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§0. Introduction

Many important works in the symplectic geometry and topology are regarded as
the symplectization or the quantization of the corresponding results in the ordinary
geometry and topology. One outstanding example is the celebrated Arnold con-
jecture which concerns the number of fixed points of a symplectic diffeomorphism
or that of intersection points of two Lagrangian submanifolds. The homological
version of the conjecture has been proved in various cases (see [Fl1-5], [O2,3,6],
[On] and [PSS], and [O7] for a survey and references on the Arnold conjecture and
the Floer homology). The estimate (in its homological version) predicted by the
Arnold conjecture can be regarded as the symplectization or the quantization of the
Morse inequality, and conversely the latter can be considered as the semi-classical
limit and so a consequence of the former. From now on, we will use the term
“quantization” for the similar causes that appear below.

To illustrate this statement, we consider the cotangent bundle of a given com-
pact manifold and the graphs of exact one forms. The graph of an exact one form
becomes a Lagrangian submanifold of the cotangent bundle with respect to the
canonical symplectic structure. Then Floer’s result on the Lagrangian intersec-
tions [Fl1,3] will imply the Morse inequality. The Lagrangian intersection theory
is indeed the intersection theoretic version of the Morse theory, while the Lefsechtz
intersection theory is that of the degree theory of generic vector fields.

The principle that the symplectic topology and geometry of the cotangent bundle
(or more generally that of symplectic manifolds) is the quantization of the ordinary
topology and geometry of the base, is a general principle which can be applied
to many other situations. The equivalence of the two often holds, when there oc-
curs the absence of the quantum contribution (or the non-existence of the bubbling
phenomena). In this paper, we will provide another example of this principle in
which we prove that the rational homotopy type of a compact manifold M can be
described by the moduli space of pseudo holomorphic disks with appropriate La-
grangian boundary conditions in its cotangent bundle T ∗M . The precise statement
of our result is in Section 1.

Our result paves the way to applying the A∞-structure introduced by the first
author [Fu2] to the study of the estimate, in terms of the rational homotopy in-
variant of the base manifold, of the number of intersections of the zero section in
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the cotangent bundle and its Hamiltonian deformation. This enables us to go one
step further, beyond the existing homological estimate in the literature, towards
the proof of the original Arnold conjecture which states that the number of the
intersections will be greater than or equal to the Morse number of M . Viterbo
[V] and Eliashberg-Gromov [EG] have also studied this kind of estimate using the
generating functions of Lagrangian submanifolds.

Furthermore the analytical details similar to ours in this paper will be required
in the various versions of the Floer theory in the symplectic geometry and our
proof will also serve there as a cornerstone with obvious but maybe technically
tedious modifications. We refer to [PSS] or [RT2] for the announcement of similar
analytical results in the context of Hamiltonian diffeomorphisms, and to [O8] for
further applications of the Floer theory to the symplectic topology based on such
analytic results as one in this paper.

Now we review some of the previous results related to the result in this paper.
Floer [Fl1-4] defined and studied Floer homology of the general pair (L0, L1) of
Lagrangian submanifolds on a given symplectic manifold (P, ω), essentially under
the assumption π2(P ) = {e} and π1(Li) = {e}. Under this assumption, Floer
proved that Floer homology is well defined and invariant under the Hamiltonian
deformation of L’s. He also proved, under the assumption π2(P,L0) = {e}, that if
L1 is a Hamiltonian deformation of L0, then a (slightly modified) Floer homology
of the intersection of the two Lagrangian submanifolds is the ordinary homology of
the Lagrangian submanifold L0. Floer’s proof (without change) can be applied to
the case of the cotangent bundle P = T ∗M and to the graphs L of exact one-forms,
where the assumption π2(P,L) = {e} is automatically satisfied. Subsequently the
second author of the present paper relaxed Floer’s assumption and developed the
Floer theory for the class of monotone Lagrangian submanifolds, which includes
the Floer’s as a special case (See [O2,3,6]). One difference of the general monotone
case from the Floer’s is the existence of non-trivial quantum contribution which
changes the Floer homology from the ordinary homology. We refer to [O6] for some
application of the study of the quantum contribution to the symplectic topology of
Lagrangian embeddings.

In the mean time, inspired by a talk by Donaldson [D], the first author further
studied Lagrangian intersections and pseudo holomorphic curves where there are
involved 3 Lagrangian submanifolds or more (this problem is also related to the
study of the (gauge theory) Floer homology of 3-manifolds with boundary as was
discussed in [Fu1,2,4]), and discovered an A∞ structure on the Floer homology.
A∞ structure was first discovered by Stasheff in the study of homotopy theoretic
structures in the algebraic topology ([St1]).

As is discussed in [Fu2,3], the construction of the A∞ structure on the Floer
homology is parallel to that of quantum ring discussed in [R], [RT1] and [KM]:
Roughly speaking, the A∞ structure on the Floer homology is the 0-loop correlation
function of the (topological) open string while the quantum ring (and the quantum
higher Massey product defined in [Fu3]) is the 0-loop correlation function of the
(topological) closed string. Similar A∞ structures are discovered independently by
various physicists in the context of the string theory and also by M. Kontsevitch
[Ko1,2]. The operad structure discussed by various mathematicians (see [Ge], [St2],
[HL]) is that corresponding to our A∞ structure in the closed string.

The first author next applied the same construction of this A∞ structure in
the context of the Morse theory. The basic idea is to use several Morse functions
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simultaneously and to study the corresponding ordinary differential equations given
by the gradient vector fields on arbitrary trees, which will produce an A∞ structure
on the ordinary homology group (more precisely on the Morse homology). We call
these constructions the Morse homotopy theory. The idea using several Morse
functions simultaneously to deduce more information of the topology of manifolds,
was independently discovered also by M. Betz and R. Cohen [BC]. It turns out
that this A∞ structure thus constructed on the (co)homology group (in the case
of rational coefficient) is the Morse homotopy analogue of the De-Rham homotopy
theory of D.Sullivan [Su]. Therefore by the result of D. Sullivan [Su] and D.Quillen
[Q], it follows that A∞ structure determines the rational homotopy type of the
manifold.

The main goal of this paper is to show that the Morse homotopy theory on a
manifold M which uses trees as the graphs is equivalent to the open string theory
of 0-loop on its cotangent bundle. In the mathematical language, the topological
open string theory of 0-loop means the study of pseudo holomorphic disks with
Lagrangian boundary condition. Therefore our main result (Theorem 1.7) implies
that the rational homotopy type of a manifold can be described also by the pseudo
holomorphic disks in its cotangent bundle.

We would like to mention here some more results which are relevant to the
present paper. In [W2], Witten discussed a relation of the 0-loop open string theory
to the noncommutative geometry of A. Connes [Co] and hinted for example, that
coefficients of the q-th composition map in the A∞ structure on Floer homology
has a cyclic symmetry which can be related to the theory of cyclic cohomology in
the noncommutative geometry. Compare this also with Kontsevitch’s paper [Ko1].
Subsequently, Witten expanded this point of view to include the higher loop case
in [W4], namely the case of Riemann surfaces of higher genus, and discovered that
the Chern-Simons perturbation theory developed in [AS], [Ba], [GMM] and [Ko1]
can be described by the higher genus correlation function of open strings on the
cotangent bundle. Our point of view that the open string theory is the quantization
of the Morse theory can be also applied to the case of general Riemann surfaces:
The higher loop correlation function in the topological open string theory on the
cotangent bundle is the quantization of the Morse homotopy of general graphs of
higher loop on the base manifold. We refer to [Fu6], especially Section 8, in regard
to this point of view. A more systematic study of open strings of higher loop is the
subject of future research.

The organization of this paper is as follows. In Section 1, we give the definitions
of the two moduli spaces, one that of graph flows in the Morse theory and the other
that of pseudo-holomorphic discs in the symplectic geometry, and state our main
result which asserts their equivalence. In Section 2, we give a brief summary of
the A∞ structure and explain what our main result means to the A∞ structure.
Sections 3 to 17 of the paper are devoted to the proof of the main theorem. Those
sections are divided into two parts.

Part I is devoted to the case in which we concern three Lagrangians and three
Morse functions. In this case, our main theorem asserts that studying the zero-
dimensional part of the moduli-space of pseudo holomorphic disks with the corre-
sponding Lagrangian boundary condition gives rise to the cup product of the base
manifold. Part I is mainly of the analytic nature. The similar analytic argument
will be required in Part II where the general case is studied. In Part II, we will
not repeat those analytic details we provide in Part I, but focus only on the new
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phenomena we need to handle with. The contents of each sections of Part I and
II are in order. In Section 3, we provide the appropriate analytical set up of the
Sobolev space we use, and re-state the main theorem in the case of the three La-
grangians. In Section 4, to each given element of the moduli space of the graph
flows, we explicitly construct a map from a disk to the cotangent bundle which is
approximately (pseudo)-holomorphic. Section 5 is devoted to the error estimate of
these approximate solutions. In Section 6, we prove that the linearized operators of
the approximate solutions are surjective, when the moduli space of the graph flow
in the Morse theory satisfy appropriate transversality condition. The (Fredholm)
inverse of this linearized equation is studied in Section 7 where we establish various
estimates we need later. Using the estimates in Section 8, we find an exact solution
in a neighborhood of the approximate solution defined in Section 3. In Section 9,
we prove that every pseudo holomorphic disk in our moduli space is obtained in
this way (in the semi-classical limit). This completes the proof of the main theorem
in the case of three Lagrangians.

One main new phenomenon we must take care of in the general case is that the
domains of the equations have moduli themselves. In the case of pseudo holomor-
phic disks, the space of conformal structures on the disc with k marked points on its
boundary has moduli when the number of marked points are bigger than 3, while
the conformal structure is unique if the number of point is 3 or less. Similarly in
the case of the Morse theory, we need to consider the moduli space of metrics on
the corresponding trees. Therefore to compare the moduli space of pseudo holo-
morphic disks with that of graph flows, we also need to incorporate these moduli
of the conformal structures on the disk with k marked points on its boundary and
of the metric structures of the relevant graphs.

In Section 10, we study the stratification of the moduli space of metric structures
of the graph. This stratification also induces the corresponding stratification on the
moduli space of the graph flow. In Section 11, we construct approximate solutions of
the pseudo holomorphic curve equation in a way similar to Section 4, where we need
to work on each of the strata separately. Because of the moduli of the domains, the
construction of approximate solutions is more delicate than in Section 3. In Section
12 and 13, we construct exact solutions of pseudo holomorphic curve equation out
of these approximate solutions on each stratum. The main point we need to discuss
at this stage is to prove that the linearized operators at the approximate solutions
are surjective. Again this will follow from an appropriate transversality condition
of the moduli space of the graph flows. This transversality is carefully discussed
in Section 12 and exact solutions of the pseudo holomorphic curve equation are
constructed in Section 13.

By now, we have found diffeomorphisms between the two moduli spaces in each
stratum. Section 14, 15, 16 and 17 are devoted to the proof that these diffeomor-
phisms can be glued to construct a global diffeomorphism between the two moduli
spaces of pseudo holomorphic disks and of graph flows. We do this in three steps.
First, we provide an identification of the moduli space of conformal structures on
the disc with k marked points on its boundary and that of metric structures on
the trees (with k exterior edges). Stasheff proved in [St1] that the latter is home-
omorphic to the Euclidean space. We re-prove his theorem and also show that the
natural cell decompositions in the two moduli spaces are dual to each other under
the above identification. This argument involves the theory of quadratic differen-
tials and the triangulation of the moduli space of marked Riemann surface (See
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[Mu], [Ha], [P], [Str] for some explanations on these subjects. Our case is the real
version of those in the literature). This result, in particular, implies that the mod-
uli space of metric structures on the graphs is a manifold. Using this, we define
a smooth structure on the moduli space of graph flows in Section 15. Finally in
Section 16 and 17, we complete the proof of the main theorem.

Both authors would like to thank Newton Institute for its hospitality, where
they both stayed and where the present work was initiated. They would also like
to thank K. Ono for some helpful discussions.

§1. Statement of the main results

In this section, we define two moduli spaces of our concern, one in the Morse
theory and the other in the symplectic geometry.

To describe the Morse theory side, we first introduce the moduli space of metric
Ribbon trees.

Definition 1.1. A ribbon tree is a pair (T, i) such that T is a tree and i : T → D2 ⊂ C
is an embedding which satisfy the following :

(1.1.1) No vertex of T has 2-edges.

(1.1.2) If v ∈ T is a vertex with one edge, then i(v) ∈ ∂D2.

(1.1.3) i(T ) ∩ ∂D2 consists of vertices with one edge.

Figure 1.1

We identify two pairs (T, i) and (T ′, i′), if T and T ′ are isomorphic and i and i′

are isotopic. Let Gk be the set of all triples (T, i, v1) where (T, i) is as above,
v1 ∈ T ∩ ∂D2 and T ∩ ∂D2 consists of k points.

We remark that choosing v1 ∈ T ∩ ∂D2 is equivalent to choosing an order of
T ∩ ∂D2 which is compatible with the cyclic order of ∂D2 = S1.

Definition 1.2. We call a vertex an interior vertex if it has more than 2 edges
attached to it and call it an exterior vertex otherwise. We call an edge an interior
edge if both of its vertices are interior and call it exterior otherwise. Let C1

ext(T )
be the set of all exterior edges and C1

int(T ) be the set of all interior edges. C0
ext(T )

and C0
int(T ) stand for the set of exterior and interior vertices respectively.

For each t = (T, i, v1) ∈ Gk, let Gr(t) be the set of all maps ` : C1
int(T ) → R+.

We put Grk =
⋃

t∈Gk
Gr(t) and define a topology on it as follows:

Let `i ∈ Gr(t). We assume that limi→∞ `i(e) converges to `∞(e) for all e ∈
C1

int(T ). Let t′ = (T ′, i′, v1) ∈ Gk be the ribbon tree obtained by collapsing all the

edges e in T such that `∞(e) = 0. We define `∞ : C1
int(T

′) → R+ by the restriction
of `∞. We then say that the limit of `i ∈ Gr(t) is `∞. From the definition, it is easy
to see that Grk =

⋃
t∈Gk

Gr(t) provides a cell decomposition of Grk. Stasheff [St1]

proved that Grk is homeomorphic to Rk−3. We give an alternative proof of this
statement later in Section 14, where we also explicitly provide a smooth structure
on Grk.
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We next introduce the moduli space T0,k of disks with k marked points on the
boundary as follows: We define

T0,k =

{
(z1, · · · , zk) ∈ (∂D2)k

∣∣∣∣∣
zi 6= zj, if i 6= j

z1, · · · , zk respects the cyclic order of ∂D2

}

∼

We use the counter clockwise cyclic ordering for S1 = ∂D2. Here (z1, · · · , zk) ∼
(z′1, · · · , z′k) if and only if there exists a biholomorphic map ϕ : D2 → D2 such that
ϕ(zi) = z′

i.

Lemma 1.3. T0,k is homeomorphic to Rk−3.

Proof. It is well known that there exists a unique bi-holomorphic map ϕ : D2 → D2

such that ϕ(z1) = 1, ϕ(z2) =
√
−1, ϕ(z3) = −1. Hence we have

T0,k =





(z4, · · · , zk) ∈ (∂D2)k−3

∣∣∣∣∣∣∣

zi 6= zj , if i 6= j

Im zi < 0,

Re zi > Re zi+1





Then the map : T0,k → T0,k−1 (z4, · · · , zk) 7→ (z4, · · · , zk−1) is a fiber bundle and
its fiber is homeomorphic to R. Lemma 1.3 then immediately follows. ¤

Our main result of this paper identifies two moduli spaces, one is related to
Morse theory, and the other is related to symplectic geometry more specifically to
the Lagrangian intersection theory. We next define those moduli spaces.

Let f1, · · · , fk be C∞-functions on M , and g be a Riemannian metric on M . We
assume that fi+1 − fi is a Morse function for each i. (Here we put fk+1 = f1.) An

element of Mg(M : ~f, ~p) is a pair ((T, i, v1, `), I) of elements of (T, i, v1, `) ∈ Grk

and a map I : T → M satisfying the Conditions (1.2.1), (1.2.2), (1.2.3) below.

(1.2.1) I is continuous, I(vi) = pi.

Before stating two other conditions, let us fix some notations. The set D2 − i(T )
has k connected components. We denote them by Di where the closure Di contains
vi and vi+1. We define a metric on T such that the exterior edge is isometric to
(−∞, 0] and the interior edge e is isometric to [0, `].

For each e ∈ C1
int(T ) we fix its orientation with respect to which the 2 vertices

i(e) and o(e) are determined so that e goes from i(e) to o(e). Note that for each
given edge e there are two of the domains Di such that its closure contains e. We
define the integers lef (e) and rig(e) so that the closure of Dlef(e) contains e and

Dlef(e) is on the left side of e with respect to the orientation of e and R2. The
definition of rig(e) is similar (Figure 1.2). There are k exterior vertices. Let ei’s
be the exterior edges containing vi. Then we may set lef (ei) = i + 1, rig(ei) = i.

Figure 1.2

Now two other conditions for ((T, i, v1, `), I) to be an element of Mg(M : ~f, ~p)
are given as follows:
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(1.2.2) Let ei ∈ C1
ext and identify ei ' (−∞, 0]. Then

dI |ei

dt
= − grad(fi+1 − fi).

(1.2.3) Let e ∈ C1
int and identify e ' [0, `(e)]. Then

dI |ei

dt
= − grad(flef(e) − frig(e)).

We have a natural projection

π : Mg(M : ~f, ~p) → Grk.

Theorem 1.4. For generic f1, · · · , fk, the space Mg(M : ~f, ~p) is a C∞-manifold
of dimension

k∑

i=1

µ(pi) − (k − 1)n + (k − 3)

such that π becomes a smooth map where n = dim M .

Here µ(pi) = µ(fi+1−fi)(pi) is the Morse index of the critical point pi of fi+1 −fi

for i = 1, · · ·n ( mod n). This theorem was stated without proof in [Fu2, 3, 5]. We
will prove it in §15.

We next define another moduli space MJ(T ∗M : ~Λε, ~pε) in the symplectic geom-
etry side. We let Λε

i be the graph of εdfi ⊂ T ∗M . This is a Lagrangian submanifold.
For each critical point p of fi − fj , we can associate a point xε in the intersection
Λε

i ∩Λε
j. Namely for a critical point pi of fi+1 − fi, we put xε

i = (pi, εdfi(pi)) which
is a point in the intersection Λε

i ∩ Λε
i+1.

We now take an almost complex structure J that is compatible to the standard
symplectic form ω on T ∗M and define

Definition 1.5. The moduli space MJ(T ∗M : ~Λε, ~xε) consists of the pairs ([z1, · · · , zk], ω)
of elements ([z1, · · · , zk] ∈ T0,k and a map ω : D2 → T ∗X satisfying the following
conditions (1.3.1), (1.3.2) and (1.3.3) (We remark that ∂D2 −{z1, · · · , zk} consists
of k connected components.): Let ∂iD

2 be the component whose closure contains
zi and zi+1.

(1.3.1) w(zi) = pε
i .

(1.3.2) w(∂i(D
2)) ⊂ Λε

i .
(1.3.3) J ◦ Tw = Tw ◦ J .

Again there is a natural map

MJ (T ∗M : ~Λε, ~xε) → T0,k.

Theorem 1.6. For generic fi, the space MJ(T ∗M : ~Λε, ~xε) is a C∞ manifold of
dimension

k∑

i=1

µ(pi) − (k − 1)n + (k − 3)
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where µ(pi) are the same integers as in Theorem 1.4.

The proof of this theorem in general involves a transversality argument under the
perturbation of boundary conditions rather than under the perturbation of almost
complex structures, and some index calculation. See [O4, 5] for this transversality
argument for k = 0 case and [O8] for an index calculation relevant to the dimension
formula in this theorem. We will not give the complete proof of Theorem 1.6 here,
because in the case of our main theorem in which ε will be assumed to be sufficiently
small, we can prove it in a different way (during the proof of main theorem.)

We now restrict ourselves to the canonical almost complex structure J = Jg on
T ∗M that is naturally induced from the Levi-Civita connection of the metric g on
M . From now on, we will always assume, unless otherwise specified, that J is this
canonical almost complex structure. We first note that if a Riemannian metric
g is given to M , the associated Levi-Civita connection induces a natural almost
complex structure on T ∗M , which we denote by Jg and which we call the canonical
almost complex structure (in terms of the metric g on M ). We are going to fix
the Riemannian metric g on M once and for all. This canonical almost complex
structure has the following properties:

(1.4.1) Jg is compatible to the canonical symplectic structure w on T ∗M .
(1.4.2) For every (q, p) ∈ T ∗M , Jg maps the vertical tangent vectors to horizontal
vectors with respect to the Levi-Civita connection of g.
(1.4.3) On the zero section oM ⊂ T ∗M , Jg assigns to each v ∈ TqM ⊂ T(q,0)(T

∗M)
the cotangent vector Jg(v) = g(v, ·) ∈ T ∗

q M ⊂ T(q,0)(T
∗M). Here we use the

canonical splitting
T(q,0)(T

∗M) = TqM ⊕ T ∗
q M.

Now we are ready to state our main theorem.

Theorem 1.7. Let J = Jg be the canonical almost complex structure on T ∗M

associated to the metric g on M . For each generic ~f = (fi) and for sufficiently

small ε, we have an oriented diffeomorphism Mg(M : ~f, ~p) ' MJ(T ∗M : ~Λε, ~xε).

§2. A∞-structures

Here we briefly discuss the definition of A∞-category and show that our main
theorem provides an isomorphism between two A∞-categories, one in the Morse
theory and the other in the Lagrangian intersection theory. We refer to [Fu2, 3, 5]
for more details on the A∞-category.

Definition 2.1. An A∞-category C consists a set OB the set of objects and a cochain
complex C∗(a, b) for each a, b ∈ OB (that is the set of morphisms) and a map

qk : C∗(c0, c1) ⊗ · · · ⊗ C∗(ck−1, ck) → C∗(c0, ck) (2.1)

of degree −(k − 2) such that

(
dqk − (−1)kqkd

)
(x1⊗· · ·⊗xk) =

∑

i,j

(−1)jqk−j(x1⊗· · · qj(xi⊗· · ·⊗xi+j) · · ·⊗xk)

In the case in which there is only one object, the A∞-category is called an A∞-
algebra (This notion was introduced by Stasheff [St1].)
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Our moduli spaces defined in Section 1 can be used to define A∞-categories.
More precisely, we will define topological A∞-categories as follows.

Definition 2.2. A topological A∞-category consists of a topological space OB and a
chain complex C(a, b) for each pair a, b in a Baire subset of OB2. We assume that
they satisfy the properties in Definition 2.1 if (c1, · · · , ck) is contained in a Baire

subset of OBk. We also assume that qk is locally constant with respect to ci where
it is defined.

We first consider the case of the Morse theory and define an A∞ category
MS(M ) for each Riemannian manifold M . Our object in this case is the set
of all smooth functions C∞(M). For almost all pair f, g ∈ C∞(M ), the difference
f −g is a Morse function and its gradient flow is a Morse-Smale flow. Hence we can
define its Morse-Witten complex C∗(M : f − g). Recall that the group Ck(M : h)
is defined by

Ck(M : h) = the free abelian group genererated by Critk(h)

where Critk(h) is the set of critical points of the Morse index k (See [Mi], [Fl3],
[W1] or [Sc] for more details). Let us then define the dual complex

Ck(f, g) = Hom (Ck(M : f − g), Z).

Note that this dual complex can be canonically identified with CdimM−k(M : −(f−
g)) = CdimM−k(M, g − f) and so we will take

Ck(f, g) = CdimM−k(M : g − f)

as the definition in this paper.
Now our k-th composition map qk is defined as follows: For each pi ∈ Crit(M, fi+1−

fi) for i = 1, · · · , k + 1( mod n = dim M), we count the number of the zero di-
mensional component which can be shown to be compact (and so finite) later. We

denote this number by ]Mg(M : ~f, ~p). In terms of the definition

C∗(fi, fi+1) = Cn−∗(M : fi+1 − fi),

pi has degree n−µ(fi+1−fi)(pi) for i = 1, · · · , k and pk+1 ∈ C∗(f1, fk) = C∗(fk+1, fk)
has degree µ(fk+1−fk)(pk+1). Therefore from the dimension formula in Theorem 1.4
which can be re-written for (f1, · · · , fk+1) as

dimMg(M : ~f, ~p) = µ(pk+1)−
k∑

j=1

(n − µ(pi)) + (k − 2),

we derive that dim Mg(M : ~f, ~p) = 0 when

deg (pk+1) =

k∑

j=1

deg (pj) − (k − 2). (2.2)

Now we define our k-th composition map qk by

qk([p1]⊗ · · · ⊗ [pk]) =
∑

]Mg(M : ~f, ~p)[pk+1] (2.3)
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where the sum is taken over all (p1, · · · , pk+1) satisfying (2.2). Using Theorem 1.4

and the description of compactification of Mg(M : ~f, ~p), one can prove by the
standard compactness and cobordism argument that they satisfy the axiom of the
A∞ category in Definition 2.1 (See [Fu2] for some details.)

We next discuss the A∞ category in the side of the Lagrangian intersection the-
ory. The construction is based on the Floer homology of Lagrangian intersections.
There is some difficulty in defining the Floer homology for the general Lagrangian
submanifolds in general symplectic manifolds as pointed out by the second author
[O2] (even if we assume that the symplectic manifold is semi positive), which re-
quires various restrictions on the Lagrangian submanifolds. To avoid such trouble
in this paper, we consider only the case in which the Lagrangian is the graphs of
exact one forms in the cotangent bundle, which is relevant to our main theorem.
As we mentioned in the introduction, the construction of the Floer homology is
well-defined in this case. Now the definition of the A∞ category SY(T ∗M)0 is as
follows:

Its objects are graphs Λf of exact one forms df . For two objects Λf , Λg, we
define the morphisms

C∗(Λf , Λg) = CF ∗(Λf , Λg)

where CF ∗(Λf ,Λg) is the Floer’s cochain complex with an appropriate grading.
Recall that as an abelian group CF ∗(Λf ,Λg) can be identified with CFn−∗(Λg, Λf )

(by a chain isomorphism) that is generated by the intersections of the two La-
grangians Λf1 and Λf2 . Now we are ready to define the (higher) composition qk.
Let xi ∈ Λi ∩Λi+1) regarded as an element in C∗(Λi,Λi+1). We define similarly as
in the case of the Morse theory

qk([x1] ⊗ · · · ⊗ [xk]) =
∑

]MJ (M : ~f, ~p)[xk+1]. (2.4)

Again the sum is taken over those xj = (pj, dfj(pj))’s where pj’s satisfy (2.2), which

will imply that MJ(M : ~f, ~x) is 0-dimensional. Furthermore by the same kind of
degree counting as in the case of Morse theory, it follows that qk has degree −(k−2)
if we provide the grading on C∗(Λf , Λg) transfered from the Morse grading above.

To establish that the map qk is really well-defined and satisfies the axioms in
Definition 2.2 with Z-coefficients in general, we need to prove a more general version
of the index formula than in Theorem 1.6, which will replace the Morse index µ(pi)
by the Maslov-type index of the Lagrangian intersections, and to study coherent
orientations and compactification of the moduli space. This itself should constitute
a nontrivial amount of work and so we will just use our main theorem to transfer
here the corresponding results in the Morse theory (which is much easier to prove)
for the case in which fi’s are sufficiently small. We will refer elsewhere for the
complete proof of the fact that qk’s satisfy all the axioms of the A∞ category.

At least, we can state here the following result which is an immediate translation
of our main theorem.

Theorem 2.3. MS(M) is isomorphic to a sub-category of SY(T ∗M)0.

Remark 2.4. Although we call SY(T ∗M )0 and MS(M ) A∞ categories, they are in
fact very close to A∞ algebras. This is because there exist canonical isomorphisms
between the objects in the above A∞-categories.
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PART I: CUP PRODUCT

§3. Preliminaries

In this Part I, we will consider Mg(M : ~f, ~p) and MJ (T ∗M : ~Λ, ~x) for the case

k = 3. We first recall the definitions of Mg(M : ~f, ~p) and MJ (T ∗M : ~Λ, ~x) for
k = 3, where

~f = (f1, f2, f3), ~p = (p1, p2, p), ~Λ = (Λ1, Λ2,Λ3) and ~x = (x1, x2, x3).

For a given tree T with 3 edges,

Figure 3.1

we identify (or give coordinates of) each edge with (−∞, 0]. For each given metric
g on M , we consider the map

I : T → M

such that the restriction χi = I|ei to each edge e satisfies the equation

{ dχi

dt
= −gradg(fi+1 − fi)

lim
τ→−∞

χi(τ) = pi
(3.1)

where ei is the edge between ith and (i + 1)th domains with i counted mod 3. By

definition, Mg(M : ~f, ~p) is the set of all such maps I as above. Geometrically, one
can also identify this set with

3⋂

i=1

W−
pi

(fi+1 − fi)

where W−
p (h) is the unstable manifold of the gradient flow of the function h at the

critical point p ∈ M .

Next, we describe MJ(T ∗M : ~Λ, ~x). We denote by D2 the closed unit disc
and let {z1, z2, z3} ⊂ ∂D2 be three distinct fixed points in ∂D2 in the cyclic order
with respect to the orientation of ∂D2 induced from the complex orientation of
D2 ⊂ C. It is convenient and essential for the later analysis to conformally identify
D2\{z1, z2, z3} with a domain, denoted by Θ, with 3 cylindrical ends:

Figure 3.2

We denote the three boundary components of Θ by `1, `2 and `3 denoted as in
Figure 3.2. We will also denote by ∞i the point at infinity in Θ that corresponds
to the point zi in D2 under the given conformal identification.
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Now for a given almost complex structure J that is compatible with the canonical
symplectic structure w on X = T ∗M , we define the set

MJ = MJ(X : ~Λ)

=
{
w : Θ → X | ∂̄Jw = 0, w(`i) ⊂ Λi and

∫

Θ

w∗ω < ∞
}

and for given ~x = (x1, x2, x3) with xi ∈ Λi ∩ Λi+1,

MJ(~x) = MJ(X : ~Λ, ~x) = {w ∈ MJ(X : ~Λ) | w(∞i) = xi, i = 1, 2, 3}.

We will be particularly interested in the Lagrangians

Λε
i := Graph(εdfi), i = 1, 2, 3

for a small positive parameter ε > 0. We also fix the canonical almost complex
structure J = Jg associated to the metric g on M .

The main goal of Part I is to prove the following theorem.

Theorem 3.1. Let g be a fixed Riemannian metric on g and J = Jg be the associ-
ated canonical almost complex structure on T ∗M defined as in (1.4). Suppose that
fi+1 − fi are Morse functions and that the unstable manifolds W−

p (fi+1 − fi) of the
gradient flow of fi’s for i = 1, 2, 3 ( mod 3) intersect transversely, i.e., we have

3∏

i=1

(
W−

pi
(fi+1 − fi)

)
t ∆ in M × M × M

where ∆ ⊂ M ×M ×M is the diagonal ∆ = {(q, q, q) | q ∈ M}. Then there exists
some ε0 > 0 such that for any 0 < ε < ε0 and for any generic choice of J, we have
a diffeomorphism

Φε : Mg(M : ~f, ~p) → MJ(X : ~Λε, ~xε) := Mε
J

where
~Λε = (Λε

1,Λ
ε
2, Λ

ε
3) ~xε = (xε

1, x
ε
2, x

ε
3).

Here we note that if ε is sufficiently small, there is a natural one-to-one corre-
spondence between the sets Crit(fi+1 −fi) and Λε

i+1∩Λε
i. The xε

i’s above are those
corresponding to pi’s respectively. In fact, we have

xε
i = (pi, εdfi(pi)).

We will prove this theorem by a version of the gluing construction to produce

elements in MJ(X : ~Λε, ~xε) whose images are close to those in Mg(M : ~f, ~p). There
are two subtleties in this proof: The first one is to deal with a degeneration into one
dimensional objects, which requires delicate estimates involving weighted norms in
the proof. The second is more serious, in that it is not obvious at all at first sight
what we should glue near the intersection point of the gradient lines to produce
approximate solutions. In most of other gluing problems, it has been quite clear to
guess what the appropriate approximate solutions should be.
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Now we explain the analytic set-up we are going to use in the gluing construction
mentioned above. We denote by Θi the ith cylindrical region of Θ and give the
coordinates (τ, t) on Θi

∼= (−∞, 0) × [0, 1]. We also denote

Θi(δ) = {z ∈ Θi | −∞ < τ < −δ}, i = 1, 2, 3

Θ0(δ) = Θ\
3⋃

i=1

Θi(δ)

and
Θi(δ1, δ2) = {z ∈ Θi | −δ2 < τ < −δ1}

for δ’s positive. We choose a metric on X = T ∗M , which is compatible to the sym-
plectic structure ω so that the Lagrangians Λi are totally geodesic near intersection
points. Note that when we consider a family of Lagrangians Λε

i, we have to vary the
metric to make the latter condition satisfied. If w(∞i) = xi, i = 1, 2, 3 uniformly,
then we can express

w(τ, t) = expxi
ξ(τ, t)

for some ξ that satisfies Lagrangian boundary conditions

ξ(τ, 0) ∈ TxiΛi, ξ(τ, 1) ∈ TxiΛi+1. (3.2)

This is because we require that Λi’s are totally geodesic near the intersection point
with respect to the metric g. We now define

F1,p
ε = F1,p

ε (X : ~Λ, ~x) =
{

w : Θ → X | w(`i) ⊂ Λi, w = expxi
ξ with

‖ξ|Θi(R)‖1,p,ε < ∞ for some R > 0
}

where we define the norm ‖ · ‖1,p,ε as follows:

‖ξ‖0,p,ε =
(∫

Θ

ε2|ξ|p
)1/p

and

‖ξ‖1,p,ε =
( ∫

Θ

ε2|ξ|p + ε2−p|∇ξ|p
)1/p

.

Similarly for one forms η ∈ Ω1(w∗TX), we define

‖η‖0,p,ε =
(∫

Θ

ε2−p|η|p
)1/p

‖η‖1,p,ε =
(∫

Θ

ε2−p|η|p + ε2−2p|∇η|p
)1/p

.

One crucial point of taking these norms is that the ordinary Sobolev norm of the

rescaled ξ, ξ̃(u) := ξ(u
ε ) is the same as the weighted norm of ξ, i.e

‖ξ̃‖k,p = ‖ξ‖k,p,ε.
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The same applies to η. Choosing right weighted norms is the most convenient way
of dealing with the singular limit problem as ours. As in [Fl1], one can prove that
F1,p

ε becomes a Banach manifold modeled by W 1,p
ε (w∗TX),

W 1,p
ε (w∗TX) := {ξ ∈ Λ(w∗TX) | ξ(`i) ⊂ TΛi, ‖ξ‖1,p,ε < ∞}

and the map

∂̄J : F1,p
ε → H̃p

ε (w∗TX) := Lp
ε (Λ

(0,1)
J T ∗Θ ⊗ w∗TX)

becomes a smooth section of the vector bundle

π : H̃p
ε → F1,p

ε

where
H̃p

ε =
⋃

w∈F1,p
ε

H̃p
ε (w∗TX).

The following propositions will be the main tools to prove Theorem 3.1, which are
well-known tools in the literature. Here, we adapt Theorem 3.34 and Proposition
3.35 in [MS] to our purpose.

Proposition 3.2 [Theorem 3.34, [MS]] Let p > 2. Then for every constant
c0 > 0, there exist constants δ > 0 and C > 0 such that the following holds. Let
w : Θ → X be a map in F1,p

ε and

Qw : H̃p
ε → TwF1,p

ε = W 1,p
ε (w∗TX)

be a right inverse of

Dw := D∂J(w) : TwF1,p
ε → H̃p

ε

such that Dw ◦ Qw = id and

‖Qw‖ ≤ c0, ‖Dw‖Lp
ε
≤ c0, ‖∂J(w)‖Lp

ε
≤ δ.

Then for every ξ ∈ Ker Dw with ‖ξ‖1,p,ε ≤ δ, there exists a section ξ̂ = Qwη ∈
W 1,p

ε (w∗TX) such that

∂J(expw(ξ + Qwη)) = 0, ‖Qwη‖1,p,ε ≤ C‖∂J(expw ξ)‖0,p,ε.

Proposition 3.3 [Proposition 3.35 [MS]] Let p > 2. Then for every constant
c0 > 0 there exists a constant δ > 0 such that the following holds. Let w : Θ → X

and Qw : H̃p
ε → TwF1,p

ε such that w ∈ F1,p
ε , Dw ◦ Qw = id and

‖Qw‖ ≤ c0, ‖Dw‖0,p,ε ≤ c0.

If w0 = expw(ξ0) and w1 = expw(ξ1) are J -holomorphic maps such that ξ0, ξ1 ∈
W 1,p

ε (w∗TX) satisfy
‖ξ0‖1,p,ε ≤ δ, ‖ξ1‖1,p,ε ≤ c0,

and
‖ξ1 − ξ0‖∞ ≤ δ, ξ1 − ξ0 ∈ Im Qw,

then
w0 = w1.

The following lemma is also useful in later computations, which is a standard
fact in symplectic geometry. We omit the proof.
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Lemma 3.4 Let g and h be a two smooth functions on M and G and H be their
lifts to T ∗M i.e

G(x) = g(πx) (resp. H(x) = h(πx)).

Then the Poisson bracket {G, H} satisfies

{G, H} = 0

and so their Hamiltonian flows φg
t and φh

t commute. In particular, we have

(φh
t )∗XG = XG (3.3)

§4. Construction of approximate solutions

We divide Θ into 4 main regions and 3 intermediate regions which vary depending
on ε > 0. We will fix a positive constant α such that

0 < α < 1

in the rest of the paper. With this constant α, we consider for i = 1, 2, 3,

Θi(
2
εα ) = {z ∈ Θi | −∞ < τ < − 2

εα }

and
Θ0

(
1
εα

)
= Θ\ ∪3

i=1 Θi

(
1
εα

)
.

We will describe the possible approximate solutions wε on each of these regions
separately and then interpolate them on the remaining regions of Θ.

We start with the regions Θi

(
2
εα

)
, i = 1, 2, 3. For each given Morse function h

on M ⊂ T ∗M , we define the Hamiltonian H : X → R by

H(x) := h(πx)

where π : T ∗M → M is the canonical projection. We denote by φh
t the Hamiltonian

flow of H. In the regions Θi

(
2
εα

)
, we just define

wε
i (z) = wε

i (τ + it) = φ
fi+1

εt φfi

ε(1−t)(χi(ετ)) (4.1)

for each given I ∈ M(M : ~f, ~p), where we recall

χi := I |ei .

One can easily check that wε satisfies the required boundary condition

wε
i (τ, 0) ∈ Λε

i , wε
i (τ, 1) ∈ Λε

i+1, i = 1, 2, 3.

To describe the part of wε on Θ0(
1
εα ), we first re-scale a neighborhood of each

given intersection point x ∈ ∩3
i=1W

−
pi

(fi+1 − fi) ⊂ M ⊂ T ∗M in X = T ∗M . We
consider the exponential map

expx : TxX → X
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and denote
Λ̃ε

i := 1
ε exp−1

x (Λε
i) ∩ Bε1−α(0) ⊂ TxX.

One can easily see that as ε → 0,

Λ̃ε
i → Λ̃i = {(q, p) ∈ TxX ∼= R2n | p = ∇fi(x)}

uniformly on compact sets. We will first construct a holomorphic map

w̃0 : Θ → Cn ∼= R2n ∼= TxX

with boundary conditions

w̃0(`i) ⊂ Λ̃i, i = 1, 2, 3,

and with appropriate asymptotic conditions at each end, which we now describe.
Since we are going to glue the part wε

0 on Θ0(
1
εα ) to wε

i ’s defined in (4.1), the
asymptotic conditions of wε

0 should match those (rescaled by ε) obtained from

wε
i

(
1
εα + it

)
= φ

fi+1

εt φfi

ε(1−t)(χi(ε
1−α)).

We identify TxX with Cn so that TxM ⊂ TxX becomes the real plane Rn and
J · TxM ⊂ TxX becomes the imaginary plane i · Rn ⊂ Cn. We denote the real and
imaginary parts of v ∈ Cn by Re v and Im v respectively. With this notation, it is
now easy to check that we have

lim
ε→0

1
ε Im

{
exp−1

x

(
wε

i

(
1
εα + it

))}
= t(∇fi+1(x) −∇fi(x)) +∇fi(x). (4.2)

Therefore, a natural candidate for the needed asymptotic condition will be

lim
τ→−∞

Im w̃0|Θi(τ, t) = t(∇fi+1(x) −∇fi(x)) + ∇fi(x) (4.3)

uniformly over t ∈ [0, 1]. We now prove that this is precisely the natural asymptotic
condition we should impose on w̃0.

Proposition 4.1. The solution set of w̃i : Θ → Cn satisfying





∂w̃0 = 0, w̃0(`i) ⊂ Λ̃i

lim
τ→−∞

Im w̄0|Θi(τ, t) = t(∇fi+1(x)−∇fi(x)) + ∇fi(x),

for 1 = 1, 2, 3

(4.4)

is unique (if it exists) up to addition by real constant vectors.

PROOF. Suppose that w̃0 and w̃′
0 be two such solutions. We consider the difference

map
ξ = w̃0 − w̃′

0 : Θ → Cn.

Since Λ̃i are affine spaces given by

Λ̃i = {(q, p) ∈ R2n ∼= Cn | p = ∇fi(x)},



0-LOOP OPEN STRINGS AND MORSE HOMOTOPY 17

ξ satisfies
ξ(`i) ⊂ Rn, i = 1, 2, 3.

Furthermore, it also satisfies the asymptotic condition

lim
τ→∞

Im ξ|Θi = 0 uniformly.

Therefore ξ : Θ → Cn is a holomorphic map such that

Im ξ|∂Θ ≡ 0

and |Im ξ| is bounded on Θ. Applying the maximum principle to the harmonic
map Im ξ on Θ into Cn, we conclude

Im ξ ≡ 0 on Θ

which will in turn imply that

ξ ≡ a real constant vector.

This finishes the proof. ¤

Now, we will remove the non-uniqueness in this proposition by imposing the
following balancing condition (4.7). This will be important in finding a good ap-
proximate solution which enables us to obtain necessary error estimates. Since w̃0

is holomorphic and satisfies

lim
τ→−∞

Im w̃0|Θi(τ, t) = t(∇fi+1(x) −∇fi(x)) + ∇fi(x)

which is a “linear” function on t, w̃0 must satisfy

|w̃0(τ, t) − vj + i∇fj(x) + (τ + it)(∇fi+1(x) −∇fi(x))| → 0 (4.5)

uniformly as τ → ∞ for some vectors vj ∈ Rn, j = 1, 2, 3. We note that the
direction vectors (∇fi+1(x) −∇fi(x)) satisfy

(∇f2(x) −∇f1(x)) + (∇f3(x) −∇f2(x)) + (∇f1(x) −∇f3(x)) = 0. (4.6)

We remove the ambiguity in Proposition 4.1 by imposing the condition

lim
τ→−∞

3∑

j=1

Re w̃0|Θi(τ, t) = 0 (4.7)

which can be always achieved, due to (4.6), by choosing appropriate real vectors
vj ’s in (4.5).

It remains to prove the existence of a solution to (4.4). For the notational
convenience, we denote

uj = ∇fj+1(x) −∇fj(x), j = 1, 2, 3
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and then the span of uj ’s satisfy

dimR spanR{u1, u2, u3} = 2

because u1 + u2 + u3 = 0 from (4.6). By the uniqueness theorem, it will be enough
(if possible) to construct a solution of (4.4) such that

Image w̃0 ⊂ SpanC{u1, u2, u3} + i∇f1(x).

We denote the affine space of complex dimension 2

W := SpanC{u1, u2, u3} + i∇f1(x) ⊂ Cn.

We will assume without loss of any generality that ∇f1(x) = 0 and so W becomes
a subspace. In this way, we have reduced the existence problem to one in W ∼= C2.
If we denote

V = SpanR{u1, u2, u3} ⊂ Rn,

we have
W = VC + i∇f1(x)

where VC is the complexification of V . We now consider two complex projection

π1, π2 : W → W

such that Image πi are one dimensional and

π1 = projection along u1 = ∇f2(x) −∇f1(x)

π2 = projection along u2 = ∇f3(x) −∇f2(x).

By identifying the images of πi’s with C, we have coordinates which we denote by

(π1, π2) ∈ C2.

To determine w̃0 : Θ → W ⊂ Cn, it will be enough to determine its coordinate
functions πi ◦ w̃0 : Θ → C. Denote

Ṽj = V + i · ∇fj(x) j = 1, 2, 3.

Then it follows

π1(Ṽ1) = π1(Ṽ2) ⊂ π1(W )

π2(Ṽ2) = π2(Ṽ2) ⊂ π2(W ).

We will now seek holomorphic functions

ak : Θ → C, k = 1, 2,

such that {
a1(`1), a1(`2) ⊂ π1(Ṽ1) = π1(Ṽ2)

a1(`3) ⊂ π1(Ṽ2)



0-LOOP OPEN STRINGS AND MORSE HOMOTOPY 19

and {
a2(`1) ⊂ π2(Ṽ1)

a2(`2), a2(`3) ⊂ π2(Ṽ2).

Then we will choose w̃0 : Θ → W ⊂ Cn such that

w̃0(z) = (a1(z), a2(z))

in coordinates (π1, π2) of W . By the conformal identification of Θ with D2\{z1, z2, z3},
the above description of finding a1 is equivalent to finding holomorphic map

a1 : D2\{z2, z3} → C

with {
a1(`1 ∪ {z1} ∪ `2) ⊂ π1(Ṽ1)

a1(`3) ⊂ π1(Ṽ3)
(4.8.1)

and
a1(z2) = −∞, a1(z3) = ∞. (4.8.2)

The existence of such functions immediately follows from the Riemann mapping
theorem. In fact, there exists one dimensional family of such functions. Similarly,
we find a holomorphic function

a2 : Θ → C

such that {
a2(`1) ⊂ π2(Ṽ1)

a2(`2 ∪ `3 ∪ {z2}) ⊂ π2(Ṽ2)
(4.9.1)

and
a2(z3) = −∞, a2(z1) = ∞. (4.9.2)

Finally, we need to check that the map w̃0 : Θ → C defined by

w̃0(z) = (a1(z), a2(z))

in coordinates (π1, π2) of W indeed satisfy all the requirements in Proposition 4.1,
especially the asymptotic conditions. To check the asymptotic conditions, we recall
that since Θ has cylindrical ends with the same width, it follows from the properties
of the Riemann map that both a1 and a2 are asymptotically linear at each end.
More precisely, the functions a1 must satisfy

a1|Θ2(τ, t) → b(τ + it)

a1|Θ2(τ, t) → −b(τ + it) as |τ | → ∞ (4.10)

for a constant b ∈ C. Similar conditions must hold for a2.
Now, we consider the asymptotic conditions of w̃0 at each point of z1, z2 and z3.

First at z1 ∈ ∂D2, we have, from (4.8.1), (4.9.2) and the asymptotic linearity of a2,

a1(z1) ∈ π1(Ṽ1) (4.11.1)

a2(τ + it) ∼ b(τ + it) as |τ | → ∞. (4.11.2)
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We interpret these conditions for w̃0 in the standard coordinates on Θ1. It is easy
to check that (4.11.1) implies that the image of w̃0 is asymptotically tangent to
span{iu1} and (4.11.2) implies that w0 is asymptotically linear which are precisely
the conditions for w̃0 to satisfy on Θ1. Similar consideration applies to z2 and so
on Θ2. It remains to prove the asymptotic condition on Θ3. At z3, we have

a1(`3) ⊂ π1(Ṽ3), a1(`1) ⊂ π1(Ṽ1)

and
a2(`3) ⊂ π2(Ṽ2), a2(`1) ⊂ π2(Ṽ1).

Moreover both a1 and a2 are asymptotically linear at z3. It now follows from these
that w̃0 also satisfies the required asymptotic condition on Θ3. This finishes the
proof of the existence of solutions satisfying the equation in Proposition 4.1.

Remark 4.2. Originally, we found the solution w̃0 by a different method, which first
solves the minimization problem of the harmonic energy

∫

Θi(R)

|Dw|2

for large fixed R > 0 with appropriate boundary conditions and then proves the
minimizer must be holomorphic. Then w̃0 can be obtained as the limit as R → ∞.
This method is possible because we require that w̃0 satisfy the totally geodesic La-

grangian boundary condition given by Λ̃i in Cn (See some remnants of this method
in the proof of Lemma 16.3). Only after we proved the uniqueness result Proposition
4.1, we have been able to find the above elementary method.

Now, we use w̃0 : Θ → Cn to construct the portion on Θ0

(
1
εα

)
of our approximate

solution
wε : Θ → X.

It would be very natural to define

wε
0 : Θ0(

1
εα ) → X

by
wε

0(z) = expx εw̃0(z).

Unfortunately, this does not quite satisfy the boundary conditions

wε
0|`i ⊂ Λε

i .

For the moment ignore this fact and proceed defining wε. Finally, we interpolate wε
i

with wε
0 for each i = 1, 2, 3 on the regionΘi

(
1
εα , 2

εα

)
. We choose a cut-off function

β : (−∞, 0] → R such that





β = 0 for −1 ≤ τ ≤ 0

β = 1 for τ ≤ −2

−2 ≤ β′(τ) ≤ 0.
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We denote

w̃ε
i := 1

ε exp−1
x wε

i , i = 1, 2, 3,

and complete the definition of wε = wε,I by

wε(z) = wε,I(z) =





φ
fi+1

εt ◦ φfi

ε(1−t)(χi(ετ)) for z ∈ Θi(
2
εα )

expx εw̃0(z) for z ∈ Θ0(
1
εα )

expx ε(w̃0(z) + β(εατ )(w̃ε
i (z) − w̃0(z))

for z ∈ Θi(
1
εα , 2

εα ).
(4.12)

It remains to justify the fact that this is a good approximate solution although it
does not quite satisfy the boundary conditions on the regions

Θi(
1
εα ).

First we note that since w̃0 is asymptotically linear and so |εw̃0(z)| ∼ ε1−α on
θ0(

1
εα ), expx εw̃0(z) → x as ε → 0 uniformly over Θ0(

1
εα ) for all x ∈ ∩3

j=1W
−
pj

(fj+1−
fj). Hence, one can correct wε on the image by a C1-small perturbations so that it
satisfies the correct boundary condition. Because of this, we will pretend that wε

defined in (4.12) satisfies the correct boundary conditions.

Remark 4.3. It is important to note that because of (4.6), the images of εw̃0(z)
converges to the three lines intersecting at the origin in the Hausdorff sense as
ε → 0, which are in the directions of grad(fi+1 − fi)(x) for i = 1, 2, 3. This point
will be important in Section 6 and 7.

Figure 4.1
§5. Error estimates

We start with the regions Θi(
2
εα ) for i = 1, 2, 3. In terms of the coordinates (τ, t)

on Θi, we have

|∂Jwε| = 1
2

∣∣∣∂wε

∂τ + J ∂wε

∂t

∣∣∣ on Θi

where the left hand side is the norm taken in Λ(0,1)T ∗Θ ⊗ (wε)∗TX and the right
hand side is the one taken in (wε)∗TX . Therefore, we will compute the right hand
side instead of |∂Jwε|. For notational convenience, we denote

wi(τ, t) := wε|Θi(τ, t) = φ
fi+1

εt ◦ φfi

ε(1−t)(χi(ετ)) on Θi.

We compute

∂wi

∂τ
= εTφ

fi+1

εt ◦ Tφfi

ε(1−t)(χ
′
i(ετ ))

= εTφ
fi+1

εt ◦ Tφfi

ε(1−t)(−grad(fi+1 − fi)(χi(ετ ))
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where the second equality comes from (3.1). And

∂wi

∂t
= εXFi+1(wi)− εTφ

fi+1

εt XFi((φ
fi+1

εt )−1(wi))

= εXFi+1(wi)− εXFi(wi) = εX(Fi+1−Fi)(wi)

= εTφ
fi+1

εt ◦ Tφfi

ε(1−t)

(
X(Fi+1−Fi)(χi(ετ ))

)

where we used the identities

(φ
fi+1

εt )∗XFi+1 = XFi+1

XH − XG = X(H−G).

Therefore we have

∂wi

∂τ + J ∂wi

∂t = −εTφ
fi+1

εt ◦ Tφfi

ε(1−t)

(
grad(fi+1 − fi)(χi(ετ ))

)

+ εJTφ
fi+1

εt ◦ Tφ
fi

ε(1−t)X(Fi+1−Fi)(χi(ετ ))

= −εTφ
fi+1

εt ◦ Tφfi

ε(1−t)JX(Fi+1−fi)(χi(ετ ))

+ εJTφ
fi+1

εt ◦ Tφfi

ε(1−t)X(Fi+1−Fi)(χi(ετ ))

= −εTφ
fi+1

εt ◦ Tφfi

ε(1−t)

{
JX(Fi+1−Fi) − (φ

fi+1

εt ◦ φfi

ε(1−t))
∗J ·X(Fi+1−Fi)

}
(χi(ετ )).

Here we used Lemma 3.4 and the identity

JX(Fi+1−Fi) = grad(fi+1 − fi)

on M ⊂ T ∗M . Since we have

|φfi+1

εt − id|C1 , |φfi

ε(1−t) − id|C1 ≤ Cε

where C is the constant depending only on ~f = (f1, f2, f3), we have

∣∣∣∂wi

∂τ + J ∂wi

∂t

∣∣∣(τ, t)

≤ Cε
∣∣∣JX(Fi+1−Fi) − (φ

fi+1

εt ◦ φfi

ε(1−t))
∗J · X(Fi+1−Fi)

∣∣∣(χi(ετ )).

For the simplicity of exposition, we denote

Yi,ε := JX(Fi+1−Fi) − (φ
fi+1

εt ◦ φfi

ε(1−t))
∗J ·X(Fi+1−Fi)

=
(
J − (φ

fi+1

εt ◦ φfi

ε(1−t))
∗J

)
· X(Fi+1−Fi)
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and then, we have

‖∂Jwε‖p

0,p,ε,Θi(
2

εα )
=

∫

Θi(
2

εα )

ε2−p|∂Jwε|p

≤ Cpε2
∫

Θi(
2

εα )

|Yi,ε|p(χi(ετ ))

= Cpε2
∫ 1

0

∫ − 2
εα

−∞
|Yi,ε|p(χi(ετ ))dτdt

= Cpε

∫ 1

0

∫ −2ε1−α

−∞
|Yi,ε|p(χi(σ))dσdt, σ = ετ

≤ Cpε

∫ 1

0

∫ 0

−∞
|Yi,ε|p(χi(σ))dσdt

≤ Cpε sup
x∈M

|J − (φ
fi+1

εt ◦ φfi

ε(1−t))
∗J |p(x)

∫ 0

−∞
|X(Fi+1−Fi)|

p(χi(σ))dσ.

Here it is easy to see that

sup
x∈M

|J − (φ
fi+1

εt ◦ φfi

ε(1−t))
∗J | ≤ Cε,

and so we have

‖∂Jwε‖p

0,p,ε,Θi(
2

εα )
≤ C̃pε1+p

∫ 0

−∞
|X(Fi+1−Fi)|

p(χi(σ))dσ. (5.1)

Since JX(Fi+1−Fi) = grad(fi+1 − fi) on M ⊂ T ∗M and the gradient trajectory
χi = I |ei converges exponentially to pi as σ → −∞, we have

|X(Fi+1−Fi) | (χi(σ)) = O(e−Cσ) (5.2)

as |s| → ∞. However the region of σ where (5.2) is valid will depend on I ∈ M(M :
~f, ~p), because M(M : ~f, ~p) may not be compact in general due to the splitting of
trajectories:

Figure 5.1

However, as described in [Fu3], the compactification of M(M : ~f, ~p) has only finitely
many strata and the minimal stratum is compact. To effectively describe the non-

compactness of M(M : ~f, ~p), we introduce the variance of the energy, an analogue
of which was previously used by Floer in the context of Floer homology (see [Lemma
2.1, F3]).



24 KENJI FUKAYA & YONG-GEUN OH

Lemma 5.1. The function V : M(M : ~f, ~p) → R defined by

V (I) =

3∑

j=1

1
2

∫ 0

−∞
τ2

∣∣∣ I |′ei
(τ)

∣∣∣
2

dτ

is everywhere defined and proper.

PROOF. The integral converges for each I ∈ M because of the exponential decay
of the gradient trajectories at nondegenerate critical points. Now, we prove the
properness. It will be enough to prove that the set V −1([0, K]) is compact for any
K > 0. Suppose the contrary. Since the non-compactness arises by the splitting of
trajectories, there must exist a sequence Ik ∈ V −1([0, K]) and τk → ∞ such that
for some j = 1, 2, 3, say j = 1, the sequence of maps

τ 7→ Ik|e1(τ − τk)

(locally) converges to a gradient trajectory χ : R → M of f2 − f1. From this, it
follows that the integral

1
2

∫ 0

−∞
τ2

∣∣∣ (Ik)′|e1(τ)
∣∣∣
2

dτ = 1
2

∫ τk

−∞
(τ − τk)2

∣∣∣ (Ik)′|e1(τ − τk)
∣∣∣
2

dτ

goes to +∞ as k → ∞, which gives a contradiction to

V (Ik) ≤ K

for all k.
¤

It is obvious that
M(M : ~f, ~p) =

⋃

K>0

V −1([0,K])

and we denote

MK(M : ~f, ~p) = V −1([0, K]) = {I ∈ M(M : ~f, ~p) | V (I) ≤ K}.

By restricting to MK for each K > 0, we will have the uniform exponential decay
at each triple ~p = (p1, p2, p3) of critical points. More precisely, there exists

R = R(K) > 0

such that we have
| I ′|ej(σ)| ≤ Ce−Cσ, (5.3)

for all σ < −R, I ∈ MK and j = 1, 2, 3. Therefore, we conclude

‖∂Jwε‖p

0,p,ε,Θi(
2

ε2
)
≤ Cp

1 (K)ε1+p (5.4)

from (5.1) for all I ∈ MK , where

Cp
1 (K) = C̃p sup

I∈MK

∫ ∞

0

|X(Fi+1−Fi)|
p(χi(σ))dσdt. (5.5)
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Again for I ∈ MK(M : ~f, ~p), we now estimate ‖∂Jwε‖0,p,ε,Θ0(
1

εα ). From the defini-

tion of ∂J , we have

∂Jwε
0 = ∂J expx(εw̃0)

=
D expx εw̃0 + JD expx ∈ w̃0 ◦ i

2

=
D expx(εw̃0) ◦ εDw̃0 + JD expx(εw̃0) ◦ εDw̃0 ◦ i

2

= εD expx(εw̃0)
(Dw̃0 + (expx(εw̃0))

∗J ◦ Dw̃0 ◦ i

2

)

= εD expx(εw̃0)
( (expx(εw̃0))

∗J − J(x)

2

)
◦ Dw̃0 ◦ i

where we used the fact
∂J0w̃0 = 0, J0 = J(x)

for the fourth identity. By the standard facts on the exponential map and the fact
that |w̃0(τ, t)| grows linearly with respect to |τ | → ∞, we have

|(expx(εw̃0))
∗J − J0| ≤ C |εw̃0| ≤ Cε1−α (5.6)

on Θi(
1
εα ). Hence it follows

|∂Jwε
0| ≤ Cε2−α

and so

‖∂Jwε
0‖

p

0,p,ε,Θ0(
1

εα )
=

∫

Θ0(
1

εα )

ε2−p|∂Jw0|p

≤ Cp

∫

Θ0(
1

εα )

ε2+p−αp = Cpε2+p−αpArea
(
Θ0

(
1
εα

))

≤ Cp
2 ε2+p−(p+1)α (5.7)

where the last inequality follows from that

Area
(
Θ0(

1
εα

))
∼ 1

εα .

We note that the estimate (5.7) holds uniformly over all I ∈ M not just for I ∈ MK .
Now, we need the estimates on the intermediate regions

Θi

(
1
εα , 2

εα

)
, i = 1, 2, 3.

Using the canonical coordinates on Θi, we again estimate
∣∣∣∂wε

∂τ
+ J ∂wε

∂t

∣∣∣ instead of

|∂Jwε|. On Θi(
1
εα , 2

εα ), we have

∂wε

∂τ = εD expx

(
∂w̃0

∂τ + εαβ′(εατ)(w̃ε
i − w̃0) + β(εατ)

(
∂w̃ε

i

∂τ − ∂w̃0

∂τ

))

∂wε

∂t
= εD expx

(
∂w̃i

∂t
+ β(εατ)

(
∂w̃ε

i

∂t
− ∂w̃0

∂t

))
.
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Hence, from the equation ∂w̃0

∂τ + J0
∂w̃0

∂t = 0,

∂wε

∂τ + J ∂wε

∂t = εD expx

(
(exp∗

x J − J0)
∂w̃0

∂t

)
+ ε1+αD expx(β′(εατ)(w̃ε

i − w̃0))

+ εβ(εατ)
{(

D expx

(
∂w̃ε

i

∂τ

)
+ JD expx

(
∂w̃ε

i

∂t

))

−
(
D expx

(
∂w̃0

∂τ

)
+ JD expx

(
∂w̃0

∂t

))}
. (5.8)

For the first term, we note as in (5.6)

| exp∗
x J − J0| ≤ C |ε

(
w̃0(z) + β(εατ)(w̃ε

i (z) − w̃0(z)
)
|.

From (4.2) and (4.3), we conclude

|w̃ε
i (z) − w̃0(z)|Θi(

1
εα , 2

εα ) < C (5.9)

uniformly as ε → 0. Therefore, we have on Θi(
1
εα , 2

εα )

| exp∗
x J − J0| ≤ C |εw̃0| ≤ Cε1−α

and so ∣∣∣εD expx

(
(exp∗

x J − J0)
∂w̃0

∂t

)∣∣∣ ≤ Cε2−α. (5.10)

For the second term in (5.8), we immediately have from (5.9)

|ε1+αD expx(β′(εατ )(w̃ε
i − w̃0))| ≤ Cε1+α. (5.11)

Therefore, we have from (5.10)

∫

Θi(
1

εα , 2
εα )

ε2−p
∣∣∣εD expx

(
(exp∗

x J − J0)
∂w̃0

∂t

)∣∣∣
p

≤ Cpε2+p−(p+1)α (5.12)

and from (5.11)

∫

Θi(
1

εα , 2
εα )

ε2−p
∣∣∣ε1+αD expx(β′(εατ)(w̃ε

i − w̃0))
∣∣∣
p

≤ Cpε2+pα−α = Cpε2+(p−1)α (5.13)

For the third term in (5.8), we consider two terms in the parenthesis separately.
We first recall the definition of w̃ε

i

w̃ε
i = 1

ε (expx)−1wε
i

and so
wε

i = expx(εw̃ε
i ).
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We also have

D expx

(
∂w̃ε

i

∂τ

)
+ JD expx

(
∂w̃ε

i

∂t

)

= D expx(ε(w̃0(z) + β(εατ))(w̃ε
i (z)− w̃0(z)))

(
∂w̃ε

i

∂τ

)

+ JD expx(ε(w̃0(z) + β(εατ))(w̃ε
i (z) − w̃0(z)))

(
∂w̃ε

i

∂t

)

= 1
ε

(
∂wε

i

∂τ + J
∂wε

i

∂t

)

+
(
D expx ε(w̃0(z) + β(εατ))(w̃ε

i (z) − w̃0(z))
)
− D expx(εw̃ε

i (z)
)(

∂w̃ε
i

∂τ

)

+
(
JD expx

(
ε(w̃0(z) + β(εατ

)
(w̃ε

i (z) − w̃0(z))

− JD expx(εw̃ε
i (z))

)(
∂w̃ε

i

∂t

)

where we used the identity

1
ε

∂wε
i

∂τ
= D expx(εw̃ε

i (z))
∂w̃ε

i

∂τ
and

1
ε

∂wε
i

∂t = D expx(εw̃ε
i (z))

∂w̃ε
i

∂t .

Therefore,

ε
∣∣∣D expx

(
∂w̃ε

i

∂τ

)
+ JD expx

(
∂w̃ε

i

∂t

)∣∣∣ ≤
∣∣∣∂wε

i

∂τ + J
∂wε

i

∂t

∣∣∣

+ ε
∣∣∣D expx

(
ε(w̃0(z) + β(εατ)(w̃ε

i (z) − w̃0(z)
)

−D expx(εw̃ε
i (z))

∣∣∣
(∣∣∣∂w̃ε

i

∂τ

∣∣∣ +
∣∣∣∂w̃ε

i

∂t

∣∣∣
)

(5.14)

However as in (5.4) one can estimate
∫

Θi(
1

εα , 2
εα )

∣∣∣∂wε
i

∂τ + J
∂wε

i

∂t

∣∣∣
p

≤ Cp
3 (K)ε1+p (5.15)

where C3(K) depends only on K . On the other hand, we have

ε|D expx(ε(w̃0(z) + β(εατ)(w̃ε
i (z)− w̃0(z))) −D expx(εw̃ε

i (z))|
≤ Cε|D2 expx | · |ε(1 − β(εατ))(w̃ε

i (z) − w̃0(z)|

≤ C̃ε2|w̃ε
i (z) − w̃0(z)|.

Hence

∫

Θi(
1

εα , 2
εα )

ε2−p
(
ε|D expx(ε(w̃0(z) + β(εατ )(w̃ε

i (z) − w̃0(z))

− D expx(εw̃ε
i (z))|

)p(∣∣∣∂w̃ε
i

∂τ

∣∣∣ +
∣∣∣∂wε

i

∂t

∣∣∣
)p

≤ C̃pε2+p

∫

Θi(
1

εα , 2
εα )

|w̃ε
i (z) − w̃0(z)|p

(∣∣∣∂w̃ε
i

∂τ

∣∣∣ +
∣∣∣∂w̃ε

i

∂t

∣∣∣
)p

≤ Cpε2+p−α (5.16)
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Combining (5.12), (5.13), (5.15) and (5.16), we have

∫

Θi(
1

εα , 2
εα )

ε2−p
∣∣∣∂wε

∂τ
+ J ∂wε

∂t

∣∣∣
p

≤ Cp(K)
(
ε2+p−(p+1)α + ε2+(p−1)α + ε1+p + ε2+p−α

)

Using the fact
0 < α < 1

we have obtained

∫

Θi(
1

εα , 2
εα )

εp−2
∣∣∣∂wε

∂τ + J ∂wε

∂t

∣∣∣
p

≤ Cp
4 (K)ε2+(p−1)α. (5.17)

Now, summing up (5.4), (5.7) and (5.17), we have obtained

‖∂Jwε‖p
0,p,ε ≤ (Cp

1 (K)ε1+p + Cp
2 ε2+p−(p+1)α + Cp

4 (K)ε2+(p−1)α).

Hence, we have finally proved the following estimates.

Proposition 5.2. For each given K > 0, the approximate solutions defined as in
(4.9) satisfy the estimate

‖∂Jwε‖0,p,ε ≤ C5ε
2+(p−1)α

p (5.18)

for all I ∈ MK(M : ~f , ~p).

Now, we would like to extend the estimate (5.18) for all I ∈ M(M : ~f, ~p) to
prove the following main estimate of this section.

Proposition 5.3. There exists ε2 > 0 such that for 0 < ε < ε2, the approximate
solutions defined as in (4.9) satisfy the estimate

‖∂Jwε‖0,p,ε ≤ C6ε
2+(p−1)α

p (5.19)

for all I ∈ M. In particular, we have

‖∂Jwε‖0,p,ε → 0 as ε → 0

uniformly over I ∈ M = M(M : ~f, ~p).

PROOF. It will be enough to have the estimate of the kind (5.19) for I ’s in M\MK

for sufficiently large K > 0. We go back to the integral in (5.1)

∫ 0

−∞
|X(Fi+1−Fi)|

p(χi(σ))dσ =

∫ 0

−∞
|X(Fi+1−Fi)|

p(I |ei(σ))dσ.

The following is a consequence of the standard concentration compactness prin-
ciple whose proof we leave to readers.
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Lemma 5.4. Suppose that {Ik} ⊂ M(M : ~f, ~p) be a sequence such that

Ik → I0
∞ +

N∑

`=1

I`
∞

in the weak topology, where I0
∞ is an element in M(M : ~f) and each I`

∞ is a
gradient trajectory of (fi+1 − fi) for some i = 1, 2, 3 connecting two critical points
of fi+1 − fi. Denote by

W (I) :=
3∑

i=1

∫ 0

−∞
|X(Fi+1−Fi)|

p(I |ei(σ))dσ

for I ∈ M(M : ~f), and

W (I) :=

∫ ∞

−∞
|X(Fi+1−Fi)|

p(I(σ))dσ

for I ∈ M(fi+1 − fi), i = 1, 2, 3. Then we have

lim
k→∞

W (Ik) = W (I0
∞) +

N∑

`=1

W (I`
∞). (5.20)

Figure 5.2

With this lemma, we proceed the proof of Proposition 5.3. We recall that the

compactification M of M = M(M : ~f, ~p) has only finitely many strata M\M and
the minimal stratum, denoted by M0, is compact. We extend the definitions of W
to the whole compactification M of M by defining

W (I) = W (I0) +

N∑

`=1

W (I`)

for I = I0 ∪
(
∪N

`=1 I`) where we define

W (I`) =

∫ ∞

−∞
|X(Fi+1−Fi)|

p(I`(σ))dσ for ` = 1, · · · , N.

By this definition, it follows from the uniform exponential decay that W is uniformly
bounded on the minimal strata because they are compact. We denote by R0 an
upper bound of W |M0. Consider the stratum, denoted by M1, of the next higher
order. Then we have

M0 = M1\M1.
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By the estimates similar to (5.4), (in fact easier than that), that for any fixed
K > 0, there exists a constant R1 = R1(K) > 0, ε1 > 0 such that

W (I) ≤ R1 (5.21)

for all I ∈ M1
K and for all 0 < ε < ε1.

On the other hand, Lemma 5.4 proves that for sufficiently large K > 0, we have

W (I) ≤ R0 + δ (5.22)

for some δ > 0 for all I ∈ M1\M1
K . Combining (5.21) and (5.22), we have proven

that there exists some R2 > 0 such that

W (I) ≤ R2

for all I ∈ M1. By considering the stratum of next order and by repeating the
above arguments, we finish the proof of Proposition 5.3. ¤

§6. Construction of the right inverse

We begin by rephrasing the transversality condition of

W−
pi

(fi+1 − fi) i = 1, 2, 3.

To simplify notations, we again denote

χi = I |ei : (−∞, 0] → M

for each
I : T → M, I ∈ M(M : ~f, ~p),

and denote
W k,p

χ := W k,p(χ∗TM)

which is the Sobolev space of the W k,p-sections of χ∗TM . We define

W k,p
I := {(cχ1 , cχ2 , cχ3) ∈ W k,p

χ1
× W k,p

χ2
× W k,p

χ3
|

cχ1(0) = cχ2(0) = cχ3(0)}.

The space W k,p
I should be interpreted as a singular limit as ε → 0 of the spaces

TωεFk,p
ε = W k,p

ε ((wε)∗TX).

We will restrict to k = 1 from now on. Our transversality assumption on W−
pi

(fi+1−
fi) is equivalent to saying that the operator

LI : W 1,p
I → Lp

χ1
× Lp

χ2
× Lp

χ3

LI(cχ1 , cχ2 , cχ3) := (Lχ1(cχ1), Lχ2(cχ2), Lχ3(cχ3))

is surjective, where the operator

Lχi : W 1,p
χi

→ Lp
χi
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is defined to be the linearization operator

Lχi := ∇τ + ∇grad (fi+1 − fi)

of the equation
χ̇ + grad (fi+1 − fi)(χ) = 0.

By considering the L2-adjoint of the operator LI , it is also equivalent to the fact
that the equation

{ −∇τ cχi + grad (fi+1 − fi)cχi = 0

cχ1(0) + cχ2(0) + cχ3(0) = 0,
(6.1)

has only the trivial solution.
Now, we follow the strategy used in [F1] (or also see [MS]), i.e., first find an

approximate right inverse

Qε : H̃p
wε → W 1,p

ε ((wε)∗TX)

of the operator Dwε := D∂J (wε) for ε sufficiently small such that

‖Qε‖ ≤ C7, ‖Dwε ◦ Qε − id‖ <
1

2
, (6.2)

where we recall that H̃p
wε is defined as

H̃p
wε = Lp

ε (Λ
(0,1)T ∗Θ ⊗J (wε)∗TX).

Under these conditions, the composition

Dwε ◦ Qε : H̃p
wε → H̃p

wε

is invertible and a right inverse of Dwε will be given by

Qwε := Qε ◦ (Dwε ◦ Qε)
−1.

Now, we construct the approximate right inverse Qε. We decompose Θ as before and

describe the portion of ξ = Qε(η) on Θi(
2
εα ) first for each given η ∈ H̃p

wε . On Θi(
2
εα ),

we use the coordinates (τ, t) and identify H̃p
wε = Lp

wε(Λ(0,1)T ∗Θ⊗J (wε)∗TX) with
Lp

wε(w∗
ε TX) in the standard way similar to the identification used in Section 4. We

recall that on Θi(
2
εα ), wε was defined by

wε(τ, t) = φ
fi+1

εt ◦ φfi
εt(χi(ετ))

which can be rewritten as

wε(τ, t) = φ
εfi+1

t ◦ φεfi
t (χε

i(τ)), χε
i(τ) := χi(ετ).

We note that χε
i is a trajectory of the gradient flow of −ε(fi+1 − fi).
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Given η ∈ H̃p
wε

∼= Lp
ε ((w

ε)∗TX), we define the triple

~bε
χ = (bε

1, b
ε
2, b

ε
3)

by

bε
i(τ, t) =

{
T (φfεt

i+1 ◦ φfi

ε(1−t))
−1η(τ, t) for τ ≤ − 3

2εα

0 otherwise .
(6.3)

Since wε(τ, t) = φ
fi+1

εt ◦ φfi

ε(1−t)(χi(ετ)), we have

bε
i ∈ Lp

ε ((χ
ε
i)

∗TX × [0, 1]) := L̃p
χi

where χε
i(τ) = χi(ετ). We will now study the following equation in detail in the

proof of Proposition 6.1 below:





∇τaε
i + J(∇t + ε∇X(Fi+1−Fi))a

ε
i = bε

i

aε
i(τ, 0), aε

i(τ, 1) ⊂ TM ⊂ TX and aε
i(0, t) ∈ TM

∫ 1

0
aε
1(0, t)dt =

∫ 1

0
aε
2(0, t)dt =

∫ 1

0
aε

3(0, t)dt.

We define, for each i = 1, 2, 3,

W̃ 1,p
χε

i
:= {~aε ∈ W 1,p((χε

i)
∗TX × [0, 1]) | aε

i(τ, 0), aε
i(τ, 1) ∈ TM ⊂ TX}

and

W̃ 1,p
Iε := {(aε

1, a
ε
2, a

ε
3) ∈ W̃ 1,p

χε
i
× W̃ 1,p

χε
i
× W̃ 1,p

χε
i

| aε
i(0, t) ∈ TxM ⊂ TxX

and

∫ 1

0

aε
1(0, t)dt =

∫ 1

0

aε
2(0, t)dt =

∫ 1

0

aε
3(0, t)dt}

We equip W̃
1,p
Iε with the norm ‖ · ‖1,p,ε. Similarly we define

L̃p
Iε := L̃p

χ1
× L̃p

χ2
× L̃p

χ3

and equip it with the norm ‖ · ‖0,p,ε. Now consider the operator

D̃Iε : W̃ 1,p
Iε → L̃p

Iε

by

D̃Iε(aε
1, a

ε
2, a

ε
3) = (D̃χε

1
aε
1, D̃χε

2
aε

2, D̃χε
2
aε
2)

where

D̃χε
i
aε

i := ∇τaε
i + J(∇t + ε∇X(Fi+1−Fi))a

ε
i .
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Proposition 6.1. Suppose that W−
pi

(fi+1− fi) for i = 1, 2, 3 intersect transversely
and so the equation (6.1) has no non-trivial solution. Then there exists ε2 > 0 such
that if 0 < ε < ε2, the following hold:
(i).

Ker D̃Iε = {(aε
1, a

ε
2, a

ε
3) ∈ W̃ 1,p

Iε | aε
i ’s are independent of t and satisfy

the equation ∇τaε
i + ε∇grad (fi+1 − fi)a

ε
i = 0}

(ii). D̃Iε is surjective and
(iii). there exists C8 > 0 independent of ε such that for any ~aε = (aε

1, a
ε
2, a

ε
3) ∈

(Ker D̃Iε)⊥ ⊂ W̃ 1,p
Iε , we have

‖~aε‖1,p,ε ≤ C8‖D̃Iε(~aε)‖0,p,ε (6.4)

and so that there exists a right inverse Q̃Iε of D̃Iε such that

D̃Iε ◦ Q̃Iε = id and ‖Q̃Iε‖ ≤ C8. (6.5)

Proof. We separate the proof into 3 parts.

Proof of (i). Suppose that

~aε = (aε
1, a

ε
2, a

ε
3) ∈ Ker D̃Iε ⊂ W̃ 1,p

Iε

i.e, satisfies the equation




∇τaε
i + J(∇t + ε∇X(Fi+1−Fi))a

ε
i = 0

aε
i(τ, 0), aε

i(τ, 1) ∈ TM ⊂ TX and aε
i(0, t) ∈ TM

∫ 1

0 aε
1(0, t) dt =

∫ 1

0 aε
2(0, t) dt =

∫ 1

0 aε
3(0, t) dt ∈ TM.

(6.6)

Following the idea in [F2] and [Appendix, O6], we decompose

aε
i = cε

i + dε
i

where cε
i (resp. dε

i) is the horizontal (resp. vertical) component of (Iε)∗T (T ∗M ) in
terms of the splitting

T (T ∗M)|M = TM ⊕ T ∗M.

Then (cε
i , d

ε
i) must satisfy the equation





∇τ cε
i + ∇td

ε
i + ε∇grad (fi+1 − fi)c

ε
i (6.7)

∇τdε
i −∇tc

ε
i = 0 (6.8)

dε
i(τ, 0) = 0, dε

i(τ, 1) = 0 (6.9)

dε
1(0, t) = dε

2(0, t) = dε
3(0, t) = 0 (6.10)

∫ 1

0
cε
1(0, t)dt =

∫ 1

0
cε
2(0, t)dt =

∫ 1

0
cε
3(0, t)dt. (6.11)

Here we identify ∇(∗)d
ε
i ∈ V TIε(T ∗M) ∼= T ∗

IεM with J(∇(∗)d
ε
i) ∈ TIεM using the

canonical decomposition of T (T ∗M)|M . We now consider the function

βε
i =

1

2
〈dε

i(τ), dε
i(τ)〉
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and then a straightforward computation using the boundary condition (6.9) yields

d2βε
i

dτ 2
= ‖∇τdε

i‖2 + ‖∇td
ε
i‖2 − ε〈dε

i(τ),∇grad (fi+1 − fi)∇τdε
i〉.

(See [Appendix, O6] for this computation.) Again using (6.9) and the Poincaré
inequality, we have

‖dε
i‖2 ≤ C‖∇td

ε
i‖2.

Therefore we have

d2βε
i

dτ2
≥ ‖∇τdε

i‖2 + ‖∇td
ε
i‖2 −Cε‖∇grad (fi+1 − fi)‖∞‖∇td

ε
i‖2‖∇τdε

i‖2

and so if we choose ε so that

Cε‖∇grad (fi+1 − fi)‖∞ ≤ 1
4

(6.12)

we get
d2βε

i

dτ2
≥ 1

2‖∇td
ε
i‖2

2 ≥ 1
2C2 ‖dε

i‖2 = 1
2C2 βε

i > 0,

which shows that βε
i is a convex function. Since ~aε ∈ W̃ 1,p

Iε , we have

lim
τ→−∞

βε
i (τ) = 0 (6.13)

and (6.10) implies
βε

i (0) = 0. (6.14)

We fix any ε satisfying (6.12) so that βε
i becomes a convex function. Then (6.13),

(6.14) and the convexity of βε
i together imply that βε

i ≡ 0 which in turn proves
dε

i ≡ 0. Then this and (6.7) imply that cε
i is t-independent and it satisfies the

equation
∇τ cε

i + ε∇grad (fi+1 − fi)c
ε
i = 0.

This together with (6.11) proves (i).

Proof of (ii). To prove the surjectivity, it is enough to prove

Coker D̃Iε = {0}.

Using the L2-inner product, we first derive the L2-adjoint equation of (6.6). The
L2-cokernel element is characterized by the condition

0 = 〈D̃Iε~aε,~bε〉

=

3∑

j=1

∫ 0

−∞

∫ 1

0

〈∇τaε
i + J

(
∇t + ε∇X(Fi+1−Fi)

)
aε

i , b
ε
i〉

for any ~aε = (aε
1, a

ε
2, a

ε
3) ∈ W̃ 1,p

Iε . Since bε
i will be smooth (by elliptic regularity!), a

simple computation by integration by parts, using the fact that J is parallel along

M ⊂ T ∗M , shows that ~bε satisfies the equation




−∇τ bε
i + J(∇t + ε∇X(Fi+1−Fi)))b

ε
i = 0

bε
i(τ, 0), bε

i(τ, 1) ∈ TM ⊂ TX

(bε
i)

‖(0, ·) are independent of t and
∑3

i=1(b
ε
i)

‖(0, t) ≡ 0.
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where bε
i
‖ is the horizontal component of bε

i . As before, we decompose bε
i = (eε

i , f
ε
i ) ∈

TX ∼= TM ⊕ T ∗M and then (eε
i , f

ε
i ) satisfies





−∇τeε
i +∇tf

ε
i + ε∇grad (fi+1 − fi)f

ε
i = 0 (6.15)

−∇τf ε
i −∇te

ε
i = 0 (6.16)

f ε
i (τ, 0) = 0, f ε

i (τ, 1) = 0 (6.17)

eε
i(0, ·) are independent of t and eε

1 + eε
2 + eε

3 = 0 (6.18)

Again we consider the function

γε
i (τ) = 1

2
〈f ε

i (τ ), f ε
i (τ)〉

and then γε
i can be shown to satisfy as before

d2γε
i

dτ2 ≥ 1
2C2 γε

i (6.19)

lim
τ→−∞

γε
i = 0. (6.20)

Since eε
i(0, ·) are independent of t from (6.18), ∇te

ε
i(0, t) ≡ 0 which in turn implies

by (6.16)

∇τf ε
i (τ, 0) ≡ 0.

Therefore we have

dγε
i

dτ
(τ, 0) = 〈f ε

i (τ, 0),∇τf ε
i (τ, 0)〉 ≡ 0. (6.21)

Combining (6.19), (6.20) and (6.21), we conclude (by strong maximum principle!)
γε

i ≡ 0 and hence

f ε
i ≡ 0. (6.22)

Substitution of this into (6.14) proves that eε
i satisfies

{ −∇τeε
i + ε∇grad (fi+1 − fi)e

ε
i = 0

eε
1(0) + eε

2(0) + eε
3(0) = 0.

Therefore if we re-scale eε
i and define

ẽε
i(σ) = eε

i(
σ

ε
),

ẽε
i will satisfy { −∇σ ẽε

i + ∇grad (fi+1 − fi)ẽ
ε
i = 0

ẽε
1(0) + ẽε

2(0) + ẽε
3(0) = 0.

Now the transversality hypothesis that (6.1) has only the trivial solution implies
that

ẽε
i ≡ 0 and hence eε

i ≡ 0. (6.23)

Now (6.22) and (6.23) show that Coker D̃Iε = 0 and so prove the surjectivity.
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Proof of (iii). We may assume without loss of any generality, by replacing fi by
ε2fi in (i) and (ii), that ε2 = 1. Then (i) and (ii) implies the estimate

‖~a1‖1,p ≤ C8‖D̃I~a
1‖0,p (6.24)

for all ~a1 ∈ (Ker D̃I)
⊥ ⊂ W̃ 1,p

I . It would be enough to prove (6.4) for

ε = 1
2k , for each nonnegative integer k.

To prove this, we define

ãε(σ, s) = aε(σ
ε
, s

ε
) for 0 ≤ s ≤ 1

2k ,−∞ ≤ σ ≤ 0.

Now we extend ãε by reflection to 0 ≤ s ≤ 1
2k−1 : Under the decomposition aε =

bε + cε, the conjugation with respect to the canonical almost complex structure is
nothing but the linear map aε = bε + cε 7→ bε − cε. Then we define

ãε(σ, t) = b̃ε(σ, t) − c̃ε(σ, 1
2k−1 − t) for 1

2k ≤ t ≤ 1
2(k−1) .

After then we extend this to the whole t ∈ [0, 1] in an obvious way, which we again

denote by ã = ã(σ, t). From the construction, it is easy to check that ã ∈ W̃ 1,p
I .

It is now crucial to observe that since we have proven in (i) that the elements in

Ker D̃Iε are independent of t, the extension ãε can be easily proven to be still in(
Ker D̃I

)⊥
. Therefore we have the estimate

‖ãε‖1,p ≤ C8‖D̃I ã
ε‖0,p

from (6.24). However by the periodicity of ãε, this implies

‖ãε‖1,p,0≤t≤ε ≤ C8‖D̃I ã
ε‖0,p,0≤t≤ε.

Scaling back to (τ, t) ∈ (−∞, 0] × [0, 1], this is equivalent to the required estimate
(6.4). This finally finishes the proof of Proposition 6.1. ¤

We now proceed the construction of Qε. For each given η ∈ H̃p
wε , we define

~bε = (bε
1, b

ε
2, b

ε
3) on Θ\Θ0(

2
εα ) as in (6.3) and apply the operator Q̃Iε to ~bε to define

~aε = (aε
1, a

ε
2, a

ε
3) ∈ W̃ 1,p

Iε

by

~aε = Q̃Iε(~bε). (6.25)

In particular, we have

bε
i = D̃χε

i
(aε

i) = ∇τaε
i + J(∇t + ε∇X(Fi+1−Fi))a

ε
i (6.26)

and so by definition of bε
i in (6.3),

∇τaε
i + J(∇t + ε∇X(Fi+1−Fi))a

ε
i = 0
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for − 3
2εα < τ ≤ 0 and

aε
i(0, t) ∈ TxM ⊂ TxX and

∫ 1

0

(aε
1)(0, t)dt =

∫ 1

0

(aε
2)(0, t)dt =

∫ 1

0

(aε
3)(0, t)dt ∈ TxM

(6.27)

where we recall

χ1(0) = χ2(0) = χ3(0) = x and aε
i(0, t) ∈ TxX.

Using, ~aε, we now define

ξ(τ, t) = T (φ
fi+1

εt ◦ φfi

ε(1−t))(a
ε
i(τ, t)) (6.28)

on Θi(
2
εα ) for i = 1, 2, 3.

We next describe the portion of ξ restricted to ξ |Θ0(
1

εα ). As before, we identify

(TxX, J(x)) with (Cn, J0) and consider the linearization of ∂:

Dw̃∂ : W 1,p(w̃∗
0TCn) → Lp(Ω(0,1)w̃∗

0TCn) (6.29)

Lemma 6.1. The linearization operator Dw̃ε∂ in (6.29) is invertible.

PROOF. First note that the kernel element of Dw̃0∂ is described by the equation





∂ξ = 0

ξ(`i) ⊂ T Λ̃i
∼= Rn

‖ξ‖1,p < ∞

from which it follows by the maximum principle that

Ker Dw̃0
∂ = {0}.

Next, we prove
Coker Dw̃0∂ = {0},

which will finish the proof. Using the L2-inner product, one can identify the dual
of Lp(Ω(0,1)(w̃∗

0TCn)) with

Lq(Ω(1,0)(w̃∗
0TCn)),

1

p
+

1

q
= 1.

Then the element η ∈ Lq(Ω(1,0)(w̃∗
0TCn)) which is in Coker Dw̃0∂ is characterized

by the equation {
Re

∫
Θ
〈∂ξ, η〉 = 0 for all ξ ∈ W 1,p

‖η‖0,q < ∞,
(6.30)

where 〈 , 〉 is the standard Hermitian inner product on Cn. Since η is smooth by
the elliptic regularity, we integrate by parts to get

Re

∫

Θ

〈∂ξ, η〉 = −Re

∫

Θ

〈ξ, ∂η〉 + Re

∫

∂Θ

〈ξ, η〉idz (6.31)



38 KENJI FUKAYA & YONG-GEUN OH

where z = x + iy is the standard coordinates of Θ considered as a subset in C.
Using the fact that

ξ(`i) ⊂ T Λ̃ = Rn,

we derive the equation from (6.30) and (6.31),





∂η = 0

η |`i⊂ T Λ̃i = Rn

‖η‖0,q < ∞.

By the same way as in the case of Ker D∂w̃, we conclude Coker Dw̃0
∂ = {0}. This

finishes the proof. ¤

Lemma 6.2 implies that there exists the inverse

Q0 : Lp(Ω(0,1)(w̃∗
0TCn)) → W 1,p(w̃∗

0TCn)

of Dw̃0
∂ such that

Dw̃0∂ ◦ Q0 = id, Q0 ◦ Dw̃0∂ = id and ‖Q0‖ ≤ C9.

Using this, we are ready to describe the portion of ξ on Θ0(
1
εα

). Given η ∈ H̃p
wε ,

we first define

η̃(z) :=

{
D exp−1

x (wε(z))η(z) on Θ0(
3

2εα )

0 otherwise.
(6.32)

Then η̃ is a section of the bundle

Ω(0,1)((εw̃ε(z))∗TCn) not Ω(0,1)((εw̃0)
∗TCn)

where

w̃ε(z) =
1

ε
exp−1

x (wε(z)).

However, we have shown in Remark 4.3 that

w̃ε(z) → w̃0 as ε → 0 in the C1 − topology.

Therefore, we will just pretend η̃ is an element in Ω(0,1)((εw̃0)
∗TCn).

Now, we define the portion of ξ on Θ0(
1
εα ) by

ξ(z) = D expx(εw̃0)
(
Qε

0(η̃)(εw̃0(z))
)

where
Qε

0 : Lp
ε (Ω

(0,1)((εw̃0)
∗TCn)) → W 1,p

ε ((εw̃0)
∗TCn)

is the operator obtained from

Q0 : Lp(Ω(0,1)(w̃0)
∗TCn) → W 1,p((w̃0)

∗TCn)

by
Qε

0(ζ)(z) = Qε
0(ζ)(εw̃0(z)) := Q0(ζ ◦ ε)(w̃0(z))
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where ζ ◦ ε is the element in Ω(0,1)(w̃∗
0TCn) defined by

ζ ◦ ε(z) = ζ ◦ ε(w̃0(z)) := ζ(εw̃0(z)).

One can easily check that the norms of Qε
0 and Q0 are the same.

Again we note that ξ does not quite satisfy the right boundary conditions

ξ(`i) ⊂ TΛε
i i = 1, 2, 3

but we ignore this in the same reason as before.

Finally, we recall from Remark 4.3 that exp εw̃0(z) and φ
fi+1

εt φfi

ε(1−t)(χi(ετ )) are

C1-close to each other as ε → 0 on Θ
(

1
εα , 2

εα

)
. Therefore if we denote by Π∞(z)

and Π∞(z) the parallel translations along the shortest geodesics from

φ
fi+1

εt ◦ φfi

ε(1−t)(χi(ετ))(= expx εw̃ε
i (z))

and

expx ε(w̃0(z))

to

expx ε(w̃0(z) + β(εατ)(w̃iε(z) − w̃0(z))

respectively, it follows that

‖Π0 − id‖C1 or ‖Π∞ − id‖C1 ≤ Cε1−α (6.33)

Now, we define the operator

Qε : H̃p
ε → W 1,p

ε ((wε)∗TX)

by

ξ := Qε(η) =





T (φ
εfi+1

t ◦ φεfi

(1−t))a
ε
i(τ, t) =: ξχε

i
for τ ≤ 2

εα

D expx(εw̃0)(Q̃0(η̃)(w̃0(z)) for z ∈ Θ0(
1
εα )

β(εατ)Π∞(z)(ξχε
i
) + (1− β(εατ))Π0(z)( D expx(εw̃0)(Q0(η̃))

for z ∈ Θ0(
1
εα , 2

εα ).
(6.34)

For the simplicity of exposition, we have denoted

ξχε
i

= T (φ
εfi+1

t ◦ φεfi

(1−t))a
ε
i(τ, t). (6.35)

§7. Estimates of the inverse

The main result in this section will be the following.
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Proposition 7.1. There exists ε3 > 0 such that if 0 < ε < ε3, the operator Qε :

H̃p
ε → W 1,p

ε ((wε)∗TX) defined as in (6.34) satisfies the estimates (6.2).

PROOF. The boundedness of Qε is easy to see from definition and so its proof will
be omitted. Let ‖Qε‖ ≤ C10. Therefore to prove the proposition we should prove

that for any η ∈ Lp
ε (Λ

(0,1)T ∗Θ ⊗J (wε)∗TX), we have

‖Dwεξ − η‖0,p,ε ≤
1

2
‖η‖0,p,ε

where ξ = Qε(η) is defined as in (6.31).
We will estimate norms ‖ · ‖0,p,ε separately in each region considered before.
We start with the region Θi(

2
εα ). In terms of the coordinates (τ, t) on Θi(

2
εα ),

we have

Dwεξ = D∂J(wε) · ξ
= (∇τ + J∇t)ξ + ∇tJ · ξ.

By the definition of wε in (4.9), of aε
i in (6.3) and (6.25) and of ξ in (6.34), it is

easy to see that

ξ(τ, t) =
d

dδ

∣∣∣
δ=0

φ
εfi+1

t ◦ φεfi

(1−t)(λ
ε
i,δ) (7.1)

where λε
i,δ : (−∞, 0] × [0, 1] → X for δ ∈ (−ε, ε) is a family of maps such that

λε
i,0(τ, t) = χi(ετ ) = χε

i(τ ) and
d

dδ

∣∣∣
δ=0

λε
i,δ ≡ aε

i

on Θi(
2
εα ). Therefore, a straightforward computation, using the properties of the

Levi-Civita connection, (7.1) and Lemma 3.4, gives rise to the identities

∇τ ξ = T (φ
εfi+1

t ◦ φεfi

(1−t))∇τaε
i (7.2)

and
∇tξ = T (φ

εfi+1

t ◦ φεfi

(1−t))
{
ε∇X(Fi+1−Fi))(a

ε
i) + ∇ta

ε
i

}
. (7.3)

Hence

(∇τ+J∇t)ξ = T (φ
εfi+1

t ◦φεfi

(1−t))
{
∇τaε

i+(φ
εfi+1

t ◦φεfi

(1−t))
∗J

(
∇ta

ε
i+ε∇X(Fi+1−Fi)a

ε
i

)}
.

Substituting (6.25) into this, we get

(∇τ+J∇t)ξ == T (φ
εfi+1

t ◦φεfi

(1−t))
{(

φ
εfi+1

t ◦φεfi

(1−t))
∗J−J

)
(∇ta

ε
i+ε∇X(Fi+1−Fi)a

ε
i)+bε

i

}

on Θi(
2
εα ). Recalling the definition (6.3) of bε

i , we have on Θi(
2
εα )

η = T (φ
εfi+1

t ◦ φεfi

(1−t))b
ε
i (7.4)

and so

Dwεξ(τ, t) − η(τ, t) = T (φ
εfi+1

t ◦ φεfi

(1−t))
{(

φ
εfi+1

t ◦ φεfi

(1−t))
∗J − J

)
×

(
∇ta

ε
i + ε∇X(Fi+1−Fi)a

ε
i

)}
+ ∇tJξ(τ, t) (7.5)
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The first term in (7.5) has norm bounded by

C11ε
(
|∇ta

ε
i | + ε|∇X(Fi+1−Fi))a

ε
i |
)
.

By summing the Lp
ε -norm over i = 1, 2, 3, we obtain from (6.4) and (6.25)

3∑

i=1

C11ε
∥∥∥ |∇ta

ε
i | + ε|∇X(Fi+1−Fi)a

ε
i |

∥∥∥
0,p,ε,Θi(

2
εα )

≤C12ε‖~aε‖1,p,ε

≤C8C12ε‖~bε‖1,p,ε. (7.6)

For the second term |∇tJ · ξ(τ, t)| in (7.5), we note that

|∇tJ | = |∇t(J(wε(τ, t)))| ≤ Cε

and so ∇tJ · ξ(τ, t) has the norm as a one form

3∑

i=1

‖∇tJ · ξ‖p

0,p,ε,Θi(
2

εα )
=

3∑

i=1

∫

Θi(
2

εα )

ε2−p|∇tJ · ξ(τ, t)|p

≤ Cpεp
3∑

i=1

∫

Θi(
2

εα )

ε2−p|aε
i(τ, t)|p ≤ Cpεp‖~a‖p

1,p,ε

≤ CpεpCp
8‖~b

ε‖p
0,p,ε

≤ Cp
13ε

p‖η‖p
0,p,ε

and hence,
3∑

i=1

‖∇tJ · ξ‖p

0,p,ε,Θi(
2

εα )
≤ Cp

13ε
p‖η‖p

0,p,ε. (7.7)

Combining (7.5), (7.6) and (7.7), we have obtained

‖Dwεξ − η‖p

0,p,ε,Θ\Θ0( 2
εα )

≤ (Cp
8Cp

12ε
p + Cp

13ε
p)‖η‖p

0,p,ε ≤ Cp
14ε

p‖η‖p
0,p,ε. (7.8)

Next, we estimate
‖Dwεξ − η‖0,p,ε,Θ0(

1
εα ).

Since ξ = D expx(εw̃0)Q0(η̃) on Θ0(
1
εα ), we have

Dwεξ = Dwε(D expx(εw̃0)Q0(η̃)).

We give the standard coordinates (x, y) on Θ0(
1
εα ) as a subset of C and compute

Dwεξ = (∇x + J∇y + ∇yJ)ξ

= (∇x + J∇y + ∇yJ)(D expx(εw̃0)Q0(η̃))

= (∇x + J∇y)(D expx(εw̃0))Q0(η̃)

+ D expx(εw̃0)(∇x + (expx(εw̃0))
∗J∇y)Q0(η̃)

+ ∇yJ · D expx(εw̃0)Q0(η̃). (7.9)
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First note that we have

|∇(D expx(εw̃0)) · Q0(η̃)| ≤ |∇(D expx(εw̃0))||Q0(η̃)|
≤ Cε1−α|Q0(η̃)| (7.10)

on Θ( 1
εα ), where the second inequality follows from the inequality

|εw̃0| ≤ Cε1−α

and from the standard property of the exponential map. Using (7.10), the first
term of (7.9) can be estimated as

‖(∇x + J∇y)D expx(εw̃0))Q0(η̃)‖p

0,p,ε,Θ0(
1

εα )

=

∫

Θ0(
1

εα )

ε2−p|(∇x + J∇y)(D expx(εw̃0))Q0(η̃)|p

=

∫

Θ0(
1

εα )

ε2−pCpεp−pα|Q0(η̃)|p

= Cpε2−pα

∫

Θ0(
1

εα )

|Q0(η̃)|p

≤ Cpε2−pα‖Q0(η̃)‖p
0,p ≤ Cp

15ε
2−pα‖η̃‖p

0,p (7.11)

On the other hand, we have

‖η̃‖p
0,p =

∫

Θ

|η̃(z)|pdz

=

∫

Θ0(
3

2εα )

|D exp−1
x (wε(z))η(z)|pds from (6.32)

≤ Cp
16

∫

Θ0(
3

2εα )

|η(z)|pdz

By substituting this into (7.11), we obtain

‖(∇x + J∇y)(D expx(εw̃0))Q0(η̃)‖p

0,p,ε,Θ0(
1

εα )

≤ Cp
15C

p
16ε

p−pα

∫

Θ0(
3

2εα )

ε2−p|η(z)|pdz.

and hence,

‖(∇x + J∇y)(D expx(εw̃0))Q0(η̃)‖0,p,ε,Θ0( 2
εα ) ≤ C15C16ε

1−α‖η‖0,p,ε (7.12)

For the third term in (7.9), we immediately get

‖∇yJ · D expx(εw̃0)Q0(η̃)‖0,p,ε,Θ( 1
εα ) ≤ C17ε

1−α‖η‖0,p,ε,Θ( 1
εα ) (7.13)

For the second term in (7.9), we rewrite

D expx(εw̃0)(∇x + (expx(εw̃0))
∗J∇y)Q0(η̃))

= D expx(εw̃0)(∇x + J0∇y)Q0(η̃) + D expx(εw̃0)((D expx(εw̃0))
∗J − J0)Q0(η̃)

where J0 = J(x)

= D expx(εw̃0)Dw̃0
◦ Q0(η̃) + D expx(εw̃0)((D expx(εw̃0))

∗J − J0)Q0(η̃)
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By the same way as before, the second term here can be estimated

‖D expx(εw̃0)((D expx(εw̃0)
∗J − J0)Q0(η̃)‖0,p,ε,Θ0(

1
εα ) ≤ C18ε

1−α‖η‖ (7.14)

On the other hand, we have

D expx(εw̃0)
(
Dw̃0

◦ Q0(η̃)
)

= D expx(εw̃0)(η̃) since Dw̃0
◦ Q0 = id

= D expx(εw̃0)D exp−1
x (wε)η

= η + (D expx(εw̃0)D exp−1
x (wε) − id) · η

(7.15)

Hence, combining (7.10), (7.12), (7.13), (7.14) and (7.15), we have obtained

‖Dwεξ − η‖p

0,p,ε,Θ0(
1

εα )
≤ C19ε

(1−α)p‖η‖p
0,p.ε (7.16)

Finally we need to estimate Dwεξ − η on the intermediate regions Θi(
1
εα , 2

εα ). We
recall

ξ = Qε(η) = β(εατ)Π∞(z)(ξχi(z)) + (1 − β(εατ))Π0(z)
(
D expx(εw̃)(Q0(η̃))

)

for z ∈ Θi(
1
εα , 2

εα ). Therefore,

Dwεξ − η = Dwε

{
β(εατ)Π∞(z)(ξχi(z))

}

+ Dwε

{
(1 − β(εατ))Π0(z)(D expx(εw̃0)(Q0(η̃)))

}
− η

= εαβ′(εατ)
(
Π∞(z)ξχi(z) − Π0(z)(D expx(εw̃0)(Q0(η̃))

)

+ β(εατ)Dwε

(
Π∞(z)(ξχi(z))

)
+ (1 − β(εατ))Dwε

(
Π0(z)(D expx(εw̃0)(Q0(η̃)))

)
− η

Here, the first term can be easily estimated as before to get

‖εαβ′(εαz)
(
Π∞(z)ξχi − Π0(z)(D expx(εω̃0)(Q0(η̃)

)
‖p

0,p,ε,Θ0(
1

εα , 2
εα )

≤ Cp
20ε

αp‖η‖p
0,p,Θ. (7.17)

To estimate the second term, we consider the regions

Θi(
1
εα , 3

2εα ) and Θi(
3

2εα , 2
εα )

separately. First, consider the region Θi(
1
εα , 3

2εα ). In this region, we recall that

bε
i ≡ 0

and so
D̃χε

i
aε

i ≡ 0.

Now, using the fact

‖Dwε · Π∞(z) − Π∞(z)Dwε
i
‖C1 ≤ C21ε

1−α
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and
‖Dwε ·Π0(z) − Π0(z)Dwε

i
‖C1 ≤ C21ε

1−α,

we have
∥∥∥β(εατ)Dwε

(
Π∞(z)(ξχi (z)

)
+ (1− β(εατ))Dwε

(
Π0(z)(D expx(εw̃0)Q0(η̃)

)
− η

∥∥∥
p

0,p,Θi(
1

εα , 3
2εα )

≤ ‖β(εατ)Π∞(z)Dwε
i
ξxi + (1 − β(εατ))Π0(z)Dwε

0

(
D expx(εw̃0)Q0(η̃)

)
− η‖p

0,p,Θi(
1
ε )

+ C21ε
p(1−α)‖η‖p

0,p,Θi(
1

εα , 3
2εα )

On the other hand, by writing

β(εατ)Π∞(z)Dwε
i
ξχi + (1− β(εατ))Π0(z)Dwε

0
(D expx(εw̃0)Q0(η̃)) − η

= β(εατ )
(
Π∞(z)Dwε

i
ξχi − η

)
+ (1 − β(εατ))

(
Π0(z)Dwε

0
(D expx(εw̃0)Q0(η̃)) − η

)

and then using the estimates similar to (7.8) and (7.16) to each term above, we can
obtain

‖β(εατ)Π∞(z)Dwε
i
ξχi + (1 − β(εατ))Π0(z)Dwε

0
(D expx(εw̃0)Q0(η̃))− η‖p

0,p,Θ( 1
εα , 3

2εα)

≤ Cp
22ε

p(1−α)‖η‖p
0,p,Θ. (7.18)

Similar estimates can be carried out for the region Θi(
3

2εα , 2
εα ). From this together

with (7.17) and (7.18), we have obtained

‖Dwεξ − η‖p

0,p,Θi(
1

εα , 2
εα )

≤ (Cp
20ε

αp + Cp
22ε

p(1−α))‖η‖p
0,p,Θ (7.19)

Finally by adding (7.8), (7.16), (7.17) and (7.18), we have obtained the estimate

‖Dwεξ − η‖p
0,p,Θ ≤

(
Cp

14ε
p + Cp

19ε
(1−α)p + Cp

20ε
αp + Cp

22ε
p(1−α)

)
‖η‖p

0,p,Θ

and so for sufficiently small ε > 0, we have proven

‖Dwεξ − η‖0,p,Θ ≤
1

2
‖η‖0,p,Θ

which finally finishes the proof of (6.2) and hence Proposition 7.1. ¤

§8. Proof of Theorem 3.1

Using the estimates we have established in the previous sections, we are now
ready to construct the map

Φε : M(M : ~f, ~p) → MJ (X : ~Λε, ~xε).

We will do this in two steps. First, we note the map defined in (4.9) that defines

approximate J-holomorphic maps is obviously smooth map from M(M : ~f, ~p) into
F1,p

ε . We denote this map by Φε
1 : M → F1,p

ε which is defined by

Φε
1(I) := wε,I . (8.1)
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Now, we would like to apply Proposition 3.2 and 3.3 to w = wε,I (with ξ = 0) in
Proposition 3.2 in the second step. In Proposition 5.3, we have proven the estimate

‖∂Jwε,I‖0,p,ε ≤ C6ε
2+(p−1)α

p (8.2)

for all I ∈ M(M : ~f, ~p) and in Proposition 7.1 we have obtained the estimate for
the approximate right inverse

‖Qε‖ ≤ C7, ‖Dwε ◦ Qε − id‖ <
1

2

which will in turn imply the estimate

‖Qwε‖ ≤ C23 (8.3)

where Qwε = Qε(Dwε ◦ Qε)
−1 is a right inverse of Dwε. The estimate

‖Dwε,I‖ ≤ C0 (8.4)

is obvious. These estimates (8.2), (8.3) and (8.4) with ξ = 0 satisfy all the require-
ments for us to apply Proposition 3.2 to solve the following equation

∂J(expwε,I Qwε,I η) = 0 (8.5)

in terms of η. In other words, we have proven that there exist some ε4 > 0 such

that for 0 < ε < ε4. there exists η = η(ε, I) ∈ H̃p
wε,I which solves (8.5) and which

depends smoothly on ε and I ∈ M(M : ~f, ~p). The smooth dependence follows
from the content of the implicit function theorem and the uniqueness statement in
Proposition 3.3. Finally, our required map

Φε : M(M : ~f, ~p) → MJ(T ∗M : ~Λε, ~xε)

is defined by

Φε(I) = expwε,I

(
Qwε,I η(ε, I)

)

= expΦε
1(I)

(
QΦε

1(I)η(ε, I)
)
. (8.6)

To finish the proof that this map Φε is indeed a smooth proper diffeomorphism, we
proceed in four steps:

Step I. Φε is a local diffeomorphism,

Step II. Φε is a surjective map,

Step III. Φε is a proper map.

By combining these three steps, we conclude that Φε is a finite covering map.
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Step IV. Φε is a one to one map.

8.1. Step I (Local diffeomorphism).

To prove Φε is a local diffeomorphism, it will be enough to prove that the deriv-
ative

TΦε(I) : TIM(M : ~f, ~p) → TΦε(I)MJ(T ∗M : ~Λε, ~xε)

is an isomorphism for all I . First it follows from the index computation of the
linearized operator

D∂J(Φε(I)) : TΦε(I)F1,p
ε → H̃p

Φε(I)

and
LI : W 1,p

I → Lp
χ1

× Lp
χ2

× Lp
χ3

that both have the same Fredholm indices (See [Fu2]). Furthermore by making a

generic choice of ~f ’ that satisfies the transversality condition imposed as in Theorem
3.1, we may assume that both operators are surjective by Proposition 6.1. We also
note that

TIM(M : ~f, ~p) ∼= KerLI

TΦε(I)MJ(T ∗M : ~Λε, ~xε) ∼= KerD∂J(Φε(I)).

Now using the fact that the map

TΦε
1(I) : TIM(M : ~f, ~p) → TΦε

1(I)Φ1(M)

is an isomorphism which can be easily checked from definition of Φε
1(I) = wε,I and

the fact that that map TΦε(I) : TIM → TΦε(I)MJ factors through by the diagram.

Diagram 8.1.

Here the isomorphism on the right hand side arrow comes from the content of the
implicit function theorem Proposition 3.2.

8.2. Step II: Surjectiveness.
Since this proof will be quite involved and long, we will postpone the proof to the

next section. This is the step where we have to use the canonical complex structure
Jg on T ∗M that is induced from the metric g on M .

8.3. Step III: Properness.

By definition of Φε
1 in (8.1) and in Section 4, the properness of Φε

1 is obvious.
Since we have the estimates

‖ξ‖1,p,ε = ‖QΦε
1
η(ε, I)‖ ≤ Cε

2+(p−1)α
p (8.7)
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from Proposition 3.2 and (8.2), we obtain

‖ξ‖1,p ≤ Cε
(p−1)α

p . (8.8)

from the relation between the ordinary and the weighted Sobolev norms

‖ξ‖1,p ≤ Cε−
2
p ‖ξ‖1,p,ε.

Then the (ordinary) Sobolev inequality implies

dist (Φε
1(I)(τ, t), Φε(I)(τ, t)) ≤ Cε

(p−1)α
p (8.9)

for all I ∈ M(M : ~f, ~p). Now we give the proof of the properness of Φε. Suppose

that Φε is not proper and then there exist a sequence {Ik} ⊂ M(M : ~f , ~p) with
V (Ik) → ∞ (i.e, diverges) but Φε(Ik) converges. By choosing a subsequence if
necessary, we may assume that for all k

lim
τ→−∞

Φε(Ik|ei) = xε
i

for i = 1, 2, 3 respectively. We choose ε so small and fixed that

Cε
(p−1)α

p <
1

2
D0 (8.10)

where
D0 = min

p,p′
d(p, p′) where p, p′ ∈ ∪3

i=1(Crit (fi+1 − fi))

which is independent of ε. Note that if ε is sufficiently small, it is easy to see from
the identity xε

i = (pi, εdfi) that

Dε ≥ 1

2
D0 (8.11)

where
Dε := min

x,x′
d(x, x′) where x, x′ ∈ ∪3

i=1(Λ
ε
i+1 ∩ Λε

i).

We choose ε5 > 0 such that if 0 < ε < ε5, then all the above inequalities hold. We
fix any such ε > 0. Since Φε

1 is proper and Ik diverges as k → ∞, Φε
1(Ik) diverges

and so by the weak convergence theorem, there exists a sequence τk → ∞ and some
i among i = 1, 2, 3 such that as k → ∞

Φε
1(Ik|ei)(τk, ·) → x̃ where xε

i 6= x̃ ∈ ∪3
i=1(L

ε
i+1 ∩ Lε

i). (8.12)

However since Φε(Ik) converges, we have as k → ∞

Φε(Ik|ei)(τk, ·) → xε
i. (8.13)

Combining (8.9)–(8.13), we get a contradiction which finishes the proof of the
properness of Φε for any 0 < ε < ε5. ¤

Combining Step I, II and III, we have proven that

Φε : Mg(M : ~f, ~p) → MJ(T ∗M : ~Λε, ~xε)
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is a covering projection with finite sheets.

8.4. Step IV: Injectivity.

Suppose the contrary, i.e., these exist I 6= I ′ such that

Φε(I) = Φε(I′) (8.14)

Since Φε is a covering map, we must have

‖I − I′‖ ≥ δ′ > 0

for some δ′ for all 0 < ε < ε6 which depends only on δ in Proposition 3.2. This fol-
lows from the uniform invertibility of DΦε(I) : TIM → TΦε(I)MJ (see Proposition
7.1). Hence from the definition of Φε

1, it is easy to check that

‖Φε
1(I)− Φε

1(I
′)‖L∞ ≥

1

2
δ′ > 0 (8.15)

by choosing smaller ε if necessary. Now (8.14) and (8.15) contradict to each other
by the estimates (8.7), provided ε is sufficiently small. This finishes the proof of
the injectivity of Φε. ¤

Finally, it remains to prove the surjectivity of the map Φε which we will do in
the next section.
§9. Surjectivity of the map Φε

We first note that from the uniqueness statement in Proposition 3.3 together with
the estimate (8.10), the surjectivity of the map Φε will follow from the following
theorem.

Theorem 9.1. Let J = Jg be the canonical almost complex structure on X as in
(1.4). And let δ > 0 be the constant given in Proposition 3.3. Then there exists

ε7 > 0 such that if 0 < ε < ε7, for each given w ∈ MJ (X : ~Λε, ~xε) there exists some

I = I(w) ∈ Mg(M : ~f, ~p) and η ∈ H̃ε
Φε

1(I)

such that

w = expΦε
1(I)

(
QΦε

1(I)η
)

with

‖QΦε
1(I)η‖L∞ ≤ δ

2
. (9.1)

The following two lemmas are the first step to the proof of the theorem.

Lemma 9.2. Let J be any almost complex structure compatible to ω on T ∗M .

Then there exists a constant C24 = C24(~f) depending only on ~f = (f1, f2, f3) such
that ∫

u∗ω =

∫

Θ

|Dw|2J ≤ C24ε (9.2)

for all w ∈ MJ (X : ~Λε, ~xε), where the norm | · |J on T ∗M is the one induced from
the metric g(·, ·) = ω(·, J ·).

Proof. Since w is J -holomorphic and J is compatible to the standard complex
structure ω on X = T ∗M , we have the following well-known identity

1
2

∫
Θ
|Dw|2J =

∫
Θ

w∗ω.
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Since w = −dθ, θ is the canonical one form on T ∗M , we have from the Stoke’s
formula ∫

w∗ω = −
∫

Θ

w∗dθ = −
∫

∂Θ

w∗θ =
3∑

j=1

(
−

∫

`j

w∗θ
)
.

On the other hand, since Λε
j = Graph εdfj and w(`j) ⊂ Λε

j, we have

−
∫

`j

w∗θ = −
∫

w(`j)

εdfj = −ε(fj(pj+1) − fj(pj))

and by summing up, we have obtained

1

2

∫

Θ

|Dw|2J =

3∑

j=1

(−
∫

`j

w∗θ) = ε

3∑

j=1

(fj(pj+1) − fj(pj))

and hence

1

2

∫

Θ

|Dw|2J ≤ 3ε
3∑

j=1

(max fj − min fj).

By setting C24 = 3
∑3

j=1(max fj −min fj), we are done. ¤

Lemma 9.3 [Corollary 3.4, Remark after Corollary 3.5; O1]. Denote by D
either the open unit disc or the half-open disc with boundary ∂D = (−1, 1). Let
u : D → (P,ω, J) be a map such that

u(∂D) ⊂ L and ∂Ju = 0

where L is a given compact Lagrangian submanifold of (P, ω). We denote by

ε8 = inf{
∫

u∗ω | u : (D2, ∂D2) → (P,L) or u : S2 → P

and ∂Ju = 0 and nonconstant }

where D2 is the unit disc. Then for any r < 1 and u with
∫

D
|Du|2 < ε8, we have

max
|x|<r

|Du(x)| ≤ C25(r)‖Du‖2,D(1) = C25(r)
(∫

D(1)

|Du|2
) 1

2

. (9.3)

We remark that in the present case where P = T ∗M and L = Graph dg for
a function g on M , we have ε8 = ∞ in (9.3) because there exists no nontrivial
J -holomorphic sphere or disc with boundary on L. Hence the uniform estimates
(9.3) hold for all (local) J -holomorphic map u : (D,∂D) → (T ∗M, L) where D as
in Lemma 9.3. Combining (9.2) and (9.3) together with the exponential decay of

w ∈ MJ(T ∗M : ~Λε, ~xε), we have obtained

sup
z∈Θ

|Dw(z)| ≤ C26

√
ε (9.4)
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for all w ∈ MJ(T ∗M : ~Λε, ~xε) where C26 = C26( ~f) depends only on ~f . From the
boundary condition w(`i) ⊂ Λε

i and from the fact that Λε
i → M as ε → 0 in T ∗M ,

(9.4) immediately implies

sup
z∈Θ

d(w(z),M ) ≤ C26

√
ε. (9.5)

However, the estimate (9.4) is not strong enough to analyze the degeneration of

MJ(T ∗M : ~Λε, ~xε) to Mg(M : ~f, ~p) and we need to improve (9.4) to the estimate

sup
z∈Θ

|Dw(z)| ≤ Cε.

This is one of the reason why we restrict to the canonical almost complex structure
J = Jg induced from the Riemannian metric g on M . The other reason was in the
proof of the transversality result in terms of the gradient flows which was carried
out in Section 6.

Proposition 9.4. Let g be a Riemannian metric on M and J = Jg be the canonical
almost complex structure on T ∗M induced from the Levi-Civita connection of g.
Then there exists ε8 > 0 and C27 > 0 such that if 0 < ε < ε8 and w ∈ MJ(T ∗M :
~Λε, ~xε), we have

sup
z∈Θ

d(w(z), M) ≤ C27ε (9.6)

Remark 9.5. In fact, the above C0-estimate can be proven for any almost complex
structure J compatible to ω, if we allow to vary the metric g on M appropriately
in terms of the almost complex structure J on T ∗M . This variation will be nec-
essary, when one attempts to prove the result as in this paper (in the presence
of bubbling) for the case of more general Lagrangian submanifolds in the general
symplectic manifold (P, ω). This proof uses a different argument using the fact
that the cotangent bundle is “convex” in that the level hypersurfaces of the radial
function are (pseudo)-convex in the sense of symplectic geometry. But we prefer to
use the above more standard method in this paper, where it is enough to consider
the case in which J is the canonical structure associated to the fixed metric g.

Proof. The Levi-Civita connection of g induces the splitting

Tξ(T
∗M) = Hξ ⊕ Vξ , ξ ∈ T ∗M (9.7)

into the horizontal and vertical subspaces. In particular when ξ ∈ M ⊂ T ∗M , this
splitting coincides with the canonical splitting

Tξ(T
∗M) ∼= Tπ(ξ)M ⊕ T ∗

π(ξ)M

and so Jg maps the vector v ∈ TM into the co-vector g(v, ·). Furthermore it is
well-known that there exists the canonical identification of Vξ with T ∗

π(ξ)M where

π : T ∗M → M is the projection. We denote by

ΠH , ΠV : T (T ∗M) → T (T ∗M)

the horizontal and vertical projections with respect to the splitting (9.7). Now we
choose the standard coordinates z = x + iy on Θ as a subset of C and identify ∂Jw
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as a section of w∗TM as before. By decomposing ∂Jw into horizontal and vertical
components, we can rewrite ∂Jw = 0 into





ΠH

(
∂w
∂x + J ∂w

∂y

)
= ΠH

(
∂w
∂x

)
+ JΠV

(
∂w
∂y

)
= 0 (9.8)

ΠV

(
∂w
∂x

+ J ∂w
∂y

)
= ΠV

(
∂w
∂x

)
+ JΠH

(
∂w
∂y

)
= 0 (9.9)

by the definition of J = Jg . We write w(z) = (q(z), p(z)) for p(z) ∈ T ∗
q(z)M . Then

after we apply Tπ : T (T ∗M) → TM to it, (9.8) becomes

∂q

∂x
+ Tπ ◦ J∇yp = 0

and after we apply Tπ ◦ J : T (T ∗M ) → TM , (9.9) becomes

∂q

∂y
− Tπ ◦ J∇xp = 0.

Therefore the equation ∂Jw = 0 becomes

{
∂q
∂x + Tπ ◦ J∇yp = 0 (9.10)
∂q
∂y − Tπ ◦ J∇xp = 0. (9.11)

We would like to emphasize that ∇p ∼= ΠV ◦ Dw is the covariant derivative of p
considered as a section of T ∗M along q and Tπ ◦ J(w) is a section of the bundle
w∗End(T ∗M, TM ). In particular when Image w ⊂ M ⊂ T ∗M , Tπ ◦ J(w) becomes
the natural map

g(v, ·) 7→ −v.

To prove (9.6), it is enough to prove

|p(z)| ≤ Cε

for all z ∈ θ and w ∈ MJ (T ∗M : ~Λε, ~xε). Due to the boundary condition

w(`i) ⊂ Λε
i = Graph εdfi,

this holds on ∂Θ. Therefore this will immediately follow from the following lemma.

Lemma 9.6. There exists ε9 > 0 depending only on ~f = (f1, f2, f3) such that if
0 < ε < ε9, the function

z → |p(z)|2, z ∈ Θ

is a subharmonic function and so any local maximum of the function is attained on
∂Θ.

Proof. We compute ∆〈p, p〉 where ∆ = ∂2

∂x2 + ∂2

∂y2 :

∂2

∂x2
〈p, p〉 +

∂2

∂y2
〈p, p〉.
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And

∂2

∂x2 〈p, p〉 = 2〈∇xp,∇xp〉 + 2〈∇x∇xp, p〉 (9.12)

∂2

∂y2 〈p, p〉 = 2〈∇yp,∇yp〉 + 2〈∇y∇yp, p〉. (9.13)

Using (9.10) and (9.11), we compute

∇x∇xp = ∇x

(
(Tπ ◦ J)−1 ∂q

∂y

)

=
(
∇x(Tπ ◦ J)−1

)
∂q
∂y + (Tπ ◦ J)−1∇x( ∂q

∂y )

and

∇y∇yp = −∇y

(
(Tπ ◦ J)−1 ∂q

∂x

)

= −
(
∇y(Tπ ◦ J)−1

)
∂q
∂x − (Tπ ◦ J)−1∇y( ∂q

∂y ).

Since ∇x( ∂q
∂y ) = ∇y( ∂q

∂x) by the symmetry of the Levi-Civita connection, adding

(9.12) and (9.13), we have

∆〈p, p〉 = 2
(
〈∇xp,∇xp〉 + 〈∇yp,∇yp〉

)

+ 〈
(
∇x(Tπ ◦ J)−1

)
∂q
∂y −

(
∇y(Tπ ◦ J)−1

)
∂q
∂x , p〉. (9.14)

Again from (9.10), (9.11), the second term in (9.14) becomes

〈
(
∇x(Tπ ◦ J)−1

)
(Tπ ◦ J)∇xp +

(
∇y(Tπ ◦ J)−1

)
(Tπ ◦ J)∇yp, p〉 := A.

Using the crude estimates (9.4) or (9.5) and the equation (9.10), (9.11), it is easy
to see

|∇(Tπ ◦ J)−1| ≤ C(|∇xp| + |∇yp|)

and so we have

|A| ≤ C28(|∇yp| + |∇xp|)2|p|
≤ C28C26

√
ε(|∇yp| + |∇xy|)2

≤ C29

√
ε(|∇yp|2 + |∇xp|2).

Substituting this into (9.14), we have obtained

∆〈p, p〉 ≥ (2 − C29

√
ε)(|∇xp|2 + |∇yp|2)

= (2 − C29

√
ε)|∇p|2 ≥ |∇p|2 ≥ 0

provided ε is sufficiently small. This finishes the proof of Lemma 9.6 and so Propo-
sition 9.4. ¤

With the C0-estimate, we now proceed the C1-estimate.
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Proposition 9.7. There exists ε9 > 0 and C30 > 0 such that

sup
z∈Θ

|Dw(z)| ≤ C30ε (9.15)

for all w ∈ MJ(X : ~Λε, ~xε) provided 0 < ε < ε9.

Proof. Once we have the C0-estimate in Proposition 9.4, the proof of (9.15) is
just a standard blowing-up argument. We will therefore sketch the essential part
of details. Suppose (9.15) does not hold. Then there exists a sequence εk → 0 and

wk ∈ MJ (X : ~Λεk , ~xεk) such that there exists zk ∈ Θ with

|Dwk(zk)| = max
z∈Θ

|Dw(z)| (9.16)

Rk := 1
εk
|Dwk(zk)| → ∞ (9.17)

as k → ∞. Since M is compact and from (9.6), we may assume, by choosing a
subsequence if necessary, that

w(zk) → q ∈ M ⊂ X.

Using the exponential map expq : TqX → X , we can write

wk(zk + u) = expq ξk(u) or

ξk(u) = exp−1
q (wk(zk + u)

for some map
ξk : Θzk ⊂ C → TqX

which is defined on

Θzk := {u ∈ C | |u| ≤ 1, zk + u ∈ Θ ⊂ C}

Figure 9.1.

Now we define maps w̃k into TqX by

w̃k(v) = 1
ε
ξk( v

Rk
) = 1

ε
exp−1

q

(
wk(zk + v

Rk
)
)

(9.18)

for v ∈ C with v
Rk

∈ Θzk . The domain of w̃k is

Θ̃k = {v ∈ C | |v| ≤ Rk and zk + v
Rk

∈ Θ}.
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Furthermore w̃k have the properties that

|Im w̃k| is bounded

by (9.6) and as ε → 0,

|Dw̃k(z)| ≤ 1 + o(1) for all z ∈ Θ̃k

|Dw̃k(0)| = 1. (9.19)

Now depending on whether

1
εk

dist (zk, ∂Θ) → ∞ or

1
εk

dist (zk, ∂Θ) → C < ∞,

we will have obtained a non-trivial J0-holomorphic map into (TqX,J0) ∼= Cn as a
C1-limit of w̃k, which will be defined either on C or on the (conformally) upper half-
space C+ and whose imaginary part is uniformly bounded. Then by the maximum
principle, this limit must be a constant. On the other hand, by the C1-convergence
and by (9.19), this gives rise to a contradiction. Hence the proof. ¤

Now we are ready to prove Theorem 9.1 and the rest of the section will be spent
to prove it. We start with the center region Θ0(

2
εα ). We apply the estimates (9.16)

to each point in Θ0(
2
εα ) and then we get

max
z∈Θ0(

2
εα )

d(w(0), w(z)) ≤ C31ε
1−α. (9.20)

Since we assume 0 < α < 1, we have

lim
ε→0

max
z∈Θ0(

2
εα )

d(w(0), w(z)) = 0. (9.21)

Now we consider the regions Θi(
2
εα ), i = 1, 2, 3. For given w ∈ MJ (X : ~Λε, ~xε), we

apply the reverse construction of (4.9). In other words, on Θj(
2
εα ) we define

χ̃w(σ, s) = (φfi+1
s ◦ φfi

ε−s)
−1w(σ+is

ε ) (9.22)

or
w(σ+is

ε ) = (φ
fj+1
s ◦ φ

fj

ε−s)χ̃w(σ, s)

for (σ, s) such that
−∞ < σ ≤ 2ε1−α, 0 ≤ s ≤ ε

and so
(σ

s , s
ε ) ∈ Θj(

2
εα ).

A straightforward computation, using the equation ∂Jw = 0 and Lemma 3.4, we
obtain

∂χ̃w

∂σ
+ (φ

fi+1
s ◦ φfi

ε−s)
∗J

(
∂χ̃w

∂s
+ XFi+1−Fi

)
= 0.
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For the sake of simplicity, we denote

J i
ε(s, x) := (φfi+1

s ◦ φfi

ε−s)
∗J(x)

λi
ε(s) := (φfi+1

s ◦ φfi
ε−s)

−1w|Θi(0, s
ε
)

for s ∈ [0, ε] and x ∈ T ∗M . With these notations, χ̃w satisfies the equation





∂χ̃w

∂σ + J i
ε(s, x)

(
∂χ̃w

∂s + X(Fi+1−Fi)

)
= 0

χ̃w(0, s) = λi
ε(s)

limσ→−∞ χ̃w(σ, s) = (φ
fi+1
s ◦ φfi

ε−s)
−1xε

i on Θi

χ̃w(σ, 0), χ̃w(σ, ε) ∈ M ⊂ X = T ∗M.

(9.23)

On the other hand, we look at the equation

{ ∂χ
∂σ + grad (fi+1 − fi)(χ) = 0

χ(0) = w|Θi(0, 0) ∈ M

which can be considered the (singular) limit equation of (9.23). To prove Theorem
9.1, it will be enough to prove that there exists some ε10 > 0 such that for any
w ∈ Mε

J , 0 < ε < ε10, there exists some

I = Iw = (χ1, χ2, χ3) ∈ Mg(M : ~f, ~p)

such that for each i = 1, 2, 3, we have

sup
σ

d(χ̃w,i(σ, 0), χk(σ)) ≤ δ
3 .

Proposition 9.8. There exists ε11 > 0 such that for any given w ∈ Mε
J , 0 < ε <

ε11 and for each i = 1, 2, 3, there exists a map χw : (−∞, 0] → M that satisfies

dχ
dσ + grad (fi+1 − fi)(χ) = 0

and which also satisfies

sup
σ∈(−∞,0]

d(χ̃w(σ, 0), χw(σ)) ≤ δ
3 . (9.24)

Assuming this proposition for the moment, we proceed the proof of Theorem
9.1. By (9.15) and (9.24), we can write

χ̃w(σ, s) = expχw(σ) ξ̃(σ, s)

for −∞ < σ ≤ 0, 0 ≤ s ≤ ε with ‖ξ̃‖L∞ ≤ δ
5 , and so we can write

w(τ, t) = expΦε
i (Iw) ξ(τ, t)

for some ξ with

‖ξ‖L∞ ≤ δ
4

and Iw = (χ1, χ2, χ3) ∈ Mg(M : ~f , ~p)
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where χi are the gradient trajectories of fi+1 − fi that are obtained from above
for each i = 1, 2, 3. Now we have only to prove, by further perturbing Iw to

Ĩw ∈ M(M : ~f , ~p) if necessary, that we can choose ξ̃ of the form QΦε
1(Ĩw)η̃ and so

w has the required form
w = expΦε

1(Ĩw) QΦε
1(Ĩw)η̃

for some η̃ ∈ H̃p
ε . We introduce the map

E(x, y) = exp−1
x (y)

which is well-defined whenever x, y ∈ X satisfy

d(x, y) < injectivity radus of X.

(See e.g., [K] for the basic properties of the map E.) Using the map E, we need to
solve the equation

ΠKer DΦε
1
(I)

(
E(Φε

1(I), w)
)

= 0 (9.26)

in terms of I. Here we denote by ΠKer DΦε
1
(I)

the L2-projection onto Ker DΦε
1(I)

with respect to the splitting

TΦε
1(I)F1,p

ε = Ker DΦε
1(I)

⊕ Image QΦε
1(I).

We consider the vector bundle
⋃

I∈M

Ker DΦε
1(I)

over M = M(M : ~f , ~p) and define a section ξε
0 by

ξε
0 = ΠKer DΦε

1
(I)

(
E(Φε

1(I), w)
)
.

Solving (9.26) is equivalent to finding a zero of the section ξε
0. We note that from

(9.24) and the accompanied estimates, we have

‖ξε
0(Iw)‖L∞ ≤ δ

3

and this in turn gives rise to the estimates

‖ξε
0(Iw)‖1,p,ε ≤ Cδ

by the elliptic boot-strap because both w is holomorphic and Φε
1(Iw) is “nearly

holomorphic”. Therefore to prove the existence of zeros of ξε
0 near Iw, we have only

to prove that the covariant linearization at Iw

Dξε
0(Iw) : TIwM → Ker DΦε

1(Iw)

is uniformly invertible over ε > 0. This is because we can apply the existence scheme
of this paper to this finite dimensional picture which is much easier. However we
have the formula

Dξε
0(Iw)(δI) = ΠKer DΦε

1
(Iw)

(
D1E(Φε

1(Iw), w) ◦ DΦε
1(δI)

)
+ O(δ).
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From this, (8.17) and from the fact that Image DΦε
1(Iw) is almost the same as

Ker DΦε
1(Iw), it is straightforward to conclude that Dξε

0(Iw) is uniformly invertible
over ε > 0, which finishes the proof of Theorem 9.1. ¤

Finally, it remains to prove Proposition 9.8.

Proof of Proposition 9.8. From the C1-estimate (9.16) and from the definition
(9.22), it follows by a straightforward computation that

∣∣∣∂χ̃w

∂s

∣∣∣ ≤ C (9.27)

for all w ∈ MJ(X : ~Λε, ~xε) and for all ε > 0. From (9.23) and (9.27), we get

∣∣∣∂χ̃w

∂σ

∣∣∣ ≤ C

and in particular we have ∣∣∣∂χ̃w

∂σ (σ, 0)
∣∣∣ ≤ C.

Therefore the family of maps defined by

σ 7→ χ̃w(σ, 0)

on (−∞, 0] into M ⊂ T ∗M is an equi-continuous family.
We now restrict (9.23) to s = 0 and rewrite it, by writing χ̃w(σ, s) = (q(σ, s), p(σ, s))

as before, into





∂q
∂σ + (Tπ ◦ J)∇sp + grad (fi+1 − fi) + Tπ(Jε − J)

(
∂χ̃w

∂s + X(Fi+1−Fi)(χ̃w)
)

= 0

∂q
∂s − (Tπ ◦ J)∇σp + Tπ ◦ J(Jε − J)

(
∂χ̃w

∂s + X(Fi+1−Fi)(χ̃w)
)

= 0

Note that p(σ, 0) ≡ 0 and so ∇σp(σ, 0) ≡ 0. Therefore from the second equation
and (9.27), we have ∣∣∣∂q

∂s

∣∣∣ ≤ C|Jε − J |(χ̃w) ≤ Cε.

Then we have
|∇sp| ≤ |∇p||∂q

∂s | ≤ C̃ε

because the boundedness of |∇p| follows from the C1-estimate (9.15) and from the
definition (9.22) of χ̃w. By taking the C1-limit of the first equation as εj → 0, any
local limit of χ̃w, which we denote by χ∞, satisfies the equation

dχ∞
dσ + grad (fi+1 − fi)(χ∞) = 0.

Since M is compact, we may assume by taking a subsequence, that

w(0, 0) → w(0) → x as εj → 0.

Therefore the local limit of χ̃w as ε → 0 satisfies the initial value problem

{ dχ
dσ + grad (fi+1 − fi)(χ) = 0

χ(0) = x
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Furthermore, χ̃wj weakly converges to a cusp trajectory

χ0

⋃ (
∪N

k=1 χk

)

where

χ0(0) = x, lim
σ→−∞

χ0(σ) ∈ Crit (f2 − f1)

χk ∈ M(fi+1 − fi) for each k = 1, · · · ,N

Now by an easy version of the gluing theorem, we conclude that there exists χw ∈
M(M : ~f, ~p) such that

d(χ̃wj (σ, 0), χw(σ)) ≤ δ
3 .

This finally finishes the proof of (9.24) and hence the proof of Theorem 9.1. ¤
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PART II. (HIGHER) MASSEY PRODUCT

§10. Moduli of metric ribbon trees and genus zero marked open Riemann
surfaces

We are going to construct the natural stratification and the compactification of
the moduli spaces Grk, T0,k introduced in §1.

To explain our compactification of T0,k, we use its relation to the moduli space
of pointed genus 0 Riemann surface. We set

TC
0,k =

{
(z1, · · · , zk) | zi ∈ CP 1, zi 6= zj, for i 6= j

}

PSL(2; C)

Here PSL(2; C) = Aut(CP 1) acts on
{
(z1, · · · , zk)

∣∣zi ∈ CP 1, zi 6= zj , for i 6= j
}

by g(z1, · · · , zk) = (gz1, · · · , gzk). We define an anti-holomorphic involution on

TC
0,k by (z1, · · · , zk) = (z1, · · · , zk). Let

TR
0,k = {x ∈ TC

0,k | x = x}.

Lemma 10.1. TR
0,k consists of (k − 1)! connected components. One of them is

identified with T0,k.

Proof. Let x = [z1, · · · , zk] ∈ TR
0,k. By the abuse of notation, we write x for the

pointed space [CP 1; z1, · · · , zk] also. Composing the canonical anti-holomorphic
diffeomorphism x → x which is nothing but the identity map (note that as sets x and
x are the same), with the (holomorphic) isomorphism x → x which is the involution
mentioned above, we obtain an anti-holomorphic self-diffeomorphism τ : x → x.
Since x has no nontrivial automorphism, we have τ2 = 1. Therefore, the fixed point
set of τ is biholomorphic to S1 = ∂D2 ⊂ CP 1 . We then find that zi ∈ ∂D2. We
can fix the representative by taking z1 = 1, z2 =

√
−1 and z3 = −1. The connected

component of TR
0,k is determined according to the (topological) position of zi’s,

i = 4, · · · , k. By a simple combinatorial computation, we obtain the lemma. ¤

Compactification of TC
0,k has been studied extensively in algebraic geometry, and

been used in the theory of quantum cohomology. Let us recall it briefly here. (See
[DM] for a detailed exposition.)

A stable curve of genus zero (Σ; z1, · · · , zk) consists of a connected and simply
connected reduced curve Σ with k nonsingular marked points z1, · · · , zk such that Σ
has at worst an ordinary double point and each irreducible component of Σ contains
at least 3 points which are singular or marked. One can define a topology of the

set TC
0,k of all stable curves of genus zero with k marked points so that TC

0,k is a

compactification of TC
0,k.

For each element (Σ; z1, · · · , zk) of TC
0,k, one can define its complex conjugate

(Σ; z1, · · · , zk) such that the map (Σ; z1, · · · , zk) 7→ (Σ; z1, · · · , zk) is an extension
of the map (CP 1; z1, · · · , zk) 7→ (CP 1; z1, · · · , zk), which is defined on TC

0,k. There

is a canonical anti-holomorphic diffeomorphism : (Σ; z1, · · · , zk) → (Σ; z1, · · · , zk).
We set

T
R
0,k = {x ∈ T

C
0,k | x = x}
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Let T0,k be the closure of T0,k in T
C
0,k. It is contained in T

R
0,k. For an element

(Σ; z1, · · · , zk) of T0,n we have an isomorphism (Σ; z1, · · · , zk) → (Σ; z1, · · · , zk).
By the stability (namely the nonexistence of nontrivial automorphism of an element

of T
C
0,k), this isomorphism is unique. Hence by an argument similar to the proof

of Lemma 10.1, we obtain an anti-holomorphic involution τ : (Σ; z1, · · · , zk) →
(Σ; z1, · · · , zk). The points zi are fixed by this involution. Let

C = {z ∈ Σ | τ(z) = z}

C is a union of finitely many circles patched at finitely many points, and zi are
contained in C. (Figure 10.1).

Figure 10.1

We define a one dimensional simplicial complex T from C as follows. The vertex of
T corresponds to a circle of C or one of the points zi. Let {v1, · · · , vm}∪{z1, · · · , zk}
be the set of vertices. We join two vertex vi and vj if corresponding circles intersect
to each other in C. We join vi and zj if the circle corresponding to vi contains zj .
We never join zi and zj . (Figure 10.1)

Lemma 10.2. T is simply connected.

Proof. If not, we can find a nontrivial loop S1 in T . It is easy to see that we can
lift it to the nontrivial loop of Σ. But Σ is simply connected by assumption, which
gives rise to a contradiction. ¤

For each vertex vi in T , we have a cyclic order of the edges containing vi. This
cyclic order is induced by the (counter clockwise) cyclic order of the circles corre-
sponding to vi. We recall that a tree with fixed cyclic order of the set of edges of
each vertex, has a unique embedding into R2 such that the cyclic order is compat-
ible to the orientation of R2. Thus, for each element of T0,k we obtain an element
(T, i, z1) of Gk such that exterior vertices correspond to z1, · · · , zk. Let T(t) be the

set of all elements of T0,k such that the graph we found above is t.

We thus have described the relation between our two moduli spaces. To make
them more explicit, we are going to construct a map Θ : Grk → T0,k

Definition 10.3. Let t ∈ Gk, ` : C0
int(T ) → R+. We take an Euclidean rectangle

Le = [0, `(e)] × [0, 1] for each e ∈ C1
int(t), and Le = (−∞, 0] × [0, 1] for each

e ∈ C1
ext(t). We remove ∂[0, `(e)] × {1/2} or ∂(−∞, 0] × {1/2} from Le. Let

v ∈ C0
int(t). We consider edges e, e′ such that v ∈ ∂e, ∂e′. We assume that e′ is

the next edge to e according to the cyclic order we put on the set of the edges
containing v. Then, in the case when the orientation of e, e′ goes from v to another
edge, we glue {0} × (1/2, 1] ⊂ ∂Le and {0} × [0, 1/2) ⊂ ∂L′

e. If the orientation is
different we glue in a similar way. (See Figure 10.2).

We thus obtain a space X0(t, `) together with an (incomplete) flat metric on it.
We would like to note that in the metric point of view, X0(t, `) is not a sub-domain
of C. X0(t, `) has holes corresponding to each of the interior vertex of T . We can
fill these holes conformally, and obtain a space X(t, `) equipped with a complex
structure. This space has k boundary components and k ends. Therefore we have
produced an element of T0,k for each ` ∈ Grk. We denote this element by Θ(`).
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It is easy to see that the assignment ` 7→ Θ(`) defines a continuous map, which
we denote by Θ : Grk → T0,k.

Figure 10.2

Theorem 10.4. Θ : Grk → T0,k is a homeomorphism.

We will prove this theorem in §14. Theorem 10.4 is closely related to the theory
of quadratic differential ([Str]).

Now we construct an open covering ∪t∈GkU(t : ε, α) = Grk which will be used
in the later sections. We introduce some notations first.

Definition 10.5.

(i) Let t, t′ ∈ Gk. We say t Â t′ if and only if t′ is obtained by collapsing some
edges of t.

(ii) When t Â t′, we have a surjective map π : T → T ′. For v ∈ C0
int(t

′), we put
cv = π−1(v) which is a subgraph of T . We identify each edge e of t′ with
an edge π−1(e) of T .

(iii) For each cv, we consider the edges in t that intersect but is not contained
in cv. For each such edge, we attach an exterior edge (−∞, 0] to cv at the
point where the edge intersects cv. Let cv be the graph obtained in this way.

Now let α > 0 and ε > 0. We define

U (t′ : ε, α) =





(`) ∈ Grk

∣∣∣∣∣∣∣

` ∈ Gr(t), t Â t′

`(e) > ε−α, if e ∈ C1
int(t

′)

`(e) ≤ ε−α, if e /∈ C1
int(t

′)





(10.1)

We will choose the constants α = α(t) so that 0 < α(t) < 1 and α(t′)
α(t) << 1 if t Â t′.

Then it is easy to see that
⋃

t∈Gk

U (t : ε, α(t)) = Grk

is an open covering of Grk.

§11. Construction of approximate solutions

We now begin with the proof of our main Theorem, Theorem 1.6 for general k.
The proof goes along the similar line to that of Part I. In fact the construction of
our open covering of the moduli space Grk in §10 has been organized so that it
works well with the argument of Part I.

To imitate Part I, we first need an analogy of Proposition 4.1 for general k.
To state it we need some notations. Let a1, · · · , ak ∈ Rn. Suppose that each of
subsets of {a1, · · · , ak} that consist of k − 1 elements is linearly independent. We
put Λi = {(x +

√
−1ai | x ∈ Rn} ⊂ Cn.

Next let z = [z1, · · · , zk] ∈ T0,k. Choose a conformal diffeomorphism of D2 −
{z1, · · · , zk} to an open subset Θ(z) of C. We take Θ(z) so that there is a compact
subset Θ0(z) such that

Θ(z)− Θ0(z) =

k⋃

i=1

Θi(z)

and Θi(z) is isometric to (−∞, 0] × [0, 1] where Θi(z) is the end corresponding to
zi. We let ∂iΘ(z) be the connected component of ∂Θ(z) corresponding to ∂iD

2.
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Proposition 11.1. There is a holomorphic map

w̃z : Θ(z) → Cn

such that
w̃z(∂iΘ(z)) ⊂ Λi (11.1.1)

lim
τ→−∞

(Im w̃z|Θi(τ, t) − (t(ai+1 − ai) + ai) = 0 (11.1.2)

Such a map is unique up to addition by real constants.

Proof. The proof of Proposition 11.1 is a straight forward generalization of the
proof of Proposition 4.1 in §4. So we discuss the proof only briefly. We may assume
that n = k − 1 and ai generates Cn. We then can take k linear maps πi : Cn → C
such that

(11.2.1) πi is linear and defined over R.
(11.2.2) πi(aj) = −1 if j 6= i.
(11.2.3) πi(ai) = 1.

It follows that (π1, · · · , πk−1) is a linear isomorphism. We have

πi(Λj) = {x−
√
−1 | x ∈ R} for j 6= i.

πi(Λi) = {x +
√
−1 | x ∈ R}

By the Riemann mapping theorem, we can find a holomorphic map w̃i : Θz → C
such that

w̃i(∂jΘ(z)) ⊂ πi(Λj).

We then put w̃z = (π1, · · · , πk−1)
−1(w̃1, · · · , w̃k−1).

The proof that w̃z has required property is the same as that of Proposition 4.1
and so omitted. The proof of uniqueness is also similar. ¤

In §17, we will specify how to remove the ambiguity in Proposition 11.1.

We will apply this proposition as we applied Proposition 4.1 in Part I. To do
this, we need some preliminaries. Let t̂ Â t. Then, for each vertex v of t, we have
cv ∈ Gkv as in Definition 10.5. Here kv denotes the number of edges containing v.
If ` ∈ Gr(t), it induces `v ∈ Gr(cv), hence an element Θ(`v) of T0,kv .

By the construction of Definition 10.3, Θ(`) ∈ T0,k, together with its explicit
coordinate, can be obtained from Θ(`v)’s as follows: Each of the ends of Θ(`v) is
isometric to (−∞, 0] × [0, 1], and the ends of Θ(`v) correspond one to one to the
edges of t containing v. We remove (−∞,−ε−α/3] × [0, 1] from each of these ends.
We place these domain at the position v.

Next, we take a rectangle [ε1−α/6, `(e) − ε1−α/6] × [0, 1] for each e ∈ C1
int(t)

and place it at the position of the edge e. If v ∈ ∂e, and the orientation of e
goes from v to another vertex, we identify [`(e) − ε1−α/3, `(e) − ε1−α/6] × [0, 1]
with [−ε1−α/3,−ε1−α/6] × [0, 1] ⊂ Θ(`v). If the orientation is different we glue
in a similar way. We have thus obtained a space with complex structure. It is
immediate to see from the definition that this space coincides with Θ(`).

Now we outline the construction of approximate solutions. We first consider the
re-scaling map πε : Grk → Grk defined by

πε(`)(e) =
`(e)

ε
.
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Note that this is a diffeomorphism which preserves each stratum. We will define our
approximate solutions on Θ( `

ε ). As in Part I, we decompose Θ(`) into the “neck”
regions and the “center” regions around the vertices. First we use Proposition
11.1 via the exponential map to construct approximate solutions of the pseudo-
holomorphic map equation on Θ(`v) into T ∗M . On the neck regions (i.e., rectangle

regions) [ε−α/6, `(e)
ε − ε−α/6]× [0, 1], we use the gradient lines as in Part I to define

them. By gluing these using the partitions of unity, we will obtain approximate
solutions. Making this construction precise is the goal of this section.

We first need to remark some technical trouble which was not present in the case
of k = 3 in Part I: The family of domains Θ(`v) form a non-compact family as `v

varies and ε goes to 0. Therefore it is not clear that the convergence in (11.1.2)
can be made uniform as ε goes to 0. We will discuss this trouble in §16 in more
detail. For the moment, we just state and use one lemma (Lemma 11.2) which will
be used in our construction below.

To state this lemma we need some notations. Let us number the set of edges e
such that v ∈ ∂e in a way compatible to the cyclic order. We put leg(ei) = j(i) =
rig(ei+1). Corresponding to each exterior edge ei of `, we have the exterior end
of Θ(`v), which we denote by Θi(`v). We use (τ, t) ∈ (−∞, 0] for its coordinate.
Denote by ∂iΘ(`v) the component of the boundary ∂Θ(`) such that

∂iΘ(`v) ∩ Θi(`v) 6= ∅

∂iΘ(`v) ∩ Θi+1(`v) 6= ∅

(See Figure 11.1).

Figure 11.1

Let p ∈ M and denote ai = gradpfj(i), and

Λi = {x +
√
−1ai|x ∈ Rn} ⊂ Cn = TpM ⊗ C.

Lemma 11.2. Let Θ(`v) be as above and w̃v : Θ(`v) → Cn be the holomorphic
map obtained by using Proposition 11.1. Namely

(11.3.1) w̃v(∂iw̃v) ⊂ Λi.
(11.3.2)

lim
τ→−∞

(Im w̃v|Θi(τ, t)− (t(ai+1 − ai) + ai) = 0 (11.4)

Then the convergence in (11.4) is uniform on ε, p and `v.

The proof of Lemma 11.2 will be postponed until §16.
Now we describe the appropriate space of maps where we do the necessary es-

timates. First recall that to each element ` ∈ U (t : ε, α) is associated the domain
Θ( `

ε
) with the complex structure that is induced from the flat metric (with finitely

many singularities), which represent it (see the paragraph right before Theorem
10.4). These will be the spaces where we do all the estimates implicit below. We
denote by

MapU(t:ε,α)(T
∗M : ~Λε, ~pε) =

⋃

`∈U(t:ε,α)

Map `
ε
(T ∗M : ~Λε, ~pε)
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the fiber bundle over U (t : ε, α), whose fiber at ` is given by

Map `
ε
(T ∗M : ~Λε, ~pε) = {w : Θ(

`

ε
) → T ∗M | w is a smooth map

satisfying (1.3.1) and (1.3.2) }.

We would like to mention that w in this set does not necessarily satisfy (1.3.3). We
denote by ‖ · ‖0,p,ε the obvious weighted Sobolev norm on the space Mapγ(T ∗M :
~Λε, ~pε) in terms of the induced metric on Θ(γ). We would like to point out that
the (ordinary) Sobolev constant of the domains `

ε are uniform over ` ∈ U (t : ε, α)
and ε → 0.

We then consider the fibre product U (t : ε, α) ×πε Mg(M : ~f, ~p) using the map
πε : U (t : ε, α) → Grk.

Definition 11.3. Map(T ∗M : ~Λε, ~pε) be the set of all pairs ([z1, · · · , zk], ω), such
that [z1, · · · , zk] ∈ T0,k and ω : D2 → T ∗M is a smooth map satisfying (1.3.1),

(1.3.2) but not necessary (1.3.3). Note that it follows that MapU(t:ε,α)(T
∗M, ~Λε, ~p)

is a subset of Map(T ∗M : ~Λε, ~pε).

Now our main result of this section is the following.

Proposition 11.4. There exists a constant C > 0 independent of ε, and maps

Ψε
t,α : U (t : ε, α)×πε Mg(M ; ~f , ~p) → MapU(t:ε,α)(T

∗M : ~Λε, ~pε)

such that the followings are satisfied:

(11.5.1) If ω is in the image of Ψε
t,α then we have

‖∂Jω‖0,p,ε ≤ Cε
2+(p−1)α

p .

(11.5.2) The following Diagram 11.2 commutes.

Diagram 11.2

Proof. Let ` ∈ U (t : ε, α) ∩ Gr(̂t) for some t̂ Â t and I ∈ Mg(M ; ~f, ~p) such that

πε(`) = π(I). Here π : Mg(M ; ~f , ~p) → Grk is the projection. We decompose the
domain Θ(`) as follows. We put

Θe ' [0, `(e)] × [0, 1] ⊂ Θ(`)

for e ∈ C1
int(t) and

Θe ' (−∞, 0] × [0, 1] ⊂ Θ(`)

for e ∈ C1
ext(t).

Let v ∈ C0
int(t). We take a vertex v0 ∈ cv and put pv = I(v0) ∈ M . (The precise

choice will be discussed in more detail in §17.) By Lemma 11.2, we obtain a map

w̃v → TpvM ⊗ C
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where we identify

TpvM ⊗ C = T(pv,0)(T
∗M).

Let e ∈ C1(t). Let

χe : [0,
`(e)

ε
] → M

or

χe : (−∞, 0] → M

be the restriction of I to the edge e. χe is a gradient line of −(flef(e) −frig(e)). We
put

Θe

(
C

εα

)
= [Cε−α,

`(e)

ε
− Cε−α] × [0, 1] ⊂ Θe

when e ∈ C1
int(t), and

Θe

(
C

εα

)
= (−∞,−Cε−α] × [0, 1] ⊂ Θe

when e ∈ C1
ext(t).

Then for each v ∈ C0
int(t), we put

wε
v(z) = exppv

(εw̃v(z)) (11.6)

on

z ∈ Θ(`v) −
⋃

(−∞,−ε−α/6] × [0, 1].

For e ∈ C1(t), we put

wε
e(τ, t) = ψ

fleg(e)

εt ◦ ψ
frig(e)

ε(1−t) (χe(ετ)) (11.7)

on Θe

(
1

3εα

)
. On Θe

(
1

6εα , 1
3εα

)
:= Θe

(
1

3εα

)
− Θe

(
1

6εα

)
we use a partition of unity

in exactly the same way as §4, to patch (11.6) and (11.7). Thus we have obtained
a map :

wε = wε,I : Θ(
`

ε
) → T ∗M.

We put

Ψε
t,α(`, I) = wε,I .

The commutativity of the Diagram 11.2 is an immediate consequence of the con-
struction.

To prove the estimates (11.5.1) repeating those in Part I, we need to prove the
following lemma which is relevant to prove the analogoues of (5.6) and (5.8) there.
Once this lemma is proved, (11.5.1) can be proved in the same way as in Part I.
We remark that we also need this lemma to show that C in (11.5.1) is independent
of ε.
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Lemma 11.5. We can choose w̃v so that the following holds: Let (τ, t) ∈ Θe

(
1

6εα , 1
3εα

)
.

Then
dist (wε

v(τ, t), we(τ, t)) < C max{ε, ε2(1−α)}

Here v is the vertex corresponding to 0 ∈ [0, `(e)] ' e.

We postpone the proof of Lemma 11.5 until §17.

§12. Transversality of the graph flows

We constructed in §11 an approximate solution corresponding to each element of

M(M : ~f, ~p). Our next step is to modify it and to find an exact solution nearby of
the pseudo-holomorphic map equation (or the (nonlinear) Cauchy-Riemann equa-
tion). Roughly speaking, we can carry out this modification, provided the linearized
operator is surjective (namely when there exists a right inverse of the operator.)
This is the way how we did in the case when k = 3 in §6,7. The existence of the
right inverse was proved there by making use of the transversality hypothesis in
Theorem 3.1 for the unstable manifolds of gradient vector fields.

To generalize the line of ideas in §6, 7 to general k, we need to define and

verify the transversality of the moduli space Mg(M : ~f, ~p) and to understand
its relation to the existence of a right inverse of the linearization of the Cauchy-
Riemann equation. This is the analogoue to the proof of Theorem 1.4. But we
will not complete the proof of this theorem at this stage, since we still have to
incorporate and glue the moduli spaces corresponding to different combinatorial
types of graphs. Therefore in this section, we fix the combinatorial type of t and
consider the subset Gr(t) of Grk and study the transversality there. The gluing
construction we need to complete the proof of Theorem 1.4 will be explained in §14
and §15.

Let t = (T, i, p). We fix a vertex v0 ∈ C0
int(T ). For each exterior edge ei

(i = 1, · · · , k), let vi be the interior vertex contained in ei. (The other vertex of ei

is exterior.) We remark that vi = vj may happen for i 6= j. We order them so that

v1 = · · · = vi1−1 6= vi1 = · · · = vi2−1 6= vi2 = · · · 6= vim = · · · = vk.

Here i1 < i2 · · · < im. We are going to define a map

Exp = Expt : M × Gr(t) → Mm.

For 1 ≤ h ≤ m there is a unique minimal path in T joining v0 and vih . Let ejh
1
,

. . . , ejh
ch

be the edges contained in this path in this order.

Figure 12.1

Let V h
b be the vector field such that

V h
b = −(grad flef(e

jh
b

) − grad frig(e
jh
b

))

Let Exp(tV h
b ) : M → M be the one parameter group of transformations associated

to this vector field. We denote

Exph(p, `) = Exp(`(ejh
1
)V h

1 ) ◦ · · · ◦ Exp(`(ejh
ch

)V h
ch

)(p)
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In other words, we define a map

I : T −
⋃

v∈C0
ext(T )

{v} → M

such that I satisfies (1.4.2), (1.4.3) and I(v0) = p, and put :

I(vih) = Exph(p, `).

We set

Exp(p, `) = (Exp1(p, `), · · · , Expm(p, `)).

We write Exp~f in case we need to specify ~f .

For a critical point pi of fi+1 − fi, let W−
pi

(fi+1 − fi) be the unstable manifold

of the gradient vector field of fi+1 − fi. Let π : Mg(M : ~f, ~p) → Grk be the

natural projection. We denote by Mg(M : ~f , ~p, t) the inverse image of Gr(t) in

Mg(M : ~f, ~p) under the map π . Now the following lemma is immediate from the
definition.

Lemma 12.1. There exists a natural one to one correspondence

Exp−1




m∏

h=1

ih+1−1⋂

j=ih

W−
pj

(fj+1 − fj)


 ' Mg(M : ~f, ~p, t)

Now we would like to formulate the transversality of the moduli space Mg(M :
~f, ~p, t). To study the transversality property of Mg(M : ~f, ~p), the identification in

Lemma 12.1 is not suitable enough because the structure of the set ∩ih+1−1
j=ih

W−
pj

(fj+1−
fj) could be quite complicated. For example there is no simple criterion for the set
to be a smooth submanifold unless the intersection is that of a pair of submani-
folds. Because of this reason, we consider the transversality in the following way:
We assume that all the functions fj+1 − fj are of the Morse-Smale type and so
all W−

pj
(fj+1 − fj) are smooth submanifolds and intersect one another transversely.

We study the map

EXP : M × Gr(t) ×
m∏

h=1

(

ih+1−1∏

j=ih

W−
pj

(fj+1 − fj)) →
m∏

h=1

(M ×
ih+1−1∏

j=ih

M )

that is defined by

EXP (p, `,

m∏

h=1

~ph) =

m∏

h=1

(Exph(p, `), ι(~ph))

where ~ph = (pih , · · · , p(ih+1−1)) ∈
∏ih+1−1

j=ih
W−

pj
(fj+1 − fj) and ι :

∏ih+1−1
j=ih

W−
p−j →

∏ih+1−1
j=ih

M is just the inclusion map. Now the following is easy to show
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Lemma 12.2. There exists a natural one to one correspondence

EXP−1

(
m∏

h=1

∆h

)
' Exp−1




m∏

h=1

ih+1−1⋂

j=ih

W−
pj

(fj+1 − fj)




where ∆h is the diagonal in M × (
∏ih+1−1

j=ih
M) = M × · · · ×M .

Now we are ready to formulate our transversality condition.

Definition 12.3. An element of Mg(M : ~f, ~p, t) is called transversal if the map

EXP above is transversal to
∏m

h=1 ∆h at the point (p, `,
∏ih+1−1

j=ih
~ph) of M×Gr(t)×

(
∏ih+1−1

j=ih
W−

pj
(fj+1 − fj)) corresponding to the given element in Mg(M : ~f, ~p, t)

through the correspondences in Lemma 12.1 and 12.2. If this is the case at every

point in Mg(M : ~f, ~p, t), then we say that Mg(M : ~f, ~p, t) is transversal.

For the convenience of the exposition, when the transversality in Definition 12.3
holds, we will often simply say that the map Exp : M ×Gr(t) → Mm is transversal

to
∏m

h=1

⋂ih+1−1
j=ih

W−
pj

(fj+1 − fj). One always has to appropriately interpret into
that of EXP whatever statement on the map Exp appears below.

The following lemma can be proven by a simple dimension counting argument
using the transversality of the map EXP formulated in Definition 12.3.

Lemma 12.4. Suppose M(M : ~f, ~p, t) is transversal in the sense of Definition

12.3. Then M(M : ~f, ~p, t) is a smooth manifold of dimension

k∑

i=1

µ(xi) − (k − 1)n + dimGr(t).

We remark that it is not difficult to show

dim Gr(t) = k − 3 −
∑

v∈C0
int(T )

(kv − 3),

where n = dim M and kv is the number of edges containing v. (See §14 for its
proof.)

Now we prove the following transversality result.

Proposition 12.5. There exists a residual subset of (C∞(M))m such that for ~f in

it, every element of Mg(M : ~f, ~p, t) is transversal in the sense of Definition 12.3.

Proof. Let Ui be a sufficiently small neighborhood of pi. We consider the subset

of (C∞(M))m
0 consisting of the functions which coincides to the given ~f at Ui. We

define
Mg(M : ~p, t) =

⋃

~f∈(C∞(M))m
0

Mg(M : ~f, ~p, t)

We first remark that for ~f in a residual subset of (C∞(M ))m
0 all fj+1−fj are of the

Morse-Smale type and so the unstable submanifolds of these functions are smooth.

Therefore we take a such ~f0 and consider ~f ’s only in a small neighborhood of ~f0.
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The next step is to find a perturbation of ~f such that Exp become transversal

to
∏m

h=1 ∩
ih+1−1
j=ih

W−
pj

(fj+1−fj). We will choose the perturbation so that it does not
change the unstable manifolds involved. For this purpose we choose open subsets
Vi of M as follows. We write vi ≺ vj if the minimal path joining v0 and vj contains
vi. Our open sets Vi ⊂ M satisfies the following. Here we identify T with its image

by I ∈ Mg(M : ~f, ~p, t).

(12.1.1) The intersection of Vi with the minimal path joining vi and v0 is nonempty.
(12.1.2) If the intersection of Vi with the minimal path joining vj and v0 is non-
empty then vi ≺ vj .
(12.1.3) Vi do not intersect the unstable manifolds W−

pj
(fj+1−fj) , j = ih, · · · , ih+1−

1 unless the dimension of W−
pj

(fj+1 − fj) is dim M .

Figure 12.2

(It may happen that some vi coincides v0. In that case we do not require (12.1.1)
and just take Vi empty.) One can find such open subsets by taking Vi to be a
sufficiently small neighborhood of the point p which is on the path joining vi to v0

and which is sufficiently close to vi.
Next we consider the map

Ẽxp : M ×Grk ×
m∏

h=1

C∞
0 (Vih) → Mm

such that Ẽxp(p, `, ~g) = Exp(p, `, ~f ′). Here the i th component of ~f ′ is fi + gh

where ih ≤ i < ih+1. By abuse of notation we write ~f + ~g for this element ~f ′.
We consider

Ẽxp
−1




m∏

h=1

ih+1−1⋂

j=ih

W−
pi

(fj+1 − fj)




Now we show :

Lemma 12.6. Ẽxp
−1 (∏m

h=1 ∩
ih+1−1
j=ih

W−
pi

(fj+1 − fj)
)

is a smooth submanifold of

M × Grk ×
∏m

h=1 C∞
0 (Vih). Furthermore the restriction map of the projection π :

M × Grk ×
∏m

h=1 C∞
0 (Vih

) →
∏m

h=1 C∞
0 (Vih

)

Ẽxp
−1




m∏

h=1

ih+1−1⋂

j=ih

W−
pj

(fj+1 − fj)


 →

m∏

h=1

C∞
0 (Vih)

is a Fredholm map.

Once we have Lemma 12.6 then Proposition 12.5 is a consequence of the Sard-
Smale transversality theorem [Sm]. (More precisely we replace C∞

0 (Vi) by a Banach
space contained in it, as in Floer [Fl2].) Now we prove Lemma 12.6. It suffices

to show that the map Ẽxp is transversal to
∏m

h=1 ∩
ih+1−1
j=ih

W−
pj

(fj+1 − fj). (The

Fredholmness is easy to show in the formulation of Lemma 12.4.) To prove it

we are going to show that the differential of Ẽxp is surjective. Let (p, `, ~g) ∈
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M × Gr(t)×
∏m

h=1 C∞
0 (Vi), and (qi) = Ẽxp(p, `, ~g). Let Xi ∈ TqiM . We are going

to find ~gi an V ∈ TpM such that

dExp(expp(tV ), `, ~f + t~g)

dt

∣∣∣∣∣
t=0

= (X1, · · · ,Xm). (12.2)

We find such a gi by induction of the order ≺ of vi. We remark that Condition

(12.1.2) implies that gj do not affect the i-th component of
dExp(expp(tV ),`, ~f+t~g)

dt

∣∣∣
t=0

unless vi ≺ vj . Hence we can modify gj according to the order ≺ of vi.
First suppose possibly there exists vi with v0 = vi. Such an element is necessarily

the smallest element among vi’s. Then clearly the i-th component of Exp(p, `, ~f)
is p. Hence by putting V = Xi, (12.2) is satisfied for the i-th component.

Next we construct gj . Assume we have already chosen gi for i with vi ≺ vj .
Take ~g′ so that gh = 0 for those which are not yet chosen. We have already chosen

V also. Then denote the j-th component of
dExp(`,expp(tV ), ~f+t~g′)

dt

∣∣∣
t=0

by Yj . By

Condition (12.1.1), we can find gj so that, if ~gj ∈
∏m

h=1 C∞
0 (Vi) is the element

whose h-th component is 0 unless i = j and whose j-th component is gj, then the

j-th component of
dExp(expp(tV ),`, ~f+t~gj)

dt

∣∣∣
t=0

becomes Xj −Yj. Then (for any choice

of gh we make later) the j-th component of
dExp(expp(tV ),`, ~f+t~g)

dt

∣∣∣
t=0

is Xj. Thus

Lemma 12.6 now can be proved by induction. Hence the proof of Lemma 12.6 and
so that of Proposition 12.5. ¤

§13. Construction of the right inverse and the exact solutions

In this section, we use the transversality established in §12 and construct a
right inverse of the linearized equation of the Cauchy Riemann equation at the
approximate solutions constructed in Proposition 11.4. This construction is parallel
to that in §6, 7. So we will explain only the part where arguments are new. The
main new point in the current situation appears when rephrasing the transversality
condition as we did in the beginning of §6.

Let (p, `) ∈ M × Grk be the element corresponding to the map I : T → M in

Mg(M : ~f, ~p, t) through Lemma 12.1. We assume that it is transversal in the sense
of Definition 12.3.

We identify each interior edge e of T to [0, `(e)] and exterior edge to (−∞, 0].
Let χe : [0, `(e)] → M or χe : (−∞, 0] → M be the restriction of I . We put

W 1,p
I =



 (ce) ∈

∏

e∈C1(T )

W 1,p(χ∗
eTM)

∣∣∣∣∣∣
ce(v) = ce′(v) if v ∈ e, v ∈ e′, v ∈ C0

int(T )





There is a map :

LI : W
1,p
I →

∏

e

Lp(χ∗
eTM).

whose e-component is given by

Le = Lχe := ∇τ̇ + ∇grad(flef(e) − frig(e))

We have :
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Lemma 13.1. LI is surjective when I ∈ Mg(M : ~f, ~p, t) is transversal in the sense
of Definition 12.2.

Proof. We consider the space :

W 1,p
I,int =



 (ce) ∈

∏

e∈C1
int(T )

W 1,p(χ∗
eTM )

∣∣∣∣∣∣
ce(v) = ce′(v) if v ∈ e ∩ e′, v ∈ C0

int(T )





We define the map

Lint
I : W

1,p
I,int →

∏

e∈C1
int(T )

Lp(χ∗
eTM )

in a similar way. We also define the evaluation map

ev : W 1,p
I,int →

m
⊕

h=1
TI(vih

)(M)

by
(ce) 7→ (ce′h

(vih
)).

Here e′h is any interior edge containing vih . Then the transversality condition in
Definition 12.3 for (`, p) is equivalent to the surjectivity of the composition of the
map

Ker Lint
I

ev−→ ⊕m
h=1TI(vih

)(M)
proj−→ ⊕m

h=1NI(vih
)




ih+1−1⋂

j=ih

Wph
(fj+1 − fj)


 (13.1)

Here NI(vih
)(·) means the normal bundle of (·). Again the precise formulation of

this statement should follow the kinds of Lemma 12.2 and Definition 12.3 in their
linearized version. We leave this obvious translation to readers.

Now we take an arbitrary element (be) ∈
∏

Lp(χ∗
eTM). First let e ∈ C1

int(T ), v
be one of the vertex of e and V ∈ TI(v)M . By the existence of solution of Cauchy

problem for ordinary differential equation, we can find ce(V ) ∈ W 1,p(χ∗
eTM ) such

that
Le(ce(V )) = be

ce(V )(v) = V
(13.2)

Now we use this fact and the fact that T is a tree to find (c′e) ∈ W 1,p
I,int such that

Lint
I ((c′e)) = (be)

Next we consider an exterior edge ei. (We are again using the same notations as in
the beginning of §12.) Then, for each Wi ∈ TI(vi)(W

−
pi

(fi+1 − fi)), we have

c(ei, Wi) ∈ W 1,p(χ∗
ei

TM)

such that
Lei(c(ei, Wi)) = b(ei)

c(ei, Wi)(vi) = Wi
(13.3)
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Now we consider c′e(vih) ∈ TI(vih
)M . Again the transversality in Definition 12.3

implies in particular that we can find

Vh ∈ NI(vih
)




ih+1−1⋂

j=ih

Wph(fj+1 − fj)




and

Wh ∈ TI(vih
)

( ih+1−1⋂

j=ih

(
W−

ph
(fj+1 − jj)

) )

such that
Wh − Vh + c′e(vih) = 0. (13.4)

Using the surjectivity of (13.1) we find (de) ∈ Ker Lint
I such that ev(de) = (Wh).

Now we put

ce = c′e + de if e ∈ C1
int(T )

cej = c(ej, Wh) if ej ∈ C1
ext(T ), ih ≤ j < ih+1

By (13.2)-(13.4), we have

ce(vj) = ceh(vj) j = ih, · · · , ih+1 − 1

Hence c ∈ W 1,p
I . By definition LI(ce) = (be), as required. ¤

Once we establish Lemma 13.1, we can imitate the arguments in the proofs of
Propositions 6.1 and 7.1 to obtain a right inverse of the linearization of ∂J at the
elements defined in Proposition 11.7. Then using the estimates in Proposition 11.4
together with the above discussion on the right inverse, one can repeat the same
proof, with obvious modifications, that was carried out for the case k = 3 in §7-9.
Hence we have constructed the required diffeomorphism in a neighborhood of each
stratum Gr(t).

Proposition 13.2. For sufficiently small ε > 0, there exists a constant C and a
smooth map

Ξε
t:α : U (t : ε, α) ×πε Mg(M, ~f, ~p) → MJ (T ∗M : ~Λε, ~xε) ⊂ Map(T ∗M : ~Λε, ~xε)

such that

(13.7.1) Diagram 11.2 commutes and
(13.7.2)

|Ξε
t:α − Ψε

t:α| ≤ Cε
2+(p−1)α

p

In the next remaining sections, we will patch these diffeomorphism together and
obtain the global diffeomorphism asked in the Main Theorem, Theorem 1.7.

§14. Gluing moduli spaces (Metric ribbon tress)

In this section, we reprove Stasheff’s theorem and also we make clearer the
relation between moduli spaces of graphs and genus zero open Riemann surfaces.
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Theorem 14.1. [Compare with (Stasheff [St1])] Grk can be given a smooth
structure with respect to which it becomes diffeomorphic to Rk−3.

We here first recall a gluing construction of graph modulies. Let t = (T, i, p) ∈
Grk and kv; v ∈ C0

int(T ) be the number edges containing v. We use the map :

Φt : Gr(t)×
∏

v∈C0
int(t)

Grkv → Grk

The construction is by gluing and is similar to the proof of Lemma 11.3. More
precisely, let

(`, (`v)) ∈ Gr(t) ×
∏

v∈C0
int(t)

Grkv

Here `v ∈ Gr(cv) ⊂ Grkv and cv = (Cv, iv, pv). We replace the vertex v ∈ T by
the tree Cv. Namely we identify kv edges containing v and kv exterior edges of Cv,
using their orders. Then we obtain a graph. Together with its ribbon structure
and order we denote it by t̂. Then Φt (`, (`v)) = `′ ∈ Gr(̂t). Here `′(e) = `(e) if
e ∈ C1

int(T ) and `′(e) = `v(e) if e ∈ C1
int(Cv).

Let cv ∈ Gkv and cu,v ∈ Gku,v , where u ∈ C0
int(cv) and ku,v be the number of

edges containing u. We then have the following commutative diagram :

Gr(t) ×
∏

Gr(cv) ×
∏

Gr(cu,v)
1×

∏
Φtv−−−−−−→ Gr(t) ×

∏
Grkv

Φt×1

y
y

Gr(̂t) ×
∏

Gr(cu,v)
Φ

t̂−−−−→ Grk

Diagram 14.1

Now we start with the proof of Theorem 14.1. We prove this by induction on k.
Suppose that the theorem holds for k′ < k. Let tk ∈ Grk be the graph which has
no interior edge. Then Gr(tk) is a point. We first prove that Grk − Gr(tk) is a
topological manifold. Let t 6= tk. Then kv < k for each v ∈ C0

int(t). Hence, by
the induction hypothesis, Grkv is homeomorphic to Rkv−3. Using it we find that
Gr(t)×

∏
Gr(kv) is homeomorphic to Rk−3. (Note that Gr(t) is a cell.) Therefore

Φt : Gr(t) ×
∏

Grkv → Grk

is a homeomorphism from Rk−3 to a neighborhood of Gr(t). We regard them as a
coordinate chart. So this gives a structure of topological manifold to Grk −Gr(tk).

We next prove that these charts give a smooth structure to Grk −Gr(tk) . The
proof of this fact is again by induction. From the induction hypothesis, there exists

a smooth structure on Grk′ with respect to which it is diffeomorphic to Rk′−3

for k′ < k. Then the C∞ compatibility of the above charts is a consequence of
the commutativity of Diagram 14.1 and the construction of the diffeomorphism
Grkv ' Rkv−3, which we are going to explain later in this section.

We have thus obtained a smooth structure on Grk − Gr(tk). We remark that
there is an action of R+ on Grk − Gr(tk). This action is free and Grk is the cone
of the quotient space of this action. Hence to complete the proof of our theorem,
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we have only to prove that the quotient space is diffeomorphic to the sphere. We
will prove this fact by using a relationship of Grk to the other moduli space T0,k.

Our basic observation to prove Theorem 14.1 is that the natural cell decompo-
sitions of the compactifications of Grk and T0,k is the dual decomposition to each
other. We now explain this point more precisely.

Let T0,k be the compactification of T0,k as we explained in §10. It has a cell
decomposition such that each cell corresponds to an element of Gk as follows. We
define cells ∆(t) for each t ∈ Gk. An element of T0,k is identified to [Σ; z1, · · · , zk; τ ]
such that Σ is a genus zero stable curve zi are regular points of Σ and τ is an
anti holomorphic involution of Σ such that τ(zi) = zi. If [Σ; z1, · · · , zk; τ ] is in
the interior T0,k of our moduli space, namely if Σ is nonsingular, we say that
[Σ; z1, · · · , zk; τ ] ∈ ∆(tk). (Here tk is the graph without an interior edge.) Oth-
erwise we obtain a ribbon graph t = (T, i, p) as we explained in §10. We say
[Σ; z1, · · · , zk; τ ] ∈ ∆(t). It is easy to prove that ∆(t) is a cell. It also follows that
their dimensions are given by

dim∆(t) =
∑

v∈C0
int(t)

(kv − 3) (14.1)

where kv is the number of edges containing v. These cells will turn out to be the
dual cells of Gr(t) as we will prove later in this section. We now calculate the
dimension of Gr(t). We first remark that

dim Gr(t) = ]C1
int(t) (14.2)

On the other hand, by Euler’s formula using the fact that our graph is a connected
tree, we have

1 = ]C0(t) − ]C1(t) (14.3)

We also have ]C1
ext(t) = ]C0

ext(t) = k, and

2]C1(t) = k +
∑

v∈C0
int(t)

kv and so

2]C1
int(t) = −k +

∑

v∈C0
int(t)

kv.

Combining these, we have

3 = 3]C0
int(t) − 3]C1

int(t)

= 3
∑

v∈C0
int(t)

1 − 2]C1
int(t)− ]C1

int(t)

= −
∑

v∈C0
int(t)

(kv − 3) + k − ]C1
int(t).

Hence from (14.1) and (14.2), we conclude

dim Gr(t) = k − 3 −
∑

v∈C0
int(t)

(kv − 3) = dim T0,k − dim∆(t). (14.4)
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Next we recall the definition of the dual cell decomposition. First let X be a
smooth manifold and Xa, a ∈ I, I being a some indexing set, be smooth subman-
ifolds such that their closures Xa become smooth submanifolds with corners. We
say that they consist of smooth cell decomposition if the followings are satisfied :

(14.5.1) Xa are disjoint from one another and
∐

a∈I Xa = X.

(14.5.2) Xa is diffeomorphic to R|a|, and Xa (after smoothing out their corners) is
diffeomorphic to D|a|. Here |a| is a positive integer.
(14.5.3) The boundary ∂D|a| of D|a| is a union of some of the Xb’s with |b| < |a|.

Given such a decomposition we define its dual decomposition as follows. Our
definition is given by induction on the dimension n of X . Suppose that the dual
decomposition is defined for manifolds of dimension < n. Let a ∈ I and p ∈ Xa.
We consider the normal bundle NpXa and its unit sphere bundle SNpXa. For

each Xb with Xb ⊃ Xa we consider the intersection SNpXa ∩ TpXb which is a cell.

These cells define a cell decomposition of SNpXa = Sn−|a|−1. Therefore by the
induction hypothesis we obtain a dual decomposition of it. We add one more cell
of dimension n − |a| to the dual decomposition of SNpXa = Sn−|a|−1. The we get

a cell decomposition of Dn−|a| which we define to be Ya.
We now glue these cells as follows. For a, b ∈ I we are going to construct

an inclusion Ya ⊂ Yb. We construct it in case |a| = |b| + 1. (In the general
case we can construct the inclusion by composing inclusions of this case.) Let
q ∈ Xb. We choose a unit normal vector v ∈ SNqXb which are tangent to Xa and
exp(εv) is contained in Xa for small ε. Since |a| = |b| + 1 there is only one such
vector. We consider the decomposition of SNqXb induced by the decomposition
of X . This decomposition induces that of SNv(SNqXb). One finds easily that
the decomposition obtained on SNv(SNqXb) is the same as the decomposition
of SNpXa. Hence by construction, the cell of the dual decomposition of SNqXb

which corresponds to the point v ∈ SNqXb is isomorphic to Ya. We thus obtain an

inclusion Ya ⊂ Yb.
By gluing these cells that we have defined as above Ya using the inclusion, we

obtain a cell complex Y . It is easy to see that it has a smooth structure such that
Ya gives its smooth cell decomposition. Then we have

Lemma 14.2. X is diffeomorphic to Y .

Proof. The barycentric subdivision of X becomes also a subdivision of Y . ¤

Now we can state Theorem 14.1 more precisely in our context.

Theorem 14.3. Let us compactify Grk using the R+ action on Grk −Gr(tk) and

denote by Grk the compactification. Then (Grk, {Gr(t)}) is the dual cell decompo-

sition to (T0,k, {T(t)}).

Proof. The proof is again by induction on k. Suppose that Theorem 14.3 is true
for k′ < k. We consider the cell Gr(t) and take a point p on it. Then NpGr(t)
together with its induced decomposition can be identified with

∏
v∈C0

int(t)
Gr(kv−3).

We assume that t 6= tk. Then using the dimension formula (14.4) and the induction
hypothesis, we derive that SNpGr(t) is the dual decomposition of the boundary

∂
∏

v∈C0
int(t)

T(kv−3)
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We put X = Grk and use the notation in the definition of the dual decomposition.
Then we find

Yt =
∏

v∈C0
int(t)

T(kv−3)

Since this holds for arbitrary t except possibly tk we find that ∂Grk and ∂T(k−3)

are dual to each other. It follows that ∂Grk ' Sk−4. Thus as we already explained

Grk is a smooth manifold. We then conclude from definition that (Grk, {Gr(t)})
is the dual cell decomposition to (T0,k, {T(t)}). The proof of Theorem 14.3 and so
that of Theorem 14.1 is now complete. ¤

Now we are in the position to prove Theorem 10.4.
We first remark that by construction we can extend the map Θ : Grk → T0,k to

its compactification Θ : Grk → T0,k. Here ∂Grk = Grk −Grk consists of (t, `) such
that `(e) = ∞ for some interior edge e.

We first prove that Θ is surjective by induction on k. We will prove that it

is of degree one (namely induces an isomorphism Θ
∗

: Hk−3(T0,k, ∂T0,k; Z) →
Hk−3(Grk, ∂Grk;Z)) at the same time. When k = 3 then Gr3 = T0,3 = one point.
Hence there is nothing to show. Suppose that Lemma 10.3 is true for k − 1. Then,
we find that the restriction of Θ : Grk → T0,k to each cell in ∂Grk is surjective and

is of degree one to the corresponding dual cell in ∂T0,k. Hence the restriction of Θ

to ∂Grk is surjective to ∂T0,k and is of degree one. Since we already proved that
Grk ' T0,k ' Rk−3, it follows that Θ : Grk → T0,k is surjective and of degree one.
The proof of the surjectivity of Θ is complete now.

We next prove that Θ is a diffeomorphism. We remark that it suffices to show
that Θ is a local diffeomorphism. This is because our map is between two spaces
homeomorphic to the disk and is of degree one.

We first consider the top-stratum i.e., the case in which t ∈ Gk is a trivalent
graph.

Lemma 14.4. Let t ∈ Grk be a trivalent graph. Then the differential of Θ is
invertible at points of Gr(t).

Proof. Let ` ∈ Gr(t). We consider Θ(`). We take its double Θ̂(`). It is a Riemann
surface of genus 0 with k ends. We also have an explicit diffeomorphism between

each of the ends of Θ̂(`) and (−∞, 0]×S1. Moreover Θ̂(`) has an anti-holomorphic
involution τ .

By the general theory of deformation of complex structures, the compactly sup-
ported Dolbeault cohomology

H0,1
cpt(Θ̂(`), O(T Θ̂(`)))

of the tangent bundle is canonically isomorphic to and so can be identified with
the tangent space of the moduli space, TΘ̂(`)T

C
0,k ' Ck−3. τ induces an anti-

holomorphic involution of the Dolbeault cohomology and its fixed point set corre-
sponds to TΘ(`)T0,k ' Rk−3 under the identification.

By construction we have k − 3 annuli Θ̂e ' [ε, `(e) − ε] × S1 embedded in Θ̂(`),
which corresponds each of the element e of C1

int(t). We have a homomorphism
induced by inclusion ;

⊕

e

H0,1
cpt(Θ̂e,O(T Θ̂e)) → H0,1

cpt(Θ̂(`), O(T Θ̂(`))). (14.5)



0-LOOP OPEN STRINGS AND MORSE HOMOTOPY 77

Using the fact that Θ̂(`)−∪Θ̂e is a union of CP 1 − {3 points}, whose deformation
is trivial, we find that (14.5) is an isomorphism.

On the other hand, the real part of H0,1
cpt(Θ̂e, O(T Θ̂e)) (the fixed point set of τ)

is R. This group is identified with the real part of the tangent space of the moduli
of complex structure on annulus. Thus the differential of Θ is identified to the real
part of the map (14.5) and hence is invertible. ¤

By now we have proved that Θ is locally a diffeomorphism at each top dimen-
sional strata. We now prove by induction on k that it is a local diffeomorphism
everywhere.

If k = 3, there is nothing to show. We assume that it is proved for k − 1
and smaller. We are going to prove that Θ is locally a diffeomorphism for k on
Grk −Gr(tk).

Let t 6= tk and ` ∈ Gr(t). We have Θe ⊂ Θ(`), Θv ⊂ Θ(`), for each e ∈ C1
int(t)

and v ∈ C0
int(t) such that they are disjoint to each other, Θe is a rectangle, and Θv

is obtained by gluing kv rectangles in a way similar to the definition of Θ. Let Θ̂e,

Θ̂v be their double (see Figure 14.2).

Figure 14.2

Lemma 14.5. The map

⊕

e

H0,1
cpt(Θ̂e,O(T Θ̂e)) ⊕

⊕

v

H0,1
cpt(Θ̂v,O(T Θ̂v)) → H0,1

cpt(Θ̂(`), O(T Θ̂(`))).

is an isomorphism.

Proof. We can find Θi ' [0, Ci] × [0, 1] ⊂ Θ̂(`), i = 1, · · · , 2]C1
int(t) and Θi '

(−∞, 0]×[0, 1] ⊂ Θ̂(`), i = 2]C1
int(t)+1, · · · 2]C1

int(t)+]C1
ext(t), such that Θ̂(`)−∪Θ̂i

is a compact subset of ∪Θ̂e ∪ ∪Θ̂v. We remark that

H0,1(Θ̂i,O(T Θ̂i)) = 0.

(The cohomology here is not one with compact support.) Now let u ∈ H0,1
cpt(Θ̂(`),O(T Θ̂(`))

i.e., Γ(Λ0,1 ⊗ T Θ̂(`)) with ∂u = 0, τu = u. We find wi ∈ Γ(T Θ̂(`)) such that

∂wi = u, τwi = wi. We take u′ = u −
∑

∂(χiwi). Here {χ} is an appropriate par-
titions of unity. Then we have [u] = [u′], and u′ is supported in a compact subset

of ∪Θ̂e ∪ ∪Θ̂v. This proves that the homomorphism in Lemma 14.5 is surjective.
Then it follows by dimension counting that it is an isomorphism. ¤

Now we remark that

T`Grk =
⊕

e∈C1
int(t)

R ⊕
⊕

v∈C0
int(t)

T0Grkv (14.6)

Here 0 ∈ Grkv is the unique point in Gr(tkv ), where tkv is the graph without interior
edges. The differential of Θ at ` has the component corresponding to e which is
identified with the restriction of the isomorphism in Lemma 14.5 to the real point

of H0,1
cpt(Θ̂e, O(T Θ̂e)).
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On the other hand by induction hypothesis, we see that the map

T0Grkv → H0,1
cpt(Θ̂v,O(T Θ̂v))

induced by the differential of Θ is an isomorphism to the real point. Therefore, by
Lemma 14.5, the differential of Θ is an isomorphism at ` ∈ Gr(t) when t 6= tk.

Now using the facts that both Grk and T0,k is homeomorphic to Rk−3 and that
Θ is a diffeomorphism at boundary (which follows from the induction hypothesis),
we can prove that Θ is a homeomorphism. We can then choose a differentiable
structure of Grk at Gr(tk) such that Θ is a diffeomorphism at Gr(tk) also. The
proof of Theorem 10.4 is now complete.

§15. Gluing moduli spaces (Graph flows)

Using the result of the previous sections, we are going to prove Theorem 1.6.

Namely we construct a smooth structure on the moduli space Mg(M : ~f, ~p) =

∪tMg(M : ~f , ~p, t). We have already proved in Lemma 12.4 that for each t ∈ Grk

and generic ~f , the moduli space Mg(M : ~f, ~p, t) is a smooth manifold of dimension

dimMg(M : ~f, ~p, t) = n − 3 −
∑

v∈C0
int(t)

(kv − 3) +
∑

µ(xi) − (k − 1)n.

Our task in this section is to glue them together to obtain a smooth manifold

Mg(M : ~f, ~p).
We first recall the definition of

Gr(t) = {` : C1
int(t) → R | `(e) > 0}.

We put
Gr+(t) = {` : C1

int(t) → R | `(e) ≥ 0}.

We then find that
Gr+(t) =

∐

t′:tÂt′

Gr(t′).

We recall here that t Â t′ means that t′ is obtained by shrinking some of the interior

edges of t. Note that the transversality is also satisfied for t′ for generic ~f .
We consider the cell Gr(t′). Its neighborhood in Gr+(t) is diffeomorphic to

Gr(t′) × W (t′, t) where W (t′, t) is a neighborhood of 0 in the set

{
V ∈ NqGr(t′) | expq(tV ) ∈ Gr(t) for t ≥ 0, t << 1.

}

Here q is a point in Gr(t′). W (t′, t) is a cone of the set SW (t′, t) which is an
intersection of W (t′, t) with the unit sphere in NqGr(t′). SW (t′, t) is of dimension
dimGr(t) − dimGr(t′) − 1.

Lemma 15.1. Let
◦

W (t′, t) = W (t′, t)∩Gr(t). Then by choosing W (t′, t) sufficiently
small, we have a diffeomorphism :

◦
W (t′, t) ×Mg(M : ~f, ~p, t′) → Mg(M : ~f, ~p, t) ∩ π−1(W (t′, t))
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which is compatible to the projections to W (t′, t).

Proof. We extend the map

Expt : M × Gr(t) → Mm

defined in §12 to a continuous map :

Exp+
t : M × Gr+(t) → Mm

We regard Gr(t′) as a subset of Gr+(t). Then the restriction of Exp+
t to Gr(t′) is

related to Expt′ : M × Gr(t′) → Mm′
as follows. We recall that m is the number

of interior vertices of t which are contained in one of the exterior edges, and similar
for m′. Let {v1, · · · , vm} ∈ C0

int(t) and {v′
1, · · · , v′

m′} ∈ C0
int(t

′) be those vertices.
Since t′ is obtained by shrinking some of the edges of t, each of v′

j corresponds to
some of vi’s. We define the map

α : {1, · · · , m} → {1, · · · , m′}

such that v′
α(i) is obtained from vi. We then define st′,t : Mm′ → Mm by

st′,t

(
(pj)1≤j≤m′

)
= (qi)1≤i≤m where qi = pj for j = α(i). (15.1)

Then by definition the map

st′,t ◦ Expt′ : M × Gr(t′) → Mm

coincides with the restriction of Exp+
t . Therefore by using (12.1.2) for t′, we can

prove that restriction of Exp+
t to M × Gr(t′) is transversal to

m∏

h=1

ih+1−1⋂

j=ih

W−
pj

(fj+1 − fj)

Lemma 15.1 then immediately follows from the implicit function theorem. ¤

Now we are ready to prove Theorem 1.6. For each t, we consider

M+
g (M : ~f, ~p, t) = Mg(M : ~f, ~p, t) ∪

∐

tÂt′

Mg(M : ~f, ~p, t′)

We define a topology and a smooth structure on it so that the map

W (t′, t) ×Mg(M : ~f, ~p, t′) → M+
g (M : ~f, ~p, t)

in Lemma 15.1, gives a coordinate chart. Then by Lemma 15.1 the space M+
g (M :

~f, ~p, t) becomes a smooth manifold with corners. For t Â t′, there is a natural
inclusion

M+
g (M : ~f, ~p, t′) ⊂ M+

g (M : ~f, ~p, t)
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Using these inclusions we can patch M+
g (M : ~f, ~p, t)’s together to provide a topology

on Mg(M : ~f, ~p). It remains to define a smooth structure on it.

Let u ∈ Mg(M : ~f, ~p, t) ⊂ Mg(M : ~f, ~p). Then its neighborhood in Mg(M :
~f, ~p) is the union of ⋃

t′;tÂt′

W (t′, t)× U

where U is a neighborhood of u in Mg(M : ~f, ~p, t). We remark that for a given t
the set ⋃

t′;tÂt′

W (t′, t)

is identified with a neighborhood of 0 in the fibre of the normal bundle of Gr(t) in
Grk. Since we have already proved that Grk is a smooth manifold, it follows that⋃

t′;tÂt′ W (t′, t) becomes a smooth manifold. We thus get a chart of Mg(M : ~f, ~p)
in a neighborhood of u. It is obvious that these charts are compatible and so define

a smooth structure of Mg(M : ~f, ~p).

One can find the dimension of Mg(M : ~f, ~p) by using Lemma 12.4. The smooth-
ness of the projection

Mg(M : ~f, ~p) → Grk

is also obvious from the construction. Hence the proof of Theorem 1.6.

§16. Behavior of holomorphic disks in Cn

To complete the proof of our main theorem, one might try to glue the locally
defined diffeomorphisms in §13. However, it is more efficient to glue the local
approximate solutions Ψε

t:α and produce global approximate solutions and then to
apply the perturbation method used in Part I once and for all, than to glue the
diffeomorphisms Ξε

t:α. For this purpose, we will further study the properties of the
maps wΘ(`) obtained via Lemma 11.2.

Let t ∈ Gk, ` ∈ Gr(t). The space Θ(`) contains k ends Θi(`), i = 1, · · · , k, each
of which is isometric to (−∞, 0]× [0, 1]. Let ai ∈ Rn. We use the same notation as
in Proposition 11.1.

We consider the graph T with metric `, and remark that there is an isometric
embedding of T to Θ(`), such that each vertex of T is mapped to a singular point
(with respect to the flat metric mentioned before) of Θ(`). Hereafter we will regard
T as a subset of Θ(`). Let v1, v2 ∈ C0

int(t). We denote by v1v2 the minimal path
joining them in T . Let ej1 , · · · , ejm ∈ C1

int(t) be the edges contained in this path
in this order. We put

ev(v2, v1, `, (ai)) =
∑

i

`(eji)aji .

We extend the map ev as follows. Let θ1, θ2 ∈ T . Suppose that θi is on the edge
ej(i). We consider the case when ej(i) are interior edges (i = 1, 2). Let si ∈ [0, `j(i)]
be the point corresponding to θi and vi be the vertex corresponding to 0 ∈ [0, `j(i)].
We put

ev(θ1, θ2, `, (ai)) = ev(v2, v1, `, (ai)) + s2aj(2) + (`(ej(1)) − s1)aj(1).
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The definition in the case when ej(i) is exterior is similar. It is easy to see that
θ 7→ ev(θ, θ2, `, (ai)) is a PL map. We remark that this map is a special case of
the map Exp used in §12. (Namely this corresponds to the case when we choose fi

to be the quadratic function whose gradient vector fields are constant vector fields
ai.)

Proposition 16.1. Let w̃Θ(`) be the map defined in Proposition 11.1 on Θ(`).
Then there exists a constant C1 independent of ` such that

∣∣w̃Θ(`)(θ2)− w̃Θ(`)(θ1) − ev(θ2, θ1, `, (ai))
∣∣ < C1

Proof. We will prove Proposition 16.1 together with Lemma 11.2 simultaneously.
We first prove the following.

Lemma 16.2. Let t Â t′. For each positive constant C2, there exists constants
0 < C3 = C3(C2, t) and 0 < C4 = C4(C2, t) depending only on t, C2, such that the
following holds: If ` ∈ Gr(t) and satisfies

`(e) > C3, e ∈ C1
int(t) − C1

int(t
′) (16.1.1)

`(e) < C2, e ∈ C1
int(t

′) ⊂ C1
int(t) (16.1.2)

then the conclusion of Proposition 16.1 holds for C1 = C4 and Lemma 11.2 holds
for such t.

Postponing the proof of this lemma to the end of this section, we first prove that
Lemma 16.2 implies Proposition 16.1. (This is rather a technical part of the proof.)
Let

C3(C2, n, m) = sup{C3(C2, t) | ]C0
int(t) = n, ]C0

int(t
′) = m}

C4(C2, n, m) = sup{C4(C2, t) | ]C0
int(t) = n, ]C0

int(t
′) = m}

We put B1 = C3(1, k, 1), B′
1 = C4(1, k, 1). Suppose `(e) > B1 for each e ∈ C1

int(t).
In this case, Lemma 16.2 implies that Proposition 16.1 holds for such ` with C1 =
B′

1. (We remark that if ]C0
int(t

′) = 1 then C1
int(t

′) is empty.)
We next consider the case where `(e) ≤ B1 for some e. We collapse all such

edges to obtain t′. If we also assume that

`(e) > C3(B1, t)

for each edge e ∈ C1
int(t)−C1

int(t
′), then we can apply Lemma 16.2 and derive that

Proposition 16.1 holds with C1 = C4(B1, t).
In other words, we have proved the following: Let B2 = supm C3(B1, k,m),

B′
2 = supm C4(B1, k,m). If Proposition 16.1 is false for C1 = C4(B1, t, t

′), then
there exists e ∈ C1

int(t)− C1
int(t

′) such that `(e) < B2. It follows in particular that
there exists at least two edges e in t such `(e) < B2.

We repeat this procedure inductively and can prove the following: Define Bu+1 =
supm C3(Bu, k, m), B′

u+1 = supm C4(Bu, k, m). If Proposition 16.1 is false with
C1 = B′

u+1, then there exists at least u + 1 edges e such that `(e) < Bu+1. On the
other hand, the number of edges is smaller than k − 3. Therefore Proposition 16.1
holds for C1 = supj≤k−2 B′

j.
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Now it remains to prove Lemma 16.2. Let v ∈ C0
int(t

′). We put cv = π−1(v) ⊂ t
and define cv as in §10. Restricting ` : C1

int(t) → R+ to cv, we obtain `v ∈ Gr(cv).
Using Lemma 11.1, we obtain

w̃v : Θ(`v) → Cn

(which will be normalized as in (17.1)). For each e ∈ C1(t′) with v ∈ ∂e, we have
a subset in Θ(`v)

Θe(`v) ' (−∞, 0] × [0, 1] ⊂ Θ(`v).

Using the coordinates (τ, t) there, we have

|w̃v(τ, t) + conste − (τ(aleg(e) − arig(e)) +
√
−1t(aleg(e) − arig(e))| < o(τ)

Here o(τ) is a function going to 0 as τ goes to infinity. We remark that we can
choose o(τ) depending only on C2 and ai. This is a consequence of the fact that
Θ(`v) from its definition consists of a compact family because we imposed that
`(e) ≤ C2 for all e ∈ C1

int(cv).

For e ∈ C1(t′) we take rectangles [0, `(e)] × [0, 1] or (−∞, 0] × [0, 1] and define
w̃e by

w̃e(τ, t) = τ(aleg(e) − arig(e)) +
√
−1(t(aleg(e) − arig(e)) + arig(e))

We take w̃v + constv and w̃e + conste with appropriate constants and glue them in
a way similar to §11 along the intermediate rectangles shown as in (16.2.3) below
for a sufficiently large constant C3 which be chosen later. We then obtain a map

w0 : Θ(`) → Cn.

By construction, it will have the following properties:

(16.2.1) w0(∂i(Θ(`))) ⊂ Λi.

(16.2.2)
∣∣w0(θ2)− wΘ(`)(θ1) − ev(θ2, θ1, `, (ai))

∣∣ < C5(C2, t, t
′)

(16.2.3) ∂w0 is supported on




⋃

e∈C1
int(t

′)

([2C3/7, 3C3/7] ∪ [`(e) − 3C3/7, `(e)− 2C3/7]) × [0, 1]




∪




⋃

e∈C1
ext(t

′)

[−3C3/7,−2C3/7]× [0, 1]




(16.2.4) | sup ∂w0| < o(τ)

(16.2.5) (11.1.2) holds for w0uniformly over ` that satisfies (16.1.1) and (16.1.2).

Therefore to complete the proof of Lemma 16.2, it will be enough to prove the
following:



0-LOOP OPEN STRINGS AND MORSE HOMOTOPY 83

Lemma 16.3. There exists h` : Θ(`) → C such that ∂h` = ∂w0, h` is bounded,
h`|∂Θ(`) is real valued, and h` goes to zero uniformly over ` at their ends, provided
` satisfies (16.1) for a sufficiently large C3 = C3(C2, t, t

′).

Proof. We prove Lemma 16.3 by iteration. First we solve





∂he
1 = ∂w0

he
1(0, t) = he

1(`(e), t) = 0

he
1(τ, 0), he(τ, 1) ∈ Rn

on the rectangle Θe(`) = [0, `(e)] × [0, 1] for each e ∈ C1
int(t

′) and on Θe(`) =
(−∞, 0] × [0, 1] for each e ∈ C1

ext(t
′). Note that this equation has the unique

solution he
1 = Ge(∂w0) where Ge is the Green’s operator for the rectangle Θe(`).

Then by using (16.2.3) and some elementary properties of the Green function of
the rectangle, we have, for each e ∈ C1

int(t
′)

∣∣∣he
1|[0,C3/7]×[0,1]

∣∣∣ < ae−bC3 .

∣∣∣he
1|[`(e)−C3/7,`(e)]×[0,1]

∣∣∣ < ae−bC3 .

for positive constants a, b. We obtain similar inequalities for e ∈ C1
ext(t

′) consider-
ing [−C3/7, 0].

We then take a cut-off function χe such that

χe(τ) =

{
0 in a neighborhood of 0 and `(e)

1 for τ ∈ [C3/7, `(e) − C3/7]

for e ∈ C1
int(t

′) and similarly for each e ∈ C1
ext(t

′). We put

w′
0 = w0 −

∑
χeh

e
1.

It follows that w′
0 has the following properties:

(16.3.1) ∂w′
0 is supported on

⋃

e∈C1
int(t

′)

[0, C3/7] ∪ [`(e) − C3/7, `(e)] × [0, 1] ∪
⋃

e∈C1
ext(t

′)

[−C3/7, 0] × [0, 1]

(16.3.2) sup |∂w′
0| < ae−bC3 .

We next consider

Θ′(`v) = Θ(`v) −
⋃

e∈C1
ext(cv)

(−∞,−3C3/7] × [0, 1]

and solve the equation there





∂hv
2 = ∂w′

0

hv
2|{−3C3/7}×[0,1] = 0

hv
2|∂Θ(`v)∩Θ′(`v) ∈ Rn
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Again the unique solution of this is given by

hv
2 = Gv

C3
(∂w′

0) = Gv
C3

(
∂(w0 −

∑

e

χeh
e
1)

)

where Gv
C3

is the Green’s operator of Θ′(`v). Using an estimate of the Green
function on Θ′(`v), we find that

sup |hv
2| ≤ CCN

3 sup
∣∣∂w′

0

∣∣

for some constants C and N . We take χ′
e for each e ∈ C1

ext(cv) such that

χ′
e(τ) =

{
0 in a neighborhood of −3C3/7

1 τ ∈ [−C3/7, 0].

We extend this to Θ′(`v) by setting to be equal to 1 at the point corresponding to
the vertex v and denote by χ′

v the function so obtained. We put

w1 = w′
0 −

∑
χ′

vh
v
2

We can repeat the construction above by using w1 in place of w0 and obtain
w2, w3, w4, · · · . These will satisfy the recursion forumla

wn+1 = wn −
∑

e

χeG
e(∂wn) −

∑

v

χ′
vGv

C3

(
∂(wn −

∑

e

χeG
e(∂wn))

)
(16.4)

for n ≥ 0. We remark that aCCN
3 e−bC3 << 1, if C3 is sufficiently large. In this

case, one can easily check from (16.4) that wi converges to w∞ as i → ∞, that

∂w∞ = 0 and that h = w0 − w∞ satisfies the required properties. ¤

The proof of Lemma 16.2 and hence of Proposition 16.1 is now complete. Fur-
thermore we have also finished the proof of Lemma 11.2 noting that both w̃Θ(`)

and w∞ satisfy (11.1.1) and (11.1.2) and so the difference w̃Θ(`) − w∞ is constant
by the uniqueness statement in Proposition 11.1. ¤

§17. Gluing diffeomorphisms

Now we come to the final step of the proof of our main theorem. We need to
modify our map Ψε

t,α in order to glue them. Suppose t Â t′. Then for v ∈ C0
int(t

′),

the trees cv(t), cv(t) are defined as in Definition 10.5. For each v ∈ C0
int(t) and

` ∈ U (t′; ε, α) ∩ Gr(t), we fix a point

θ(cv(t), `v) ∈ cv(t)

such that, if (ti, `vi) converges to (t, `v) then θ(cv(ti), `vi) converges to θ(cv(t), `v).
Now we are going to construct

Ψ′,ε
t′,α : U(t′ : ε, α(t′)) ×πε Mg(M : ~f, ~p) → Map(T ∗M : ~Λε, ~pε)
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Let ` ∈ U(t′ : ε, α) ∩ Gr(t), I ∈ Mg(M : ~f , ~p) such that πε(`) = π(I). For each
v ∈ C0

int(t
′), we have θ(cv(t), `v) ∈ cv ⊂ t. We put

pv = I(θ(cv(t), `v)) ∈ M.

By Lemma 11.2, we find

w̃v : Θ(`v) → Cn ∼= T(pv,0)(T
∗M ),

such that
Re w̃v(θ(cv(t), `v)) = 0. (17.1)

We use (17.1) to remove the ambiguity in Lemma 11.2 (or Proposition 11.1).
Let θ ∈ cv(t)∩ t. (We identify a part [−`(e), 0] of the exterior edge e of cv to the

corresponding edge of t′ that contains v.)

Lemma 17.1. For any θ ∈ cv(t)∩ t (⊂ Θv), there exists some constant C > 0 such
that

dist(exppv
(εw̃v(θ)), I(θ)) < C max{ε, ε2(1−α)}.

(We remark that θ ∈ cv ⊂ Θv and also θ ∈ t by our construction.)

Proof. Lemma 17.1 will be a consequence of Proposition 16.1. Let e an edge con-
taining θ(cv(t), `v). We identify e = [0, `(e)] where 0 corresponds to a vertex v1 and
`(e) corresponds to another vertex v2. Let s ∈ [0, `(e)] ' e be the coordinate of the
point θ(cv(t), `v) in e. By Proposition 16.1, we have

|w̃v(θ) − w̃v(θ(cv(t), `v)) − ev(θ, θ(cv(t), `v), `v; (−grad fj(i)))| < C1 (17.2)

On the other hand, it follows from (11.4) that

|Im w̃v(θ(cv(t), `v)| < C

uniformly over `v. Combining this with the normalization condition (17.1), we have

|w̃(θ(cv(t), `v)| < C.

This together with (17.2) implies

|w̃v(θ) − ev(θ, θ(cv(t), `v), `v; (−grad fj(i)))| < C. (17.3)

Now let ej1 , · · · , ejm ∈ C1
int(cv) be the edges joining v2 to θ in this order. And let

θ2 be the point in ejm corresponding to s′ ∈ [0, `(ejm)]. By definition

I(θ) = exp(−εs′(fleg(ejm) − frig(ejm)) ◦ exp(−ε`(ejm−1)(fleg(ejm−1
) − frig(ejm−1

)) ◦ · · ·
◦ exp(−ε`(ej1)(fleg(ej1 ) − frig(ej1)) ◦ exp(−ε(`(e) − s)(fleg(e) − frig(e)))(pv)

We remark that

dist(exp(V1) ◦ · · · ◦ exp(Vn)(p), exp(V1 + · · · + Vn)(p)) < C(|V1| + · · · + |Vn|)2
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for vector fields Vi, and recall that `(e) < ε−α. Therefore we have

dist
(
exppv

(ε ev(θ, θ(cv(t), `v), `v; (−grad fj(i))), I(θ)
)

< Cε2(1−α). (17.4)

On the other hand note that if |ξ1 − ξ2| < C for ξi ∈ T(pv,0)(T
∗M) ∼= Cn, then

dist(exppv
εξ1, exppv

εξ2) < Cε.

It follows by using (17.3) and applying this inequality to

ξ1 = w̃v(θ), ξ2 = ev(θ, θ(cv(t), `v), `v; (−grad fj(i)))

that we have

dist
(
exppv

ε (w̃v(θ)), exppv
(ε ev(θ, θ(cv(t), `v), `v; (−grad fj(i)))

)
< Cε (17.5)

Combining (17.4) and (17.5), we have finished the proof. ¤

We remark that Lemma 11.5 is an immediate consequence of Lemma 17.1.
Using Lemma 17.1, we glue w̃v and maps obtained from I |e (e ∈ C1(t)), in the

same way as in the proof of Proposition 11.4 and obtain

Ψ′,ε
t′,α : U(t′ : ε, α(t′)) ×πε Mg(M : ~f, ~p) → Map(M : ~Λε, ~pε).

Now using Lemma 17.1 again, we repeat the proof of §5 to show the following :

Lemma 17.2. Let ` ∈ U(t1 : ε, α(t1)) ∩ U (t2 : ε, α(t2)), I ∈ Mg(M : ~f, ~p) such
that πε(`) = π(I). We have t1 Â t2 or t2 Â t1. Suppose t1 Â t2. We then have

sup
(
dist

(
Ψ

′,ε
t1,α(t1)

(`, I)(z), Ψ
′,ε
t2,α(t2)

(`, I)(z)
))

< C max{ε, ε2(1−α(t2))}.

for z ∈ Θ(`).

We next glue these maps using the technique of center of mass. We choose a
partition of unity {χt}t∈Gk

of Grk subordinate to the covering {U(t : ε, α(t))}t∈Gk
.

Let (`, I) ∈ Grk ×πε Mg(M : ~f, ~p) and define

Φ̃ε(`, I) : Θ(
`

ε
) × T ∗M → R

by

Φ̃ε(`, I)(z, x) =
∑

t

χt dist(Ψ
′,ε
t,α(t)(`, I)(z), x).

Using Lemma 17.2 and the standard results on center of mass technique (e.g., see

[GK]), the map x 7→ Φ̃ε(`, I)(z, x) has a unique minimum for each (`, I) and z for
each given x ∈ T ∗M , which we denote

Φ̃ε(`, I)(z) ∈ T ∗M.

Thus we have defined :

Φ̃ε : Grk ×πε Mg(M : ~f, ~p) → Map(T ∗M : ~Λε, ~pε).
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Proposition 17.3. If w is in the image of Φ̃ε, then we have :

‖∂Jw‖0,p,ε ≤ Cε
2+(p−1)α

p .

Once we have proved Lemma 17.2, the proof of Proposition 17.3 is similar to
that of Proposition 5.2 and so we omit the details.

We can now repeat the arguments in Part I and in §13 to perturb Φ̃ε to produce
a smooth map

Φε : Grk ×πε Mg(M : ~f, ~p) → MJ (T ∗M : ~Λε, ~pε).

We recall that πε : Grk → Grk is a diffeomorphism. Hence Grk ×πε Mg(M : ~f, ~p)

is diffeomorphic to Mg(M : ~f, ~p). Finally we can prove in the way similar to Part
I that Φε becomes a diffeomorphism for sufficiently small ε. The proof of our main
theorem is now finally complete.
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