates can be carried out for the region ©; (2i %) From this together
with (7.17) and (7.18), we have obtained

1Dweé =l 0, 2y < (Choe® + Coe = NInllf , (7.19)

Finally by adding (7.8), (7.16), (7.17) and (7.18), we have obtained the estimate
1D =l 0 < (CPae? + Cloe1= 4 Che® + Che =) ) |8, o

and so for sufficiently small € > 0, we have proven

1
1Dwe€ = nllop.e < 5lnllore

which finally finishes the proof of (6.2) and hence Proposition 7.1. O
§8. Proof of Theorem 3.1

Using the estimates we have established in the previous sections, we are now
ready to construct the map

D€ M(M : f,p) — My(X : K¢, 7).

We will do this in two steps. First, we note the map defined in (4.9) that defines

approximate J-holomorphic maps is obviously smooth map from M (M : f, p) into
FLP. We denote this map by ®§ : M — FLP which is defined by

S (1) := wol. (8.1)
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Now, we would like to apply Proposition 3.2 and 3.3 to w = w®! (with £ = 0) in
Proposition 3.2 in the second step. In Proposition 5.3, we have proven the estimate

2+(p—Do

10w Jo,p,e < Coe™ (8.2)

for all I € M(M : f, p) and in Proposition 7.1 we have obtained the estimate for
the approximate right inverse

. 1
HQEH S C77 HDw‘» o Q€ — ldH < 5

which will in turn imply the estimate

||62wE

< Cos (8.3)
where Qe = Qc(Dye 0 Q)™ is a right inverse of Dy,c. The estimate
|Dwe | < (8.4)

is obvious. These estimates (8.2), (8.3) and (8.4) with £ = 0 satisfy all the require-
ments for us to apply Proposition 3.2 to solve the following equation

0 j(expyye.r Quern) =0 (8.5)

in terms of 7. In other words, we have proven that there exist some €4 > 0 such
that for 0 < € < 4. there exists n = (e, I) € H?_; which solves (8.5) and which

depends smoothly on € and I € M(M : f:ﬁ) The smooth dependence follows
from the content of the implicit function theorem and the uniqueness statement in
Proposition 3.3. Finally, our required map

¢ : M(M : f,p) — My (T*M : A€, 7)

is defined by

(1) = expyer (Quern(e, D))
= eXPge (1) <Q<I>§(I)77(€7I)>' (8.6)
To finish the proof that this map ®€ is indeed a smooth proper diffeomorphism, we
proceed in four steps:
Step I. @€ is a local diffeomorphism,
Step II. ®° is a surjective map,
Step II1. ®°¢ is a proper map.

By combining these three steps, we conclude that ®€ is a finite covering map.
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Step IV. ®€ is a one to one map.
8.1. Step I (Local diffeomorphism,).

To prove ®€ is a local diffeomorphism, it will be enough to prove that the deriv-
ative

TO(I) : TIM(M - f,5) — Tope(yMy(T*M : K, 7°)

is an isomorphism for all I. First it follows from the index computation of the
linearized operator

DE](@E(I)) : Tq,e([)fel’p — ﬁge(])

and
1
Li:W;*— LY < LR x L%,
that both have the same Fredholm indices (See [Fu2]). Furthermore by making a
generic choice of f’ that satisfies the transversality condition imposed as in Theorem
3.1, we may assume that both operators are surjective by Proposition 6.1. We also
note that

TIM(M : f,p) = KerL;
Tpe(1yM.s(T*M : K¢, 7) =2 Ker D ;(®(I)).
Now using the fact that the map

TO(I) : TIM(M : f,5) — Tae(y@1(M)

is an isomorphism which can be easily checked from definition of ®$(I) = w®! and
the fact that that map T®(1) : Tt M — Tge ;)M factors through by the diagram.

Diagram 8.1.

Here the isomorphism on the right hand side arrow comes from the content of the
implicit function theorem Proposition 3.2.

8.2. Step II: Surjectiveness.

Since this proof will be quite involved and long, we will postpone the proof to the
next section. This is the step where we have to use the canonical complex structure
Jg on T*M that is induced from the metric g on M.

8.8. Step IlI: Properness.
By definition of ®{ in (8.1) and in Section 4, the properness of ®§ is obvious.
Since we have the estimates

2+(p—Do

1€ll1.p.e = [Qusn(e, N[ < Ce7 (8.7)
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from Proposition 3.2 and (8.2), we obtain

P-—Do

1€ll1p < Ce (8.8)

from the relation between the ordinary and the weighted Sobolev norms

_z2
1€ll1p < Ce? [[Ell1p.e:
Then the (ordinary) Sobolev inequality implies
(p—Da
dist (®<()(r, 1), ®¢(I)(7,1)) < Ce 7" (8.9)

for all I € M(M : f: p). Now we give the proof of the properness of ®¢. Suppose
that ®¢ is not proper and then there exist a sequence {I;} € M(M : f,7) with
V(Ir) — oo (ie, diverges) but ®°(I;) converges. By choosing a subsequence if
necessary, we may assume that for all k&

lm O (I]e,) = a¢

T——00 ¢
for ¢ = 1,2, 3 respectively. We choose € so small and fixed that

p—Da 1
e < 50" (8.10)

where
D =mind(p,p') where p,p’ € U (Crit (fir1— fi))
p,p’
which is independent of €. Note that if € is sufficiently small, it is easy to see from
the identity x§ = (pi, edf;) that

D¢ > -D" (8.11)

| =

where
D¢ :=mind(z,2') where 2" € U} (A5, NAS).

x,x’!

We choose €5 > 0 such that if 0 < € < €5, then all the above inequalities hold. We
fix any such e > 0. Since ®f is proper and I}, diverges as k — oo, ®§([;) diverges
and so by the weak convergence theorem, there exists a sequence 7, — oo and some
1 among ¢ = 1,2, 3 such that as k — oo

¢ (Igle,)(Tk, ) — & where z§ # & € Uj_; (L5, N LY). (8.12)
However since ®¢(Ij) converges, we have as k — oo

D (Ii]e; ) (Ths ) — o5

i

(8.13)

Combining (8.9)—(8.13), we get a contradiction which finishes the proof of the
properness of @€ for any 0 < e <e5. U

Combining Step I, IT and III, we have proven that

O My(M : f;ﬁ) — M (T*M : Ké,fe)
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is a covering projection with finite sheets.
8.4. Step 1IV: Injectivity.
Suppose the contrary, i.e., these exist I # I’ such that

O (1) = d(I') (8.14)
Since @€ is a covering map, we must have
I -1 >0 >0

for some ¢’ for all 0 < € < g which depends only on § in Proposition 3.2. This fol-
lows from the uniform invertibility of D®(I) : TyM — Tge ;)M (see Proposition
7.1). Hence from the definition of ®{, it is easy to check that

1
195(T) = DL ) [z = 56" >0 (8.15)

by choosing smaller € if necessary. Now (8.14) and (8.15) contradict to each other
by the estimates (8.7), provided e is sufficiently small. This finishes the proof of
the injectivity of ®¢. [

Finally, it remains to prove the surjectivity of the map ®¢ which we will do in
the next section.
§9. Surjectivity of the map o€

We first note that from the uniqueness statement in Proposition 3.3 together with
the estimate (8.10), the surjectivity of the map ®¢ will follow from the following
theorem.

Theorem 9.1. Let J = J; be the canonical almost complex structure on X as in
(1.4). And let § > 0 be the constant given in Proposition 3.3. Then there exists

€7 > 0 such that if 0 < € < €7, for each given w € M j(X : Ké, Z€) there exists some

I=1I(w) e Mg(M : f.7) and nE?‘lepi(I)

such that
W = €XPge (1) (Qrb;([)ﬁ)
with 5
1Qas(nynllLe < 2 (9.1)

The following two lemmas are the first step to the proof of the theorem.

Lemma 9.2. Let J be any almost complex structure compatible to w on T*M.
Then there exists a constant Caoq = Coy(f) depending only on f = (f1, fa, f3) such
that

/u*w = / |Dw|3 < Coyq€ (9.2)
S

for allw e Mj(X : Ke, ), where the norm | -|; on T*M is the one induced from

the metric g(-,-) = w(-, J-).

Proof. Since w is J-holomorphic and J is compatible to the standard complex
structure w on X = T* M, we have the following well-known identity

% fe |Dw|3 = f@ wrw.
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Since w = —df, 0 is the canonical one form on T*M, we have from the Stoke’s

formula ,
/w*w:—/@w*d@z—/@)@w*@z%(—/ﬁjw*@).

On the other hand, since A§ = Graph edf; and w(¢;) C A, we have

¥

J

w*h = —/ edfy = —e(fi(pjr1) — fi(ps))
w(l;)

and by summing up, we have obtained

3 1wl =30 [ wo) =<

j=1 ¢ j

(fi(pj+1) = fi(ps))

3 3
=1

and hence
3

1
3 /@ |Dw|% < 3e Z(max f; —min f;).

j=1
By setting Cyy = 32?:1(1113@( fj —min f;), we are done. [

Lemma 9.3 [Corollary 3.4, Remark after Corollary 3.5; O1]. Denote by D
either the open unit disc or the half-open disc with boundary 0D = (—1,1). Let
u:D — (P,w,J) be a map such that

w(@D)C L and 9ju=0

where L is a given compact Lagrangian submanifold of (P,w). We denote by

es—inf{/u*w | w:(D? 0D?) — (P,L) oru:S*—P

and dyu=0 and nonconstant }

where D? is the unit disc. Then for any r < 1 and u with fD |Dul? < eg, we have

max | Du(z)| < Cas(r)|| Dulls, p1y = 025(r)(/( : |Du|2) g (9.3)
D(1

|z|<r

We remark that in the present case where P = T*M and L = Graph dg for
a function g on M, we have eg = oo in (9.3) because there exists no nontrivial
J-holomorphic sphere or disc with boundary on L. Hence the uniform estimates
(9.3) hold for all (local) J-holomorphic map u : (D,0D) — (T*M, L) where D as
in Lemma 9.3. Combining (9.2) and (9.3) together with the exponential decay of
w € My (T*M : A€, 7, we have obtained

sup |[Dw(z)| < Cogv/€ (9.4)
2€0
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for all w € M (T*M : Ke,fe) where Cyg = ng(f) depends only on f From the
boundary condition w(¢;) C A and from the fact that AS — M as e — 0 in T*M,
(9.4) immediately implies

Slelg d(w(z), M) < Cysv/e. (9.5)

However, the estimate (9.4) is not strong enough to analyze the degeneration of
My (T*M : A€, Z°) to My(M : f,p) and we need to improve (9.4) to the estimate

sup |[Dw(z)| < Ce.
z€O

This is one of the reason why we restrict to the canonical almost complex structure
J = J, induced from the Riemannian metric g on M. The other reason was in the
proof of the transversality result in terms of the gradient flows which was carried
out in Section 6.

Proposition 9.4. Let g be a Riemannian metric on M and J = J4 be the canonical
almost complex structure on T*M induced from the Levi-Civita connection of g.
Then there exists eg > 0 and Cay7 > 0 such that if 0 < e < eg and w € M ;(T*M :
Ke,fe), we have

sup d(w(z), M) < Cayre (9.6)
z€O

Remark 9.5. In fact, the above C’-estimate can be proven for any almost complex
structure J compatible to w, if we allow to vary the metric g on M appropriately
in terms of the almost complex structure J on T*M. This variation will be nec-
essary, when one attempts to prove the result as in this paper (in the presence
of bubbling) for the case of more general Lagrangian submanifolds in the general
symplectic manifold (P,w). This proof uses a different argument using the fact
that the cotangent bundle is “convex” in that the level hypersurfaces of the radial
function are (pseudo)-convex in the sense of symplectic geometry. But we prefer to
use the above more standard method in this paper, where it is enough to consider
the case in which J is the canonical structure associated to the fixed metric g.

Proof. The Levi-Civita connection of g induces the splitting
Te(T*M)=He ® Ve, £€T™M (9.7)

into the horizontal and vertical subspaces. In particular when £ € M C T* M, this
splitting coincides with the canonical splitting

Te(T" M) = Tre) M © Ty o) M

and so J, maps the vector v € TM into the co-vector g(v,-). Furthermore it is
well-known that there exists the canonical identification of V¢ with T’ ;(g)M where
w:T*M — M is the projection. We denote by

the horizontal and vertical projections with respect to the splitting (9.7). Now we
choose the standard coordinates z = x + iy on © as a subset of C and identify 0 jw
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as a section of w*T'M as before. By decomposing 0w into horizontal and vertical
components, we can rewrite d yw = 0 into

(3 ) =1 (3) £ () =0 03
(3 o) - () () <0 o

by the definition of J = J,. We write w(z) = (¢(2),p(z)) for p(z) € T _ M. Then

q(2)
after we apply T'm : T(T*M) — TM to it, (9.8) becomes

5
a—z—i—Tﬂ'oJVyp:O

and after we apply T'mo J : T(T*M) — T M, (9.9) becomes

@—Twkoxp:().
Jy

Therefore the equation d;w = 0 becomes

{ % 1 TroJV,p=0 (9.10)

L —TroJV,p=0. (9.11)

We would like to emphasize that Vp =2 Il o Dw is the covariant derivative of p
considered as a section of 7% M along q and 7w o J(w) is a section of the bundle
w*End(T*M,TM). In particular when Image w C M C T*M, Two J(w) becomes
the natural map

g(v,-) — —v.

To prove (9.6), it is enough to prove
Ip(2)] < Ce
for all z € # and w € M (T*M : A%, 7). Due to the boundary condition
w(l;) € Af = Graph edf;,

this holds on 90. Therefore this will immediately follow from the following lemma.

Lemma 9.6. There exists eg > 0 depending only on f = (f1, f2, f3) such that if
0 < €< eg, the function

z—p(z)]?, 2€®©
s a subharmonic function and so any local maximum of the function is attained on
00.
Proof. We compute A(p,p) where A = 68—;2 + 68—;2:

02 0?
@@7@ + 8—y2(P710>-
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And
2 (p,p) = 2(V.up, Vaup) +2(V,Vop, p) (9.12)
25 (p.0) = 2(Vyp, Vyp) + 2(V, V,p, ). (9-13)

Using (9.10) and (9.11), we compute

V,V.p =V, ( TroJ)” 8y>

Vo(Tro ) )24 4 (TroJ)~1V,(32)
= )% :

and
VyVyp ==V, ((Tro /)7 52)
= —(Vy(Tro)) 1) 5t — (T o) 1V,(8).
Since V (8—3) = Vy(%) by the symmetry of the Levi-Civita connection, adding
(9.12) and (9.13), we have

Alp,p) = 2(<Vzp, Vap) + (Vyp, Vyp>)
+ <(vw(Tﬂ ° J>—1>g—g - (vy(:rw o J)_l)%,p>. (9.14)
Again from (9.10), (9.11), the second term in (9.14) becomes
<<Vx(T7T o J)71>(T7T oJ)Vup+ (Vy(Tﬂ' o J)*l) (Tmo J)Vyp,p) = A.

Using the crude estimates (9.4) or (9.5) and the equation (9.10), (9.11), it is easy
to see
IV(Tmo J)~ < C(IVapl +Vyp))

and so we have
|A| < Cas(|Vyp| + |Vap])?[p|

< CogCogV/e(|Vyp| + [Vayl)?
< CogVe(|[Vypl? + |Vapl?).

Substituting this into (9.14), we have obtained

Alp,p) > (2 — CogV/e)(|Vap* + [Vyp|?)
= (2= Ca9/€)|Vp[* > |Vp|* > 0

provided e is sufficiently small. This finishes the proof of Lemma 9.6 and so Propo-
sition 9.4. 0O

With the C%-estimate, we now proceed the C'l-estimate.
P
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Proposition 9.7. There exists eg > 0 and C3g > 0 such that

sup |[Dw(z)| < Cspe (9.15)
2€0

for allw e M (X : Ke,fﬁ) provided 0 < € < €g.

Proof. Once we have the C%-estimate in Proposition 9.4, the proof of (9.15) is
just a standard blowing-up argument. We will therefore sketch the essential part
of details. Suppose (9.15) does not hold. Then there exists a sequence €, — 0 and

wy, € My(X : A7) such that there exists z; € © with

| Dwy(z1)| = max |Dw(z)| (9.16)

as k — oo. Since M is compact and from (9.6), we may assume, by choosing a
subsequence if necessary, that

w(zk) g€ M CX.
Using the exponential map exp, : T, X — X, we can write

wi (2 +u) = exp, &k (u) or

Er(u) = expgl(wk(zk +u)

for some map
fk:@zk C(C—>TqX

which is defined on

0, ={ueCl|lu <1,z +ue®CC}

Figure 9.1.

Now we define maps wy, into 7, X by
@(v) = Len() = Lexpy ! (wy(n + ) (9.18)
for v € C with RL;Q € 0©,,. The domain of wy, is

(:)k:{UEC\]v|§Rkandzk+Rik€®}.
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Furthermore wy, have the properties that

|Im wy| is bounded
by (9.6) and as € — 0,

|Dwr(2)| < 1+0(1) for all z € O
| D@ (0)] = 1. (9.19)

Now depending on whether

édist (2,00) — 00 or

édist (2,00) — C < o0,

we will have obtained a non-trivial Jy-holomorphic map into (7,X, Jy) = C™ as a
C*-limit of Wy, which will be defined either on C or on the (conformally) upper half-
space C; and whose imaginary part is uniformly bounded. Then by the maximum
principle, this limit must be a constant. On the other hand, by the C'-convergence
and by (9.19), this gives rise to a contradiction. Hence the proof. [

Now we are ready to prove Theorem 9.1 and the rest of the section will be spent
to prove it. We start with the center region ©¢(2). We apply the estimates (9.16)
to each point in O¢(Z) and then we get

max  d(w(0),w(z)) < Czre' 2. (9.20)
ZE@Q(%)

Since we assume 0 < a < 1, we have

lim max d(w(0),w(z)) = 0. (9.21)
e ze@o(e—a)

Now we consider the regions @Z-(e%),i =1,2,3. For given w € M (X : Ke,fe), we
apply the reverse construction of (4.9). In other words, on ©,(2) we define

Xw(o,8) = (¢f+ 0 ¢ft )T hw(2tis) (9.22)

or
w(ZEE) = (¢ 0 ¢ )X w(a, 9)

€

for (o, s) such that
—c0< o <27 0<s<e

and so
(2,2) € 0;(%).

A straightforward computation, using the equation 0 yw = 0 and Lemma 3.4, we
obtain N -
Bt 01 000 (B + Xrpior) =0

i
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For the sake of simplicity, we denote

Ji(s,x) = (¢l 0l ) I ()
Ni(s) = (¢l 0 ¢f" )" wle, (0, 2)

for s € [0,€] and = € T*M. With these notations, Y,, satisfies the equation

6X1u +Jl(87$)(8Xw +X(F+1 F)) =0

Xuw(0,5) = Xi(s) (0.23)
liMy— —o Xu(0,8) = (B 0 ¢l )25 on
%’w(aao)a%w( ,G)EMCX:T*M,

On the other hand, we look at the equation

{ 9X tgrad (fiy1 — fi)(x) =0
x(0) = wle,(0,0) € M

which can be considered the (singular) limit equation of (9.23). To prove Theorem
9.1, it will be enough to prove that there exists some €19 > 0 such that for any
w € M9, 0 < e < €9, there exists some

I =1, = (x1,X2,x3) € My(M : f,F)

such that for each ¢ = 1,2, 3, we have
sup d(Xuw,i(0,0), xx(0)) < 3.

Proposition 9.8. There exists €11 > 0 such that for any given w € M5, 0 < e <
€11 and for each i = 1,2,3, there exists a map X : (—00,0] — M that satisfies

9 4 grad (fis1 — fi)(x) =0

and which also satisfies

wl%

sup  d(Xw(0,0), xw(0)) < (9.24)

o€(—00,0]

Assuming this proposition for the moment, we proceed the proof of Theorem
9.1. By (9.15) and (9.24), we can write

Xw(o,s) = XDy, (o) (o, s)
for —oo <0 <0, 0 <s < e with HEHLOO < £, and so we can write

w(7—7 t) = €XPoc(1,) 5(7—1 t)

for some £ with

€]l Lo < % and I, = (x1,X2,X3) € Mg(M : f.p)
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where y; are the gradient trajectories of f;11 — f; that are obtained from above
for each ¢ = 1,2,3. Now we have only to prove, by further perturbing I, to
I, € MM : f,ﬁ) if necessary, that we can choose gof the form Q<I>§(fw)77 and so
w has the required form

W= XPae(7,,) Qog (1,1

for some 7 € ﬁi’ . We introduce the map
E(z,y) = exp; ' (y)
which is well-defined whenever x,y € X satisfy
d(z,y) < injectivity radus of X.

(See e.g., [K] for the basic properties of the map F.) Using the map E, we need to
solve the equation

Micer Dy ) (E(cb;([), w)> -0 (9.26)

in terms of I. Here we denote by Ilker pg. ,, the L2-projection onto Ker Dq)i(f)
1

e
with respect to the splitting

T.:pi([)fel’p = Ker Dq)i(l) D Image Qq)i(l)

We consider the vector bundle

U Ker Dag
IeM

over M = M(M : f,ﬁ) and define a section & by
§o = Ilker Dae () (E((I)i(‘[)7 w)) :

Solving (9.26) is equivalent to finding a zero of the section £;. We note that from
(9.24) and the accompanied estimates, we have

5Tl < §
and this in turn gives rise to the estimates

||£8(Iw)||l,p,e S C(S

by the elliptic boot-strap because both w is holomorphic and ®{(I,) is “nearly
holomorphic”. Therefore to prove the existence of zeros of £§ near I,,, we have only
to prove that the covariant linearization at I,

ng([w) : T[w./\/i — Ker Dq;.i([w)

is uniformly invertible over € > 0. This is because we can apply the existence scheme
of this paper to this finite dimensional picture which is much easier. However we
have the formula

DES(1)(61) = Ticer D 1, (D1 E(®5 (L), w) 0 DI (81) ) + O().
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From this, (8.17) and from the fact that Image D®{([,) is almost the same as
Ker Dge(y,,), it is straightforward to conclude that DES (I) is uniformly invertible
over € > 0, which finishes the proof of Theorem 9.1. [

Finally, it remains to prove Proposition 9.8.

Proof of Proposition 9.8. From the Cl-estimate (9.16) and from the definition
(9.22), it follows by a straightforward computation that

‘% <C (9.27)

for all w € M (X : A%, 7) and for all € > 0. From (9.23) and (9.27), we get

‘ ag w < C
oo | —

and in particular we have
X w
2% (0,0)| < C.

Therefore the family of maps defined by
o — Xw(0,0)
on (—o0,0] into M C T*M is an equi-continuous family.

We now restrict (9.23) to s = 0 and rewrite it, by writing X, (0, s) = (¢(o, s), p(0, s))
as before, into

g_a' + (T7T © J)Vsp + grad (fi+1 - fz) + TW(Jé - J)(ac?)z: + X(Fi+1*Fi)(5€w)> =0
% — (Tro J)\Vop+TroJ(Je = J) (52 + Xr,,ry(T)) =0

Note that p(0,0) = 0 and so V,p(c,0) = 0. Therefore from the second equation
and (9.27), we have

9q
Js

< ClJe = J|(Xw) < Ce.

Then we have _
V.l < |Vp)1 2] < Ce

because the boundedness of |Vp| follows from the Cl-estimate (9.15) and from the
definition (9.22) of X,,. By taking the C'-limit of the first equation as e; — 0, any
local limit of Y., which we denote by Yy, satisfies the equation

% +grad (fiz1 — fi)(Xoo) = 0.

Since M is compact, we may assume by taking a subsequence, that
w(0,0) - w(0) -2 as € — 0.

Therefore the local limit of ¥, as € — 0 satisfies the initial value problem

{ 9+ grad (fip1 — fi)(x) =0
x(0) =z
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Furthermore, X,,; weakly converges to a cusp trajectory

volJ (Uil )

where

x0(0) =2, lim xo(o) € Crit (f2 — f1)

o——00

Xk € M(fiy1— fi) foreachk=1,--- N

Now by an easy version of the gluing theorem, we conclude that there exists x., €
M(M : f,p) such that

A(Xw, (7,0, xw(0)) < 3.
This finally finishes the proof of (9.24) and hence the proof of Theorem 9.1. [



0-LOOP OPEN STRINGS AND MORSE HOMOTOPY 59

PART II. (HIGHER) MASSEY PRODUCT

§10. Moduli of metric ribbon trees and genus zero marked open Riemann
surfaces

We are going to construct the natural stratification and the compactification of
the moduli spaces G, To 1 introduced in §1.

To explain our compactification of Ty , we use its relation to the moduli space
of pointed genus 0 Riemann surface. We set

(21, ,2k) | 2 € CPY,2; # z;, fori #j}
PSL(2;C)

zg,k = {

Here PSL(2;C) = Aut(CP') acts on {(z1,-++,2k) |2 € CP,z; # zj, fori# j}
by g(z1, -+ ,2k) = (921, - ,92k). We define an anti-holomorphic involution on
S((O:,k by (217"' 7Zk):(zv"' az_k) Let

‘Iﬂg,k ={z e Tg,k | T =z}

Lemma 10.1. ‘I]gk consists of (k — 1)! connected components. One of them is
identified with Tq .

Proof. Let x = [z1, -+ ,2;] € ‘Z]%ik. By the abuse of notation, we write x for the
pointed space [CP';zy,--- 2] also. Composing the canonical anti-holomorphic
diffeomorphism = — T which is nothing but the identity map (note that as sets x and
T are the same), with the (holomorphic) isomorphism x — Z which is the involution
mentioned above, we obtain an anti-holomorphic self-diffeomorphism 7 : z — z.
Since  has no nontrivial automorphism, we have 72 = 1. Therefore, the fixed point
set of 7 is biholomorphic to S = dD? c CP' . We then find that z; € 9D?. We
can fix the representative by taking z; = 1, 29 =v/—1 and 23 = —1. The connected
component of T&k is determined according to the (topological) position of z;’s,
1 =4,---,k. By a simple combinatorial computation, we obtain the lemma. [

Compactification of T& . has been studied extensively in algebraic geometry, and
been used in the theory of quantum cohomology. Let us recall it briefly here. (See
[DM] for a detailed exposition.)

A stable curve of genus zero (¥;z1,--- ,2zk) consists of a connected and simply
connected reduced curve X with k£ nonsingular marked points 21, - - - , 23 such that 3
has at worst an ordinary double point and each irreducible component of 3 contains
at least 3 points which are singular or marked. One can define a topology of the
set ‘Zg’k of all stable curves of genus zero with k& marked points so that Tgk is a

compactification of Eg} o
For each element (X;zq1,---,z5) of SS,W one can define its complex conjugate
(X; 21, -+, z) such that the map (X; 21, ,25) — (2;21,- -+, 2x) is an extension
of the map (CP';zy,--+,2) — (CPY;Z1,- -+ , %), which is defined on ‘I(g,k. There
is a canonical anti-holomorphic diffeomorphism : (X; 21, ,2k) — (5; 21, , 2k)-
We set -
Tﬂ(ik ={r €%, | T=1x}
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Let To be the closure of Ty in T(g’k. It is contained in Tﬂs’k. For an element
(3521, -+, 2;) of Tp,, we have an isomorphism (3; 21, ,2x) — (S;521,, 2k)-
By the stability (namely the nonexistence of nontrivial automorphism of an element
of g(g’k), this isomorphism is unique. Hence by an argument similar to the proof
of Lemma 10.1, we obtain an anti-holomorphic involution 7 : (3;z21,---,2k) —
(3521, , 2). The points z; are fixed by this involution. Let

C={zeX|71(2) =2}

C' is a union of finitely many circles patched at finitely many points, and z; are
contained in C. (Figure 10.1).

Figure 10.1

We define a one dimensional simplicial complex T from C' as follows. The vertex of
T corresponds to a circle of C or one of the points z;. Let {vy, -+, v, }U{z1, -, 2x}
be the set of vertices. We join two vertex v; and v; if corresponding circles intersect
to each other in C. We join v; and z; if the circle corresponding to v; contains z;.
We never join z; and z;. (Figure 10.1)

Lemma 10.2. T is simply connected.

Proof. If not, we can find a nontrivial loop S* in T. It is easy to see that we can
lift it to the nontrivial loop of . But ¥ is simply connected by assumption, which
gives rise to a contradiction. [J

For each vertex v; in T', we have a cyclic order of the edges containing v;. This
cyclic order is induced by the (counter clockwise) cyclic order of the circles corre-
sponding to v;. We recall that a tree with fixed cyclic order of the set of edges of
each vertex, has a unique embedding into R? such that the cyclic order is compat-
ible to the orientation of R?. Thus, for each element of fo,k we obtain an element
(T,1i,z1) of G such that exterior vertices correspond to z1, -, z. Let T(t) be the
set of all elements of ka such that the graph we found above is t.

We thus have described the relation between our two moduli spaces. To make
them more explicit, we are going to construct a map © : Gry, — T i

Definition 10.3. Let t € Gy, £ : C9 (T) — Ry. We take an Euclidean rectangle

L. = [0,4(e)] x [0,1] for each e € C} .(t), and L. = (—o0,0] x [0,1] for each
e € CL.(t). We remove 9[0,4(e)] x {1/2} or 9(—o0,0] x {1/2} from L.. Let
v € CY,(t). We consider edges e, e’ such that v € de,de’. We assume that €’ is
the next edge to e according to the cyclic order we put on the set of the edges
containing v. Then, in the case when the orientation of e, e’ goes from v to another
edge, we glue {0} x (1/2,1] C 9L, and {0} x [0,1/2) C OL.. If the orientation is
different we glue in a similar way. (See Figure 10.2).

We thus obtain a space X(t, ¢) together with an (incomplete) flat metric on it.
We would like to note that in the metric point of view, X(t, £) is not a sub-domain
of C. Xy(t,¢) has holes corresponding to each of the interior vertex of T. We can
fill these holes conformally, and obtain a space X (t,¢) equipped with a complex
structure. This space has k boundary components and &k ends. Therefore we have

produced an element of Ty j for each ¢ € Gry. We denote this element by ©(¥).
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It is easy to see that the assignment ¢ — O(¢) defines a continuous map, which
we denote by © : Gry, — To k.

Figure 10.2
Theorem 10.4. © : Gr, — Ty is a homeomorphism.

We will prove this theorem in §14. Theorem 10.4 is closely related to the theory
of quadratic differential ([Str]).

Now we construct an open covering Ui, U(t : €, @) = Gry which will be used
in the later sections. We introduce some notations first.

Definition 10.5.
(i) Let t,t' € Gx. We say t = t’ if and only if t' is obtained by collapsing some
edges of t.
(i) When t = t, we have a surjective map 7 : T'— T". For v € C? ,(t), we put
¢, = 7 !(v) which is a subgraph of T. We identify each edge e of t' with
an edge m1(e) of T.
(iii) For each t,, we consider the edges in t that intersect but is not contained
in ¢,. For each such edge, we attach an exterior edge (—o0, 0] to ¢, at the
point where the edge intersects ¢,. Let ¢, be the graph obtained in this way.

Now let @ > 0 and € > 0. We define
LeGrt), t=t

U :e,a) =1 (0) € Gry, | L(e) > e @, ife€ OL,(Y) (10.1)
le)<e®, ife¢ CL,(t)

We will choose the constants o = «(t) so that 0 < a(t) < 1 and % << lift=t.
Then it is easy to see that

U Ut: e at) = G
teGy
is an open covering of Gry.

§11. Construction of approximate solutions

We now begin with the proof of our main Theorem, Theorem 1.6 for general k.
The proof goes along the similar line to that of Part I. In fact the construction of
our open covering of the moduli space Gr; in §10 has been organized so that it
works well with the argument of Part 1.

To imitate Part I, we first need an analogy of Proposition 4.1 for general k.
To state it we need some notations. Let aq,---,ar € R™. Suppose that each of
subsets of {ay, - ,a} that consist of £ — 1 elements is linearly independent. We
put A; = {(z ++/~1a; | z € R*} C C".

Next let z = [21,-++,2;] € Tox. Choose a conformal diffeomorphism of D? —
{#z1,-++, 2k} to an open subset ©(z) of C. We take ©(z) so that there is a compact
subset Og(z) such that

k
O(z) — B(z) = U 0,(z)

and ©;(z) is isometric to (—o0,0] x [0, 1] where ©,(z) is the end corresponding to
z;. We let 9;0(2) be the connected component of d9(z) corresponding to 9;D?.
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Proposition 11.1. There is a holomorphic map

w; : O(z) — C"
such that
w(0;0(2)) C A; (11.1.1)
lim (Imw,|e,(7,t) — (t(aiz1 —a;) +a;) =0 (11.1.2)

T——00
Such a map is unique up to addition by real constants.

Proof. The proof of Proposition 11.1 is a straight forward generalization of the
proof of Proposition 4.1 in §4. So we discuss the proof only briefly. We may assume
that n = k — 1 and a; generates C". We then can take k linear maps m; : C* — C
such that

(11.2.1) m; is linear and defined over R.
(11.2.2) mi(a;) = —1if j # 4.

It follows that (71, ,mk—1) is a linear isomorphism. We have

mi(Aj) ={x —V/—-1| 2 €R} forj#i.
mi(A;) = {z+V~-1 |z € R}

By the Riemann mapping theorem, we can find a holomorphic map w; : ©, — C
such that

We then put w, = (71, ,Tp_1) (W1, , Wr_1)-
The proof that w, has required property is the same as that of Proposition 4.1
and so omitted. The proof of uniqueness is also similar. [

In §17, we will specify how to remove the ambiguity in Proposition 11.1.

We will apply this proposition as we applied Proposition 4.1 in Part I. To do
this, we need some preliminaries. Let Tt Then, for each vertex v of t, we have
¢y € Gy, as in Definition 10.5. Here k, denotes the number of edges containing v.
If ¢ € Gr(t), it induces ¢, € Gr(cy), hence an element O(4,) of Tp k.

By the construction of Definition 10.3, ©(¢) € %, together with its explicit
coordinate, can be obtained from ©(¢,)’s as follows: Each of the ends of ©(¢,) is
isometric to (—o0,0] x [0,1], and the ends of ©(¥,) correspond one to one to the
edges of t containing v. We remove (—oo, —e~*/3] x [0, 1] from each of these ends.
We place these domain at the position v.

Next, we take a rectangle [¢!=%/6,/((e) — e!=%/6] x [0, 1] for each e € C} ,(t)
and place it at the position of the edge e. If v € Je, and the orientation of e
goes from v to another vertex, we identify [(e) — ! =%/3,{(e) — e 7*/6] x [0, 1]
with [—e!7®/3, —el /6] x [0,1] C ©O(£,). If the orientation is different we glue
in a similar way. We have thus obtained a space with complex structure. It is
immediate to see from the definition that this space coincides with ©(¢).

Now we outline the construction of approximate solutions. We first consider the
re-scaling map 7 : Gry — Gry, defined by
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Note that this is a diffeomorphism which preserves each stratum. We will define our
approximate solutions on ©(%). As in Part I, we decompose ©(¢) into the “neck”
regions and the “center” regions around the vertices. First we use Proposition
11.1 via the exponential map to construct approximate solutions of the pseudo-
holomorphic map equation on ©(¢,) into T*M. On the neck regions (i.e., rectangle
regions) [e~*/6, %8) —€ /6] x [0, 1], we use the gradient lines as in Part I to define
them. By gluing these using the partitions of unity, we will obtain approximate
solutions. Making this construction precise is the goal of this section.

We first need to remark some technical trouble which was not present in the case
of k = 3 in Part I: The family of domains ©(¢,) form a non-compact family as ¢,
varies and € goes to 0. Therefore it is not clear that the convergence in (11.1.2)
can be made uniform as e goes to 0. We will discuss this trouble in §16 in more
detail. For the moment, we just state and use one lemma (Lemma 11.2) which will
be used in our construction below.

To state this lemma we need some notations. Let us number the set of edges e
such that v € de in a way compatible to the cyclic order. We put leg(e;) = j(i) =
rig(eiy+1). Corresponding to each exterior edge e; of ¢, we have the exterior end
of ©(¢,), which we denote by 0;(¢,). We use (71,t) € (—o0,0] for its coordinate.
Denote by 9;0(¢,) the component of the boundary 0©(¢) such that

8:0(£,) N O: (L) £ 0

81@(&;) N 6i+1<£v) 7é @
(See Figure 11.1).

Figure 11.1
Let p € M and denote a; = grad, f;(;), and

Ai: {I’+ v—la”xéR"} CCn :TPM®C

Lemma 11.2. Let ©(¢,) be as above and w, : ©(¢,) — C" be the holomorphic
map obtained by using Proposition 11.1. Namely

(11.8.1) w,(0iwy) C A;.

(11.5.2)

lim (Im {Ev o, (T,t) — (t(ai+1 — ai) -+ ai) =0 (114)

T——00
Then the convergence in (11.4) is uniform on €, p and £,.

The proof of Lemma 11.2 will be postponed until §16.

Now we describe the appropriate space of maps where we do the necessary es-
timates. First recall that to each element ¢ € U(t: ¢, «) is associated the domain
@(f) with the complex structure that is induced from the flat metric (with finitely
many singularities), which represent it (see the paragraph right before Theorem
10.4). These will be the spaces where we do all the estimates implicit below. We

denote by

MapU(t:E?a)(T*M : Ke,ﬁ) = U Mapf (T"M Ke,ﬁé)
LeU (te,r)
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the fiber bundle over U(t: €, ), whose fiber at ¢ is given by

Mape (T*M : A€, pt) = {w : ©(=) — T*M | w is a smooth map

—~

)
satisfying (1.3.1) and (1.3.2) }.

We would like to mention that w in this set does not necessarily satisfy (1.3.3). We
denote by || - [|o,p,c the obvious weighted Sobolev norm on the space Map. (T*M :

A€, 5°) in terms of the induced metric on ©(y). We would like to point out that

the (ordinary) Sobolev constant of the domains £ are uniform over £ € U(t : €, )

and € — 0. .
We then consider the fibre product U(t: €, ) X My(M : f,p) using the map
e : U(t:e,a) — Gry.

Definition 11.3. Map(T*M Ke,ﬁf) be the set of all pairs ([z1, -, 2x],w), such
that [21,-+,2k] € Tox and w : D* — T*M is a smooth map satisfying (1.3.1),
(1.3.2) but not necessary (1.3.3). Note that it follows that Mapy (g.c,a) (T M, Ke,ﬁ)
is a subset of Map(T*M : Ke,ﬁf).

Now our main result of this section is the following.

Proposition 11.4. There exists a constant C' > 0 independent of €, and maps
\I]i,oc : U(t - 6 a) Xre Mg(M7f7m - MapU(t:e,a)(T*M : AE?F)

such that the followings are satisfied:
(11.5.1) If w is in the image of V¢, then we have

2+(p—Do

19swll0,pe < Ce™ 7

(11.5.2) The following Diagram 11.2 commutes.

Diagram 11.2

Proof. Let £ € U(t: e,a) N Gr(t) for some t = t and I € ./\/lg(M;f,ﬁ) such that
me(¢) = w(I). Here 7 : Mg(M;f,ﬁ) — Gry is the projection. We decompose the
domain O(¢) as follows. We put

0. ~ [0, £(e)] x [0,1] € O(Y)

fore € C}

wnt

(t) and
Q¢ >~ (—00,0] x [0,1] € O(¥)

for e € CL,,(t).

Let v € C? ,(t). We take a vertex vg € ¢, and put p, = I(vg) € M. (The precise

choice will be discussed in more detail in §17.) By Lemma 11.2, we obtain a map

Wy — T, M ®C
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where we identify
TpUM QC = T(pz,,O) (T*M)

Let e € C'(t). Let

or
Xe : (—00,0] = M

be the restriction of I to the edge e. x. is a gradient line of —(ficr(e) — frigee)): We
put

0. <9> _joee, 49 ooy 0,1) c @,

when e € C} (1), and

when e € CL,(t).
Then for each v € C ,(t), we put

€

w;,(2) = exp,, (eWy(2)) (11.6)

on

2 € 0(6y) — | J(—o0, —e7/6] x [0, 1].

For e € C*(t), we put

f eg(e frig e
we(r) = ¢l 0 T (v (er)) (1L.7)
on ©, (35“) On O, (660‘7 3€a) = 0O, (3€a) ( ) we use a partition of unity
in exactly the same way as §4, to patch (11.6) and (11.7). Thus we have obtained
a map :
l
w® = w' : 0(=) — T*M.
€
We put

\Ilia(ﬁ, I) = w!.

The commutativity of the Diagram 11.2 is an immediate consequence of the con-
struction.

To prove the estimates (11.5.1) repeating those in Part I, we need to prove the
following lemma which is relevant to prove the analogoues of (5.6) and (5.8) there.
Once this lemma is proved, (11.5.1) can be proved in the same way as in Part I.
We remark that we also need this lemma to show that C in (11.5.1) is independent
of e.
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Lemma 11.5. We can choose w, so that the following holds: Let (T,t) € ©, (6%&’ 3%&)
Then
dist (w(7,t), we(7,t)) < Cmax{e, 217}

Here v is the vertex corresponding to 0 € [0,£4(e)] ~ e.
We postpone the proof of Lemma 11.5 until §17.
§12. Transversality of the graph flows

We constructed in §11 an approximate solution corresponding to each element of
M(M : f: p). Our next step is to modify it and to find an exact solution nearby of
the pseudo-holomorphic map equation (or the (nonlinear) Cauchy-Riemann equa-
tion). Roughly speaking, we can carry out this modification, provided the linearized
operator is surjective (namely when there exists a right inverse of the operator.)
This is the way how we did in the case when k£ = 3 in §6,7. The existence of the
right inverse was proved there by making use of the transversality hypothesis in
Theorem 3.1 for the unstable manifolds of gradient vector fields.

To generalize the line of ideas in §6, 7 to general k, we need to define and
verify the transversality of the moduli space My(M : f,ﬁ) and to understand
its relation to the existence of a right inverse of the linearization of the Cauchy-
Riemann equation. This is the analogoue to the proof of Theorem 1.4. But we
will not complete the proof of this theorem at this stage, since we still have to
incorporate and glue the moduli spaces corresponding to different combinatorial
types of graphs. Therefore in this section, we fix the combinatorial type of t and
consider the subset Gr(t) of Gry and study the transversality there. The gluing
construction we need to complete the proof of Theorem 1.4 will be explained in §14
and §15.

Let t = (T,i,p). We fix a vertex vg € C) ,(T). For each exterior edge e;
(i=1,---,k), let v; be the interior vertex contained in e;. (The other vertex of e;
is exterior.) We remark that v; = v; may happen for i # j. We order them so that

Ul:...:fuil_l#vil :“.:UiQ_l#Uig:...#Ui/yn:..‘:vk'
Here i1 < ig--- < iy,. We are going to define a map
Exp = Expy: M x Gr(t) — M™.

For 1 < h < m there is a unique minimal path in 7" joining vg and v;,. Let ejn,

., ;. be the edges contained in this path in this order.
Ch

Figure 12.1
Let V;)h be the vector field such that

‘/E)h - _(grad flef(ejg) - grad f’rig(ej?))

Let Eacp(tV})h) : M — M be the one parameter group of transformations associated
to this vector field. We denote

Expp(p,l) = Emp(ﬁ(ej?)vlh) 0---0 Exp(é(ejgh)vh )(p)

Ch
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In other words, we define a map

rr- | {v-M
veC9 (T)

ext

such that I satisfies (1.4.2), (1.4.3) and I(vg) = p, and put :

I(vi,) = Expp(p, L)

We set
Exp(p,l) = (Exp1(p,£),- -+ , Expy,(p, ?)).

We write Exp 7 in case we need to specify ]F

For a critical point p; of fit1 — fi, let W, (fi+1 — fi) be the unstable manifold
of the gradient vector field of fi11 — fi. Let m : Mgy(M : f,ﬁ) — Grg be the
natural projection. We denote by M (M : f,7,t) the inverse image of Gr(t) in

My (M - f.,7) under the map 7 . Now the following lemma is immediate from the
definition.

Lemma 12.1. There exists a natural one to one correspondence

m tht+1—1

T N Wl (Fivr— £) | = M(M - fo)

h=1 j=ip

Now we would like to formulate the transversality of the moduli space M 4(M
f,Pp, t). To study the transversality property of M (M : f, p), the identification in

Lemma 12.1 is not suitable enough because the structure of the set ﬂ;htfh w Wy (fi+1—
fj) could be quite complicated. For example there is no simple criterion for the set
to be a smooth submanifold unless the intersection is that of a pair of submani-
folds. Because of this reason, we consider the transversality in the following way:
We assume that all the functions f;y1 — f; are of the Morse-Smale type and so
all W~ (fj+1— f;) are smooth submanifolds and intersect one another transversely.

We study the map

m  thy1—1 m ipt1—1
EXP: M x Gr(t xH I W, (fisa - (Mx ] M)
h=1 j=ip h=1 Jj=in
that is defined by
EXP(p, ¢, [T #n) = [[(Bxpn(p, 0), 1(5n))
h=1 h=1

th41—1

— _ : -1 —
Wh‘ere ph = (p’Lh’ o 7p(ih+1—1)) E HJ:zh ij (f]+1 - f_]) a‘nd L H;h:t; Wp—j -

Hé}g{l M is just the inclusion map. Now the following is easy to show
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Lemma 12.2. There exists a natural one to one correspondence

m th4+1—1

EXP! (H Ah) ~Erpt | [T () Wy, (i = £)
h=1

h=1 j=ip

where Ay, is the diagonal in M X (Hi.h“_l M)=Mx---x M.

J=in

Now we are ready to formulate our transversality condition.

Definition 12.3. An element of M, (M : fop1) is called transversal if the map
EXP above is transversal to [[,—; Ay, at the point (p, ¢, H;h:llh_l Pr) of M x Gi(t) X
(H;h:*z;_l W, (fj+1 — f;)) corresponding to the given element in My(M : f,p;t)
through the correspondences in Lemma 12.1 and 12.2. If this is the case at every

point in M, (M : f.p, t), then we say that M (M : f,ﬁ, t) is transversal.

For the convenience of the exposition, when the transversality in Definition 12.3

holds, we will often simply say that the map Fxp : M x Gr(t) — M™ is transversal
to [T, ﬂ;}:’fh_l Wy (fi+1 — f;). One always has to appropriately interpret into
that of EX P whatever statement on the map EFxp appears below.

The following lemma can be proven by a simple dimension counting argument

using the transversality of the map EX P formulated in Definition 12.3.

Lemma 12.4. Suppose M(M : f,ﬁ, t) is transversal in the sense of Definition
12.8. Then M(M : f,Pp, t) is a smooth manifold of dimension

k
Zu(a:z) — (k—1n+dimGr(t).

i=1
We remark that it is not difficult to show

dmGr(t) =k—3— > (k,—3),
veC?¥ (T)

int

where n = dim M and k, is the number of edges containing v. (See §14 for its
proof.)

Now we prove the following transversality result.

Proposition 12.5. There exists a residual subset of (C°°(M))™ such that for f in
it, every element of My(M : f,p,t) is transversal in the sense of Definition 12.5.

Proof. Let U; be a sufficiently small neighborhood of p;. We consider the subset
of (C°°(M))m consisting of the functions which coincides to the given f at U;. We
define .
MgM )= | Mg(M: [,
fe(ce= )y

We first remark that for f in a residual subset of (C°°(M )" all fj11 — f; are of the
Morse-Smale type and so the unstable submanifolds of these functions are smooth.
Therefore we take a such fy and consider f’s only in a small neighborhood of fj.
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The next step is to find a perturbation of f such that Fzp become transversal
to [T, ﬁ;’;;flwp_j (fi+1—fj). We will choose the perturbation so that it does not
change the unstable manifolds involved. For this purpose we choose open subsets
Vi of M as follows. We write v; < v; if the minimal path joining vg and v; contains
v;. Our open sets V; C M satisfies the following. Here we identify T with its image

by I € My(M : f,7,¢).

(12.1.1) The intersection of V; with the minimal path joining v; and vy is nonempty.
(12.1.2) If the intersection of V; with the minimal path joining v; and vy is non-
empty then v; < v;.

(12.1.3) V; do not intersect the unstable manifolds Wp; (fiv1—=fi) s =th, - s iht1—
1 unless the dimension of W (f;+1 — f;) is dim M.

Figure 12.2

(It may happen that some v; coincides vg. In that case we do not require (12.1.1)
and just take V; empty.) One can find such open subsets by taking V; to be a
sufficiently small neighborhood of the point p which is on the path joining v; to vg
and which is sufficiently close to v;.

Next we consider the map

Bxp: M x Gry, x [[ C8°(V;,) — M™
h=1

such that E\gc/p(p,ﬁ,g’) = Exp(p,ﬂ,f;). Here the ¢ th component of f_7 is fi + gn
where i, <14 < ip11. By abuse of notation we write f + § for this element f’.

‘We consider
m thy1—1

1 _
Exp H ﬂ Wpi(fj+1_fj)
h=1 j=in
Now we show :
1 . _
Lemma 12.6. Exp <H?:1 ﬂ;}‘:llh 1Wp:(fj+1 - f])> is a smooth submanifold of
M x Gri x [, C§°(Vi,). Furthermore the restriction map of the projection m :
M x Gry, x T2y C5°(Vi,) = T2y C5°(Vi)

m tht1—1

E?r/]o_l H ﬂ W, (fi+1 — ;) —’HCSO(VM)
h=1

h=1 j=i,

is a Fredholm map.

Once we have Lemma 12.6 then Proposition 12.5 is a consequence of the Sard-
Smale transversality theorem [Sm]. (More precisely we replace C§°(V;) by a Banach

space contained in it, as in Floer [F12].) Now we prove Lemma 12.6. It suffices
to show that the map Fxp is transversal to [, ﬂ;*jii_le_j(fjH — fj)- (The
Fredholmness is easy to show in the formulation of Lemma 12.4.) To prove it

we are going to show that the differential of EZU/p is surjective. Let (p,¢,q) €
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M x Gr(t) x [[;—, C5°(V;), and (g;) = Exp(p,(,§). Let X; € Ty, M. We are going
to find g; an V € T, M such that

dExp(exp,(tV), ¥, f+ tg)
dt

= (X1, -, Xm). (12.2)
t=0
We find such a g; by induction of the order < of v;. We remark that Condition

(12.1.2) implies that g; do not affect the i-th component of dExp(expp;iv)’e’Htg) o

unless v; < v;. Hence we can modify g; according to the order < of v;.

First suppose possibly there exists v; with vg = v;. Such an element is necessarily
the smallest element among v;’s. Then clearly the i-th component of Exp(p,?, f)
is p. Hence by putting V = X, (12.2) is satisfied for the i-th component.

Next we construct g;. Assume we have already chosen g; for ¢ with v; < v;.
Take g’ so that g, = 0 for those which are not yet chosen. We have already chosen
dE':z:p(E,erpgt(tV),f-i-tg ) ‘ by ij By

V also. Then denote the j-th component of

Condition (12.1.1), we can find g; so that, if g; € [[;~, C§°(V;) is the element

whose h-th component is 0 unless i = j and whose j-th component is g;, then the

dEmp(ezpp(tV),Z,f+t§'j)
dt

becomes X; —Y;. Then (for any choice
t=0

j-th component of

of g we make later) the j-th component of dEwp(ewpp((iiv)’z’ng) is X;. Thus

t=0
Lemma 12.6 now can be proved by induction. Hence the proof of Lemma 12.6 and
so that of Proposition 12.5. [

§13. Construction of the right inverse and the exact solutions

In this section, we use the transversality established in §12 and construct a
right inverse of the linearized equation of the Cauchy Riemann equation at the
approximate solutions constructed in Proposition 11.4. This construction is parallel
to that in §6, 7. So we will explain only the part where arguments are new. The
main new point in the current situation appears when rephrasing the transversality
condition as we did in the beginning of §6.

Let (p,£) € M x Gry be the element corresponding to the map I : T — M in
Mg(M : f: P, t) through Lemma 12.1. We assume that it is transversal in the sense
of Definition 12.3.

We identify each interior edge e of T to [0, 4(e)] and exterior edge to (—oo,0].
Let xe : [0,4(e)] = M or x. : (—00,0] — M be the restriction of I. We put

WP =4 (c.) € H WEP(XETM) | co(v) = cor(v) if vEe,vee,veC(T)
ceCH(T)

There is a map :
L WP = [ LP(cTM).
e
whose e-component is given by
L.= Lxe =Vi+ v.g’ra’d(flef(e) - frig(e))

We have :
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Lemma 13.1. L is surjective when I € My(M : f,ﬁ, t) is transversal in the sense
of Definition 12.2.

Proof. We consider the space :

WP it = 9 (ce) € H WYP(XETM) | ce(v) = cer(v) ifv€ene,veC (T)
eecilnt(T)

We define the map

Lént WI int H Lp(XZTM)
eGC}m(T)

in a similar way. We also define the evaluation map
P A
ev: WI int hejl TI(’Uzh)(M)
by
(ce) = (ce (viy,)-

Here €} is any interior edge containing v;,. Then the transversality condition in
Definition 12.3 for (¢, p) is equivalent to the surjectivity of the composition of the
map

'Lh+1 1
Ker L{" =% opL, I(vzh)(M)m@h Ny | () Won(fir = £) | (13.1)
J=in

Here Np(y,, )(-) means the normal bundle of (-). Again the precise formulation of
this statement should follow the kinds of Lemma 12.2 and Definition 12.3 in their
linearized version. We leave this obvious translation to readers.

Now we take an arbitrary element (b.) € []LP(x;TM). First let e € C} (T), v
be one of the vertex of e and V' € Ty(,)M. By the existence of solution of Cauchy
problem for ordinary differential equation, we can find c.(V) € WHP(x*T M) such
that

Le(ce(V)) = be

ee(V)(e) =V 152

Now we use this fact and the fact that 7" is a tree to find (c,) € VV1 P . such that

Ly ((c)) = (be)

Next we consider an exterior edge e;. (We are again using the same notations as in
the beginning of §12.) Then, for each W; € Ty, (W, (fi+1 — fi)), we have

c(ei, Wz) S Wl’p(X;TM)
such that
Le,(c(ei, Wy)) = b(ei)
C(eia Wl)( ) Wz

(13.3)
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Now we consider ¢ (v;,) € Ti(,, )M. Again the transversality in Definition 12.3
implies in particular that we can find

ih+171
VhGNI(Wh) m th(fj+1_fj)
J=tn
and
th41—1
Wiy € Tl(vih)< ﬂ (W, (fis1 _jj))>
J=in
such that
Wh, — Vi + c.(v;, ) = 0. (13.4)

Using the surjectivity of (13.1) we find (d.) € Ker L such that ev(d,)
Now we put

|
—
S
~

ce=c,+d, if ecClL,(T)

e, =clej, Wy)  if € € CL(T),in < j <ipa

By (13.2)-(13.4), we have
Ce(vj) = céh(”j) J=1tny i1 — 1

Hence ¢ € W, "*. By definition L;(c,) = (b.), as required. [

Once we establish Lemma 13.1, we can imitate the arguments in the proofs of
Propositions 6.1 and 7.1 to obtain a right inverse of the linearization of 9 at the
elements defined in Proposition 11.7. Then using the estimates in Proposition 11.4
together with the above discussion on the right inverse, one can repeat the same
proof, with obvious modifications, that was carried out for the case k = 3 in §7-9.
Hence we have constructed the required diffeomorphism in a neighborhood of each
stratum Gr(t).

Proposition 13.2. For sufficiently small € > 0, there exists a constant C' and a
smooth map

2, Ut:e,0) X, My(M, f,5) — My (T*M : K, ) C Map(T*M : K¢, 7)

such that

(13.7.1) Diagram 11.2 commutes and
(13.7.2)

2+(p—Do

=€ _ \Jy€
—ta ‘l}t:a| S Ce P

In the next remaining sections, we will patch these diffeomorphism together and
obtain the global diffeomorphism asked in the Main Theorem, Theorem 1.7.
§14. Gluing moduli spaces (Metric ribbon tress)

In this section, we reprove Stasheff’s theorem and also we make clearer the
relation between moduli spaces of graphs and genus zero open Riemann surfaces.
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Theorem 14.1. [Compare with (Stasheff [St1])] Gry can be given a smooth
structure with respect to which it becomes diffeomorphic to R¥=3.

We here first recall a gluing construction of graph modulies. Let t = (T,i,p) €
Gry and k,; v € C? ,(T) be the number edges containing v. We use the map :

D¢ : Gr(t) x H Gry, — Gry,

veC? ()

The construction is by gluing and is similar to the proof of Lemma 11.3. More
precisely, let

Gw)year®x [ Gre

veC? ()

Here ¢, € Gr(c,) C Grg, and ¢, = (Cy,4y,py). We replace the vertex v € T by
the tree C,. Namely we identify k, edges containing v and k, exterior edges of C,,
using their orders. Then we obtain a graph. Together with its ribbon structure
and order we denote it by t. Then ®¢ (£, (£,)) = ¢’ € Gr(t). Here {'(e) = {(e) if
e€ CL (T)and l'(e) = £,(e) if e € CL ,(C,).

Let ¢, € Gk, and ¢y » € G, ,, Where u € C? .(cy) and ky, be the number of

edges containing u. We then have the following commutative diagram :

Gr(t) x [IGr(cy) x [1Gr(cun) 2 Gr(t) x [[Gr,

o 1

Gr@ X [1Gr(cuw) — Gry,

Diagram 14.1

Now we start with the proof of Theorem 14.1. We prove this by induction on k.
Suppose that the theorem holds for ¥’ < k. Let t, € Gry be the graph which has
no interior edge. Then Gr(tx) is a point. We first prove that Gryp — Gr(t;) is a
topological manifold. Let t # t;. Then k, < k for each v € C9 ,(t). Hence, by

the induction hypothesis, Gry, is homeomorphic to R¥*=3. Using it we find that
Gr(t) x [ Gr(k,) is homeomorphic to R¥=3. (Note that Gr(t) is a cell.) Therefore

O Gr(t) x HGrkv — Gry,

is a homeomorphism from R*~3 to a neighborhood of G7(t). We regard them as a
coordinate chart. So this gives a structure of topological manifold to Gry — Gr(tx).

We next prove that these charts give a smooth structure to Gry — Gr(tx) . The
proof of this fact is again by induction. From the induction hypothesis, there exists
a smooth structure on Gry with respect to which it is diffeomorphic to R¥ -3
for ¥ < k. Then the C°° compatibility of the above charts is a consequence of
the commutativity of Diagram 14.1 and the construction of the diffeomorphism
Gry, ~ RF*=3 which we are going to explain later in this section.

We have thus obtained a smooth structure on Gry — Gr(t;). We remark that
there is an action of Ry on Gry — Gr(t;). This action is free and Gry is the cone
of the quotient space of this action. Hence to complete the proof of our theorem,
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we have only to prove that the quotient space is diffeomorphic to the sphere. We
will prove this fact by using a relationship of G, to the other moduli space .

Our basic observation to prove Theorem 14.1 is that the natural cell decompo-
sitions of the compactifications of Gry, and %y j is the dual decomposition to each
other. We now explain this point more precisely.

Let To,k be the compactification of Ty as we explained in §10. It has a cell
decomposition such that each cell corresponds to an element of Gy, as follows. We
define cells A(t) for each t € Gj. An element of T . is identified to [X; 21, -« , 25; 7]
such that > is a genus zero stable curve z; are regular points of ¥ and 7 is an
anti holomorphic involution of ¥ such that 7(z;) = z;. If [X;21, -+, 2k;7] is in
the interior ¥jj of our moduli space, namely if ¥ is nonsingular, we say that
X521, ,2k;7] € A(tg). (Here t is the graph without an interior edge.) Oth-
erwise we obtain a ribbon graph t = (7,4,p) as we explained in §10. We say
(X521, -, 23 7] € A(t). It is easy to prove that A(t) is a cell. It also follows that
their dimensions are given by

dimA(t) = > (ks —3) (14.1)

veC? (1)

where k, is the number of edges containing v. These cells will turn out to be the
dual cells of Gr(t) as we will prove later in this section. We now calculate the
dimension of Gr(t). We first remark that

dim Gr(t) = jiC’mt( ) (14.2)

On the other hand, by Euler’s formula using the fact that our graph is a connected
tree, we have

1 =#C%(t) — HC*(¥) (14.3)
We also have $C}_,(t) = $C°,,(t) = k, and
2CH (1) = k + Z k, and so
veC? (t)

Qﬁ znt =—k+ Z ko.

veC? . (t)

Combining these, we have

3 =34C7, () — 3¢ mt()
=3 Z znt ) jj znt()

veC? (t)

=— D (k—=3)+k—HCL(1).

veC? (t)
Hence from (14.1) and (14.2), we conclude

dimGr(t) =k—3— > (ky—3) = dim T — dim A(t). (14.4)
veCY (1)
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Next we recall the definition of the dual cell decomposition. First let X be a
smooth manifold and X,, a € I, I being a some indexing set, be smooth subman-
ifolds such that their closures X, become smooth submanifolds with corners. We
say that they consist of smooth cell decomposition if the followings are satisfied :

(14.5.1) X, are disjoint from one another and [],.; X, = X.

(14.5.2) X, is diffeomorphic to R/, and X, (after smoothing out their corners) is
diffeomorphic to D!, Here |a| is a positive integer.

(14.5.3) The boundary dD!®l of D!®l is a union of some of the X;’s with |b| < |al.

Given such a decomposition we define its dual decomposition as follows. Our
definition is given by induction on the dimension n of X. Suppose that the dual
decomposition is defined for manifolds of dimension < n. Let a € I and p € X,.
We consider the normal bundle N,X, and its unit sphere bundle SN,X,. For
each Xp with X, D X, we consider the intersection S NpyXan prb which is a cell.
These cells define a cell decomposition of SN,X, = S"~l¢l=1. Therefore by the
induction hypothesis we obtain a dual decomposition of it. We add one more cell
of dimension n — |a| to the dual decomposition of SN, X, = S"~1%=1. The we get
a cell decomposition of D™ el which we define to be Y.

We now glue these cells as follows. For a,b € I we are going to construct
an inclusion Y, C Y. We construct it in case |a| = |b] + 1. (In the general
case we can construct the inclusion by composing inclusions of this case.) Let
g € Xp. We choose a unit normal vector v € SN, X3 which are tangent to X, and
exp(ev) is contained in X, for small e. Since |a|] = |b| + 1 there is only one such
vector. We consider the decomposition of SN, X3 induced by the decomposition
of X. This decomposition induces that of SN,(SN,X;). One finds easily that
the decomposition obtained on SN,(SN,X;) is the same as the decomposition
of SN, X,. Hence by construction, the cell of the dual decomposition of SN,X}
which corresponds to the point v € SN, Xj, is isomorphic to Y,. We thus obtain an
inclusion Y, C Y}.

By gluing these cells that we have defined as above Y, using the inclusion, we
obtain a cell complex Y. It is easy to see that it has a smooth structure such that
Y, gives its smooth cell decomposition. Then we have

Lemma 14.2. X is diffeomorphic to Y.
Proof. The barycentric subdivision of X becomes also a subdivision of Y. [
Now we can state Theorem 14.1 more precisely in our context.

Theorem 14.3. Let us compactify Gry, using the Ry action on Gri — Gr(tx) and
denote byg_rk the compactification. Then (Gry, {Gr(t)}) is the dual cell decompo-
sition to (Zok, {Z(H)}).

Proof. The proof is again by induction on k. Suppose that Theorem 14.3 is true
for k' < k. We consider the cell Gr(t) and take a point p on it. Then N,Gr(t)
together with its induced decomposition can be identified with [], c o O GT(k,—3)-

We assume that t # t;. Then using the dimension formula (14.4) and the induction
hypothesis, we derive that SN,Gr(t) is the dual decomposition of the boundary

B, H Ty —3)

vGC?nt(t)
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We put X = Gri and use the notation in the definition of the dual decomposition.

Then we find o B
Vi= I To-s
veC? . (t)

Since this holds for arbitrary t except possibly t; we find that 0Gr), and Of(k,g)
are dual to each other. It follows that dGr), ~ S*~*. Thus as we already explained
Gry is a smooth manifold. We then conclude from definition that (Gry, {Gr(t)})
is the dual cell decomposition to (Zg x, {T(t)}). The proof of Theorem 14.3 and so
that of Theorem 14.1 is now complete. [

Now we are in the position to prove Theorem 10.4.

We first remark that by construction we can extend the map © : Gry — %o i, to
its compactification © : Grj, — §07k. Here 0Gry, = Gr}, — Gry, consists of (t,£) such
that ¢(e) = oo for some interior edge e.

We first prove that © is surjective by induction on k. We will prove that it
is of degree one (namely induces an isomorphism 0 :H k_3(§07k,8§07k;2) —
H*3(Gry,0Gry; 7)) at the same time. When k = 3 then Grz = %p,3 = one point.
Hence there is nothing to show. Suppose that Lemma 10.3 is true for £k — 1. Then,
we find that the restriction of © : Gry — fg}k to each cell in OGr}, is surjective and
is of degree one to the corresponding dual cell in 8@0,;@. Hence the restriction of ©
to OGry, is surjective to 9% and is of degree one. Since we already proved that
Gri, ~ T RF=3_ it follows that © : Gry, — %o,k is surjective and of degree one.
The proof of the surjectivity of © is complete now.

We next prove that © is a diffeomorphism. We remark that it suffices to show
that © is a local diffeomorphism. This is because our map is between two spaces
homeomorphic to the disk and is of degree one.

We first consider the top-stratum i.e., the case in which t € G}, is a trivalent
graph.

Lemma 14.4. Let t € Gry be a trivalent graph. Then the differential of © is
invertible at points of Gr(t).

Proof. Let ¢ € Gr(t). We consider ©(f). We take its double ©(¢). It is a Riemann
surface of genus 0 with k ends. We also have an explicit diffeomorphism between
each of the ends of @(6) and (—o0,0] x S1. Moreover O(¢) has an anti-holomorphic
involution 7.

By the general theory of deformation of complex structures, the compactly sup-
ported Dolbeault cohomology

H%LO(0), 0(TO(1)))

cpt

of the tangent bundle is canonically isomorphic to and so can be identified with
the tangent space of the moduli space, T@(Z)S(&k ~ CF-3. 7 induces an anti-
holomorphic involution of the Dolbeault cohomology and its fixed point set corre-
sponds to Te) %o,k = R*~3 under the identification.

By construction we have k — 3 annuli ©, ~ [, £(¢) — €] x S* embedded in O(¢),
which corresponds each of the element e of C} ,(t). We have a homomorphism
induced by inclusion ;

P H1 (6, 9(T6.)) — HE1(B(6), D(TO(0))). (14.5)

cpt cpt
e
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Using the fact that (:)(K) — U, is a union of CP! — {3 points}, whose deformation
is trivial, we find that (14.5) is an isomorphism.

On the other hand, the real part of ngi((% O(TO,)) (the fixed point set of 7)
is R. This group is identified with the real part of the tangent space of the moduli
of complex structure on annulus. Thus the differential of © is identified to the real

part of the map (14.5) and hence is invertible. [J

By now we have proved that © is locally a diffeomorphism at each top dimen-
sional strata. We now prove by induction on k that it is a local diffeomorphism
everywhere.

If £ = 3, there is nothing to show. We assume that it is proved for k£ — 1
and smaller. We are going to prove that © is locally a diffeomorphism for k£ on
Gri — Gr(t).

Let t # t; and ¢ € Gr(t). We have ©. C ©((), ©, C O(¢), for each e € C} ,(t)
and v € CP ,(t) such that they are disjoint to each other, O, is a rectangle, and O,

is obtained by gluing k, rectangles in a way similar to the definition of ©. Let ée,
©, be their double (see Figure 14.2).

Figure 14.2

Lemma 14.5. The map

~

@11&1 (©.,9(T8,) @@Hcpt (0,,9(18,)) — HY}(8(6), D(T6(0))).

s an isomorphism.

Proof. We can find ©; ~ [0,C,] x [0, ] cOW),i=1,-,2CL (t) and ©; ~
( 0] [0 1] - @(6) = ﬁ znt( ) ﬁ znt( )—Hjcert( ) such that @(6)_U@’L
is a compact subset of U@ U U@ We remark that

HOY(0;,9(T6,)) =

(The cohomology here is not one with compact support.) Now let v € H, Spllf (O(£), D(TO(0))
T(A%! ® TO(/)) with du = 0, 7u = u. We find w; € T(TO(()) such that

Ow; = u, Tw; = w;. We take v/ =u — > d(x;w;). Here {x} is an appropriate par-

titions of unity. Then we have [u] = [v/], and v is supported in a compact subset

of U(:)6 U U@U. This proves that the homomorphism in Lemma 14.5 is surjective.

Then it follows by dimension counting that it is an isomorphism. [J

Now we remark that

T,Gri= @ Rae P TuGr, (14.6)

eecilnt (t) UeC'?nt(t)

Here 0 € Gry,, is the unique point in Gr(ty, ), where i, is the graph without interior
edges. The differential of © at ¢ has the component corresponding to e which is
identified with the restriction of the isomorphism in Lemma 14.5 to the real point
of H1(©,,D(TH.,)).

cpt
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On the other hand by induction hypothesis, we see that the map

ToGry, — HYHO,,0(T6,))

cpt

induced by the differential of © is an isomorphism to the real point. Therefore, by
Lemma 14.5, the differential of © is an isomorphism at ¢ € Gr(t) when t # t.

Now using the facts that both Gry and %y j, is homeomorphic to R*=3 and that
O is a diffeomorphism at boundary (which follows from the induction hypothesis),
we can prove that © is a homeomorphism. We can then choose a differentiable
structure of Gry at Gr(tx) such that © is a diffecomorphism at Gr(tx) also. The
proof of Theorem 10.4 is now complete.

§15. Gluing moduli spaces (Graph flows)

Using the result of the previous sections, we are going to prove Theorem 1.6.
Namely we construct a smooth structure on the moduli space My(M : f,p) =
UMy (M ﬁﬁ, t). We have already proved in Lemma 12.4 that for each t € Gry

and generic f, the moduli space My(M : f, P, t) is a smooth manifold of dimension

dimMy(M : f.5 ) =n—3— > (ky—3)+ > p(z:) — (k—1)n.

veC? (1)

Our task in this section is to glue them together to obtain a smooth manifold

My (M : f,p).
We first recall the definition of

Gr(t)={t:C} . (t) =R | £(e) > 0}.

We put
Gri(t)={¢:C} (t) = R | £(e) > 0}.

We then find that
Gri(t) = H Gr(t).

it

We recall here that t = t' means that t’ is obtained by shrinking some of the interior
edges of t. Note that the transversality is also satisfied for t' for generic f

We consider the cell Gr(t'). Its neighborhood in Grt(t) is diffeomorphic to
Gr(t') x W(t,t) where W(¥,t) is a neighborhood of 0 in the set

{V e NGr(t)| exp,(tV) € Gr(t) fort>0,t<<1.}
Here ¢ is a point in Gr(t'). W(¥,t) is a cone of the set SW(t,t) which is an
intersection of W (t', t) with the unit sphere in N,Gr(t'). SW(t',t) is of dimension
dim Gr(t) —dim Gr(t') — 1.

Lemma 15.1. Let I/?/(t’, t) = W', )NGr(t). Then by choosing W (¥, t) sufficiently
small, we have a diffeomorphism :

W, 8) x My(M : FL5¢) = My(M = f,7,0 na ' (W(E, 1)
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which is compatible to the projections to W (t',t).
Proof. We extend the map

Expy: M x Gr(t) — M™
defined in §12 to a continuous map :
Expl : M x GrT(t) — M™

We regard Gr(t') as a subset of Gr*(t). Then the restriction of Exp, to Gr(t') is
related to Exzpy : M x Gr(t') — M™ as follows. We recall that m is the number
of interior vertices of t which are contained in one of the exterior edges, and similar
for m’. Let {v1, -, v} € CO,(t) and {v},---,v/,} € CY (') be those vertices.
Since t' is obtained by shrinking some of the edges of t, each of v} corresponds to
some of v;’s. We define the map

a:{l,--- . m}—{1,--- m'}

such that v;(i) is obtained from v;. We then define sy  : M™ — M™ by

St/,t((Pj)lgng) = (¢i)1<i<m Wwhere ¢; = p; for j = a(i). (15.1)
Then by definition the map
syro Expy : M x Gr(t') — M™

coincides with the restriction of Fap{. Therefore by using (12.1.2) for t', we can
prove that restriction of Exp” to M x Gr(t') is transversal to

m thy1—1

IT N W, =1

h=1 j=iy

Lemma 15.1 then immediately follows from the implicit function theorem. [

Now we are ready to prove Theorem 1.6. For each t, we consider

MEM 5,60 = Mg(M : f.5,0 U [T Mg(M : f,5,¢)

t-t/

We define a topology and a smooth structure on it so that the map
W, ) x Mg(M : f,p,) — M (M : f,p,0)

in Lemma 15.1, gives a coordinate chart. Then by Lemma 15.1 the space M;‘(M :

f,ﬁ, t) becomes a smooth manifold with corners. For t > t/, there is a natural
inclusion

ME(M : fLp, ) C MS(M : f,p,t)
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Using these inclusions we can patch M;F(M : f, P, t)’s together to provide a topology
on Mgy(M : f,p). It remains to define a smooth structure on it.
Let u € My(M : f,p,t) € My(M : f,5). Then its neighborhood in M, (M :
f.P) is the union of
U w,oxvu

titt/

where U is a neighborhood of u in Mg,(M : f,Pp, t). We remark that for a given t

the set
U W,y

tit—t/

is identified with a neighborhood of 0 in the fibre of the normal bundle of Gr(t) in
Gry. Since we have already proved that Gry is a smooth manifold, it follows that
Up.eev W(t', 1) becomes a smooth manifold. We thus get a chart of M (M : f,ﬁ)
in a neighborhood of u. It is obvious that these charts are compatible and so define
a smooth structure of M, (M : f.7).

One can find the dimension of My (M : f, p) by using Lemma 12.4. The smooth-
ness of the projection

Mg(M : f.p) — Gry,
is also obvious from the construction. Hence the proof of Theorem 1.6.

§16. Behavior of holomorphic disks in C"

To complete the proof of our main theorem, one might try to glue the locally
defined diffeomorphisms in §13. However, it is more efficient to glue the local
approximate solutions W§., and produce global approximate solutions and then to
apply the perturbation method used in Part I once and for all, than to glue the
diffeomorphisms =f.,. For this purpose, we will further study the properties of the
maps we(¢) obtained via Lemma 11.2.

Let t € Gi, ¢ € Gr(t). The space O(¢) contains k ends O;(¢), i =1,--- , k, each
of which is isometric to (—o0,0] x [0,1]. Let a; € R™. We use the same notation as
in Proposition 11.1.

We consider the graph T' with metric ¢, and remark that there is an isometric
embedding of T' to O(¥¢), such that each vertex of T is mapped to a singular point
(with respect to the flat metric mentioned before) of ©(¢). Hereafter we will regard
T as a subset of O(f). Let v,v2 € CY .(t). We denote by D103 the minimal path
joining them in 7. Let ej,,--- ,e;, € C} . (t) be the edges contained in this path
in this order. We put

ev(vz,v1, 4, (a;)) = Zf(ea‘i)aa’i-

We extend the map ev as follows. Let 01, 85 € T. Suppose that 6; is on the edge
ej(i)- We consider the case when e;(;) are interior edges (i = 1,2). Let s; € [0, 4]
be the point corresponding to ¢; and v; be the vertex corresponding to 0 € [0, £;(;].
We put

ev(01,02, 0, (a;)) = ev(va,v1, 4, (a;)) + s2a;2) + (£(ej1)) — s1)aj()-
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The definition in the case when e;;) is exterior is similar. It is easy to see that
0 — ev(B,09,0,(a;)) is a PL map. We remark that this map is a special case of
the map Ezp used in §12. (Namely this corresponds to the case when we choose f;
to be the quadratic function whose gradient vector fields are constant vector fields
ai.)

Proposition 16.1. Let wey be the map defined in Proposition 11.1 on ©(f).
Then there exists a constant C1 independent of ¢ such that

‘@@(5)(92) — 1179(@)(91) — 611(92, 01,4, (az))’ < Ch

Proof. We will prove Proposition 16.1 together with Lemma 11.2 simultaneously.
We first prove the following.

Lemma 16.2. Let t = t'. For each positive constant Cs, there exists constants
0 < C3 = C3(Ca,t) and 0 < Cy = C4(Cs,t) depending only on t,Csy, such that the
following holds: If ¢ € Gr(t) and satisfies

le) >C3, ecC (t)—Ch . (t) (16.1.1)
le) <Oy ecCh (t)cCCl,(b) (16.1.2)

then the conclusion of Proposition 16.1 holds for C1 = Cy and Lemma 11.2 holds
for such t.

Postponing the proof of this lemma to the end of this section, we first prove that
Lemma 16.2 implies Proposition 16.1. (This is rather a technical part of the proof.)
Let

03(C27 n, m) = Sup{03(02, t) | ﬁczont(t) =n, ﬂczont(t/) = m}
Ca(Ca,n,m) = sup{Ca(Ca, 1) | 407, (1) = 1, Ci (¥') = m}

We put By = C3(1,k,1), By = C4(1,k, 1). Suppose £(e) > By for each e € C}. ,(t).
In this case, Lemma 16.2 implies that Proposition 16.1 holds for such ¢ with C =
B). (We remark that if §C9 (t') = 1 then C} ,(¥) is empty.)

We next consider the case where f(e) < B; for some e. We collapse all such
edges to obtain t'. If we also assume that

€(e) > Cg(Bl,t)
for each edge e € C} ,(t) — C} ('), then we can apply Lemma 16.2 and derive that
Proposition 16.1 holds with Cy = Cy (B, t).

In other words, we have proved the following: Let By = sup,, C3(B1,k,m),
B, = sup,, C4(B1,k,m). If Proposition 16.1 is false for C; = Cy(By,t,t'), then
there exists e € C} ,(t) — C} . (¥) such that £(e) < Bs. It follows in particular that
there exists at least two edges e in t such ¢(e) < Bs.

We repeat this procedure inductively and can prove the following: Define B, =
sup,, C3(Bu, k,m), B, = sup,, C4(By, k,m). If Proposition 16.1 is false with
C = B, 1, then there exists at least u + 1 edges e such that /(e) < B,;1. On the
other hand, the number of edges is smaller than k — 3. Therefore Proposition 16.1
holds for C1 = sup;<_, Bi.
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0 .(t). Weput ¢, =7m"1(v) Ct
and define ¢, as in §10. Restricting £ : C} ,(t) — Ry to ¢,, we obtain £, € Gr(c,).
Using Lemma 11.1, we obtain

Now it remains to prove Lemma 16.2. Let v € C?

Wy : O,) — C"

(which will be normalized as in (17.1)). For each e € C1(t') with v € de, we have
a subset in ©(¢,)

0. (L) =~ (—00,0] x [0,1] C O(£,).

Using the coordinates (7,t) there, we have
|1Zv(7_7 t) + conste — (T(aleg(e) - arig(e)) +v _1t(aleg(e) - arig(e))| < O(T)

Here o(7) is a function going to 0 as 7 goes to infinity. We remark that we can
choose o(7) depending only on Cy and a;. This is a consequence of the fact that
O(¢,) from its definition consists of a compact family because we imposed that
l(e) < Cyforall e € CL ,(cy).

For e € C(t') we take rectangles [0,4(e)] x [0,1] or (—00,0] x [0,1] and define
We by

'Uje(Ty t) = 7_(aleg(e) - arig(e)) + v _1(t(al€g(€) - aTig(e)) + a’r‘ig(e))

We take w, + const, and w, + const. with appropriate constants and glue them in
a way similar to §11 along the intermediate rectangles shown as in (16.2.3) below
for a sufficiently large constant Cs which be chosen later. We then obtain a map

wp : O) — C™.

By construction, it will have the following properties:

(16.2.1) wo(8:(O(£))) A,
(16.2.2) ‘wo(gg) — Wo(r) (91) — 6’0(92, 91, f, (az))‘ < 05(02, t, f/)
(16.2.3) Owy is supported on

U (12C5/7,3C3/T] U [(e) — 3C3/7, () — 2C3/T]) x [0,1]

ecCl . (t)

U U [-3Cs/7,-2C5/7] x [0,1]

eeCl . (t)
(16.2.4) | sup dwo| < o(7)
(16.2.5) (11.1.2) holds for wouniformly over ¢ that satisfies (16.1.1) and (16.1.2).

Therefore to complete the proof of Lemma 16.2, it will be enough to prove the
following:
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Lemma 16.3. There exists hy : O(f) — C such that Ohy = 0wy, hy is bounded,
heloe(e is real valued, and hy goes to zero uniformly over £ at their ends, provided
¢ satisfies (16.1) for a sufficiently large C3 = C3(Ca,t, ).

Proof. We prove Lemma 16.3 by iteration. First we solve

5h(f == 57110

hi(0,t) = hi(t(e),t) = 0
h$(7,0),h¢(7,1) € R"
on the rectangle ©.(¢) = [0,4(e)] x [0,1] for each e € C} () and on O.(¢) =
(—00,0] x [0,1] for each e € CL,(t). Note that this equation has the unique
solution h§ = G°(Owp) where G® is the Green’s operator for the rectangle ©.(f).
Then by using (16.2.3) and some elementary properties of the Green function of
the rectangle, we have, for each e € C}, ,(t)

‘ h§|[0,03/7}><[071]’ < aeibc?

e 71)03
‘ hl|[£(e)—03/7,2(e)]><[0,1]‘ <ae "

for positive constants a, b. We obtain similar inequalities for e € C}_,
ing [~C3/7,0].
We then take a cut-off function y,. such that

(t') consider-

0 in a neighborhood of 0 and ¢(e)
Xe(T) = 1 for 7€ [C5/7,4(e) — C3/T]

for e € C1

wnt

(t') and similarly for each e € C}

ext

(t'). We put

w) = wo — erh‘f.

It follows that w{, has the following properties:

(16.3.1) Ow}, is supported on

U [0.Cs/Tult(e) = Cs/7,8(e)] x [0,11U | [-C5/7,0] x [0,1]

e€C, (V) e€C,(t)

(16.3.2) sup |Ow)| < ae~bCs.

‘We next consider

O () =0() — |J (=00,=3C3/7) x [0,1]

GECézt(t,,,)
and solve the equation there
OhY = ow},

hs‘{—?,c?,/?}x[o,l] =0
h3lse,)ner @, € R
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Again the unique solution of this is given by
5 = G, (Oup) = G, (Bwo — Y- D))
e

where G¢, is the Green’s operator of ©'({,). Using an estimate of the Green
function on ©’(¢,), we find that

sup [hy| < CCS sup |Ow}|

for some constants C and N. We take x’, for each e € C!,(c,) such that

ext

, 0 in a neighborhood of —3C5/7
Xl =91 e los/.0.

We extend this to ©’(¢,) by setting to be equal to 1 at the point corresponding to
the vertex v and denote by x/, the function so obtained. We put

/ !
w1 = Wy — E Xvh3

We can repeat the construction above by using w; in place of wy and obtain
Wa, W3, Wy, - - . These will satisfy the recursion forumla

Wp4+1 = Wy — Z XeGe(gwn) - ZX; %3 <5(wn - Z XeGe(gwn))> (16.4)

for n > 0. We remark that aCCOYNe=%%s << 1, if C3 is sufficiently large. In this
case, one can easily check from (16.4) that w; converges to w., as ¢ — oo, that
Owso = 0 and that h = wy — weo satisfies the required properties. [

The proof of Lemma 16.2 and hence of Proposition 16.1 is now complete. Fur-
thermore we have also finished the proof of Lemma 11.2 noting that both wgy)
and w satisfy (11.1.1) and (11.1.2) and so the difference wgs) — woo is constant
by the uniqueness statement in Proposition 11.1. [

§17. Gluing diffeomorphisms

Now we come to the final step of the proof of our main theorem. We need to
modify our map ¥, in order to glue them. Suppose t > t'. Then for v € CJ),,(t'),
the trees c,(t), T,(t) are defined as in Definition 10.5. For each v € C2 ,(t) and

int
e U(t;e,a) NGr(t), we fix a point
O(cu(t),ly) € Ty(t)

such that, if (t;, ¢,,) converges to (t,¢,) then 6(c,(t;),?,,) converges to 6(c,(t),£,).
Now we are going to construct

W U s €alt)) so, My(M : f15) — Map(T" M : K, )
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Let £ e Ul 1 ,) NGr(t), I € My(M : f.7) such that 7 (¢) = n(I). For each
v e CY (), we have 0(c,(t),£,) €T, C t. We put

int
po = 1(0(cy(t),4y)) € M.

By Lemma 11.2, we find

wy 2 O(ly) = C" =Ty, 0)(T"M),

such that
Re w, (6(c,(t),£y)) = 0. (17.1)

We use (17.1) to remove the ambiguity in Lemma 11.2 (or Proposition 11.1).
Let 0 € ¢, (t) Nt. (We identify a part [—¢(e), 0] of the exterior edge e of ¢, to the
corresponding edge of t' that contains v.)

Lemma 17.1. For any 0 € ¢,(t) Nt (C O,), there exists some constant C > 0 such
that
dist(exp,, (ew,(0)), 1(0)) < C max{e, 2=y,

(We remark that 6 € ¢, C ©, and also 6 € t by our construction.)

Proof. Lemma 17.1 will be a consequence of Proposition 16.1. Let e an edge con-
taining 0(c, (t), £,). We identify e = [0, £(e)] where 0 corresponds to a vertex v; and
{(e) corresponds to another vertex ve. Let s € [0,¢(e)] ~ e be the coordinate of the
point 0(c,(t),¢,) in e. By Proposition 16.1, we have
Wy (0) — Wy (0(cy(t), £o)) — ev(8,0(cu(t), o), Lo; (—grad f)))| < Ch (17.2)
On the other hand, it follows from (11.4) that
|Im w, (0(c, (1), 4,)| < C
uniformly over £,. Combining this with the normalization condition (17.1), we have
|w(0(cy (1), 4y)] < C.
This together with (17.2) implies
|, (0) — ev(0,0(cy(t),£y), Lo; (—grad fi))] < C. (17.3)

Now let e;,,- -+ ,ej, € CL.,(cy) be the edges joining vs to 6 in this order. And let

62 be the point in e;, corresponding to s" € [0, {(e;,,)]. By definition

1(9) = exp(_esl(fleg(ejm) - fm'g(ejm)) © eXp(_eg(ejm71)(fleg(ejm_l) - frig(ejm_l)) S
o exp(_eg(ejl)(fleg(eh) - frig(ejl)) © exp(—e(ﬁ(e) - S)(fleg(e) - fm’g(e)))(pv)

We remark that

dist(exp(Vy) o---oexp(Vy)(p),exp(Vi + -+ V) (p) < C(|Vi| + -+ + |Vi])?
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for vector fields V;, and recall that ¢(e) < e~ ®. Therefore we have
dist (exp,, (eev(6,0(cy(t),£y), Lo; (—grad fj))),1(0)) < Ce=o), (17.4)
On the other hand note that if [§; — 3| < C for & € Ty, 0)(T*M) = C", then
dist(exp,, €€1,exp, €&) < Ce.
It follows by using (17.3) and applying this inequality to

‘gl = wv(9>a 52 = 61}(9, 9(%(07&)))&); (—grad fj(i)))
that we have
dist (exppv € (wy(0)), exp,, (eev(d,0(cy(t),ly), ly; (—grad fj(i)))) < Ce (17.5)

Combining (17.4) and (17.5), we have finished the proof. [

We remark that Lemma 11.5 is an immediate consequence of Lemma 17.1.
Using Lemma 17.1, we glue w, and maps obtained from I|. (e € C'(t)), in the
same way as in the proof of Proposition 11.4 and obtain

e

/
t,«

U e, at)) Xp. Mg(M - f,ﬁ) — Map(M : Ke,ﬁg).
Now using Lemma 17.1 again, we repeat the proof of §5 to show the following :

Lemma 17.2. Let £ € U(t; : e,a(ty)) NU(t2 : €, a(tz)), 1 € My(M : f.P) such
that me(0) = w(I). We have t; = ta or t2 > t1. Suppose t; = to. We then have

sup (dist (‘I’/tia(tl)(g’ I)(z), \Ifi’:’a(m(éjj)(z))) < C max{e, 62(1—a(t2))}'

for z € ©(L).

We next glue these maps using the technique of center of mass. We choose a
partition of unity {xi}ieq, of Gri subordinate to the covering {U(t: €, a(t)) }ieq, -

Let (€,1) € Gry xx, My(M : f, ) and define

(0, 1) : @(f) x T*M — R

€
by N
(L, 1) (z,2) = xe dist(W(5 ) (6,1)(2), ).
t

Using Lemma 17.2 and the standard results on center of mass technique (e.g., see
[GK]), the map z +— ®¢(¢,I)(z,x) has a unique minimum for each (¢, ) and z for
each given z € T* M, which we denote

(0, 1)(z) € T*M.
Thus we have defined :

O : Gry, X, My(M : f,7) — Map(T*M : A, j%).
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Proposition 17.3. If w is in the image of E’e, then we have :

2+(p—Do

[0swllop,e < Ce 7

Once we have proved Lemma 17.2; the proof of Proposition 17.3 is similar to
that of Proposition 5.2 and so we omit the details. N

We can now repeat the arguments in Part I and in §13 to perturb ®€ to produce
a smooth map

O 1 Gry X, My(M : fo) — My(T*M : K¢, 7).

We recall that 7. : Gry — Gry, is a diffeomorphism. Hence Gry X, My(M : f,ﬁ)
is diffeomorphic to My (M : f, p). Finally we can prove in the way similar to Part
I that ®€ becomes a diffeomorphism for sufficiently small e. The proof of our main
theorem is now finally complete.

References

[Ad] J. Adams, Infinite Loop Spaces, Ann. Math. Studies 90, Princeton Univer-
sity Press.

[AS] S. Axelrod and I.Singer, Chern Simons perturbation theory , I in Proceeding
of the XXth DGM Conf. (S.Catto and A.Rocha eds.), World Scientific,
Singapore 1992, 1T Journal of Diff. Geom. 39 (1994) 173 - 213.

[Ba] D. Bar-natan, Perturbative aspects of the Chern-Simons topological field
theory, PhD thesis, Princeton University 1991.

[BC] M. Betz , R. Cohen, Graph moduli spaces and cohomology operations, Turk-
ish J. Math. 18 (1995) 23 - 41.

[Co] A. Connes, Noncommutative Geometry, Academic Press, London, 1994.

[D] S. Donaldson, A lecture at University of Warwick 1992.
[DM] P. Deligne, D. Mumford The irreducibility of the space of curves of given
genus, Publ. Math. THES 36 (1969) 75 - 110.

[EG] Y. Eliashberg, M. Gromov, in preparation.

[F11] A. Floer, Morse theory for Lagrangian intersections, J.Differential Geom.
28 (1988) 513 - 547.

[F12] A. Floer, The unregularized gradient flow of the symplectic action, Comm.
Pure Appl. Math. 43 (1988) 576 -611.

[F13] A. Floer, Witten’s complex and infinite dimensional Morse theory, J. Dif-
ferential Geometry 30 (1989) 207 -221.

[F14] A. Floer, Cup length estimate for Lagrangian intersections, Comm. Pure
Appl. Math. 47 (1989) 335 -356.

[F15] A. Floer, Symplectic fixed point and holomorphic spheres, Commun. Math.
Phys. 120 (1989) 575-611.

[Ful] K. Fukaya, Floer homology for 3-manifolds with boundary -abstract -, Topol-
ogy Geometry and Field theory, ed by Fukaya, Furuta, Khono and Kotchick,
1 - 22, World Scientific, Singapore, 1994.

[Fu2] K. Fukaya, Morse homotopy, A -category and Floer homologies, Proceed-
ings of GARC Workshop on GEOMETRY and TOPOLOGY, ed. by H. J.
Kim, Seoul National University, Korea, 1993.

[Fu3] K. Fukaya, Morse homotopy and its quantization, to appear in Proceedings
of Georgia Topology Conference.



88 KENJI FUKAYA & YONG-GEUN OH

[Fud] K. Fukaya, Gauge theory on 4-manifolds with corners, to appear in Geom.
and Funct. Anal.

[Fu5] K. Fukaya, Morse theory and topological field theory, to appear in Suugaku
Expositions.

[Fu6] K. Fukaya, Morse homotopy and Chern-Simons perturbation theory, to ap-
pear in Commun. Math. Phys.

[FM] W. Fulton , R. McPherson, A compactification of configuration space, Ann.
of Math. 139 (1994) 183 - 225.

[Ge] E. Getzler, Operad and moduli space of genus 0 Riemann surface, preprint.

[Gr] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent.
Math. 82 (1985) 307-347.

[GK] K. Grove, H. Karcher, How to conjugate C'-close actions, Math. Z. 132
(1973) 11 -20.
[GMM] E. Guadagnini, M. Martinelli , M. Mintchev, Perturbative aspects of Chern-
Simons field theory, Phys. Lett., B 227 (1989) 111.
[H] H. Harer, The cohomology of the moduli space of curves, Lecture note in
Math.1337, 138 - 221.

[HL] Y. Huang, J. Lepowski, Vertex operator algebra and operads, preprint.

[Ka] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm.
Pure and Appl. Math. 30 (1977) 509 - 541.

[Kol] M. Kontsevitch, Feynman diagram and low dimensional topology, Proceed-
ings of First European Congress of Mathematics.
[Ko2] M. Kontsevitch, A -algebras in mirror symmetry, preprint.
[KM] M. Kontsevitch , Y. Manin, Gromouv-Witten classes, quantum cohomology,
and enumerative geometry. preprint.
[M] D. Mumford Toward an enumerative geometry of moduli spaces of curves.
in “Arithmetic and Geometry”, pp 271 - 326, Birkh&user, 1983.

[MS] D. McDuff, D. Salamon, J-holomorphic Curves and Quantum Cohomology,
Univ. Lec. Series, Vol 6, AMS. 1994.

[01] Y. -G. Oh, Removal of boundary singularities of pseudo-holomorphic curves,
Comm. Pure Appl. Math. 45 (1992) 121-139

[02] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic
disks, I & II, Comm. Pure Appl. Math. 46 (1993) 949-994 & 995-1012, &
Addenda, ibid, (to appear).

[03] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic
disks, III, Floer Memorial Volume, pp 555-573, Birkhauser, Basel, 1995.

[O4] Y. -G. Oh, Fredholm theory of pseudo-holomorphic discs under the pertur-
bation of boundary conditions, to appear in Math. Z.

[O5] Y. -G. Oh, On the structure of pseudo-holomorphic discs with totally real
boundary conditions, to appear in J. Geom. Anal.

[06] Y. -G. Oh, Floer cohomology, spectral sequence and the Maslov class of
Lagrangian embeddings, to appear.

[O7] Y.-G. Oh, Relative Floer and quantum cohomology and the symplectic topol-
ogy of Lagrangian submanifolds, to appear in the Newton institute proceed-
ings for the 1994-Symplectic Topology program.

[08] Y. -G. Oh, Symplectic topology as the geometry of action functional, I € II,
submitted.

[P] R. Penner, The decorated Teichmiiller space of punctured surface, Commun.
Math. Phys. 113 (1987) 299 - 339.



[PSS]

0-LOOP OPEN STRINGS AND MORSE HOMOTOPY 89

S. Piunikhin, D. Salamon, M. Schwarz, Symplectic Floer-Donaldson theory
and quantum cohomology, preprint.

D. Quillen, Rational homotopy theory, Ann. of Math. 90 (1969) 205 - 295.
Y. Ruan, Topological sigma model and Donaldson type invariant in Gromov
theory, preprint, 1993.

Y. Ruan, G. Tian, Mathematical theory of quantum cohomology, J. Differ.
Geom. 42 (1995), 259 - 367.

Y. Ruan, G. Tian, in preparation.

M. Schwarz, Morse homology, Progress in Mathematics 111, Birkh&user,
Basel, 1993.

S. Smale, An infinite dimensional version of Sard’s Theorem, Amer. J.
Math. 87 (1968) 861 - 866.

J. Stasheff, Homotopy associativity of H-spaces I, Trans. Amer. Math. Soc.
108 (1963), 275 - 292. II, ibid. 293 - 312.

J. Stasheff, Towards a closed string field theory, topological and convolution
algebra, preprint.

K. Strebel, Quadratic Differentials, Springer-Verlag, (1985), Berlin.

D. Sullivan, Infinitesimal calculations in topology, Publ. THES, 74 (1978)
269 -331.

C. Viterbo, Some remarks on Massey products, tied cohomology classes and
Lusternik-Schnirelman category, preprint, 1994.

E. Witten, Supersymmetry and Morse theory, J. Differ. Geom. 17 (1982)
661 - 692.

E. Witten, Non commutative geometry and string field theory, Nucl. Phys.
B268 (1986) 253.

E. Witten, Topological sigma model, Commun. Math. Phys. 118 (1988)
441.

E. Witten, Chern-Simons gauge theory as a string theory, Floer Memorial
Volume, pp 637-678, Birkhauser, Basel, 1995.



