
Chapter 8. Floer theory of Lagrangian submanifolds over Z

§34. Statement of the results in Chapter 8.

So far we have been studying Floer cohomology with rational coefficients. If we
put some additional assumptions on our symplectic manifold, Floer cohomology can
be defined over Z coefficients or Z2 coefficients. In this chapter, we discuss this point
and its applications. We remark that in Chapters 3-5, we developed the homological
algebra also with the coefficient ring of Z or Z2. So the necessary algebraic part of
the story has already been generalized. We first recall the following :

Definition 34.1. Let J be an almost complex structure on M . We call J spher-
ically positive if every J-holomorphic sphere v : S2 → M with c1(M)[v] ≤ 0 is
constant. We denote by J c1>0

(M,ω) or J c1>0
ω the set of spherically positive almost

complex structures which are compatible with ω.
We call a symplectic manifold (M,ω) spherically positive if there exists a com-

patible spherically positive almost complex structure J .

Remark 34.2.

(1) We recall that a symplectic manifold (M,ω) is (positively spherically) mono-
tone if there exists c > 0 such that [ω] ∩ α = cc1(M) ∩ α for any α ∈ π2(M). It
is easy to see that any monotone symplectic manifolds are spherically positive. For
example CPn, Cn, T 2n are spherically positive with respect to the standard com-
plex structure. Fano manifold M is spherically positive. Hence for any Kähler form
ω of it, (M,ω) is spherically positive. Any 4-dimensional symplectic manifold is also
spherically positive with respect to Fredholm regular almost complex structures.

Furthermore any product of spherically positive symplectic manifold is spheri-
cally positve.
(2) The set J c1>0

ω may be neither path connected nor dense in Jω, except when
dimM = 4 or M is monotone.
(3) If ψ : (M,ω) → (M ′, ω′) is a symplectic diffeomorphism, then it induces a
bijection ψ∗ : J c1>0

(M,ω) → J c1>0
(M ′,ω′), ψ∗(J) = Jψ in an obvious way.

We recall that our construction of A∞ structure uses the moduli space of J-
holomorphic maps. We have proved independence of the isomorphism class (upto
homotopy) of the A∞ structure using the fact that we have not put any additional
restriction on the almost complex structure in our Fredholm theory before this
chapter. However our construction of fundamental chains over Z used in this chapter
relies on the spherical positivity. As a result, the isomorphism classes of various
A∞ structures will depend on the choice of J or more precisely on the connected
component of J c1>0

ω . (See (8), (9), (10) of Theorem 34.3.) Because of this, we will
put J-dependence of various A∞ objects explicit in our notations in this chapter.
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For R = Q, Z or Z2 = Z/2Z, we put

ΛR
0,nov =

{∑
aiT

λieni

∣∣∣ λi ∈ R≥0, ni ∈ Z, ai ∈ R, lim
i→∞

λi = ∞
}

.

We define ΛR
nov, Λ+R

0,nov in the same way. (In Chapters 1,3,4,5,6,7, it is written as
Λ0,nov(R) in place of ΛR

0,nov.)
The first main result of this chapter is :

Theorem 34.3. Assume (M,ω) is spherically positive and let J ∈ J c1>0
ω be given.

Then for any relatively spin Lagrangian submanifold L ⊂ (M,ω) we have the fol-
lowing :
(1) The filtered A∞ algebra (C(L, J),mJ

∗ ) in Theorem 10.11 is defined over ΛZ
0,nov.

We write it as (C(L, J ; ΛZ
0,nov),mJ

∗ ).
(2) If we take the Z-reduction, see (7.13), the cohomology ring of (C(L, J ; Z), mJ

∗ )
is isomorphic to the cohomology ring H(L; Z) of L.
(3) (C(L, J ; ΛZ

0,nov),mJ
∗ ) has a homotopy unit.

(4) Let (L(1), L(0)) be a relatively spin pair of clean intersection and {Jt}t∈[0,1] be
a path in J c1>0

ω . Then, the A∞ bimodule C(L(1), L(0); {Jt}t; ΛZ
0,nov) is defined as a

homotopy-unital filtered A∞ bimodule over C(L(1), J0; ΛZ
0,nov) - C(L(0), J1; ΛZ

0,nov).
(5) Theorems 11.18 and 11.43 (sequence of obstruction classes) over ΛZ

0,nov hold.
(6) For any field R, (24.6.1) and (24.6.2) in Theorem 24.5 (the spectral sequence
calculating Floer cohomology) remain to be the case after replacing the coefficient
ring ΛQ

0,nov by ΛR
0,nov. Theorem 24.10 also holds.

(7) If L is rational and rationally unobstructed with Z-coefficients, then the spec-
tral sequence converges with the coefficient ring ΛZ

0,nov. More specifically, the con-
struction in §25, especially (25.10), remains to hold.

We next explain the Z version of Theorems 14.1 and 22.1,22.4. We prepare some
notations.

Situation 34.4. (1) We first consider the situation of Theorem 14.1. Let (M.ω),
(M ′, ω′) be symplectic manifolds, L, L′ be Lagrangian submanifolds of M , M ′,
respectively. We consider a symplectic diffeomorphism ψ : (M,ω) → (M ′, ω′) with
L′ = ψ(L). Let J ∈ J c1>0

(M,ω), J ′ ∈ J c1>0
(M ′,ω′). We assume that there exists a path

{Jτ}τ∈[0,1] joining Jψ to J ′ in J c1>0
(M ′,ω′).

(2) We next consider the situation of Theorem 22.4. Let (M.ω), (M ′, ω′) be sym-
plectic manifolds. Let L(0), L(1) be Lagrangian submanifolds of M and L(0)′, L(1)′

Lagrangian submanifolds of M ′. We consider a symplectic diffeomorphism ψ :
(M,ω) → (M ′, ω′) with L(i)′ = ψ(L(i)) (i = 0, 1). Let {Jt}t∈[0,1] and {J ′

t}t∈[0,1] be
paths in J c1>0

(M,ω) and J c1>0
(M ′,ω′) respectively. Let {Jτ,t=i}τ∈[0,1] be paths in J c1>0

(M ′,ω′)

joining Jψ
i to J ′

i (i = 0, 1). We assume that there is a family {Jτ,t}(τ,t)∈[0,1]2 of
elements of J c1>0

(M ′,ω′) such that Jτ,i = Jτ,t=i, J0,t = Jψ
t , J1,t = J ′

t.
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(3) We finally consider the situation of Theorem 22.14. Let L(0), L(1) be La-
grangian submanifolds of (M,ω). Let {ψ(i)

ρ }ρ be Hamiltonian isotopies such that
ψ

(i)
0 = id. We put L(i)′ = ψ

(i)
1 (L(i)). (i = 0, 1.) Let {Jt}t∈[0,1] be a path in J c1>0

ω .
We define

Jτ,t=i = J
ψ(i)

τ
t ∈ J c1>0

ω .

We also put

Jτ,t = J
ψ

(1)
tτ ◦ψ

(0)
(1−t)τ

t ∈ J c1>0
ω , J ′

t = J1,t.

Theorem 34.3 (continued). (8) Theorem 14.1 is generalized to this case in the
following sense : We consider Situation 34.4 (1). Then we have a homotopy-unital
homotopy equivalence

(ψ, {Jτ}τ )∗ : (C(L, J ; ΛZ
0,nov),mJ

∗ ) → (C(L′, J ′; ΛZ
0,nov),mJ′

∗ ),

(See §15.3). Theorem 14.2 is also generalized to this case in the similar sense.
The homotopy class of (ψ, {Jτ}τ )∗ is depends only on the homotopy class of ψ,

{Jτ}τ .
(9) Theorem 22.1 (invariance of the filtered A∞ bimodule under the action of sym-
plectic diffeomorphisms) is generalized in the following sense : We consier Situation
34.2 (2). Then we have a homotopy equivalence of filtered A∞ bimodules

(ψ, {Jτ,t}τ,t)∗ : C(L(1)′, L(0)′; {Jt}t; ΛZ
0,nov) → C(L(1)′, L(0)′; {J ′

t}t; ΛZ
0,nov)

over
(ψ, {Jt=1,τ}τ )∗ − (ψ, {Jt=0,τ}τ )∗,

where

(ψ, {Jt=i,τ}τ )∗ : (C(L(i), Ji; ΛZ
0,nov),mJi

∗ ) → (C(L(i)′, J ′
i ; Λ

Z
0,nov),mJ′

i
∗ )

is a homotopy equivalence in (8). The homotopy class of (ψ, {Jτ,t}τ,t)∗ depends only
on the homotopy class of ψ, {Jτ,t}τ,t. Consequently Theorem 14.3 is generalized to
this case in the similar sense.
(10) Theorem 22.4 (invariance of the filtered A∞ bimodule under the Hamiltonian
isotopy) is generalized in the following sense. We consider Situation 34.2 (3). Then
there exists a C-weakly filtered homotopy equivalence of weakly filtered A∞ bimodules

(ψ0
ρ, ψ1

ρ)∗ : C(L(1)′, L(0)′; {Jt}t; ΛZ
nov) → C(L(1)′, L(0)′; {J ′

t}t; ΛZ
nov)

over
(ψ1

1 , {Jt=1,τ}τ )∗ − (ψ0
1 , {Jt=0,τ}τ )∗.

(Here C is as in Theorem 22.14.) Homotopy class of (ψ0
ρ, ψ1

ρ)∗ depends only on
homotopy class of (ψ0

ρ, ψ1
ρ). Consequently, 14.4 (invariance of Floer cohomology) is

generalized to this case in the similar sense.
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Remark 34.5. (1) We remark that in the situation of Theorem 22.1 (that is Situ-
ation 34.4 (2)) existence of two parametre family {Jτ,t}(τ,t)∈[0,1]2 of almost complex
structures is assumed. On the other hand in the situation of Theorem 22.14 (that
is Situation 34.4 (3)) existence of such a family is automatic.

(2) If M is monotone or dimR M = 4 then J c1>0
ω is connected. Hence the

filtered A∞ algebra and filtered A∞ bimodule in Theorem 24.3 is well-defined up
to homotopy equivalence in those cases. (Note J c1>0

ω may not be simply connected
in case dimR M = 4. Hence homotopy type of homotopy equivalence in Theorem
34.3 may depend on the choice of paths of almost complex structure.)

(3) As we mentioned in the introduction, it is likely that spherical positivity can
be removed from Theorem 34.3. Since the argument to dispose spherical positivity
is more complicated, we postpone further study elsewhere.

Note that for the case R = Z, we do not have the canonical models (see §23)
of filtered A∞ algebra and filtered A∞ bimodule. Thus we can not state the Z-
coefficients versions of Theorems A and F in terms of cohomology as in Chapter
1. However as we already discussed in §27.1 (see Lemma 27.3) we can construct a
structure of filtered A∞ algebra on the subcomplex of C(L; Λ0,nov) if the inculusion
is chain homotopy equivalence with respect to the classical boundary operator m1,β0 .
More precisely we have the following. Let C0(L) is a subcomplex of C(L; Z) which
induces an isomorphism on cohomology. We assume C(L; Z)/C0(L) is free as Z
module. We put C0(L; ΛZ

0,nov) = C0(L) ⊗Z ΛZ
0,nov.

Theorem As. Assume (M,ω) is spherically positive and J ∈ J c1>0
ω . Let L ⊂

(M,ω) be a relatively spin Lagrangian submanifold. Then we can construct the
filtered A∞ algebra (C0(L, J ; ΛZ

0,nov),mJ
∗ ) on ΛZ

0,nov.
Let us assume Situation 34.4 (1). We assume ψ induces an isomorphism ψ∗ =

Π ◦ ψ∗ ◦ i : C0(L) → C0(L′). (Here i : C0(L) → C(L) is the inclusion and
Π : C(L′) → C0(L′) is the projection to the direct summand.) Then we have an
isomorphism

(ψ, {Jτ}τ )∗ : C0(L, J ; ΛZ
0,nov) → C0(L′, J ′; ΛZ

0,nov)

of filtered A∞ algebras. Its homotopy class depends only on the isotopy class of
symplectic diffeomorphism ψ : (M,L) → (M ′, L′) and of {Jτ}τ .

The Poincaré dual PD([L]) ∈ C0
0 (L; ΛZ

0,nov) of the fundamental cycle [L] is
the homotopy unit of our filtered A∞ algebra. The homomorphism (ψ, {Jt}t)∗ is
homotopy-unital.

We next consider the situation of Theorem F. Let L(1) is of clean intersection
to L(0). We consider a subcomplex C0(L(1) ∩ L(0); Z) of C(L(1) ∩ L(0); Z). (Note
the right hand side is an appropriate countably generated complex of the singular
chain complex of L(1) ∩L(0).) We use it to define C0(L(1), L(0); ΛZ

0,nov) in the same
way as above.
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Theorem Fs. Assume (M,ω) is spherically positive and {Jt}t∈[0,1] is a path in
J c1>0

ω . Let (L(1), L(0)) be a relatively spin pair of Lagrangian submanifolds of
(M,ω). Assume that L(0) and L(1) intersect cleanly. Then C0(L(1), L(0); {Jt}t; ΛZ

0,nov)
is a a homotopy-unital filtered A∞ bimodule over C0(L(1);J1; ΛZ

0,nov) - C0(L(0);J0; ΛZ
0,nov).

Remark 34.6. There are several results in the previous chapters whose validity
for the Z coefficient in the spherically positive case is still not clear to us. We make
some comments on them here. Among them, (1), (2) and (4) also apply to Theorem
34.7 below :

(1) Both the statement and the proof of Theorem 33.1 in §33 are based on the de
Rham theory and so are valid for the coefficient ring R. However it is clear from
the proof given below that the induced A∞ algebra (C(L;J ; ΛZ

0,nov), mJ
∗ ) obtained

by reducing the coefficient ring to Z is homotopy equivalent to the A∞ algebra
constructed in Theorem 9.8. In this sense, Theorem 33.1 (comparison of our filtered
A∞ algebra to it classical part) is also generalized over Z.
(2) In a discussion of §13, we used the fact that our Novikov ring contains Q.
Therefore constructions of the operators q, p do not apply for the ΛZ

0,nov coefficient.
Because of this, the proof of Theorem 13.41 is not generalized over the ΛZ

0,nov

coefficients, and hence not Theorem 13.41 itself. Similar remarks apply to (24.6.3)
of Theorem 24.5.
(3) When L is irrational, it is not clear to us whether the convergence result of
the spectral sequence in Theorem 24.5 holds over ΛZ

0,nov. (See the paragraph right
after Theorem 24.10.)
(4) If the cohomology group H(L; Z) is a torsion free Z-module, then we may
choose C0(L; Z) = H(L; Z). Therefore, there is a structure of unital filtered A∞
algebra on H(L; ΛZ

0,nov), which is well-defined up to isomorphism. In general, for
any CW or simplicial decomposition of L we can define a structure of filtered A∞
algebra on the cochain complex over ΛZ

0,nov which is associated to the cellular or
simplicial decomposition.

In the spherically positive case, we can also work over Z2 which enables us to
generalize various results of Chapter 6 for L that is neither orientable nor relatively
spin. Because the Maslov index can be odd for unorientable L, we need to enlarge
our Novikov ring to ΛZ2

0,nov[e1/2] so that it includes the square root e1/2. Recall that
deg e = 2 in our definition.

Theorem 34.7. Assume (M,ω) is spherically positive and J ∈ J c1>0
ω . Let L ⊂

(M,ω) be a Lagrangian submanifold, not necessarily relatively spin. Then, we can
define a unital filtered A∞ algebra (C(L;J ; ΛZ2

0,nov[e1/2]),m∗) as in Theorem 10.11.
If L(1), L(0) are Lagrangian submanifolds and {Jt}t∈[0,1] is a path of almost com-
plex structures in J c1>0

ω , then the A∞ bimodule C(L(1), L(0); {Jt}t∈[0,1],Λ
Z2
0,nov[e1/2])

over (C(L(1);Jt; ΛZ2
0,nov[e1/2]),m∗)- (C(L(0);Jt; ΛZ2

0,nov[e1/2]),m∗) is defined.
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Theorems 14.1, 14.2, 14.3, 14.4, 22.1, 22.11 and Theorem 24.5, (24.6.1), (24.6.2),
and Theorem 24.10 are generalized to this case in the sense similar to that of The-
orem 34.3.

Theorems Bs, Cs, Ds, Es, Gs in the introduction directly follow from Theorems
34.3 and 34.7.

For the case R = Z2, we have the canonical model, since Z2 is a field. So
Theorems A and F can be generalized directly to the situation of Theorem 34.3
over ΛZ2

0,nov[e1/2].

Using Theorem 34.7 we have the following result which is similar to Corollary
24.20. This is nothing but Theorem L (1) in Chapter 1.

Corollary 34.8. Assume (M,ω) is spherically positive and H2(L; Z2) = 0. Sup-
pose that L ⊂ M is displaceable, i.e., there is a Hamiltonian diffeomorphism φ such
that

L ∩ φ(L) = ∅.

Then the Maslov index homomorphism µL : π2(M,L) → Z is not trivial.

Proof. We will prove this by contradiction. Suppose to the contrary that µL is
trivial for L. Since µL is trivial, all the obstruction classes for the Floer coho-
mology over Z2 coefficients lie in H2(L; Z2) = 0 because n − (n − 2 + µL) = 2.
Since we assume H2(L; Z2) = 0, all obstructions automatically vanish and so we
derive M(L, J ; Z2) 6= ∅. Now let b ∈ M(L, J ; Z2) and consider the corresponding
Floer cohomology HF ((L, b), (L, b);J) ∼= HF ((L, b), (φ(L);φ∗(b);φ∗J) is well de-
fined. The assumption L ∩ φ(L) = ∅ then implies HF ((L, b), (L, b);J) = 0. On the
other hand, Theorem 24.12 is generalized to the Z2 coefficient for the spherically
positive case and implies that HF ((L, b), (L, b);J) cannot be zero which gives rise
to a contradiction. ¤
Proof of Theorem Ks. Note that Cn is noncompact but bounded at infinity. There-
fore all the theorems in this book apply to compact Lagrangian submanifolds of Cn.
Obviously Cn is spherically positive (with resepct to the standard complex struc-
ture). For given compact Lagrangian submanifold L, we can easily find a Hamil-
tonian diffeomorphism φ : Cn → Cn of compact support such that L ∩ φ(L) = ∅.
Now Corollary 34.8 finishes the proof. ¤

We now point out some main ideas in the proofs of Theorems 34.3 and 34.7, which
deal with the case of the Z or Z2 coefficients. Note that the only reason for the
usage of rational cycles, instead of integral ones, in the stable map compactification
comes from the fact that the (finite) automorphism groups of stable maps we use
could be non-trivial. A simple examination of the constructions in [FuOn99II] or in
Chapter 7 of this book, however, shows that all the construction would work with
the Z or Z2 coefficients, without assuming any other condition, as long as all the
stable maps involved in the construction have trivial automorphism groups.
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In this respect, the following observation is important, although its proof imme-
diately comes from the structure of PSL(2; R).

Lemma 34.9. The automorphism group of a semi-stable bordered Riemann surface
(Σ, ~z) ∈ Mmain

k+1 of genus 0 is torsion free if k ≥ 0 and if it has no sphere components.
In particular, if a stable map ((Σ, ~z), w) ∈ Mmain

k+1 (J ;β) with k ≥ 0 has no sphere
bubbles, then the automorphism group of ((Σ, ~z), w) is trivial.

Here we specify J , the almost complex structure, in the notation Mmain
k+1 (J ;β)

above, since the results of Chapter 8 (for example Theorem 34.11 below) may not
hold for arbitrary J but is correct only after choosing J appropriately. (For the
results of Chapter 3 ∼ 7, we may take any J , since the perturbation we use is an
abstract perturbation.) An immediate corollary of Lemma 34.9 is the following :

Corollary 34.10. Let k ≥ 0. If an element ((Σ, ~z), w) ∈ Mmain
k+1 (J ;β) does not

have sphere components, then ((Σ, ~z), w) ∈ Mmain
k+1 (J ;β) has trivial automorphism

group. In particular, if (M,ω, J) does not allow any pseudo-holomorphic sphere
then its automorphism group is trivial.

Let us now assume that (M,ω) is spherically positive and J ∈ J c1>0
ω . We

consider the moduli space

Mmain
k+1 (β;P1, · · · , Pk) := Mmain

k+1 (J ;β) ×(ev1,··· ,evk) (P1 × · · · × Pk).

We have a natural decomposition such that

Mmain
k+1 (β;P1, · · · , Pk)

= Mmain
k+1 (β;P1, · · · , Pk)free ∪Mmain

k+1 (β;P1, · · · , Pk)fix.

Here Mmain
k+1 (β;P1, · · · , Pk)free (resp. Mmain

k+1 (β;P1, · · · , Pk)fix) is the set of elements
with trivial (resp. nontrivial) automorphism groups. The following theorem is the
main step of the proofs of Theorems 34.3 and 34.7.

Theorem 34.11. Assume (M,ω) is spherically positive and J ∈ J c1>0
ω . Let

L ⊂ (M,ω) be a Lagrangian submanifold and let P1, · · · , Pk be given singular sim-
plices and β ∈ Π(M ;L). Consider the moduli space Mmain

k+1 (β;P1, · · · , Pk) and its
decomposition given above. Then there exists a family of single valued piece-
wise smooth sections sε of the obstruction bundle in a Kuranishi neighborhood of
Mmain

k+1 (β;P1, · · · , Pk) and a decomposition

(34.12)
Mmain

k+1 (β;P1, · · · , Pk)sε

= Mmain
k+1 (β;P1, · · · , Pk)sε

free ∪Mmain
k+1 (β;P1, · · · , Pk)sε

fix

of the perturbed moduli space such that :
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(34.13.1) Mmain
k+1 (β;P1, · · · , Pk)sε

free is a PL manifold.
(34.13.2) Mmain

k+1 (β;P1, · · · , Pk)sε

has a triangulation compatible with the smooth
structure on Mmain

k+1 (β;P1, · · · , Pk)sε

free.
(34.13.3) Mmain

k+1 (β;P1, · · · , Pk)sε

fix is contained in a sub-complex of dimension

dimMmain
k+1 (β;P1, · · · , Pk)sε

free − 2.

(34.13.4) limε→0 sε = s, where s is the original Kuranishi map over
Mmain

k+1 (β;P1, · · · , Pk) which is constructed in Chapter 7.

Once Theorem 34.11 (and the analogous statements for other moduli spaces used
in previous chapters) is proven, the rest of the proofs of Theorems 34.4 and 34.7 are
the straightforward analogs of the arguments used in the previous sections. We will
not repeat them here. In order to construct a section whose zero set has a smooth
triangulation, we work in the piecewise linear (or piecewise smooth) category. This
is the reason why the section we obtain in Theorem 34.11 is piecewise smooth (and
is not necessary smooth).

In §37, we describe an example which illustrates various constructions given in
this book. There we study in detail the case of Lagrangian submanifold L of Cn+1

that is homeomorphic to S1 × Sn. We study the leading order contribution of the
holomorphic discs to the matrix coefficients of the filtered A∞ algebra associated to
L. The result is simpler to describe in the language of filtered L∞ algebras rather
than that of filtered A∞ algebras. The relevant filtered L∞ algebra will be obtained
by symmetrizing our filtered A∞ algebra. Because of this, we describe the story of
filtered L∞ algebras and the symmetrization of filtered A∞ algebras in §36 as much
as we need in §37.

In §38-§43, we study the intersection theory of the class of Lagrangian submani-
folds consisting the fixed point sets of anti-symplectic involutions. Such Lagrangian
submanifolds naturally arise in the study of real algebraic geometry as the real point
set of a complex algebraic variety. They are also previously studied by the second
named author [Oh95I] for the real forms of compact Hermitian symmetric spaces
in relation to the following conjecture.

Arnold-Givental conjecture 34.14. Let τ be an anti-symplectic involution of
(M,ω), i.e., be a diffeomorphism with τ∗ω = −ω. Assume that L = Fix τ is non-
empty and φ : M → M is a Hamiltonian diffeomorphism such that L intersects
φ(L) transversely. Then we have

#(L ∩ φ(L)) ≥
∑

rank H∗(L; Z2).

We will study this Arnold-Givental conjecture for the case of spherically posi-
tive symplectic manifolds. We first introduce the following analogue of spherical
positivity.
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Condition 34.15. Suppose τ : M → M be an anti-symplectic involution with
Fix τ 6= ∅. We assume that there exists a spherically positive J such that τ∗J = −J .

We note that when L = Fix τ for an anti-symplectic involution τ and a spher-
ically positive J satisfies τ∗J = −J , then L has the property that µL(w) > 0 for
any non-constant J-holomorphic disc w with its boundary lying in L.

Theorem 34.16. We assume that (M,ω) safisfies Condition 34.15. We consider
L = Fix τ . Then L is unobstructed over Z2 with respect to J . Moreover we can
choose a bounding cochain b ∈ M(C(L, J ; ΛZ2

0,nov)) such that

HF ((L, b), (L, b);J ; ΛZ2
0,nov) ∼= H∗(L; Z2) ⊗Z2 ΛZ2

0,nov.

Theorem M in introduction is an immediate consequence of Theorem 34.16. Note
that L is not necessarily assumed to be orientable or relatively spin. We remark
that a symplectic manifold M is said to be (positively spherically) monotone if
[ω] ∩ α = cc1(M) ∩ α for any α ∈ π2(M) where c > 0 is independent of α.

Theorem 34.17. The Arnold-Givental conjecture holds for the following classes
of ((M,ω), τ).

(1) M is (positively spherically) monotone.
(2) There is a complex structure J on M such that ω is its Kähler form and (M,J)
is Fano. τ is an anti-holomorphic involution of (M,J).
(3) dimR M = 4.
(4) ((M,ω), τ) is the product

∏k
i=1((Mi, ω), τi), where ((Mi, ω), τi) are one of the

cases (1), (2), (3) above.

Theorem 34.17 follows from Theorem 34.16 as we will explain at the end of §39.
Since the real forms of compact Hermitian symmetric spaces are (positively)

monotone, we have the following slight generalization of the result from [Oh95I], in
that it eliminates some restrictions posed on the real forms.

Corollary 34.18. The Arnold-Givental conjecture holds for the real forms of any
compact Hermitian symmetric spaces.

The proof of Theorem 34.16 will be given in §38−§43. We like to note that
spherical positivity of L is used only in §43. An idea of the proof of Theorem 34.16
is that for fixed point set L = Fix τ of anti-holomorphic involution τ and for J
satisfying τ∗J = −J , any J-holomorphic disc ϕ : D2 → M attached to L comes in
pair and their contributions cancel each other. (See §38 for the detailed description
of this symmetry.) We remark that the Z2-coefficient is used in Theorem 34.16 :
This is not only because we do not assume L is oriented but also because the above
mentioned cancelation occurs only over the Z2-coefficient. Namely holomorphic
discs in pair may or may not have opposite orientations. We discuss this orientation
problem in §38, and §47 (Chapter 9) in detail.

As a byproduct of the constructions used in these sections, we can also prove the
following results over Q.
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Definition 34.19. Let τ : M → M be an anti-symplectic involution (that is
τ∗ω = −ω, τ2 = id). We assume that L = Fix τ is non empty, (hence is a
Lagrangian submanifold). We say that L is τ -relatively spin if there exists a relative
spin structure [V, σ] such that the pull back τ∗[V, σ] is stably conjugate to [V, σ].
Such a relative spin structure is called a τ -relatively spin structure.

See Definition 44.7 and the top of §44.5 for the definition of the pull back τ∗[V, σ]
of the relative spin structure by the anti-symplectic involution τ . (See also Defi-
nition 44.2 for relative spin structure and Definition 44.5 for the notion of stably
conjugate.) For example, if L is spin, it is automatically τ -relatively spin. (Remark
44.18).

Theorem 34.20. Let M be a symplectic manifold and τ an anti-symplectic invo-
lution. If L = Fixτ is non-empty, oriented, and τ -relatively spin, then the filtered
A∞ algebra (C(L; ΛQ

0,nov),m) in Theorem 10.11 can be chosen so that

(34.21) mk,β(P1, · · · , Pk) = (−1)εmk,τ∗β(Pk, · · · , P1)

where

ε =
µL(β)

2
+ k + 1 +

∑
1≤i<j≤k

deg′ Pi deg′ Pj .

Here deg′ = deg−1 is the shifted degree. Theorem 34.20 will be proved in §38
and §47 and Theorem O in Chapter 1 is an immediate consequence of Theorem
34.20. (Note that we do not assume the spherical positivity of (M,ω) in Theorem
34.20 and in the rest of this section.)

Corollary 34.22. Let τ and L = Fix τ be as in Theorem 34.20. Assume that the
image of c1 : π2(M) → Z is contained in 2Z in addition. Then L is unobstructed
over Q and so HF (L,L) is defined. Moreover we may choose b ∈ M(L; ΛQ

0,nov) so
that the map

(−1)k(`+1)(m2)∗ : HF k((L, b), (L, b); ΛQ
0,nov) ⊗ HF `((L, b), (L, b); ΛQ

0,nov)

−→ HF k+`((L, b), (L, b); ΛQ
0,nov)

induces a graded commutative product.

We remark that we do not assert that Floer cohomology HF ((L, b), (L, b); ΛQ
0,nov)

is isomorphic to H∗(L; Q) ⊗ ΛQ
0,nov. (Namely we do not assert m1 = m1.) Indeed,

we will show in §44.6 Chapter 9 that for the case L = RP 2n+1 in CP 2n+1 the
Floer cohomology group is not isomorphic to the classical cohomology group. (See
Theorem 44.24.)
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We remark that Theorem 34.20 and Corollary 34.22 can be applied to the real
point set L of any Calabi-Yau manifold (defined over R) if it is oriented and τ -
relatively spin. In particular, such L is unobstructed and so the Floer cohomology
HF ((L, b), (L, b); ΛQ

0,nov) of L is defined for given b ∈ M(L; ΛQ
0,nov).

Proof of Theorem 34.20 ⇒ Corollary 34.22. By assumption, the Maslov index of L
modulo 4 is trivial. Therefore (34.21) implies m0,τ∗β(1) = −m0,β(1). If follows by
the cancellation argument mentioned above that L is unobstructed. Then (34.21)
implies

(34.23) m2,β(P1, P2) = (−1)1+deg′ P1 deg′ P2m2,τ∗β(P2, P1).

We denote
P1 ∪Q P2 := (−1)deg P1(deg P2+1)

∑
β

m2,β(P1, P2).

Then a simple calculation shows that (34.23) gives rise to

P1 ∪Q P2 = (−1)deg P1 deg P2P2 ∪Q P1.

Hence ∪Q is graded commutative. ¤
Remark 34.24. For the later purpose, we mention here that the same proof will
show that in the situation of Corollary 34.22 we have lk = lk if k is even. Here lk is
the symmetrization (C(L,ΛQ

0,nov), lk) of the filtered A∞ algebra (C(L,ΛQ
0,nov),mk),

and lk is L∞ structure obtained as the reduction of the coefficient of (C(L,ΛQ
0,nov), lk)

to Q. We refer to §36 for their precise definitions. Note that over R we may choose
lk = 0 by Theorem V in Chapter 1. On the other hand, Theorem 36.19 shows that
lk = 0 over Q.

Theorem 34.20 and Corollary 34.22 can be applied also to the diagonal of square
of a symplectic manifold. Namely we consider the following situation. Let (N,ωN )
be a symplectic manifold. We consider the product

(M,ωM ) = (N × N,ωN ⊗ 1 − 1 ⊗ ωN ).

The involution τ : M → M , τ(x, y) = (y, x) is anti-symplectic and its fixed point
set L is the diagonal

{(x, x) | x ∈ N} ∼= N.

We note that the natural map i∗ : H∗(∆, Q) → H∗(N × N ; Q) is injective and so
the spectral sequence collapses at E2-term by Theorem 24.5, which in turn induces
the natural isomorphism H(N ; Q) ⊗ Λ0,nov

∼= HF (L,L). We also remark that the
image of Maslov index µL : π2(M,L) → Z is automatically in 4Z for this case.
Therefore we can apply Corollary 34.22 and derive a graded commutative product

∪Q : HF ((L, b), (L, b); ΛR
0,nov)⊗HF ((L, b), (L, b); ΛR

0,nov) → HF ((L, b), (L, b); ΛR
0,nov)

given above. In fact, we can prove that the following stronger statement.
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Proposition 34.25. The product ∪Q coincides with the quantum cup product on
(N,ωN ) under the natural isomorphism HF ((L, b), (L, b); ΛQ

0,nov) ∼= H(N ; Q) ⊗
ΛQ

0,nov.

We will prove Proposition 34.25 also in §38.
We remark that for the case of diagonals, mk (k ≥ 3) define a quantum (higher)

Massey product. It was discussed formally in [Fuk97III]. We made it rigorous here.

Remark 34.26. The authors thank Cheol-Hyun Cho for some helpful discussion
concerning Proposition 34.25.

There are related works by Welschinger on real pseudo-holomorphic discs in
symplectic 4-manifolds. See [Wel05], for example.

As we mentioned already, the proof of Theorems 34.16 and 34.17 are based on
the Z2-symmetry on the moduli space of pseudo-holomorphic discs. To work out
the details of this idea we first need to choose an almost complex structure J on
M for which τ is anti-holomorphic. We need to choose J generic enough so that
the assumptions imply absence of the moduli space of pseudo-holomorphic discs
of “wrong dimension”. This is necessary so that we can use this almost complex
structure J to apply Theorems 34.3 and 34.7. We discuss this point in §39.

The other important point (which the authors overlooked in the year-2000 preprint
version [FOOO00] of this book) is that the canonical involution on the moduli space
of pseudo-holomorphic discs induced by τ may have a fixed point. The pseudo-
holomorphic disc corresponding to a fixed point of this involution is called lantern,
and is studied in detail in §40. There we construct another involution on the moduli
space of lanterns which we use for a similar cancellation process. (We remark that
we do not need to study lanterns to prove Theorems 34.3, 34.7, 34.20 and Corollary
34.22.) We construct a sequence of involutions on the interior of our moduli space in
§41 and show in §42 that they can be regarded as involutions on the spaces with Ku-
ranishi structure. (See §A1.3.) In §43, we study the boundary of the moduli space
and complete the proof of Theorem 34.16. Numerical positivity of L = Fix τ is used
only in this section. See §43.1 for the reason we need this unpleasant condition.

Remark 34.27. The authors thank U. Frauenfelder for pointing out an error in the
year-2000 preprint version mentioned above. The idea applied here to rectify this
error is due to the 4th named author and has been used by Frauenfelder also in his
paper [Fra04] which discusses a particular case of the Arnold-Givental conjecture.
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§35. Single-valued perturbation.

The purpose of this section is to prove Theorem 34.11 and apply it to prove
Theorem 34.4 etc. In §35.1-3, we work with a global quotient by a finite group
and an orbi-bundle and explain how to construct a single-valued section that has
the properties required in Theorem 34.11. We use the stratification of the orbifold
by the isotropy group. On each of the stratum we can rather easily construct a
section whose zero set has the required dimension since each stratum is actually
a manifold. The main point of our construction is how we paste those strata-wise
sections to produce a global single-valued piecewise smooth section whose zero set
carries a smooth triangulation.

This problem is thus naturally related to the theory of stratified set and to
the singularity theory of smooth maps. The proof in §35.1-3 is based on several
machinery established in the theory of stratified space.

In Appendix §A3 of the year 2000 preprint version [FOOO00], we provide another
argument to find a single valued section whose zero set carries a triangulation, by
using the normally polynomial perturbations, while we will use the normally conical
perturbations introduced in §35.4 below. The approach of [FOOO00] is based on the
triangulability of real analytic sets and of Whitney stratified spaces. In that sense
it is closer to the method described in [FuOn01]. An advantage of this approach is
that we only need to use the statement of the results established in the theory of
Whitney stratified spaces : namely, Whitney stratified space has a C0-triangulation.
Although this result is rather difficult but is well-established. (In the approach of
§35.1-3 we need to go back to the proof of this result and uses some of the ideas
used in the proof of this result.)

Unfortunately, there is one drawback of the approach in §A3 of [FOOO00].
Namely the triangulation of Whitney stratified space is of C0 but not smooth.
This is a well-known fact, which is related to the various basic points (and diffi-
culty) in the singularity theory of differentiable mapping. (For example, this fact is
related to the reason why the set of stable map germs is not dense in C∞ topology.)
However, the triangulation of real algebraic set is sufficiently ‘close to smooth’ so
that we may apply the construction of previous chapters. Because of this drawback
we present the alternative argument in §35.1-3, by which we can actually construct
smooth singular chains and the argument of the previous chapters directly apply.
(As we mentioned in §1.6, we put the manuscript [FOOO08II] describing the nor-
mally polynomial perturbations in the first named author’s home page, since the
results and the proofs therein are correct and have own interest.)

We next explain in §35.4, generalization of the results of §35.1-3 to the case of
Kuranishi structure.

Using the results of §35.1-4, the proof of Theorem 34.4 etc. are completed in
§35.5. For this purpose we need to study an equivariant index of the linearization
of the Cauchy-Riemann operator. Sperical positivity is used only in this part.
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35.1. Single-valued piecewise smooth section of orbi-bundle : Statement
of the result.

Let M be a smooth manifold and G a finite group acting effectively on it. The
quotient X = M/G defines an orbifold. (Such an orbifold is said to be a global
quotient.) Let E → M be a Γ equivariant vector bundle on it. It is, by definition, an
orbi-bundle E/G on X. A single valued section of this orbi-bundle is, by definition,
a G-equivariant section of E → M .

Let Γ be an abstract finite group. We denote

(35.1) X
∼=(Γ) = {p ∈ M | Ip

∼= Γ}/G

where Ip is the isotropy group of p, i.e.,

(35.2) Ip = {γ ∈ G | γp = p}.

We remark that X
∼=(Γ) is a smooth manifold. In §A1.6, we define a standard stack

structure on it. (See Example-Definition A1.83 and Definition A1.88.)
The set {X∼=(Γ) | Γ} defines a stratification of our space of X. (We refer [Math73]

for the basic facts on Whitney stratifications.) Our stratification is a Whitney
stratification. It is actually better than the usual Whitney stratification. Namely
for our stratification, the normal cone exists and is locally trivial in the C∞ sense.
(We will define this notion later in Definition 35.12.) This is a consequence of
Lemma A1.100. In general the normal cone of a Whitney stratified space is locally
trivial only in C0-sense.

Example 35.3. Let Ca = {(tx, ty, t) | −1 ≤ x ≤ 1, 0 ≤ y ≤ 1 + a − a|x|, t ≥ 0}
and we put

X = {(x, y, z, w) | (x, y, z) ∈ Cw, 0 < w < 1}.

Using the fact that Ca is not affine isomorphic to Cb for a 6= b, we can prove that
a neighborhood of w axis in X is not diffeomorphic to the product R × Z for any
Z ⊂ R3.

The fact that each of our strata has a normal cone which is locally trivial in C∞

sense can be used to show that X has a smooth triangulation. (See Definition 35.12
for the definition of local triviality.) (We remark that the fact orbifold has a smooth
triangulation is well-known, of course.) We can use our smooth stratification of X
to define the notion of piecewise smoothness of sections of E/G : a smooth trian-
gulation of X induces a smooth G-equivariant triangulation of M . A G-equivariant
section of E that is piecewise smooth with respect to such a triangulation is identi-
fied with a piecewise smooth section of E/G → X. (We remark that in this section
we never use multi-valued sections and use only single valued sections.)

We now define the notion of locally trivial stratification (in C∞ sense) suitable
for our purpose.
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Definition 35.4. An affine polygon P is a closed subset of Rn defined by a finite
number of inequalities of the type

(35.5) a1x1 + · · · + anxn ≤ c.

A compact and connected subset P of a smooth manifold N is said to be a locally
polygonal set if, at each p ∈ P , there exist a chart ϕ : U → ϕ(U) ⊂ Rn of a
neighborhood of p in N and an affine polygon P ⊂ Rn such that

(35.6) ϕ(P ∩ U) = ϕ(U) ∩ P.

We say (U,ϕ, P) as above a chart of P .
We can define the notion of face (of arbitrary codimension) of an affine polygon

in an obvious way. Let P be a locally polygonal set. A closed subset Q of P is said
to be a face of P if :

(35.7.1) For each p ∈ Q there exists a chart (U,ϕ, P) of P such that

ϕ(Q ∩ U) =

( ⋃
a∈A

Pa

)
∩ ϕ(U)

where {Pa}a∈A is a subset of the set of faces of P.
(35.7.2) No proper closed subset R ⊂ Q with dimR = dimQ has property (35.7.1).

We remark that in many cases ϕ(Q∩U) is an intersection of ϕ(U) with a single
face of P. However it may happen that two different faces of ϕ(U)∩P are connected
somewhere away from U . This is the reason why we allow ϕ(Q ∩ U) to be a union
of several components in (35.7.1).

Let F : X → Y be a continuous map between two closed subsets of Euclidean
spaces. We say F is smooth if it extends to a smooth map between open subsets of
Euclidean spaces.

Using this definition and a local chart, we can define the notion of smoothness of
a map F : P → Q between locally polygonal subsets. The notion of diffeomorphism
between locally polygonal subsets is defined also in the same way. We remark that
our locally polygonal subset is a closed subset and that a smooth map is assumed
to be extended to its neighborhood. This is a much stronger notion than the
smoothness that is usually used in the study of stratified sets where each stratum
is a locally closed set and a smooth map is assumed to be smooth only on each of
the stratum (and not necessarily on its closure).

An (abstract) locally polygonal space is a topological space equipped with a home-
omorphism to a locally polygonal subset of some manifold, which we call a chart.
A smooth map or diffeomorphism between them are defined by using the same no-
tion for locally polygonal subsets. For each point p of a locally polygonal set P ,
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the tangent space TpP is defined even when p lies in its boundary or corners. (We
again recall that a smooth map on a closed subset is assumed to be extended to its
neighborhood.)

Let Y be a locally compact Hausdorff space with a stratification

(35.8) Y =
⋃
a∈A

Ya :

Namely

(35.9.1) each Ya is a locally closed set.
(35.9.2) Y a \ Ya is a union of strata, Yb.

Definition 35.10. The stratification (35.8) is said to be a locally polygonal strati-
fication, if the following holds :

(35.11.1) For each a, we are given a locally polygonal space Pa and a homeomor-
phism ϕa from Pa to a closure of Ya.
(35.11.2) If Yb is a stratum contained in Y a \ Ya, then there exists a face Pab of Pa

such that ϕa(Pab) = Y b and the composition

ϕ−1
b ◦ ϕa|Pab

: Pab → Pb

is a diffeomorphism.
The dimension of Y is defined to be the maximum dimension of Pa’s. For the

spaces Y, Y ′ with locally polygonal stratification {Ya}a∈A and {Y ′
b }b∈B , we say a

homeomorphism F : Y → Y ′ between them is a diffeomorphism if there exists a
bijection a 7→ b = b(a) from A to B such that F induces a diffeomorphism from
Pa to P ′

b(a) for each a. A continuous map F : Y → M from a space Y with
locally polygonal stratification to a smooth manifold M is said to be smooth if its
restriction to each Pa is smooth. We say F is a submersion if its restriction to each
stratum Ya is a submersion.

We next define the notion of local triviality. We can define the product of locally
polygonal stratifications in an obvious way. We can also restrict a locally polygonal
stratification to an open set. Let D ⊂ Rn be a compact affine convex polygon. We
define a cone CD of D as the space

CD = {(tz, t) ∈ Rn+1 | z ∈ D, t ∈ [0, 1)}.
We can easily see the following : For each locally polygonal set P and any p ∈ P
contained in the interior of k dimensional face, we have a chart (U,ϕ,CP × Rk)
such that ϕ(P ∩ U) = CP × Rk. In fact the claim is obvious for the case of affine
polygons in Euclidean space and then the general case is easily reduced to this case.

We say a locally polygonal stratification is a polygonal stratification if each of
Pa in (35.11.1) is diffeomorphic to a compact convex affine polygon. If Z has a
polygonal stratification, its cone has a locally polygonal stratification.

We now define local triviality of a locally polygonal stratification inductively over
the dimension.
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Definition 35.12. In dimension 0 there is no condition. Assume that we have
defined local triviality up to dimension n − 1. Let (35.8) be a locally polygonal
stratification of Y of dimension n. We say that it is locally trivial (in C∞ sense) if
the following holds : We use the notation of (35.11.1).

(35.13.1) Let x ∈ Ya. Then there exists a space N with locally polygonal stratifica-
tions {Na}a∈A and an open neighborhood U of ϕ−1

a (x) in Pa and a diffeomorphism
from U × N to a neighborhood of Y in x.
(35.13.2) Moreover N is diffeomorphic to a cone CZ of a space Z of dimension
≤ n− 1 with locally trivial polygonal stratification such that {the cone point} ×U
is mapped to an open subset of Ya.

We note that stratification of a locally polygonal space by its faces is locally
trivial in the above sense.

Example 35.14. Consider the family of 4 lines

L1 : x = 0, L2 : y = 0, L3 : x = y, L4(a) : y = ax

in R2, where a ∈ (0, 1). This is a classical example of Whitney. We can easily see
that, for a1 6= a2, there exists no diffeomorphism of R2 which simultaneously sends
Li to Li (i = 1, 2, 3) and L4(a1) to L4(a2).

Let us take a nonconstant smooth map f : R → (0, 1). We put

Pi = Li × R, i = 1, 2, 3,

and
P4 = {(x, y, z) | (x, y) ∈ L4(f(z))}.

Each of them is divided into two by z axis, which we denote P±
i respectively. These

8 strata together with 8 open sets Pi i = 5, · · · , 12 obtained by decomposing R3

by P±
i (i = 1, 2, 3, 4) and the z-axis, P13, defines a stratification. They induce a

Whitney stratification.
It is also a locally trivial locally polygonal stratification. To see this, we remark

that the diffeomorphism in our sense of stratified set is a continuous map which
is a diffeomorphism on each stratum. In other words, it is assumed that a diffeo-
morphism on each stratum is extended to a diffeomorphism to its neighborhood.
However those extensions are not required to satisfy any consistency conditions
between different strata.

For example, the stratum

P5 = {(x, y, z) | 0 ≤ y ≤ f(z)x}

is diffeomorphic to
{(x, y, z) | 0 ≤ y ≤ x}
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and hence is a locally polygonal space.
However the similar but slightly different example, X ⊂ R4 provided in Example

35.3 is not diffeomorphic to any locally polygonal set.

We have thus defined the notion of locally trivial locally polygonal stratification.
We go back to the case of a global quotient X = M/G of our interest.

Let us decompose X
∼=(Γ) into the connected components

(35.15) X
∼=(Γ) =

⋃
i

X
∼=(Γ; i).

The following lemma is the main reason why we have introduced various notions.

Lemma 35.16. For each global quotient X = M/G, the stratification

X =
⋃
Γ,i

X
∼=(Γ; i)

defines a locally trivial locally polygonal stratification of the underlying topological
space |X|.
Proof. This is an immediate consequence of Lemma A1.100. ¤
Remark 35.17. For this lemma, we do not need to assume X to be a global
quotient. We just state Lemma 35.16 for the case of global quotient because we
prove Lemma A1.100 only in that case.

Let [p] ∈ X
∼=(Γ; i) where p ∈ M and X = M/G. We have a Γ action on the fiber

Ep of our vector bundle E. We put

(35.18) EΓ
p = {v ∈ Ep | ∀γ ∈ Γ γv = v}.

Its dimension depends only on Γ, i but independent of p. We define

(35.19) d(Γ; i) = dimX
∼=(Γ; i) − dimEΓ

p .

In subsections §35.2-3 we will prove the following :

Proposition 35.20. For each C0-section s of the orbi-bundle E/G → X, there
exists a sequence of single valued piecewise smooth sections sε converging to s in
the C0-sense such that the following holds :

(35.21.1) s−1
ε (0) has a smooth triangulation. Namely for each simplex the em-

bedding ∆ → X locally lifts to a map to M which is a smooth embedding.
(35.21.2) s−1

ε (0) ∩ X
∼=(Γ) is a PL manifold, such that each simplex is smoothly

embedded into X
∼=(Γ).

(35.21.3) If ∆ is a simplex of (35.21.1) whose interior intersects with X
∼=(Γ),

then the intersection of ∆ with X
∼=(Γ) is ∆ minus some faces and is smoothly

embedded in X
∼=(Γ).

(35.21.4)
dim s−1

ε (0) ∩ X
∼=(Γ; i) = dim X

∼=(Γ; i) − dimEΓ
p .
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Remark 35.22. We remark that if s is a single-valued section and if [p] ∈ X
∼=(Γ)

then s(p) ∈ EΓ
p . So the dimension given in (35.21.4) is optimal.

We will use Lemma 35.16 in the proof of Proposition 30.20.

35.2. System of tubular neighborhoods.

The proof of Proposition 35.20 is closely related to the proof of existence of a
triangulation of the space with Whitney stratification. (See [Gor78]). Especially, we
use the notion of system of tubular neighborhoods introduced by Mather [Math73].
Mather introduced this notion to prove the famous first isotopy lemma. The first
isotopy lemma implies that Whitney stratification has a C0 locally trivial normal
cone (See [Math73] 2.7). Note that existence of smooth triangulation of an orbifold
is well-known which is not what we intend to prove. In order to show that the
zero set of our section has a smooth triangulation, we use various constructions
appearing in the proof of existence of a C0-triangulation on the Whitney stratified
space.

As we mentioned in the last subsection, we have a C∞ locally trivial tubular
neighborhood in our situation. This property makes the system of tubular neigh-
borhoods (or the system of normal cones) in this case carry properties better than
that of [Math73].

Following §II in [Math73], we define a tubular neighborhood of the stratumX
∼=(Γ)

in X by a quadruple (πΓ, NX∼=(Γ)X,σ, φ) satisfying

(35.23.1) πΓ : NX∼=(Γ)X → X
∼=(Γ) is a vector bundle in the sense of stack. (See

Definition A1.89.)
(35.23.2) σ : X

∼=(Γ) → R+ is a smooth positive function.
(35.23.3) φ : Bσ(Γ)/Γ → U

∼=(Γ) is a diffeomorphism onto a neighborhood U
∼=(Γ)

of X
∼=(Γ) in X. Here

Bσ(Γ) = {v ∈ NX∼=(Γ)X | ‖v‖ < σ(πΓ(v))}.
We define

πΓ : U
∼=(Γ) → X

∼=(Γ)

as the composition πΓ ◦ φ−1. We also define

ρ′Γ : U
∼=(Γ) → R

by
ρ′Γ(φ(v)) = ‖v‖2.

We remark that both maps are smooth and πΓ is a submersion. Moreover the pair

(πΓ, ρ′Γ) : U
∼=(Γ) \ X

∼=(Γ) → X
∼=(Γ) × R>0

defines a submersion.
We need to adjust them so that they become compatible for different Γ’s.
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Remark 35.24. In the situation of [Math73], the maps π, ρ are smooth only in
the interior of the stratum.

Definition 35.25. A system of tubular neighborhoods of our stratification {X∼=(Γ) |
Γ} is a family (πΓ, ρ′Γ) such that

πΓ′ ◦ πΓ = πΓ′(35.26.1)

ρ′Γ′ ◦ πΓ = ρ′Γ′(35.26.2)

holds for Γ′ ⊃ Γ. Here we assume the equalities (35.26.1), (35.26.2) whenever both
sides are defined.

Proposition 35.27. There exists a system of tubular neighborhoods.

The proof is actually the same as that of Corollary 6.5 of [Math73]. Mather
proved the existence of a system of tubular neighborhoods for the space with Whit-
ney stratification. In his case the situation is less tame than our case since the
normal cone exists only in C0 sense. In our case, the proof is easier since the
normal cone we produce by Lemma A1.100 is already smooth. For the sake of com-
pleteness, we give the proof of Proposition 35.27 later in this subsection (Proposition
35.33).

We next define the notion of a family of lines following Goresky [Gor78]. For
ε > 0 we put :

SΓ(ε) = {p ∈ U
∼=(Γ) | ρΓ = ε2}(35.28)

U
∼=(Γ; ε) = {p ∈ U

∼=(Γ) | ρΓ < ε2}.(35.29)

We need to modify ρ′Γ to ρΓ in the following way. (See the lines 2 -5 from the
bottom of [Gor78] p 193. We warn that our notation ρΓ corresponds to Goresky’s
ρ′Γ and ρ′Γ to Goresky’s ρΓ.) We took ρΓ(p) before as ‖v‖2 for p = φ(v) where ‖ · ‖
is an appropriate norm. We take a function fΓ : X

∼=(Γ) → R+ that goes to zero on
the boundary. Then we define ρΓ(x) = (fΓ ◦ πΓ(x))ρ′Γ(x). In this way we may not
need to use σ given in (35.23.2).

Figure 35.1
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Definition 35.30. A family of smooth maps

rΓ(ε) : U
∼=(Γ) \ X

∼=(Γ) → SΓ(ε)

is said to be a family of lines if the following holds for Γ′ ⊃ Γ :

(35.31.1) rΓ′(ε′) ◦ rΓ(ε) = rΓ(ε) ◦ rΓ′(ε′) ∈ SΓ(ε) ∩ SΓ′
(ε′) for all ε′, ε > 0.

(35.31.2) ρΓ′ ◦ rΓ(ε) = ρΓ′ .
(35.31.3) ρΓ ◦ rΓ′(ε) = ρΓ.
(35.31.4) πΓ′ ◦ rΓ(ε) = πΓ′ .
(35.31.5) If 0 < ε < ε′ < δ then rΓ(ε′) ◦ rΓ(ε) = rΓ(ε′).
(35.31.6) πΓ ◦ rΓ(ε) = πΓ.
(35.31.7) We define

hΓ : U
∼=(Γ; ε) \ X

∼=(Γ) → SΓ(ε) × (0, ε)

by
hΓ(p) = (rΓ(ε)(p),

√
ρΓ(p))

and extend it to U
∼=(Γ; ε) by setting hΓ(p) = (p, 0) on X

∼=(Γ). Then hΓ induces a
diffeomorphism from U

∼=(Γ; ε) to the mapping cone of

πΓ|SΓ(ε) : SΓ(ε) → X
∼=(Γ).

We remark that the diffeomorphism in (35.31.7) is the one in the sense of Defi-
nition 35.10.

We remark that the above definition except (35.31.7) exactly coincides with that
of Goresky [Gor78]. The condition (35.31.7) is stronger than the corresponding
one from [Gor78]. This is because in our situation the normal cone is smooth and
diffeomorphic to a neighborhood U

∼=(Γ) of X
∼=(Γ).

Proposition 35.32. There exists a family of lines.

We can prove Proposition 35.32 in the same way as [Gor78] except that we
need some extra argument to check (35.31.7). Instead of working this out, we
give a slightly different self-contained proof of Propositions 35.27 and 35.32 below,
which exploits the special case of orbifolds (or the spaces with locally trivial locally
polygonal stratification). The proof below is simpler than those of Mather or of
Goresky. This is because we have already proved that there exists a normal cone
which is C∞ locally trivial. For the cases studied by Mather or Goresky, proving
existence of C0 trivial normal cone is one of the main goals of their study. So our
proof here rather goes in the opposite direction to their study.

We will prove the relative versions of Propositions 35.27 and 35.32 below which
include the propositions themselves.

Hereafter we write (π, ρ, r) in place of {(πΓ, ρΓ, rΓ) | Γ ⊂ G} for simplicity. We
also write π ◦ r = π etc. in place of (31.3) etc. by an abuse of notations.
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Proposition 35.33. Let X be a global quotient and K its compact subset. Assume
that there exists a system of tubular neighborhoods (π, ρ) and family of lines r in
a neighborhood U of K. Then there exist π, ρ and r on X that coincide with the
given ones in a neighborhood of K respectively.

For the proof of Proposition 35.33, we generalize it to the following relative
version. (Compare this with §5 [Math73] where a similar procedure of the proof
is applied.) We recall that a map from a stratified space to a manifold is called a
submersion if its restriction to each stratum is a submersion.

Proposition 35.34. Let X be a global quotient and K its compact subset. Let
U1, U4 be open subsets of X such that U4 ⊃ K and U1 ⊃ U4. Assume that there
exists a system of tubular neighborhoods (π, ρ) and family of lines r on U1. We also
assume that there exists a smooth proper submersion prN : X \ U4 → N where N
is a manifold. We assume prN ◦ π = prN , and prN ◦ r = prN on U1 \ U4.

Then there exist open sets U2, U3 with Uj ⊃ U j+1 for j = 1, 2, 3 and there exist π,
ρ and r on X which coincide with the given ones on U1. In addition, prN ◦ r = prN

and prN ◦ π = prN hold on U2 \ U3.

Again we write prN ◦ π = prN etc. in place of prN ◦ πΓ = prN etc. by an abuse
of notations.

Proof. We may assume that X
∼=(Γ, i) ⊂ U4 if and only if X

∼=(Γ, i) ⊂ U1 for each Γ.
We put

(35.35) d = dim X − inf{dimX
∼=(Γ, i) | X

∼=(Γ, i) is not contained in U1}.

The proof is given by an induction over d. If d is 0, there is nothing to prove.
We assume that Proposition 35.34 is proved when (35.35) is d− 1 or smaller and

prove the case of d. Let X
∼=(Γ, i) be a stratum of dimension dim X−d. Since this is

the stratum of smallest dimension in X \U4, it follows that it is a smooth manifold
outside U4. We put X

∼=
0 (Γ, i) = X

∼=(Γ, i) \ U3.5. Here U3.5 is a neighborhood of K,
which is slightly bigger than U4.

We take the tubular neighborhood (conical neighborhood) U(X∼=
0 (Γ, i)) which is

diffeomorphic to NX
∼=
0 (Γ,i)X/Γ by Lemma A1.100. We take and fix a diffeomorphism

between them.
We consider the submersion

(35.36) ∂NX
∼=
0 (Γ,i)X/Γ −→ X

∼=
0 (Γ, i)

prN−→ N.

We may take the projection πΓ : NX
∼=
0 (Γ,i)X/Γ → X

∼=
0 (Γ, i) so that prN ◦ πΓ = prN ,

by choosing the Riemannian metric we use to prove Lemma A1.100 so that each of
the fibers of prN are totally geodesic.
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We will now modify the tubular neighborhood and the family of lines on (U1 \
U3.5) ∩ ∂NX

∼=
0 (Γ,i)X/Γ (which is given by assumption) so that we can apply the

induction hypothesis to ∂NX
∼=
0 (Γ,i)X/Γ and the fibration

∂NX
∼=
0 (Γ,i)X/Γ −→ X

∼=
0 (Γ, i).

In fact by assumption there exist a tubular neighborhood and a family of lines
(π′, ρ′, r′) on the set ∂NX

∼=
0 (Γ,i)X/Γ ∩ U1. In particular, there exists

π′
Γ : ∂NX

∼=
0 (Γ,i)X/Γ → X

∼=
0 (Γ, i),

such that if Γ◦ ⊃ Γ, the map π′
Γ is consistent with π′

Γ◦ , ρ′Γ◦ and r′Γ◦ in the sense of
(35.26) and (35.31.4). (Note that (Γ◦,Γ) here corresponds to (Γ,Γ′) in (35.26) and
(35.31.4). )

We note that π′
Γ may not coincide with πΓ given by Lemma A1.100. But we can

modify and glue them as follows : The difference between two projections (π′
Γ above

and πΓ) can be chosen to be arbitrarily small (in C1 sense), by taking the tubular
neighborhood small. Then we can use the minimal geodesic of a Riemannian metric
on X

∼=
0 (Γ, i), to find an isotopy between them. Hence by a standard argument we

can glue them.
Thus we can apply our induction hypothesis to

∂NX
∼=
0 (Γ,i)X/Γ → X

∼=
0 (Γ, i)

and obtain the system (π, r, ρ) on ∂NX
∼=
0 (Γ,i)X/Γ. Since NX

∼=
0 (Γ,i)X/Γ ∼= U(X∼=

0 (Γ))
is a cone of ∂NX

∼=
0 (Γ,i)X/Γ, the system (π, r, ρ) on ∂NX

∼=
0 (Γ,i)X/Γ induces one on

NX
∼=
0 (Γ,i)X/Γ in an obvious way. It commutes with the projection U(X∼=

0 (Γ)) → N ,
since U(X∼=

0 (Γ)) → N factors through πΓ.
Recall that we have (π, r, ρ) on U1 by assumption. On U1 ∩ U(X∼=

0 (Γ)), this
system may not coincide with the one we constructed above. We now explain how
we adjust this system to carry out the gluing process.

We first remark that the projection πΓ : ∂NX
∼=
0 (Γ,i)X/Γ → X

∼=
0 (Γ, i) coincides

for the two systems on U1 since they are already arranged so when we apply the
induction hypothesis above. Since both systems on U1 are the cone of the same
system (π, ρ, r) on ∂NX

∼=
0 (Γ,i)X/Γ by the same map, it follows that they are the

same as an abstract structure.
However, the diffeomorphism from the cone of ∂NX

∼=
0 (Γ,i)X/Γ∩U to U(X∼=

0 (Γ, i))∩
U (which exists by (35.31.7)) may not coincide. (Note this map is defined by r, the
family of lines of each of the structures.)

We can however show that they are isotopic by the same method as before.
Namely we go to the branched covering M and join the two diffeomorphisms by
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the minimal geodesic of a G-equivariant Riemannian metric that is totally geodesic
along the fiber of prN . Therefore we can glue them by the standard method.

Now we have extended the systems (π, ρ, r) to a neighborhood of X
∼=(Γ, i). We

repeat the same construction for each X
∼=(Γ, i) with dim X

∼=(Γ, i) = dim X − d.
We thus reduce the problem to the case when d is strictly smaller. The proof of

Proposition 35.34 is now finished by induction. ¤

35.3. Single valued piecewise smooth section of orbi-bundle : Proof.

Let us fix a sufficiently small d > 0 and put

(35.37) IntX∼=(Γ) = X
∼=(Γ) \

⋃
Γ′⊃Γ

Int U
∼=(Γ′; d).

We remark that by the definition of system of tubular neighborhoods we have
the following :

(35.38) U
∼=(Γ1) ∩ U

∼=(Γ2) 6= ∅ ⇒ Γ1 ⊂ Γ2 or Γ2 ⊂ Γ1.

It follows from (35.38) that IntX∼=(Γ) is a smooth manifold with corners. The
codimension k corner of IntX∼=(Γ) is a union of

(35.39) X(Γ; Γ1,Γ2, · · · ,Γk) = X
∼=(Γ) ∩

⋂
i

SΓi(d)

where

(35.40) Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γk ⊃ Γ.

Figure 35.2
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Later in this section, we will first define our section sε on
⋃

Γ IntX∼=(Γ) and then
extend it so that its zero set is a cone with respect to the family of lines. Thus our
proof is an analog to the proof given in §3-5 [Gor78].

For the construction of our section sε, we define a decomposition

(35.41) Ep = EΓ
p ⊕ E⊥

p

on X(Γ; Γ1,Γ2, · · · ,Γk) where

EΓ
p =

k⊕
i=1

Ep(Γi) ⊕ Ep(Γ)

and E⊥
p be its complement to EΓ

p in Ep andfor k = 0, 1, 2, · · · .
If Γ is maximal, we just set Ep(Γ) = EΓ

p on X
∼=(Γ). Using local triviality of E(Γ),

we can extend our subbundle E(Γ) to the neighborhood U
∼=(Γ; d) for a sufficiently

small d so that
Ep(Γ) ⊂ EΓ′

p

for p ∈ U
∼=(Γ; d)∩X

∼=(Γ′). Here we note Γ ⊃ Γ′ : We take a Γ-invariant connection
∇ of E on U

∼=(Γ; d) so that each of EΓ is a totally geodesic subbundle and that
the curvature of ∇ is zero on each fiber of U

∼=(Γ; d) → X
∼=(Γ). Then we can use

the parallel transport with respect to ∇ along the path contained in the fiber of
U

∼=(Γ; d) → X
∼=(Γ) to extend E(Γ) to U

∼=(Γ; d).
We next consider p ∈ X(Γ; Γ1). We may assume that Ep(Γ1) is defined. Then

we define Ep(Γ) as the orthonormal complement of Ep(Γ1) in EΓ
p . We extend them

to its neighborhood. We thus obtain

Ep
∼= Ep(Γ1) ⊕ Ep(Γ) ⊕ E⊥

p .

We can continue by a downward induction on #Γ, k and obtain the decomposition
(35.41).

To perform our construction of sε we also need the following lemma.

Lemma 35.42. Let f : M → N be a proper submersion between smooth manifolds
and F be a vector bundle on M . We fix a smooth triangulation of N . Let s be a
section of F . Then there exists a family sε of piecewise smooth sections of F such
that

(35.43.1) sε converges to s in C0 topology.
(35.43.2) sε is of general position to 0.
(35.43.3) f : (sε)−1(0) → N is piecewise linear with respect to some smooth
triangulation of (sε)−1(0) and a subdivision of given triangulation of N .
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Figure 35.3.

Proof. Since f is a submersion we may choose a triangulation of M and a sub-
division of the given one on N with respect to which f is piecewise linear. (See
[Mun66], [Whi40].) In other words, there exist simplicial complexes KM , KN and
homeomorphisms iM : |KM | → M , iN : |KN | → N with the following properties :

(35.44.1) The homeomorphisms iM and iN restrict to diffeomorphisms onto its
image to each simplex.
(35.44.2) i−1

N ◦f ◦iM is induced from a simplicial map. Namely it sends a simplex
of KM to a simplex of KN and is affine on each simplex.

We next take a smooth triangulation of the total space F of our vector bundle so
that the projection F → M is piecewise linear. By taking an appropriate subdivision
of the simplicial decomposition, we may approximate our section s by a section
sε : M → F which is piecewise linear, C0 close to s, and of general position to the
zero section. (Existence of such sε is a standard result of piecewise linear topology.
See, for example, [Hud69].) Then (35.44.1) and (35.44.2) are satisfied. Since sε is
piecewise linear, which is affine on each simplex, it follows that the intersection of
(sε)−1(0) with each simplex is affine. Hence we can find a subdivision of KM and
KN such that (sε)−1(0) is a subcomplex and the restriction of f to (sε)−1(0) is
piecewise linear. ¤

We remark that (35.43.3) implies that the mapping cone of f : (sε)−1(0) → N
has a smooth triangulation.

We now start the construction of our section sε. We will put

(35.45) sε =
⊕

i

sΓi
ε ⊕ sΓ

ε ⊕ 0

according to our decomposition (35.41). Note the E⊥
p -component is necessarily zero

because of the G-invariance. (In other words it is zero since sε is single-valued.)
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We will construct sΓ
ε by the downward induction over the order of Γ.

Let Γ be maximal. We consider the vector bundle EΓ → X
∼=(Γ). We remark

that this is a vector bundle on a manifold and is not an orbi-bundle. So we can
take a smooth section sΓ

ε which is transversal to 0.
We extend sΓ

ε to a section of E(Γ) on U
∼=(Γ) so that it is constant along the fiber

of πΓ.
We next consider X

∼=(Γ) ∩ SΓ1(d) assuming

(35.47) ∂ IntXd(Γ) =
⋃

Γ1⊃Γ

X(Γ; Γ1)

and the right hand side are disjoint with Γ1 maximal. By assumption we have
defined sΓ1 already. We now apply Lemma 35.42 to

πΓ : (sΓ1)−1(0) ∩ X(Γ; Γ1) → (sΓ1)−1(0) ∩ X(Γ1)

and the bundle E(Γ) → (sΓ1)−1(0) ∩ X(Γ; Γ1). We then obtain sΓ on (sΓ1)−1(0) ∩
X(Γ; Γ1). We extend it to X(Γ; Γ1) \ (sΓ1)−1(0) in an arbitrary way. (It does not
matter how we extend since it will not change the zero set.)

We have thus defined sε = sΓ1 ⊕ sΓ on (35.47). Note on

IntXd(Γ) \ ∂ IntXd(Γ)

E is decomposed to EΓ = E(Γ) and E⊥. (We remark that we decompose EΓ to
E(Γ1) ⊕ E(Γ) only at their boundaries.) On the boundary we defined the section
of EΓ ∼= E(Γ) ⊕ E(Γ1) already which is of general position relative to zero. We
can then extend it to IntXd(Γ) so that it is of general position to zero. (Note E⊥

component is necessarily zero again.) We then extend this to its neighborhood so
that it is constant in each of πΓ fibers.

Now the main induction step goes as follows : Assuming sΓ′
is defined for #Γ′ >

#Γ, we consider Γ. Take the decomposition

(35.48) ∂ IntXd(Γ) =
⋃

X(Γ; Γ1,Γ2, · · · ,Γk)

of the boundary of ∂ IntXd(Γ). We then define sΓ on X(Γ; Γ1,Γ2, · · · ,Γk) by a
downward induction on k.

We consider a chain of isotropy groups Γ1, · · · ,Γk given as in (35.40) for which
X(Γ; Γ1,Γ2, · · · ,Γk) is nonempty. Let k be maximal among such choices. We now
apply Lemma 35.42 to

(35.49)
πΓk

: (sΓ1 ⊕ · · · ⊕ sΓk)−1(0) ∩ X(Γ; Γ1,Γ2, · · · ,Γk)

→ (sΓ1 ⊕ · · · ⊕ sΓk)−1(0) ∩ X(Γk; Γ1,Γ2, · · · ,Γk−1),
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and E(Γ) → X(Γ; Γ1,Γ2, · · · ,Γk). Here we remark that the well-definedness of
(35.49) is a consequence of compatibilities of π and r stated in Definitions 35.25
and 35.30.

We thus obtain sΓ on (sΓ1 ⊕ · · · ⊕ sΓk)−1(0) ∩ X(Γ; Γ1,Γ2, · · · ,Γk) which we
extend to X(Γ; Γ1,Γ2, · · · ,Γk) in an arbitrary way.

Now we can extend sΓ to various X(Γ; Γ1,Γ2, · · · ,Γ`) by a downward induction
on ` using an appropriate relative version of Lemma 35.42. Namely we assume sΓ is
defined on X(Γ; Γ1,Γ2, · · · ,Γk) for k > ` then sΓ is defined on ∂X(Γ; Γ1,Γ2, · · · ,Γ`).
Then we extend it to X(Γ; Γ1,Γ2, · · · ,Γ`) by applying a relative version of Lemma
35.42 to

(sΓ1 ⊕ · · · ⊕ sΓ`)−1(0) ∩ X(Γ; Γ1,Γ2, · · · ,Γ`)

→ (sΓ1 ⊕ · · · ⊕ sΓ`)−1(0) ∩ X(Γ`; Γ1,Γ2, · · · ,Γ`−1)

and a bundle E(Γ).

Figure 35.4

We thus constructed sΓ on (35.30). Again we extend sΓ to IntXd(Γ) so that it is
of general position to 0.

Thus we have constructed sε on the union

(35.50)
⋃
Γ

IntXd(Γ).

We will extend this to X as follows : We first remark

X \
⋃
Γ

IntXd(Γ) =
⋃
Γ

(
(U∼=(Γ; d) ∩ π−1

Γ (IntXd(Γ))) \ X
∼=(Γ)

)
.

Let
p ∈ (U∼=(Γ; d) ∩ π−1

Γ (IntXd(Γ))) \ X
∼=(Γ)
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and consider
rΓ(d)(p) ∈ SΓ(d) ⊆

⋃
Γ′⊂Γ, Γ6=Γ′

IntXd(Γ′)

and
πΓ(p) ∈ IntXd(Γ).

Figure 35.5

By construction, sΓ(πΓ(p)) coincides with sΓ(rΓ(d)(p)) under the identification

EπΓ(p)(Γ) ∼= ErΓ(d)(p)(Γ).

We now put

(35.51) sε(p) = sΓ(πΓ(p)) +

√
ρΓ(p)
d

∑
Γ′′ 6=Γ

sΓ′′
(rΓ(d)(p)).

This section coincides with previously defined one when
√

ρΓ(p) = 0 or d. Hence it
defines a piecewise smooth section on X.

We remark that by definition

s−1
ε (0) ∩ (U∼=(Γ; d) ∩ π−1

Γ (IntXd(Γ)))

is the cone of the map

πΓ : s−1
ε (0) ∩ SΓ(d) → X

∼=(Γ).

Since we constructed our section applying Lemma 35.42 repeatedly, it follows that
this cone is has a smooth triangulation. (We use (35.31.7) and the argument of §3,4
[Gor78] for this.) On (35.50) we have a transversality and hence (35.21.2) holds.
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(35.21.3) and (35.21.4) are also obvious from construction. The proof of Proposition
35.20 is now complete. ¤

35.4. Single valued perturbation of a space with Kuranishi structure.

In this subsection we generalize Proposition 35.20 to the case of the obstruction
bundle of Kuranishi structure.

Proposition 35.52. Let X be given a Kuranishi structure that has a tangent bun-
dle in the sense of Definition A1.14. Let {(Vp, Ep,Γp, ψp, sp)}p∈P be a good coor-
dinate system. Then there exists a family of piecewise smooth sections sε = {sε

p}
parameterized by ε so that Xsε

=
⋃

p(s
ε
p)−1(0) has the following properties for any

Γ.

(35.53.1) Xsε

∼= (Γ) :=
⋃

p(s
ε
p)−1(0) ∩ V

∼=
p (Γ) is a PL manifold.

(35.53.2) The dimension of Xsε

∼= (Γ) is d(Γ; p; k), which depends only on the con-
nected component of Xsε

∼= (Γ).
(35.53.3)

⋃
p(s

ε
p)−1(0)/Γp has a triangulation compatible with the smooth struc-

tures of Xsε

∼= (Γ).
(35.53.4) limε→0 sε = s, where s is the Kuranishi map of the given Kuranishi
structure, and the convergence is a C0 convergence.

For the proof we need the following relative version of Proposition 35.20. In the
next proposition we say a piecewise smooth single-valued section of an orbi-bundle
E/G → X = M/G to be normally conical if the following holds :

(1) There is a decomposition of X = M/G to⋃
Γ

IntX∼=(Γ) ∪
⋃
Γ

(X∼=(Γ) \ IntX∼=(Γ))

as in (35.37).
(2) On IntX∼=(Γ) the E⊥-component s is of general position to 0. (The EΓ compo-
nent is necessarily 0.)
(3) On X

∼=(Γ) \ IntX∼=(Γ), the section s is given by (35.51).

Proposition 35.20’. Let X be a global quotient, K a compact subset and U a
neighborhood of K. Let s be a C0-section of the orbi-bundle E/G → X. We assume
that s satisfies (35.21) on U and is normally conical in the above sense. Then there
exists a sequence of single-valued piecewise smooth sections sε converging to s in C0

sense satisfying (35.21) such that sε = s on K.

The proof is the same as Proposition 35.20 and is omitted.
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Proof of Proposition 35.52. The proof is by induction on p ∈ P with respect to the
order <. If p is minimal, we apply Proposition 35.20 to obtain sε

p. Let us assume
that we have sε

q for every q < p. We consider sε
q and the image φpq(Vpq). We

restrict sε
q on the image φpq(Vpq) and use the embedding φ̂pq to obtain a section of

Eq|φpq(Vpq) → Vpq. We can extend it to its neighborhood, so that the compatibility
in the sense of Definition A1.21 is satisfied.

We remark that the required properties (35.53.1) - (35.53.4) above are satisfied
on the tubular neighborhood Nφpq(Vpq) if it is satisfied by sε

q.
Now we can use Propositions 35.20’ to obtain the section sε

p. The proof of
Proposition 35.52 is complete. ¤

35.5. Proof of Theorem 34.11.

Now we will use Proposition 35.52 to prove Theorem 34.11. Let J be a spherically
positive compatible almost complex structure on (M,ω).

Let L be a Lagrangian submanifold of M and consider the moduli space

X = Mmain
k+1,`(β;P1, · · · , Pk)

as in §9. Here Mmain
k+1,`(β) is the moduli space of genus zero stable maps (Σ, ∂Σ) →

(M,L) with k+1 boundary marked points, ` interior marked points and of homology
class β. And

Mmain
k+1,`(β;P1, · · · , Pk) = Mmain

k+1,`(β) ×Lk (P1 × · · · × Pk).

We constructed a Kuranishi structure on X in Chapter 7, §29. We apply Propo-
sition 35.52 to obtain sε. Then the perturbed moduli space Mk+1(β;P1, · · · , Pk)sε

has a smooth triangulation. Here we remark that

Mmain
k+1 (β;P1, · · · , Pk) = Mmain

k+1,0(β;P1, · · · , Pk).

(In this subsection we will deal with the moduli space Mmain
k+1,0(β;P1, · · · , Pk), since

the operators q defined via the moduli space Mmain
k+1,`(β;P1, · · · , Pk) are not defined

over Z because of the absence of a necessary algebraic counterpart of handling the
cyclic symmetry. (See §13.) )

We put
Mmain

k+1 (β;P1, · · · , Pk)sε

free = Xsε

∼= (1).

This space is smooth and of correct dimension.
We now study Xsε

∼= (Γ) for Γ 6= {1}. First note

Mmain
k+1 (β;P1, · · · , Pk)sε

fix =
⋃

Γ6={1}

Xsε

∼= (Γ).
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Let ((Σ, ~z), v, ~x) be an element of Mmain
k+1 (β;P1, · · · , Pk) : Namely Σ is a genus

zero bordered Riemann surface, v : (Σ, ∂Σ) → (M,L) is pseudo-holomorphic, ~z =
(z0, · · · , zk) are boundary marked points of Σ, and

~x = (x1, · · · , xk), xi ∈ Pi satisfying v(zi) = fi(xi).

Here fi : Pi → L are smooth singular chains of L which we write just as Pi by an
abuse of notation.

We recall that the genus of Σ is zero and the disc components cannot have non-
trivial automorphism groups since it comes at least one special points, i.e., either
marked or nodal points, on the boundary. Therefore for every non-trivial element
ϕ ∈ Aut((Σ, ~z), v) and any sphere component S2

i
∼= S2 ⊂ Σ preserved by ϕ, the

automorphism ϕ acts as the multiplication by e2π
√
−1`/k,

z 7→ e2π
√
−1`/kz

with the identification S2
i = C ∪ {∞}. And ϕ interchanges the other components

: This is because any finite subgroup of PSL(2; C) = Aut(S2) which fix ∞ is
conjugate to such a group.

As a consequence, the quotient space (Σ,~z) = Σ/Aut((Σ, ~z), v) is again a (pointed)
bordered Riemann surface of genus zero. The pseudo-holomorphic map v induces
a map v : Σ/Aut((Σ, ~z), v) → M on it. We call ((Σ,~z), v, ~x) the reduced model
of ((Σ, ~z), v, ~x). We remark that the reduced model may be unstable. Namely
there may appear a sphere component with two singular points where the map v
is trivial. Even in the case the reduced model is stable, it may have a nontrivial
automorphism.

Remark 35.54. We remark that the notions of “trivial automorphism” and “some-
where injective” are two different notions : Somewhere injectivity implies triviality
of the automorphism group, but not the other way around. For example, there is
a branched covering S2 → S2 with no nontrivial automorphism. For the abstract
perturbation sε, its transversality to zero is related to the existence of nontrivial au-
tomorphism but not to the somewhere injectivity. (Somewhere injectivity is essential
if one uses perturbations only of J to achieve transversality.)

We now compare the virtual dimension of ((Σ, ~z), v, ~x) ∈ Mmain
k+1 (β;P1, · · · , Pk)

with that of its reduced model. We begin with the discussion of the deformation
complex of a multiple sphere. Let α ∈ π2(M) and M̃reg(M ;α) be the set of pseudo-
holomorphic maps u : S2 → M with [u] = α. For u ∈ M̃reg(M ;α) we define
Rm(u) ∈ M̃reg(M ;mα) by Rm(u)(z) = u(zm).

For each v ∈ M̃reg(M ;mα), we consider the linearization

Dv∂ : Γ(S2; v∗TM) → Γ(S2; Λ0,1(v∗TM))
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of the Cauchy-Riemann section ∂. We denote by C(v) = (C0(v), C1(v), Dv∂) the
elliptic complex, where we write

C0(v) = Γ(S2; v∗TM), C1(v) = Γ(S2; Λ0,1(v∗TM)).

We consider the assignment of the pull-back complex C(Rm(u)) to u ∈ M̃reg(M ;α)
on which the group Zm acts. We regard this assignment of Zm-modules as a family
Zm-equivariant index over M̃reg(M ;α).

Lemma 35.55. The index of C(Rm(u)) as a Zm-module is

2c1(M)(α)RegZm
⊕2n1.

Here RegZm
is the regular representation of Zm and 1 is its trivial representation.

Proof. Let γ be an element of Zm with γ 6= unit. We use the Lefschetz fixed point
formula by Atiyah-Bott [AtBo67] to obtain∑

∗=0,1

(−1)∗ Tr (γ : H∗(C(Rm(u)) → H∗(C(Rm(u))) = 2n.

(Note there are only two fixed points of γ and we take the trace over R.) On the other
hand, the numerical index of DRm(u)∂ is 2n + 2mc1(M)(α), which coincides with
the super-trace of the unit element e ∈ Zm. The lemma follows immediately. ¤

We remark that we can also prove Lemma 35.55 by directly calculating the kernel
and cokernel without using [AtBo67].

In particular, Lemma 35.55 implies that the Zm-invariant part of the index of
C(Rm(u)) for the Zm-cover of a holomorphic sphere is equal to the index of C(u)
for its reduced model. We will use this fact in the proof of Proposition 35.63 com-
ing later. Let ((Σ, ~z), v, ~x) ∈ Mmain

k+1 (β : P1, · · · , Pk) and ((Σ,~z), v, ~x) be its reduced
model. We first recall the definition of the deformation complex of ((Σ, ~z), v, ~x)
which is an elliptic complex acted upon by the group Γ of automorphisms of
((Σ, ~z), v).

We decompose Σ into irreducible components Σ =
⋃

a Σa where Σa is a sphere
or a disc and put va = v|Σa . We consider the elliptic complex

C(va) = (C0(va), C1(va), Dva
∂)

where

Dva∂ : C0(va) = Γ(Σa, ∂Σa; v∗
aTM, v∗

aTL) → C1(va) = Γ(Σa; Λ0,1(v∗aTM)).
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(The boundary condition v∗
aTL is empty if Σa = S2.) For each singular point zsing

i

we take zsing
i,1 ∈ Σa(i,1), zsing

i,2 ∈ Σa(i,2) which are zsing
i in Σ. We put

(35.56)


C̃0((Σ, ~z), v)+ =

⊕
a

C0(va)

C̃0((Σ, ~z), v) =

{
(Wa) ∈

⊕
a

C0(va)

∣∣∣∣∣ Wa(i,1)(z
sing
i,1 ) = Wa(i,2)(z

sing
i,2 )

}
.

We put C̃1((Σ, ~z), v) =
⊕

a C1(va). The operators Dva ∂ induce

Dv∂ : C̃0((Σ, ~z), v) → C̃1((Σ, ~z), v).

Let Aut(Σ, ~z) be the group of all automorphisms of (Σ, ~z). We have a canonical
homomorphism of its Lie algebra aut(Σ, ~z) into C̃0((Σ, ~z), v) : Note that by the
definition of Aut(Σ, ~z) any element of aut(Σ, ~z) has its value zero at the singular
points. The stability condition implies that this homomorphism is injective and
so we may regard aut(Σ, ~z) as a subspace of C̃0((Σ, ~z), v). Moreover the image of
aut(Σ, ~z) lies in the kernel of Dv∂. Therefore we have the following complex

(35.57) 0 → aut(Σ, ~z) → C̃0((Σ, ~z), v) → C̃1((Σ, ~z), v).

We put

C̃0((Σ, ~z), v, ~x) =
{(

(Wa), (vi)
) ∣∣∣ (Wa) ∈ C̃0((Σ, ~z), v), vi ∈ Txi

Pi,

Wai(zi) = (dxifi)(vi)
}

.

Since Aut(Σ, ~z) fixes the marked points ~z, it induces an action on Mmain
k+1 (β :

P1, · · · , Pk) and so its Lie algebra aut(Σ, ~z) injects to C̃0((Σ, ~z), v, ~x). This leads us
to define

C0((Σ, ~z), v, ~x) := C̃0((Σ, ~z), v, ~x)/ aut(Σ, ~z)

C1((Σ, ~z), v, ~x) := C̃1((Σ, ~z), v).

Here zi ∈ Σai . The operator Dv∂ also induces a homomorphism C0((Σ, ~z), v, ~x) →
C1((Σ, ~z), v, ~x).

We denote by
C((Σ, ~z), v, ~x), C̃((Σ, ~z), v, ~x)

the complexes

Dv∂ : C0((Σ, ~z), v, ~x) → C1((Σ, ~z), v, ~x),

Dv∂ : C̃0((Σ, ~z), v, ~x) → C̃1((Σ, ~z), v, ~x),

respectively. The group Γ = Aut(Σ, ~z) acts on these complexes in an obvious way.
To describe the relation between the deformation complex of ((Σ, ~z), v, ~x) and

that of its reduced model, we need one more notation.
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Definition 35.58. We call a point z ∈ Σ a free fixed point if the following holds :

(35.59.1) z is not a singular point.
(35.59.2) z is on a sphere component S2

a of Σ such that there exists γ ∈ Γ which
preserves S2

a and acts nontrivially on S2
a. Moreover γ(z) = z.

For Γ′ ⊂ Γ we denote by F (Γ′) the set of all z satisfying (35.59) for γ ∈ Γ′.

Note here we are studying the case where there is no interior marked point. For
the case where there are interior marked points, we need to assume z is not a marked
point in (35.59.1) either.

For Γ′ ⊂ Γ we define

C(F (Γ′)) =
⊕

z∈F (Γ′)

C[z]

the free vector space generated by F (Γ′).
In case Γ′′ normalizes a subgroup Γ′(⊂ Γ), Γ′ acts on F (Γ′′) in an obvious way

and so induces an action on C(F (Γ′)). We put

C(F (Γ′))Γ
′′

= {v ∈ C(F (Γ′)) | ∀γ ∈ Γ′′, γv = v}.

It is easy to see that

dimC C(F (Γ′))Γ
′′

= #(F (Γ′)/Γ′′)

and in particular

(35.60) dimC C(F (Γ))Γ = #(F (Γ)/Γ) .

Definition 35.61. For each sphere component S2
a, we define its distance from the

disc components as the minimal edge distance of the vertex corresponding to the
component S2

a from the vertices corresponding to the disc components in the dual
graph of Σ.

We recall that the minimal edge distance between two vertices in a graph is
defined to be the minimum number of edges in all connected paths between the two
in the graph. We denote by Σd the union of all disc components and the sphere
components whose distance from the disc components are ≤ d. Σ0 is by definition
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the union of all the disc components. See Figure 35.6.

Figure 35.6.

Let (S2
a, ~pa, oa) be a sphere component of ((Σ, ~z), v), whose distance from the

disc components is d. Here oa is the point where S2
a is attached to Σd−1 and ~pa

is the set of other singular points, i.e., those to which some sphere components of
distance d + 1 from the disc components are attached. Put na = #~pa and let Γa

be the group of automorphisms on (S2
a, ~pa, oa) consisting of the restrictions of some

elements of Γ to S2
a. Denote by CFm+1(CP 1) the moduli space (i.e., divided by the

action of PSL2(C)) of m + 1 points on CP 1. Denote by CFΓa
m+1(CP 1) the moduli

space of distinct m + 1 points on CP 1 with the symmetry group Γa.
We define

ρΓa(Sa, ~pa, oa) =
{ −dimR Aut(Sa, ~pa, oa)Γa if na + 1 < 3

dimR CFΓa
na+1(CP 1) if na + 1 ≥ 3.

Let (Sb,~pb, ob) be a sphere component of the reduced model ((Σ,~z), v). Here ob

is the point of Sb at which it is attached to Σd−1, and ~pb are those at which some
sphere components of distance d + 1 are attached. Put nb = #~pb. We define

ρ(Sb,~pb, ob) =
{

−dimR Aut(Sb,~pb, ob) if nb + 1 < 3
dimR CFnb+1(CP 1) if nb + 1 ≥ 3.

Let (D2
a; ~pD

a , ~pS
a ) be a disc component of Σ. Here ~pD

a = (pD
a,1, · · · , pD

a,ma
) be the

boundary marked points and ~pS
a = (pS

a,1, · · · , pS
a,na

) be the interior marked points.
We put

ρ(D2
a; ~pD

a , ~pS
a ) = ma + 2na − 3.

This number is the negative of the dimension of the automorphism group if ma +
2na ≤ 3 and is the dimension of appropriate moduli space (of CP 1 with marked
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points) if ma + 2na ≥ 3. (We remark that the Γ-action is trivial on each disc
component.)

We define ρ(D
2

b ;~p
D

b ,~p
S

b ) by the same formula for the disc component (D
2

b ;~p
D

b ,~p
S

b )
of Σ.

Let {Sa(b) | b ∈ I} be the complete set of representatives of the orbit space of
the set of all sphere components of ((Σ, ~z), v) under the action of Γ.

Let ID and I
D

be the set of disc components of Σ and Σ, respectively. Note that
there is a canonical identification between the two sets.

We define

ρΓ((Σ, ~z), v) =
∑
b∈I

ρΓa(b)(Sa(b), ~pa(b), oa(b)) +
∑

a∈ID

ρ(D2
a; ~pD

a , ~pS
a ).

For the reduced model, we define

ρ((Σ,~z), v) =
∑
b∈I

ρ(Sb,~pb, ob) +
∑

b∈I
D

ρ(D
2

b ;~p
D

b ,~p
S

b ).

Then we have the following :

Proposition 35.63.

dimR Index(C̃((Σ, ~z), v, ~x))Γ + ρΓ((Σ, ~z), v)

= dimR Index(C̃((Σ,~z), v, ~x)) + ρ((Σ,~z), v) + dimR C(F (Γ))Γ.

Proof. We begin with the following lemma.

Lemma 35.64.

dimR Index(C̃((Σ, ~z), v, ~x))Γ = dimR Index(C̃((Σ,~z), v, ~x)).

Proof. Let us consider the complex C̃((Σ, ~z), v, ~x)+

Dv∂ : C̃0((Σ, ~z), v, ~x)+ → C̃1((Σ, ~z), v, ~x)

where we replace C̃0((Σ, ~z), v, ~x) by C̃0((Σ, ~z), v, ~x)+. (See (35.56).)
We first prove

(35.65) Index(C̃((Σ, ~z), v, ~x)+)Γ = Index(C̃((Σ,~z), v, ~x)+).

Note the index of C̃((Σ, ~z), v, ~x)+ is the sum of indices of its components. Since the
Γ-action is trivial on disc component, (35.65) is trivial for disc components. The
part of sphere components of the left hand side is

(35.66)
∑
b∈I

Index(Dva(b)∂)Γa(b) .
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Here {Sa(b) | b ∈ I} is the complete set of representatives of the Γ-orbit space of the
set of all sphere components of (Σ, ~z, v) and the map va(b) is the restriction of v to
Sa(b). The group Γa(b) is a subgroup of Γ consisting of the elements which preserve
Sa(b). We remark that Γa(b) is a cyclic group. Hence we can apply Lemma 35.55 to
show that (35.66) is equal to the sum of Index(Dvb

∂). Here vb is the restriction of
v to Sa(b)/Γa(b) = Sb ⊂ Σ. (35.65) follows.

We next remark that there exists an exact sequence

(35.67) 0 → C̃((Σ, ~z), v, ~x) → C̃((Σ, ~z), v, ~x)+ →
⊕

x∈Sing Σ

Tv(x)M → 0.

Here the
⊕

x∈Sing Σ Tv(x)M is the sum over all singular points x of Σ.
We remark that Γ action on

⊕
x∈Sing Σ Tv(x)M is by interchanging the factors.

It follows that

dim

 ⊕
x∈Sing Σ

Tv(x)M

Γ

= 2n #((Sing Σ)/Γ).

We remark that (Sing Σ)/Γ ∼= Sing Σ. Therefore (35.65), (35.67) and a similar
exact sequence for Σ imply the lemma. ¤

We compare ρΓa(b)(Sa(b), ~pa(b), oa(b)) and ρ(Sb,~pb, ob). Note that Γa(b) is isomor-
phic to Zma(b) . If ma(b) = 1, Γa(b) = {e} and so it is obvious that

(35.68) ρΓa(b)(Sa(b), ~pa(b), oa(b)) = ρ(Sb,~pb, ob).

Note that there are no free fixed points on Sa(b).
From now on, we assume that ma(b) > 1. The marked point oa(b) is a Γa(b) fixed

point. Denote by qa(b) the other fixed point on Sa(b). Let qb be its image of the
reduction in Sb. There are two cases: qa(b) ∈ ~pa(b) or qa(b) /∈ ~pa(b).

First consider the case qa(b) ∈ ~pa(b), qb ∈ ~pb. We claim that

(35.69) ρΓa(b)(Sa(b), ~pa(b), oa(b)) = ρ(Sb,~pb, ob).

If na(b) = 1, then nb = 1, ~pa(b) = qa(b), ~pb = qb. We have

Aut(Sa(b), qa(b), oa(b))Γa(b) ∼= Aut(Sa(b), qa(b), oa(b)).

Both Aut(Sa(b), qa(b), oa(b))Γa(b) and Aut(Sb, qb, ob) are isomorphic to C∗ and hence
(35.69) follows.

In case na(b) ≥ 2, we have nb ≥ 2 and

CFΓa(b)
na(b)+1(Sa(b); ~pa(b), oa(b)) ∼= CFnb+1(Sb;~pb, ob).



CHAPTER 8. LAGRANGIAN FLOER THEORY OVER Z 39

Hence, we obtain (35.69).
We next consider the case qa(b) /∈ ~pa(b), qb /∈ ~pb. In this case, the position of qb in

the reduced model is not a part of the data of the reduced model, (Sb,~pb, ob). We
claim

(35.70) ρΓa(b)(Sa(b), ~pa(b), oa(b)) = ρ(Sb, ob) − 2.

If na(b) = 0, then nb = 0. Note that qa(b) is a fixed point on Sa(b). Thus we find
that the automorphism group of (Sa(b), oa(b), v|Sa(b)) is isomorphic to

Aut(Sa(b), ~pa(b), oa(b))Γa(b) ∼= Aut(Sa(b), qa(b), oa(b)),

which is isomorphic to C∗. On the other hand, Aut(Sb, ob) is isomorphic to the
semi-direct product C∗ × C that is the group of all affine maps z 7→ Az + B with
A 6= 0. (35.70) follows.

Suppose that nb = 1. Denote by pb the unique point in ~pb. In this case, we find
that CFΓa(b)

na(b)+1(CP 1) is a point and na(b) ≥ 2. On the other hand, Aut(CP 1, pb, ob)
is isomorphic to C∗. (35.70) follows.

If nb > 1, then ~pa(b) consists of nb Γa(b)-orbits in Sa(b) \ {qa(b), oa(b)}. Therefore
we have

dimR CFΓa(b)
na(b)+1(CP 1) = 2nb.

On the other hand,
dimR CFnb+1(CP 1) = 2(nb + 1).

We have (35.70) also.
Note that qa(b) is a free fixed point if and only if qa(b) /∈ pa(b). Therefore

(35.70) is applied to the component Sa if it contains a free fixed point. Other-
wise (35.68),(35.69) apply.

We remark that the contribution of disc component to ρΓ((Σ, ~z), v) coincides
with that of disc components to ρ((Σ,~z), v).

Combining these, we obtain

ρΓ((Σ, ~z), v) = ρ((Σ,~z), v) + dimR C(F (Γ))Γ.

This formula together with Lemma 35.64 implies Proposition 32.63. ¤
We next identify each side of Proposition 35.63 with the dimension of appropriate

moduli space.

Definition 35.71. We say that ((Σ, ~z), v, ~x) has the same combinatorial type as
((Σ′, ~z ′), v′, ~x ′) if the following holds : There exists a homeomorphism Σ → Σ′

preserving all the marked points together with the order. We also assume that the
restriction of v to each component of Σ is homologous to the restriction of v′ to
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the corresponding component of Σ′. We denote by S an equivalence class of this
equivalence relation and call S the combinatorial type of ((Σ, ~z), v, ~x).

We denote by

Mmain
k+1 (β;P1, · · · , Pk)(S,Γ) (= Mmain

k+1 (β;P1, · · · , Pk)(S)∼=(Γ))

the moduli space of ((Σ, ~z), v, ~x) with given combinatorial type S and isotropy group
Γ.

Let S be the combinatorial type of ((Σ, ~z), v, ~x).

Lemma 35.72. The left hand side of Proposition 35.63 is

dimR Mmain
k+1 (β;P1, · · · , Pk)(S,Γ) +

∑
i

deg Pi.

Proof. ρΓ(Σ, ~z, v) is the number of deformation parameters of (Σ, ~z, v) keeping the
Γ-equivariance and the combinatorial type minus the dimension of the automor-
phism group of (Σ, ~z). (Note we did not include the parameter to resolve singularity
of Σ in it. So this corresponds to the deformation keeping the combinatorial type.)

The condition that boundary marked points hit Pi reduces the dimension by∑
i deg Pi. Lemma 35.72 follows. ¤
By Proposition 35.52 we may take piecewise smooth perturbation s so that each

of Mmain
k+1 (β;P1, · · · , Pk)s(Γ) is a PL manifold whose dimension coincides with the

virtual dimension. It is easy to see that we may choose s so that it respects the
stratification of the combinatorial type. Hence we may assume that

(35.73)
dimMmain

k+1 (β;P1, · · · , Pk)s(S,Γ)

= dimR Index(C̃((Σ, ~z), v, ~x))Γ + ρΓ(Σ, ~z, v) −
∑

deg Pi.

To study the right hand side of Lemma 35.63 we need some notation. For each
((Σ, ~z), v, ~x) we consider its reduced model ((Σ,~z), v, ~x). We then add the image of
elements in F (Γ) to the reduced model as additional (interior) marked points. We
denote them by ~z+ and the resulting stable map by ((Σ,~z, ~z+), v, ~x).

Note
#~z+ = #F (Γ)/Γ.

We call ((Σ,~z, ~z+), v, ~x) the marked reduced model of ((Σ, ~z), v, ~x). In this way, we
have obtained a natural assignment

((Σ, ~z), v, ~x ) → ((Σ,~z, ~z+), v, ~x).

We remark that the reduced model ((Σ,~z), v, ~x) may be unstable. On the other
hand the marked reduced model is always stable.

Let us denote by S the combinatorial type of the marked reduced model. We
consider Mmain

k+1,`(β;P1, · · · , Pk)(S), the moduli space of marked reduced models with
the combinatorial type S. Here ` is the order of F (Γ)/Γ. We now have :
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Lemma 35.74. The right hand side of Proposition 32.63 is equal to

dimR Mmain
k+1,`(β;P1, · · · , Pk)(S) +

∑
i

deg Pi.

Proof. In the same way as the proof of Lemma 35.72, we find that

dimR Index(C̃((Σ,~z), v, ~x)) + ρ((Σ,~z), v) −
∑

deg Pi

is the (virtual) dimension of the moduli space of reduced models. Adding marked
points ~z+ increases the dimension by 2#~z+ = 2#F (Γ)/Γ, which is equal to dimR C(F (Γ))Γ. ¤

We next show the following.

Lemma 35.75. Suppose that (M,J) is spherically positive and S contains at least
one sphere component. Then we have

dimR Mmain
k+1,`(β;P1, · · · , Pk)(S) ≤ dimR Mmain

k+1 (β;P1, · · · , Pk) − 2.

(Note the dimension here is the dimension in the sense of Kuranishi structure,
that is the virtual dimension.)

Remark 35.76. We have not used spherical positivity of J up to this point.
Namely the proof of Lemma 35.75 is the only place where we use these assumptions.

Proof. Let J be a spherically positive almost complex structure. We consider a
component Sa of an element of Mmain

k+1 (β;P1, · · · , Pk)(S). Let ~za, ~wa be the sets
of all marked or singular points on Sa, ∂Sa, respectively. Let va = v|Sa . We put
ka = #~za + #~wa/2. We put sa = 3 if Sa is a disc component and sa = 6 if Sa is a
sphere component. Set

c(a) = 2c1(M)[va]

for a sphere component and
c(a) = µL(va)

for a disc component.
We claim that

(35.77) c(a) + 2ka − sa ≥ −2

holds for the sphere components.
In fact, if the map is trivial on this component, then 2ka ≥ 6 and c(a) = 0.

(35.77) holds. If the map is nontrivial on this component, then we have c(a) ≥ 2 by
the choice of J made in the beginning of the proof using spherial positivity. Since
2ka ≥ 2 and sa = 6 for a sphere component, (35.77) also holds.
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We put ε(a) = 2 for a sphere component and ε(a) = 1 for a disc component. It
is easy to see from the index theorem that

(35.78.1)

dimR Mmain
k+1 (β;P1, · · · , Pk)(S)

=
∑
a∈I

(ε(a)n + c(a) + 2ka − sa)

− (2n)#SingS2S − n #SingD2S −
∑

deg Pi,

where I is the set of all components of S, #SingS2S is the number of singular points
which intersect with sphere components and #SingD2S is the number of singular
points which do not intersect with sphere components. We recall 2n = dimM .

We have the similar identity for dimR Mmain
k+1,`(β;P1, · · · , Pk)(S). Namely for each

component Sb of S we define kb, sb, c(b), ε(b) and obtain

(35.78.2)

dimR Mmain
k+1,`(β;P1, · · · , Pk)(S)

=
∑
b∈I

(ε(b)n + c(b) + 2kb − sb)

− (2n)#SingS2S − n #SingD2S −
∑

deg Pi

where I is the set of all components of S.
For each component b ∈ I we take a(b) ∈ I such that Sa(b) is a branched covering

of Sb. (There may be several of them. We choose one of them.)
If Sb is a disc component, we have

(35.79) c(b) + 2kb − sb = c(a(b)) + 2ka(b) − sa(b),

since the automorphism group is trivial on the disc components.
We next prove the following :

Sublemma 35.80.

c(b) + 2kb − sb ≤ c(a(b)) + 2ka(b) − sa(b),

if Sb is a sphere component.

Proof. We have sb = sa(b) = 6. By the spherial positivity we have c(b) ≥ 0. It also
follows that c(b) ≤ c(a(b)). If there is no free fixed point on Sa(b), then kb ≤ ka(b)

and we are done.
Now assume that there is a free fixed point on Sa(b). In this case the degree,

denoted by deg, of the map Sa(b) → Sb is greater than one.
We first consider the case when [vb] 6= 0. Then by Condition 35.3 we have

c(a(b)) ≥ 2. Therefore

c(b) =
c(a(b))

deg
≤ c(a(b)) − 2.
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(Note c(a), c(b) are even numbers for the sphere components.) On the other hand,
since there exists at most one free fixed point on Sa(b), it follows that

kb ≤ ka(b) + 1.

The sublemma follows in this case.
We next assume [vb] = 0. Then ka(b) ≥ 3 by stability. Namely there exist at

least 3 singular or marked points. The component Sb is identified with the quotient
of Sa(b) by the cyclic group Γa(b) of order deg ∈ {2, 3, · · · }. Let d be the distance
of Sa(b) from the disc components. Let oa(b) be the singular point on Sa(b) where
Sa(b) is attached with Σd−1. Clearly oa(b) is a fixed point of Γa(b). Since there is a
free fixed point on Sa(b), no other singular points are fixed by Γa(b). In other words
the image in Sb of the singular points of Sa(b) consists of 1+ (ka(b) − 1)/deg points.
Therefore

kb = 2 +
ka(b) − 1

deg
.

Since ka(b) ≥ 3, we derive
kb ≤ ka(b).

The proof of Sublemma 35.80 is now complete. ¤
It follows from Sublemma 35.80 and (35.79) that

(35.81)
∑
b∈I

(ε(b)n + c(b) + 2kb − sb) ≤
∑
b∈I

(ε(a(b))n + c(a(b)) + 2ka(b) − sa(b)).

(35.77) implies that for each sphere component Sa (a ∈ I) we have

2n + c(a) + 2ka − sa ≥ 2n − 2.

Note that the number of sphere components of S and of S are equal to #SingS2S
and to #SingS2S, respectively. Therefore we have

(35.82)

∑
a∈I

(ε(a)n + c(a) + 2ka − sa) − (2n − 2)#SingS2S

≥
∑
b∈I

(ε(b(a))n + c(a(b)) + 2ka(b) − sa(b)) − (2n − 2)#SingS2S.

We remark that SingD2S = SingD2S. The Formulas (35.40), (35.43) and (35.44)
imply

dimR Mmain
k+1 (β;P1, · · · , Pk)(S)

≤ dimR Mmain
k+1 (β;P1, · · · , Pk)(S) + 2(#SingS2S − #SingS2S).
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On the other hand, we have

dimR Mmain
k+1 (β;P1, · · · , Pk)

= dimR Mmain
k+1 (β;P1, · · · , Pk)(S) + 2#SingS2S + #SingD2S.

Since #SingS2S ≥ 1, we obtain the lemma. ¤

Let Γ 6= {1} be an abstract group. If Mmain
k+1 (β;P1, · · · , Pk)(S,Γ) is nonempty,

then the combinatorial type S has at least one sphere bubble. It follows from Lemma
35.75 that

(35.83) dimR Mmain
k+1,`(β;P1, · · · , Pk)(S) ≤ dimR Mmain

k+1 (β;P1, · · · , Pk) − 2.

Therefore by Propositions 35.52, 35.63, Lemmas 35.72, 35.74 and (35.83), we have

(35.84) dimR(Mmain
k+1 (β;P1, · · · , Pk)s)∼=(Γ) ≤ dimR Mmain

k+1 (β;P1, · · · , Pk)s − 2.

Note the dimension in (35.83) is the virtual dimension. On the other hand, the
dimension in (35.84) is an actual dimension of the simplicial complex. (This is a
consequence of Proposition 35.52.)

The proof of Theorem 34.11 is now complete. ¤

Remark 35.85. Consider the case when S is a union of a disc D2 and a sphere S2

where c1(M)[v|S2∗([S2])] = 0. We assume that v|S2 is a cyclic multiple cover of a
map u. The reduced model consists of the same configuration where the map v|S2

is replaced by u. The virtual dimension of the reduced model is the same as the
virtual dimension of Mmain

k+1 (β;P1, · · · , Pk)(S), the moduli space with combinatorial
type S. Since there is one sphere bubble, the virtual dimension of the moduli space
Mmain

k+1 (β;P1, · · · , Pk)(S) is the virtual dimension of Mmain
k+1 (β;P1, · · · , Pk) minus 2.

However, since there is one free fixed point on the sphere bubble, it follows that
the virtual dimension of marked reduced model Mmain

k+1,1(β;P1, · · · , Pk)(S) is equal
to the virtual dimension of Mmain

k+1 (β;P1, · · · , Pk). Namely (35.83) does not hold.
This is the reason why we assume spherical positivity in this book.
If we can use the reduced model in place of the marked reduced model, this condi-

tion would be removed. However it seems rather difficult to show the compatibility
of the normally conical perturbation (which we constructed in Proposition 35.52)
with the process of forgetting extra marked points in the marked reduced model.
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§36. Filtered L∞ algebra and symmetrization of filtered A∞ algebra.

In the next section, we will study Lagrangian embeddings of a manifold in Cn+1

that is homeomorphic to S1×Sn and illustrate calculations involving the Floer coho-
mology, spectral sequences and the filtered A∞ algebra associated to the Lagrangian
submanifold. It turns out that our calculation of the leading order contribution of
holomorphic discs can be more conveniently described in the language of L∞ algebra
than that of A∞ algebra.

In this section we review the basic definitions of L∞ algebra and explain the
symmetrization of filtered A∞ algebra. The symmetrization is a canonical process
of obtaining a (filtered) L∞ algebra out of a (filtered) A∞ algebra. (The sym-
metrization of A∞ algebra is well established in the literature. See, for example,
[LaMa95].)

Let C be a free graded module over Λ0,nov. (In this section we use Λ0,nov =
ΛQ

0,nov.) Let C[1] be the free graded Λ0,nov module obtained by shifting the grading.
We consider Bk(C[1]) and an action of Sk (the symmetric group of order k!) on it
by

σ(x1 ⊗ · · · ⊗ xk) = (−1)s(σ)xσ(1) ⊗ · · · ⊗ xσ(k)

where σ : {1, · · · , k} → {1, · · · , k} is a permutation and

(36.1) s(σ) =
∑

i<j,σ(i)>σ(j)

deg′ xi deg′ xj .

Here deg′ is the shifted degree. Let Ek(C[1]) ⊂ Bk(C[1]) be the set of all elements of
Bk(C[1]) fixed under the Sk action. The energy filtration of C[1] induces an energy
filtration Fλ on Ek(C[1]). Let Ê(C[1]) be the completion of

⊕∞
k=0 Ek(C[1]).

We put

[x1, · · · , xk] =
1
k!

∑
σ∈Sk

(−1)s(σ)xσ(1) ⊗ · · · ⊗ xσ(k).

They generate Ek(C[1]). The coalgebra structure on B(C[1]) induces a (formal)
coalgebra structure

∆ : Ê(C[1]) −→ Ê(C[1]) ⊗̂ Ê(C[1]).

We remark that ∆ is graded cocommutative.
We consider a sequence of operations

lk : Ek(C[1]) −→ C[1]

(k = 0, 1, 2, · · · ) of degree +1 such that

lk(FλEk(C[1])) ⊂ Fλ(C[1]),(36.2.1)

l0(1) ∈
⋃
λ>0

Fλ(C[1]).(36.2.2)
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lk : Ek(C[1]) → C[1] induces coderivation

d̂k : Ê(C[1]) −→ Ê(C[1])

in the same way as (7.15), but replacing the tensor product by the bracketing
[x1, · · · , xn]. More precisely, it is defined by

d̂k([x1, · · · , xn]) =
∑

(−1)∗
k!(n − k)!

n!
[xa1 , · · · , xan−k

, lk[xb1 , · · · , xbk
]].

Here the summation is taken over all the ‘(n − k, k)-shuffles’ i.e., the permutations
of length k satisfying

{a1, · · · an−k} ∪ {b1, · · · , bk} = {1, · · · , n} ; ai < ai+1, bi < bi+1,

and ∗ is given by

∗ =
n−k∑
i=1

deg′ xai +
∑

ai>bj

deg′ xai deg′ xbj .

We can prove that d̂ =
∑

k d̂k converges and induces d̂ : Ê(C[1]) → Ê(C[1]) in the
same way as Lemma 7.17.

Definition 36.3. We say that l = {lk}k≥0 defines a structure of filtered L∞ algebra
on C if d̂ ◦ d̂ = 0. A filtered L∞ algebra is said to be strict if l0 = 0.

We can define the center of a filtered L∞ algebra, in the similar way as the unit
of a filtered A∞ algebra. Namely e is said to be in the center if and only if

lk([e, x1, · · · , xk−1]) = 0

for all k and x1, · · · , xk−1.
We can define a filtered L∞ algebra to be G-gapped in the same way as Definition

7.29. Hereafter we fix an isomorphism

C ∼= C ⊗Q ΛQ
0,nov

and lk : Ek(C[1]) → C[1] is the operations induced by lk.
The restriction of the coefficient ring to Q gives rise to an (unfiltered) L∞ algebra.

(We assume l0 = 0 for the unfiltered L∞ algebra.)
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Example 36.4. Let (C, d, [·, ·]) be a differential graded Lie algebra over Q. We
put

l1(x) = (−1)deg xdx, l2([x, y]) = (−1)deg x(deg y+1)[x, y]

and set all other lk = 0. Then it is easy to check that (C, lk) is an L∞ algebra.

We next define the symmetrization of a filtered A∞ algebra. Let (C,m∗) be a
filtered A∞ algebra. Hereafter we write lk(x1, · · · , xk) in place of lk([x1, · · · , xk])
for simplicity. We put

(36.5) lk(x1, · · · , xk) =
1
k!

∑
σ

(−1)s(σ)mk(xσ(1), · · · , xσ(k)),

where s(σ) is as in (36.1) and the the summation is taken over all σ in the permu-
tation group of {1, · · · , k}. Obviously lk induces a homomorphism lk : Ek(C[1]) →
C[1].

Proposition 36.6. lk : Ek(C[1]) → C[1] defines a structure of filtered L∞ algebra.

Proof. Let d̂ : B̂(C[1]) → B̂(C[1]) be the coderivation induced by m. It suffices to
prove that d̂(Ê(C[1])) ⊂ Ê(C[1]). In fact it will then imply that d̂ : Ê(C[1]) →
Ê(C[1]) coincides with the restriction of d̂ : B̂(C[1]) → B̂(C[1]).

We consider σab : {1, · · · , `} → {1, · · · , `} (σab ∈ S`) such that σab(b) = a,
σab(a) = b, σab(i) = i for i 6= a, b. Let π` : B̂(C[1]) → B`(C[1]) be the projection.
We calculate

(σab ◦ π` ◦ d̂)([x1, · · · , xk])

=
1
k!

σab

∑
σ∈Sk

(−1)s′(σ)
∑̀
i=1

xσ(1) ⊗ · · · ⊗ mk−`+1(xσ(i), · · · , xσ(i+k−`)) ⊗ · · · ⊗ xσ(k).

Here

s′(σ) = s(σ) +
i−1∑
j=1

deg′ xσ(j),

where s(σ) is as in (36.1). We put

Ai =
∑

σ∈Sk

(−1)s′(σ)xσ(1) ⊗ · · · ⊗ mk−`+1(xσ(i), · · · , xσ(i+k−`)) ⊗ · · · ⊗ xσ(k).

It is easy to see that

σabAa = Ab, σabAb = Aa, σabAi = Ai (i 6= a, b).

Hence
(σab ◦ π` ◦ d̂)([x1, · · · , xk]) = (π` ◦ d̂)([x1, · · · , xk])

as required. ¤
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Definition 36.7. We say (C, l) the symmetrization of (C, m). We can define a
symmetrization of an (unfiltered) A∞ algebra (which is an L∞ algebra) in the same
way.

Example 36.8. Let (C, d,∧) be a differential graded algebra. By putting

(36.9) m1(x) = (−1)deg xdx, m2(x, y) = (−1)deg x(deg y+1)(x ∧ y)

and mk = 0 for k 6= 1, 2, we obtain an A∞ algebra (C, m). We define a differential
graded Lie algebra (C, d, [·, ·]) by

[x, y] =
1
2
(x ∧ y − (−1)deg x deg yy ∧ x).

It is easy to check that the symmetrization of (C, m) is the L∞ algebra obtained
from (C, d, [·, ·]) as in Example 36.4.

Proposition 36.10. Let (C, m) be a filtered A∞ algebra. Suppose that the reduction
(C, m) of its coefficient to Q is obtained from a differential graded algebra (C, d,∧) by
(36.9). We assume that (C, d,∧) is graded commutative. Then the symmetrization
(C, l) satisfies

lk ≡ 0 mod Λ+
0,nov

for k 6= 1.

Proof. It suffices to show l2 = 0, since lk = 0 for k ≥ 3 obviously follows from
mk = 0 for k ≥ 3. We calculate

2l2(x, y) = m2(x, y) + (−1)deg′ x deg′ ym2(y, x)

= (−1)deg x(deg y+1)x ∧ y + (−1)deg′ x deg′ y+deg y(deg x+1)y ∧ x.

Since (C, d,∧) is graded commutative, we find that the second term is

(−1)deg′ x deg′ y+deg yx ∧ y = (−1)deg x(deg y+1)+1x ∧ y

and cancels with the first term. ¤
We will apply Proposition 36.10 to the symmetrization of the canonical model of

(C(L; Λ0,nov),m) later in this section.

Remark 36.11. In the year-2000 preprint version of this book the same calculation
as the proof of Proposition 36.10 was mentioned (at page 105) as a trouble to define
symmetrization of filtered A∞ algebra. We now understand that it is not a trouble
at all.

We next define a filtered L∞ homomorphism. Let (Ci, l
i), i = 1, 2 be filtered

L∞ algebras. For k = 0, 1, 2, · · · we consider maps fk : Ek(C1[1]) → C2[1] of degree
0 such that fk(FλEk(C1[1])) ⊆ FλC2[1]. It induces a coalgebra homomorphism
f̂ : Ê(C1[1]) → Ê(C2[1]), in the same way as (7.28).
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Definition 36.12. We call f = {fk}k≥0 a filtered L∞ homomorphism from C1 to
C2 if f̂ ◦ d̂1 = d̂2 ◦ f̂. A filtered L∞ homomorphism f = {fk}k≥0 is said to be strict if
f0 = 0.

We can define composition of filtered L∞ homomorphisms by

ĝ ◦ f = ĝ ◦ f̂.

Lemma 36.13. Any filtered A∞ homomorphism between two filtered A∞ algebras
induces a filtered L∞ homomorphism by the symmetrization.

The proof is easy and is omitted. We remark that there exist the unfiltered
and/or the unital version of Definition 36.12 and Lemma 36.13.

We can also define the gapped condition for filtered L∞ algebras and filtered L∞
homomorphisms in the same way as the A∞ case. Hereafter we assume that all
filtered L∞ algebra and filtered L∞ homomorphisms are gapped.

We next discuss the notion of homotopy between filtered L∞ homomorphisms.
Let (C, l) be a filtered L∞ algebra. We define a graded Λ0,nov module Poly([0, 1], C[1])
by Definition 15.9. The maps Inclk : Ek(C[1]) → C, (Evals=s0)k : Ek(C[1]) → C are
defined in the same way as in the proof of Definition-Proposition 15.15.

Lemma 36.14. There exists a structure of filtered L∞ algebra on Poly([0, 1], C[1])
such that Incl and Eval are filtered L∞ homomorphisms. Moreover they induce an
isomorphism on l1 cohomology.

The proof is a straightforward analog to the proof of Lemma 15.13 and omitted.

Remark 36.15. The other construction C [0,1] of the model of [0, 1]×C for filtered
A∞ algebra C, does not seem to work for the filtered L∞ algebra, since it does not
respect the symmetry. (See Remark 15.21.) So the authors do not know how to
define homotopy between L∞ homomorphisms over Z or Z2. The symmetrization
of C [0,1] will be an L∞ algebra. We need to work over Q for symmetrization.

Using the model (Poly([0, 1], C[1]), l), we can define homotopy between filtered
L∞ homomorphisms, and prove that homotopy is an equivalence relation which
is compatible to the composition. We can then define the notion of homotopy
equivalence of filtered L∞ algebras in an obvious way.

Theorem 36.16. If f = {fk}k≥0 is a filtered L∞ homomorphism from C1 to C2

and induces an isomorphism H(C1; l
1

1) → H(C2; l
2

1), then there exists a filtered L∞
homomorphism g from C2 to C1 such that f ◦ g and g ◦ f are homotopic to identity.

The proof this theorem is parallel to that of the proof of Theorem 15.45 and
omitted.

We next discuss the canonical models of filtered L∞ algebras.
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Definition 36.17. A filtered L∞ algebra (C, l) is said to be canonical if l1 = 0.

We remark that the symmetrization of a canonical filtered A∞ algebra is a canon-
ical L∞ algebra.

Theorem 36.18. Any gapped filtered L∞ algebra is homotopy equivalent to a
canonical filtered L∞ algebra.

The proof is a straightforward analogue of that of Theorem 23.2 in §23.3 and so
omitted.

Theorem 36.19. Let L be a relatively spin Lagrangian submanifold of M and
(H(L; Λ0,nov),m) the canonical filtered A∞ algebra obtained in Corollary 23.6. Let
(H(L; Λ0,nov), l) be its symmetrization. Then for all k we have

(36.20) lk ≡ 0 mod Λ+
0,nov.

For the proof we need :

Proposition 36.21. Let f : (C1, m) → (C2, m) be a homotopy equivalence of A∞
algebra. Let (C1,m) be a gapped filtered A∞ algebra deforming (C1, m). Then there
exists a gapped filtered A∞ algebra (C2,m) deforming (C2, m) and a homotopy equiv-
alence of filtered A∞ algebras f : (C1,m) → (C2,m) such that f ≡ f mod Λ+

0,nov.

Proposition 36.21 is a direct consequence of Proposition 30.130.

Proof of Theorem 36.19. Let (H∗
DR(L; R), lcan,R) be the canonical model of the L∞

algebra obtained by symmetrization of the de Rham DGA (Ω(L), d,∧). Since the
wedge product is graded commutative, it follows that lcan,R = 0.

On the other hand, if (H∗(L; Q), lcan) is the Q reduction of (H∗(L; ΛQ
0,nov), lcan),

then (H∗(L; Q), lcan)⊗R is homotopy equivalent to (H∗
DR(L; R), lcan,R). Since both

are canonical, they are isomorphic. It follows that lcan = 0, as required. ¤
Theorem 36.19 implies that contributions of the classical cup product and (higher)

Massey products become trivial under the symmetrization, of our filtered A∞ struc-
ture of Lagrangian submanifold.

§37. Floer theory of Lagrangian embedding S1 × Sn → Cn+1.

In this section, we illustrate calculations involving Floer cohomology, spectral
sequences and the filtered A∞ algebras associated to Lagrangian submanifolds. We
will particularly analyze the example of embeded Lagrangian submanifold L of
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Cn+1 diffeomorphic to S1 × Sn. We define a function E : π2(Cn+1, L) → R by
E(β) = [ω](β). Gromov [Grom85] proved that E is nontrivial for any compact
Lagrangian embedding L in Cn+1.

Unless otherwise stated, we will assume that n ≥ 2 in this section. Then we have
π2(Cn+1, L) ∼= π1(L) = Z. We fix a generator β of π2(Cn+1, L) so that

E(β) > 0.

We denote γ = δβ ∈ π1(L).
By conformally scaling the embedding, we may assume E(β) = 1 without loss of

any generality. We note the Maslov index µL(γ) of the class γ ∈ π1(L) lies in 2Z
since S1 × Sn is orientable.

There are two kinds of Lagrangian embeddings S1 × Sn → Cn+1 known in the
literature. One construction is based on the following two results.

(37.1) (Gromov [Grom85], Lees [Lee76]) If TL ⊗ C is a trivial complex vector
bundle, then there exists a Lagrangian immersion L → Cn. (Here n = dim L.)
(37.2) (Audin-Lalonde-Polterovich [ALP94]) Let i : Sn → Cn be a Lagrangian
immersion, e.g., consider the so called Whitney Lagrangian immersion. (See [Wei77]
for the precise definition of the Whitney Lagrangian immersion.) Consider any
embedded circle i′ : S1 → C which obviously becomes a Lagrangian embedding.
Then the Lagrangian immersion i× i′ : S1 × L → Cn+1 is Lagrangian isotopic to a
Lagrangian embedding.

Note the standard embedding S1 → C is a Lagrangian embedding with Maslov
index 2. Thus (37.1),(37.2) imply that there exists a Lagrangian embedding S1 ×
Sn → Cn+1 such that µL(γ) = 2.

The other example is given by Polterovich [Pol91II]. Let us consider Sn = {x ∈
Rn+1|‖x‖ = 1} and put L = {σx ∈ Cn+1|x ∈ Sn, σ ∈ C, |σ| = 1}.

Lemma 37.3. ([Pol91II]) L is a Lagrangian submanifold. µL(γ) = n+1. Moreover
L is diffeomorphic to S1 × Sn if n is odd .

37.1. Floer cohomology and spectral sequence.

We start with proving a slight improvement of the result of second named au-
thor proven in [Oh96I]. Hereafter in this section, L ∼ S1 × Sn stands that L is
homeomorphic to S1 × Sn. With some additional arguments, one can weaken this
hypothesis to the condition that L is homotopy equivalent to S1 × Sn.

Theorem 37.4. (Compare with [Oh96I]) Let L be an embedded Lagrangian sub-
manifold of Cn+1 that is homeomorphic to S1 × Sn. Then we have the following.
(1) If n is even, then µL(γ) is either 2 or is (2 − n)/` for some ` ∈ Z>0.
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(2) If n is odd, then µL(γ) = (n + 1)/` for some ` ∈ Z>0.

Proof. For the proof of Theorem 37.4 we use the Floer cohomology over Q. Later
on we will also use the Floer cohomology and the spectral sequence over Z in order
to obtain additional information.

Case 1 : L is weakly unobstructed: More precisely, we consider the case when
the cohomology groups containing all obstruction classes vanish. If L is weakly
unobstructed (over Q), then HF (L, L; ΛQ

0,nov) is defined and then HF (L, L; ΛQ
nov) ∼=

0, since there exists a Hamiltonian diffeomorphism φ : Cn+1 → Cn+1 of compact
support such that φ(L)∩L = ∅. We now consider the spectral sequence in Theorem
24.5 or in §25.

We remark that the filtered A∞ algebra associated to our L is G-gapped where
G ⊂ Z≥0 × 2Z and G ∼= Z≥0 as a monoid. This is because E(γ) = 1 and
π2(Cn+1, L) = Z. By (26.18) in §26, we defined a filtration on C(L; ΛQ

0,nov) which
is used to construct the spectral sequence. We can take the number λ0 appearing
in (26.18) as λ0 = 1, since E(γ) = 1.

When L is weakly unobstructed, we can take a bounding chain b of the form

(37.5) b =
∑
m∈Z

Tmemµ(γ)/2bm.

This is because all the chains defining obstruction classes are of the monomial
TmemµL(γ)/2 with some element from C(L; Q) as its coefficient and bn will be con-
structed based on the vanishing of the cohomology group of the relevant degree. If
we choose b as in (37.5), the boundary operator mb

1 is written as

mb
1 =

∑
k

T kekµ(γ)/2mb
1,kγ .

In particular, L is rationally unobstructed. (See Definition 25.1 (25.2.2).) This
observation has led us to the following description of the differential of the spectral
sequence.

The differential δ2 of the spectral sequence is decomposed to

δ2 =
n+1⊕
m=0

δ
(m)
2 , E2 = H∗(L; Z) ⊗ ΛQ

nov =
n+1⊕
m=1

Hm(L; Z) ⊗ ΛQ
nov,

where the homomorphism

δ
(m)
2 : Hm(L; Q) ⊗ ΛQ

nov → Hm+1−µL(γ)(L; Q) ⊗ ΛQ
nov

has the form
δ
(m)
2 = Te

µL(γ)
2 δ

(m)

2 .
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Moreover Ek and δk are inductively defined and has the decomposition

Ek =
n+1⊕
m=0

E
(m)
k , δ

(m)
k : E

(m)
k → E

(m+1−(k−1)µL(γ))
k ,

where E
(m)
k = Hm(L; Z)⊗ΛQ

nov : Here δk satisfies δ
(m+1−(k−1)µL(γ))
k ◦ δ

(m)
k = 0 and

E
(m)
k+1 is defined by the quotient

E
(m)
k+1 =

Ker δ
(m)
k

Im δ
(m−1+(k−1)µL(γ))
k

.

Furthermore δ
(m)
k also has the form

δ
(m)
k = e(k−1)

µL(γ)
2 T k−1δ

(m)

k

where E
(m)

k is the Q-vector space such that

E
(m)
k = E

(m)

k ⊗Q ΛQ
nov

and the map
δ
(m)

k+1 : E
(m)

k+1 → E
(m+1−kµL(γ))

k+1

is induced by mb
1,kγ appearing in the expression of mb

1 above. We remark that δk is
induced by the moduli space

M((k − 1)β).

Let ai ∈ Hi(S1 × Sn; Z) be the generators of H∗(S1 × Sn; Z) which have degree
i = 0, 1, n, n + 1 respectively. We choose them so that they satisfy a0 = 1 and

a1 ∪ an = an+1 = a0 ∪ an+1.

Since i∗([pt]) ∈ H0(M ; Q) is nonzero, we derive from (24.6.3) that an+1 = PD([pt])
is not in the image of the differentials of the spectral sequence. On the other hand
we have HF (L,L; ΛQ

nov) = 0. Therefore an+1 cannot be in the kernel of some
differential. Since Hi(S1 ×Sn; Z) is generated by ai for i ∈ {0, 1, n, n + 1} and zero
otherwise, there must exist i ∈ {0, 1, n, n + 1}, k ∈ Z>0 and 0 6= c ∈ Q such that

(37.6) δ
(n+1)

k (an+1) = c ai.

Setting m = n + 1, m + 1 − (k − 1)µL(γ) = i, we obtain

n + 1 − i = −1 + (k − 1)µL(γ).
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Therefore n+1− i must be odd in (37.6) and hence i cannot be n+1. This implies
that i must be one among 0, 1, n.

Since δ
(n+1)
k (an+1) ∈ E

(n+2−(k−1)µL(γ))
k , (37.6) implies that ai ∈ E

(n+2−(k−1)µL(γ))
k .

Therefore we obtain

(37.7) (k − 1)µL(γ) ∈ {2, n + 1, n + 2}.
In particular, we have proved µL(γ) > 0 and hence S1 × Sn is monotone if and
only if it is weakly unobstructed. Recall that any orientable monotone Lagrangian
embedding is weakly unobstructed. See chapter 2.

Case 1.1 : n is odd. If n is odd, (37.7) implies that µL(γ) divides n + 1 or 2.
Since n is odd this means that µL(γ) divides n + 1 as asserted.

Case 1.2 : n is even. Let us consider the case with even n. We will prove by
contradiction that µL(γ) = 2.

Suppose to the contrary that µL(γ) 6= 2. Then we derive from (37.6) and (37.7)
that there exists k > 1 such that (k − 1)µL(γ) = n + 2 and δ

(n+1)

k (an+1) = c a0 ∈
H0(L; Q), where c 6= 0. Since the generators an+1,a0 are killed by each other, it
follows that there must exist ` and c′ 6= 0 such that

δ
(n)

` (an) = c′ a1 ∈ H1(L; Q),

because HF (L,L; ΛQ
nov) = 0. A degree counting gives rise to (` − 1)µL(γ) = n.

Namely µL(γ) divides both n and n + 2. Therefore it follows µL(γ) = 2. This is a
contradiction to the hypothesis.

Case 2 : L is not weakly unobstructed: We now consider the case where
L is not weakly unobstructed. From Theorem C, which is the weakly unobstructed
version of Theorem 11.43, we derive that the obstruction class

(37.8) o2mk

kγ (L; weak) ∈ H2mk(L; Q)

is nonzero or some k = k0 > 0. Here k0γ ∈ H1(L) ∼= H2(Cn+1, L), and

(37.9.1) 2mk0 = 2 − µL(k0γ) = 2 − k0µL(γ).

By Corollary 13.16, the obstruction classes of top dimension must vanish. In
other words, we have

(37.9.2) 2mk0 6= n + 1 = dim L,

if o2mk

kγ (L; weak) 6= 0.
We remark that o2mk

kγ (L; weak) is non-zero, only if 2mk = 1, n, n + 1. Note also
that the Maslov index µL(γ) is even. Therefore from (37.9.1) and (37.9.2), we derive
that 2mk0 = n and so n must be even. It follows that k0µL(γ) = 2 − n. Namely
µL(γ) divides 2 − n, as required. Combining Case 1 and Case 2, we have finished
the proof of Theorem 37.4. ¤

We next use the Floer cohomology over Z to obtain some additional information,
which we collect in Propositions 37.10 and 37.14.
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Proposition 37.10. Suppose that n is even and L is an embedded Lagrangian
submanifold of Cn+1 homeomorphic to S1×Sn, then one of the following alternatives
occurs :

(37.11) µL(γ) = 2. The differential of the spectral sequence is trivial except

δ
(n+1)

2 (an+1) = ±an,

δ
(1)

2 (a1) = ±a0.

(37.12) µL(γ) = 2, δ
(n+1)

2 (an+1) = δ
(1)

2 (a1) = 0, and

δ
(n)

(n+2)/2(an) = ±a1,

δ
(n+1)

(n+4)/2(an+1) = ±a0.

(37.13) µL(γ) is negative and divides 2 − n with n ≥ 3 or µL(γ) = 0 with n = 2.

Remark 37.14. We will sketch the argument to eliminate the possibility (37.12)
in ‘Proposition 37.83’. (The detail of it will appear in [Fuk07II].)

Proposition 37.15. If n is odd and L is as in Proposition 37.10, then one of the
following alternatives (37.16), (37.17), (37.18) occurs :

(37.16) µL(γ) = (n + 1)/(k − 1) is positive and even. The differential of the
spectral sequence is trivial except

δ
(n+1)

k−1 (an+1) = ±a1,

δ
(n)

k−1(an) = ±a0.

(37.17) µL(γ) = 2 and the differential of the spectral sequence is trivial except
those appearing in (37.12).
(37.18) µL(γ) = 2 and the differentials satisfy

δ
(n+1)

2 (an+1) = λan,(37.19.1)

δ
(n)

2 (a1) = λa0(37.19.2)

with λ /∈ {0, 1,−1}. Moreover

(37.19.3) δ
(n)
k ([an]) = µ[a0],

where λ and µ are relatively prime to each other. The differentials appearing in
(37.19.1) − (37.19.3) are all the nontrivial differentials of the spectral sequence.
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Remark 37.20. Lemma 37.3 gives an example of (37.17). We can construct an
example of (37.16) with k = 2 by using (37.1), (37.2). The authors do not know
whether (37.18) actually occurs or not. Also we do not know whether (37.16) with
k 6= 2 occurs or not.

We remark that in the course of the proof of Theorem 37.4 we proved that L is
monotone. Therefore µL(γ) > 0 as long as n is even and (37.13) does not occur. In
fact, the argument there shows that L is weakly unobstructed also over Z, not just
over Q in this case. Therefore we will assume the Floer cohomology HF (L,L) is
defined over ΛZ

0,nov as long as n is even and (37.13) does not occur. (Note Theorem
34.3 does not apply if we deform Floer coboundary map by a bulk deformation (see
§13.5). So it is essential here to assume that L is weakly unobstructed without
performing any bulk deformation.)

We remark that L is rational since π1(L) ∼= Z and also L is rationally unob-
structed as we showed before. So we can apply the construction of the spectral
sequence for the rational Lagrangian submanifolds in §25. The spectral sequence
constructed in §25 also converges for the coefficient ΛZ

nov. (We recall that it is not
known yet whether the spectral sequence in Theorem 24.5 converges over the coef-
ficient ring ΛZ

nov. We proved this convergence only over the ΛR
nov-coefficient when

R is a field. See the remark after Theorem 24.10.)

Proof of Proposition 37.10. Suppose (37.13) does not occur. Then we have shown
that L is weakly unobstructed and µL(γ) = 2 in the course of proving Theorem
37.4. As we mentioned, Floer cohomology HF (L,L; ΛZ

nov) of L is defined also over
Z and trivial in that case.

Note that since µL(γ) = 2, the differential δ2 has degree −1. Therefore we have

(37.21.1) δ
(n+1)

2 (an+1) = λan

for some λ ∈ Z. We will prove in Corollary 37.29 that (37.21.1) also implies

(37.21.2) δ
(1)

2 (a1) = λa0.

For the other components of δ2, we have δ
(n)

2 = 0 = δ
(0)
2 .

Now we consider the following three cases separately.

Case 1 : λ = ±1.
Case 2 : λ = 0.
Case 3 : λ /∈ {0,±1}.

In Case 1, E3 = 0 and hence (37.11) holds.
In Case 2, we obtain δ

n+1

2 (an+1) = 0 = δ
(1)

2 (a1) and

δ
(n)

(n+2)/2(an) = ±a1,(37.22.1)

δ
(n+1)

(n+4)/2(an+1) = ±a0 :(37.22.2)
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We recall that we have derived

δ
(n)

(n+2)/2(an) = ca1, δ
(n+1)

(n+4)/2(an+1) = c′a0

for nonzero rational numbers c, c′ from the vanishing of Floer cohomology HF (L,L; ΛQ
nov)

(over the rational number) in the course of the proof of Theorem 37.4.
Here we use the vanishing of Floer cohomology HF (L, L; ΛZ

nov) (over the integer),
which enables us to obtain the stronger statement (37.22). This gives rise to (37.12)
in Case 2.

Next we consider Case 3. In this case, we have E
(m)
3 = (Z/|λ|Z) ⊗ ΛZ

nov for
m = 0, n and E

(m)
3 = 0 otherwise. Therefore, since we have HF (L,L; ΛZ

nov) = 0,
there should be some k such that δ

(n)
k sends E

(n)
k to E

(0)
k . This is impossible since n

is even and δ
(n)
k has odd degree. This finishes the proof of Proposition 37.10, except

the statement that (37.21.1) implies (37.21.2). ¤

Next we consider the case n is odd and prove Proposition 37.15.

Proof of Proposition 37.15. In this case, Theorem 37.4 implies that µL(γ) is pos-
itive, µL(γ) divides n + 1, and L is monotone (and so weakly unobstructed). In
particular Floer cohomology HF (L,L; ΛZ

nov) is defined which must be trivial in Cn.
We consider the following two cases separately.

Case A : µL(γ) 6= 2.
Case B : µL(γ) = 2.

We first consider Case A. We put (k − 1)µL(γ) = n + 1. Then we can prove

δ
(n+1)

k−1 (an+1) = ±a1,(37.23.1)

δ
(n)

k−1(an) = ±a0,(37.23.2)

by the same way as the proof of Theorem 37.4. Here we derive that the coefficients
of the right hand side become ±1, again from the vanishing of Floer cohomology
but this time over Z. The identity (37.23) then implies that Ek = 0. Therefore
Case A give rise to (37.16).

We next consider Case B. Then by the same argument as before for case of even
n, we obtain the identities (37.21). Let λ be the number given in (37.21.1). Again
we will see later in Corollary 37.29 that (37.21.1) implies (37.21.2) as well. We then
consider the three cases Case 1 - Case 3 λ = ±1, λ = 0 and λ 6= {0,±1} separately
as for the case of even n, Proposition 37.10.

For Case 1 (λ = ±1), we have E3 = 0 which gives rise to (37.17).
For Case 2 (λ = 0), putting (k − 1)µL(γ) = 2(k − 1) = n + 1, we again obtain

(37.23) which corresponds to (37.16).
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Now we consider Case 3 (λ /∈ {0,±1}). We then obtain

E
(m)
3 =

{ Z/|λ|Z for m = 0, n

0 otherwise.

Putting 2(k − 1) = n − 1, we can write

(37.24) δ
(n)
k ([an]) = µ[a0]

for some integer µ such that [µ] ∈ Z/|λ|Z is a generator of Z/|λ|Z : Namely λ is
relatively prime to µ. This gives rise to (37.18).

The proof of Proposition 37.15 is now complete, modulo the statement that
(37.21.1) implies (37.21.2). ¤
Remark 37.25. We can prove that the sign in (37.12.1) coincides with the sign
in (37.12.2). In fact this follows from Theorem 37.32. We can also prove that the
sign in (37.17.1) coincides with the one in (37.17.2). In case µL(γ) = n+1 this fact
follows from Theorem 37.21. We will give a sketch of the proof of other cases in
‘Proposition 37.78’.

37.2. Filtered L∞ structure with inner product.

In this subsection, we study the L∞ algebra associated to a Lagrangian sub-
manifold L in Cn+1 homeomorphic to S1 × Sn. We start with a canonical model
(H(L; Λ0,nov),m∗) of the filtered A∞ algebra obtained in Corollary 23.6. Sym-
metrizing it as in §36, we obtain a filtered L∞ algebra (H∗(L; Λ0,nov), l∗). (Here
H∗(L; Λ0,nov) ∼= H∗(L; Q) ⊗ ΛQ

0,nov.) We put

(37.26) l+k+1(x1, · · · , xk+1) = 〈x1, lk(x2, · · · , xk, xk+1)〉.

Here 〈·, ·〉 is a version of intersection pairing defined in Definition 47.16 in Chapter
9. We define m+

k+1 in a similar way.

Proposition 37.27. Let L be an embedded Lagrangian submanifold of Cn+1 home-
omorphic to S1 × Sn. Then lk+1 is cyclically symmetric modulo T 2. Namely, we
have

(37.28)
l+k+1(x1, · · · , xk+1)

≡ (−1)deg′ xk+1(deg′ x1+···+deg′ xk)l+k+1(xk+1, x1, · · · , xk) mod T 2.

Postponing the proof of this proposition until the end of this subsection (and
§47.3 about the sign), we first state several consequences thereof. We start with the
following
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Corollary 37.29. Suppose µL(γ) = 2. Then (37.21.1) implies (37.21.2).

Proof. We remark that if δ
(n+1)

2 (an+1) = λan, we have δ
(n+1)
2 (an+1) = λan ·Te

µL(γ)
2 .

This implies

λT ≡ 〈a1, δ
(n+1)
2 (an+1)〉 = l+2 (a1, an+1) mod T 2.

(Note l1 = m1.) Also if δ
(1)

2 (a1) = µa0 then µT ≡ l+2 (an+1, a1) mod T 2. Therefore
Corollary 37.29 follows from Proposition 37.27. ¤

We continue our analysis of our spectral sequence and the filtered L∞ structure
with some more details for the case of L ∼= S1 × Sn.

Theorem 37.30. Suppose µL(γ) = n + 1, and n is odd. Then we have

(37.31) l+k+2(a
⊗k
1 , an, an+1) ≡ ± 1

k!
e(n+1)/2T mod T 2.

Here the sign ± is independent of k. Moreover the left hand side is independent
of the permutation of the variables modulo T 2. All the other operations are zero
modulo T 2.

The result in the other case is less complete.

Theorem 37.32. If µL(γ) = 2, then there exists an integer λ such that

(37.33) l+k+1(a
⊗k
1 , an+1) ≡ ± 1

k!
λeT mod T 2.

Here λ is independent of k. Moreover the left hand side is independent of the
permutation of the variables modulo T 2. All the other operations are zero modulo
T 2.

We note that we do not assume n is odd in Theorem 37.32 unlike in Theorem
37.30. We can say more about λ in Theorem 37.32, which we will discuss later in
this section (‘Proposition 37.84’).

Remark 37.34. (1) For the case of S1 × Sn constructed using small embeddings
S1 ⊂ C mentioned in (37.2), we can easily see that λ = ±1.

(2) We remark that the canonical model is well-defined only up to isomorphism.
This means the following : Let l′+k+1 be the filtered L∞ structure on H(L; Λ0,nov)
obtained by symmetrizing another canonical model. Then there exists a sequence
of Λ0,nov linear maps ϕk : Ek(H(L; Λ0,nov)) → H(L; Λ0,nov) such that it induces a
coalgebra isomorphism ϕ̂ : E(H(L; Λ0,nov)) → E(H(L; Λ0,nov)) satisfying

l+∗ (ϕ̂(x1 ⊗ · · · ⊗ xk+1)) ≡ l+k+1(x1 ⊗ · · · ⊗ xk ⊗ xk+1) mod T 2.
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Therefore, strictly speaking, we should state Theorems 37.30 and 37.32 as “there
exists a canonical model such that . . . ”. We will explain this ambiguity in more
detail later in §37.5.

Now we begin the proofs of Theorems 37.30 and 37.32. Let β ∈ π2(Cn+1, L)
be the class satisfying ∂β = γ where ∂ : π2(Cn+1, L) → π1(L) is the natural
boundary map. We consider the moduli spaces M0(β) and M1(β) of stable maps
(D2, ∂D2) → (Cn+1, L) in the class β and with zero (resp. one) marked point at the
boundary. We recall that Mi(β) depends on the choice of almost complex structure
J .

For our purpose of proving Theorems 37.30 and 37.32, it will be useful to give
another description of M0(β) and M1(β) which is equivalent to that of stable maps
and more close to Gromov’s original description in [Grom85]. For given J ∈ Jω0 a
compatible almost complex structure on (Cn+1, ω0), we recall the definition

M̃(J ;β) = {w : (D2, ∂) → (Cn+1, L) | w is pseudo-holomorphic, [w] = β}.

The group PSL(2; R) is identified with the group of biholomorphic maps ϕ : D2 →
D2, and then it acts on M̃(β) by ϕ · w = w ◦ ϕ−1. We put

G = {ϕ ∈ PSL(2; R) | ϕ(1) = 1}.

It is easy to see that we have the isomorphism

G\M̃(β) = M1(β)

and
M0(β) = PSL(2; R)\M̃(β).

Now we state the following two lemmas concerning the structures of M0(β) and
M1(β).

Lemma 37.35. Let L ∼ S1 × Sn and J0 be any compatible almost complex struc-
ture on Cn+1. Then the moduli space M0(J0;β) is compact and any element
w ∈ M0(J0;β) is somewhere injective.

In particular, for a generic almost complex structure J , the moduli space M0(J ;β)
is a smooth compact manifold without boundary of dimension given by µL(γ)+n−2,
as long as it is nonempty.

Proof. Assume M̃(J0;β) 6= ∅. Then compactness of M0(J0;β) follows from the
Gromov compactness theorem since β has the smallest possible positive symplectic
area E(β) = ω([β]). The latter also implies that any element w0 of M̃(J0;β) is
somewhere injective in the sense of McDuff [McD87] : Otherwise, according to the
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structure theorem of the image of pseudo-holomorphic discs from [KwOh00], w0 is
decomposed into

w0 =
N∑

j=1

wj

such that each wj is a somewhere injective J-holomorphic disc with boundary lying
on the same L, and their homotopy classes satisfy

[w0] =
N∑

j=1

[wj ] in π2(Cn+1, L), ω([wj ])0

which is impossible unless N = 1 because ω([β]) has the smallest possible positive
symplectic area.

Now once we have established the somewhere injectivity, we apply the standard
argument [McD87] of the Sard-Smale theorem to elements of the pairs

(J,w) ∈ Jω × Map((D2, ∂D2), (Cn+1, L);β)

near {J0}×M̃(J0;β) for each given J0. Then we derive that for a generic choice of
J , the moduli space M̃(J ;β) becomes a smooth manifold. The formula of dimension
follows from Theorem 2.32 when it is nonempty. Since somewhere injectivity also
implies that PSL(2; R) acts freely on M̃(J0;β), the quotient space M0(J0;β) =
PSL(2; R)\M̃(J0;β) is also smooth. ¤

We also have

Lemma 37.36. For a generic almost complex structure J on Cn+1, the mod-
uli space M1(J ;β) is a compact smooth manifold without boundary of dimension
µL(γ) + n − 1, when it is nonempty.

We now take J as above and fix it throughout this section.

Since PSL(2; R)/G ∼= S1, there exists an S1 fibration π : M1(β) → M0(β). We
take a free S1 action on M1(β) so that π is identified with the natural projection
M1(β) → M1(β)/S1. We embed S1 ⊂ PSL(2; R) so that 0 ∈ D2 is fixed by
elements of S1.

Lemma 37.37. There exists an S1 equivariant map S : M1(β) → M̃(β) such
that the composition π ◦ S of S with natural projection π : M̃(β) → M1(β) is the
identity.

Proof. Let
⋃N

i=1 Vi = M0(β) be an open covering such that Vi are contractible.
We put Ui = π−1Vi ⊂ M1(β) and

⋃k
i=1 Ui = Uk. We will construct S on Uk by

induction on k. Suppose we have defined S on Uk−1. Since Vk is contractible we



62 FUKAYA, OH, OHTA, ONO

have s : Vk → M1(β) such that π ◦ s is identity. We put Wk = s−1(Uk−1) ⊂ Vk.
The restriction of S to s(Vk) ∩ Uk−1 can be identified with a map S : Wk → G
since π−1(s(Vk)) ∼= Vk × G. Therefore since G is contractible we can extend S to
S : Vk → G. Now let x ∈ Uk. There exists unique x ∈ Vk and t ∈ S1 such that
x = t · s(x). We put S(x) = t · (x, S(x)), where we identify π−1(s(Vk)) ∼= Vk × G

and regard (x, S(x)) ∈ π−1(s(Vk)) ⊂ M̃(β). ¤
Now we define

ẽv(k) = (ev1, · · · , evk, ev0) : M̃(β) × (S1)k → Lk+1

by
ẽv(k)(ϕ, (t1, · · · , tk)) = (ϕ(t1), · · · , ϕ(tk), ϕ(1)).

Then we define ev(k) : M1(β) × (S1)k → Lk+1 by

ev(k) = ẽvk ◦ (S × id).

Let x1, · · · , xk, x0 ∈ H∗(L; Q).
We will give the proof of the following later in §37.4.

Proposition 37.38.

l+k+1(x1, · · · , xk, x0)

≡ ± 1
k!

eµL(γ)/2T
(
ev(k)∗(x1 × · · · × xk × x0)([M1(β) × (S1)k])

)
mod T 2.

The intuitive picture behind Proposition 37.38 is quite clear from the defini-
tion. However the rigorous definition of l+k+1 is rather complicate partly due to the
transversality problem : We first take perturbations in the fiber product, then go to
a canonical model, and finally symmetrize the corresponding A∞ operations. This
sequence of general abstract constructions, none of which are not so transparent,
makes the proof of Proposition 37.38 rather nontrivial. We postpone its proof until
later in §37.4.

Assuming Proposition 37.38, we are ready to finish the proof of Proposition 37.27.

Proof of Proposition 37.27. Except the sign, the proof is immediate from Proposi-
tion 37.38. The sign in Proposition 37.27 is related to the sign in Proposition 37.38
and follows from the sign convention we will work out in detail in the next chapter.
See §47.3. ¤

37.3. Free loop space of L and L∞ structure.
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In this subsection, we exploit some topological information of the loop space
of the Lagrangian submanifold L in our study of the L∞ structures on L. More
extensive study on this aspect will be carried out in [Fuk07II] (see [Fuk05II] for
some detailed outlines).

We denote by L(L) the set of all smooth loops on L. Namely

L(L) = {` : S1 → L | ` is smooth}.

We denote by L(L; γ) the subset of L(L) consisting of the loops homologous to γ. We
remark that L(L) and L(L; γ) have an S1 actions induced by the reparametrization
of the domain S1. The S1 action on L(L; γ) is free : Recall that γ is a nontrivial
primitive class which rules out a possible finite isotropy group.

There exists an obvious S1 equivariant map

res : M̃(β) → L(L; γ)

whose image res(ϕ) is defined by (res(ϕ))(t) = ϕ(t) for ϕ ∈ M̃(β). We denote

ev = res ◦ S : M1(β) → L(L; γ).

We now study the homology class

ev∗([M1(β)]) ∈ H∗(L(L; γ), Z).

Let π : L(L; γ) → L(L; γ)/S1 be the natural projection. It is a projection of S1

principal bundle and hence induces a homomorphism

π∗
! : Hk(L(L; γ)/S1, Z) → Hk+1(L(L; γ), Z) :

If f : P → L(L; γ)/S1 represents a homology class f∗([P ]), then π∗
! (f∗([P ])) is

represented by P ×L(L;γ)/S1 L(L; γ) = P̃ and a map f̃ : P̃ → L(L; γ) induced by f .
We have :

Lemma 37.39. ev∗([M1(β)]) is in the image of π∗
! .

Proof. Using the fact that ev is S1 equivariant, we have ev : M0(β) → L(L; γ)/S1.
It is immediate from definition that π∗

! (ev∗([M0(β)])) = ev∗([M1(β)]). ¤
Recall that we assumed that L is homeomorphic to S1 × Sn. Identifying L with

S1 × Sn, we define a map Ĩ : L(Sn) → L(L; γ) by

(37.40) Ĩ(λ) = λ̃, λ̃(t) = (t, λ(t)) ∈ S1 × Sn

and I : L(Sn) → L(L; γ)/S1 by I = π ◦ Ĩ.
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Lemma 37.41. I is a homotopy equivalence.

Proof. It is enough to construct a homotopy inverse to I. We remark L(L; γ) =
L(Sn) ×L(S1; γ). It is easy to see that L(S1; γ) is homotopy equivalent to S1 and
L(S1; γ)/S1 is contractible. Existence of a homotopy inverse to I easily follows
from this fact. ¤

Now we recall some classical results on the cohomology of the loop space of a
sphere. We fix a base point p0 ∈ Sn and let L0(Sn) = {` ∈ L(Sn) | `(1) = p0} be
the based-loop space. Let P(Sn) = {` : [0, 1] → Sn | `(0) = p0}. We have a path
fibration L0(Sn) → P(Sn) → Sn. Since P(Sn) is contractible, we can calculate the
cohomology of L0(Sn) by the Leray-Serre spectral sequence.

We denote by E(x1, · · · , xm) the free graded commutative algebra generated by
the elements x1, · · · , xm of the degree deg xi. More precisely, if all of x1, · · · , xm are
of even degree, E(x1, · · · , xm) is a polynomial algebra, and if all of them are of odd
degree, it is an exterior algebra and etc. We quote the following result by Serre

Lemma 37.42. (Serre [Ser51]) If n is odd, then there exists x with deg x = n − 1
such that H∗(L0(Sn); Q) ∼= E(x). If n is even, then there exists x with deg x = n−1
and y with deg y = 2n − 2 such that H∗(L0(Sn); Q) ∼= E(x, y).

We next consider the fibration L0(Sn) → L(Sn) → Sn. (Here the projection
L(Sn) → Sn is ` 7→ `(1).) Let z0, zn be the generators of degree 0 and n in H∗(Sn),
respectively. We consider the Leray-Serre spectral sequence

(37.43) H∗(L0(Sn); Q) ⊗ H∗(Sn; Q) ⇒ H(L(Sn); Q).

Lemma 37.44. (Poirrier and Sullivan [PoSu76]) If n is odd, then the differentials
of the spectral sequence (37.43) are all zero. If n is even, then the differentials of
the spectral sequence (37.43) are zero except :

d(yk ⊗ z0) = 2k(xyk−1 ⊗ zn), k = 1, 2, · · · .

With these preparations, we are now ready to give the proofs of Theorems 37.30
and 37.32. We start with Theorem 37.32.

Proof of Theorem 37.32. We recall the standing hypothesis µL(γ) = 2. By Lemma
37.36, M1(β) becomes a smooth manifold of dimension given by

µL(γ) + n − 2 + 1 = n + 1.

Lemma 37.39 implies ev∗[M1(β)] = π∗
! ( ev∗([M0(β)])) and deg[M0(β)] = n. Note

it follows from Lemma 37.42 and Lemma 37.44 that Hn(L(Sn); Q) = Q and is
generated by the dual class (1⊗zn)∗ of 1⊗zn. Lemma 37.41 induces an isomorphism

I : Hn(L(Sn); Q) → Hn(L(L; γ)/S1; Q)
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and hence Hn(L(L; γ)/S1; Q) ∼= Q. Therefore we can write

(37.45) ev∗([M0(β)]) = λI((1 ⊗ zn)∗)

for a constant λ where I is the map given in (37.40). We also recall

(1 ⊗ zn)∗ = [Sn] ∈ Hn(L(Sn); Q)

where Sn ⊂ L(Sn) is identified with the set of of constant loops.
We will now derive Theorem 37.32 from (37.45) and Proposition 37.38. First

Proposition 37.38 implies that the operations l+k+1 depend only on the homology
class of [M0(β)]. Since the right hand side of Proposition 37.38 is linear on [M0(β)],
we may assume λ = 1 without loss of generalities and write ev∗([M0(β)]) = I∗([Sn]).

Then under the evaluation map ev = res ◦S : M1(β) → L(L; γ), ev∗([M1(β)])
can be identified with the fundamental class of the set consisting of the loops ` ∈
L(L; γ) defined by

`s,p(t) = (s + t, p) ∈ S1 × Sn.

Obviously this set is diffeomorphic to S1 × Sn. Under this identification, the class
ev

(k)
∗ ([M1(β) × (S1)k]) ∈ Hn+1(Lk+1; Q) can be represented by the map

fk : (S1 × Sn) × (S1)k → Lk+1

defined by

fk ((s, p), (t1, · · · , tk)) = ((s, p), (s + t1, p), · · · , (s + tk, p)).

Now Theorem 37.32 easily follows from Proposition 37.38 by replacing the chain
[M1(β) × (S1)k, ev(k)] by this chain [(S1 × Sn) × (S1)k, f ] and evaluating

ev(k)∗(an+1 × a1 × · · · × a1)([M1(β) × (S1)k])

= (an+1 × a1 × · · · × a1)(ev
(k)
∗ ([M1(β) × (S1)k])

= (an+1 × a1 × · · · × a1)[fk,∗(S1 × Sn × (S1)k)] = 1

where the last identity follows from the definition of f . ¤
We next turn to the case when µL(γ) = n + 1.

Proof of Theorem 37.30. In this case, we derive deg[M0(β)] = 2n− 1 from Lemma
37.35. We recall the standing assumption that n is odd in this case. By Lemmas
37.42 and 37.44, H2n−1(L(Sn); Q) = Q and is generated by the dual class (x⊗ zn)∗

to x ⊗ zn. Again applying Lemma 37.41, we obtain an isomorphism

I∗ : H2n−1(L(Sn); Q) → H2n−1(L(L; γ)/S1; Q).

We put

(37.46) ev∗([M0(β)]) = λI∗((x ⊗ zn)∗).
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Lemma 37.47. If (37.46) holds, then

(37.48) l+k+2(a
k
1 , an, an+1) ≡ ± 1

k!
λe(n+1)/2T mod T 2.

Moreover the left hand side is independent of the permutation of the variables modulo
T 2.

Proof. We remark that l+k+2(an+1, a
k
1 , an) is independent of the permutation of last

k + 1 variables from its definition. Then Proposition 37.27 implies that it is inde-
pendent of all the permutations of variables modulo T 2.

To prove (37.48), it suffices to consider the case λ = 1. We need to examine the
class (x⊗ zn)∗ in more detail. Let P ⊂ L(Sn) be a chain representing the class (x⊗
zn)∗ and consider the composition π : P → L(Sn) → Sn. By perturbing the chain if
necessary, we may assume p0 ∈ Sn is a regular value of π. We put P0 = π−1(p0) ⊂
L0(Sn). Then by definition, P0 represents the class x∗ ∈ Hn−1(L0(Sn); Q) dual to
x.

We then define a chain [P0 × S1, h] in Sn by the map h(x, t) = `x(t) where `x

is a loop corresponding to x ∈ P0 ⊂ L0(Sn). Since P0 represents the class x∗, it
follows from the definition of x that [P0 ×S1, h] represents the fundamental class of
Sn. Therefore, if we define h+ : P × S1 → Sn × Sn by (x, t) 7→ (`x(t), `x(1)), we
obtain

(37.49) h+∗([P × S1]) = [Sn × Sn].

We recall the commutative diagram

M1(β) ev−−−−→ L(L; γ)y π

y
M0(β) ev−−−−→ L(L; γ)/S1 I←−−−− L(Sn).

We have the identity

[M1(β), ev] = (π!)∗(I∗[P ]) = [P × S1,Rot(Ĩ)] in H2n(L(L; γ); Q)

where the map Rot(Ĩ) : P × S1 → L(L; γ) is defined by the map

Rot(Ĩ)(s, x)(t) = (t, `x(t + s)).

Then the cycle ev(k+1) : M1(β) × (S1)k+1 → Lk+2 ∼= (S1 × Sn)k+2 is homologous
to the map

fk+1 : (P × S1) × (S1)k+1 → Lk+2
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defined by

(37.50)
fk+1((x, s), (t1, · · · , tk+1)) = ((s + t1, `x(t1)), · · · , (s + tk+1, `x(tk+1)), (s, `x(1)) .

Now we consider the map pr : Lk+2 → (S1)k × Sn × (S1 × Sn), where

pr((t1, p1), · · · , (tk+1, pk+1), (t0, p0)) = (t1, · · · , tk, pk+1, (t0, p0)).

Then (37.49) and (37.50) imply

(pr ◦ ev(k+1))∗([M1(β) × (S1)k+1]) = (pr ◦ fk+1)∗([(S1 × Sn) × (S1)k+1])

= [(S1)k × Sn × (S1 × Sn)].

By a similar evaluation as in the end of the proof of Theorem 37.32, we obtain
Lemma 37.47 from Proposition 37.38. ¤
Lemma 37.51. λ = ±1 in (37.46).

Proof. (37.48) implies l+2 (an, an+1) ≡ λT mod T 2. Hence m1(an) = l1(an) ≡
λe(n+1)/2T e mod T 2. Therefore λ = ±1 by Proposition 37.15. (Note we are in
the case (37.16) and µL(γ) = n+1.) (We also remark that the proof of Proposition
37.15 was completed when we proved Corollary 37.29.) ¤

We now have completed the proof of Theorems 37.31 except the proof of Propo-
sition 37.38, which we will carry out in the next subsection. ¤

37.4. The de Rham version of the filtered L∞ algebra : A simple case.

In this subsection we will prove Proposition 37.38. For this purpose, we need to
perform some construction used in the de Rham version of the filtered A∞ structure
and to prove that this is isomorphic to the ‘singular homology’ version which we
have worked out in detail in this book. Combining the results of this book with
various additional ideas, especially those using the loop space homology, Chas-
Sullivan bracket [ChSu99] and the iterated integrals [Chen73], we can construct the
de Rham version in its full generality. This will be carried out elsewhere in the
future. (See [Fuk07II].) In this subsection, we restrict ourselves only upto what we
need for the proof of Proposition 37.38. The rest of this subsection will be occupied
with this proof.

Proof of Proposition 37.38. Our proof below is based on a generalization of the
argument used in the proof of Theorem 33.1. Let (Ω(L), d,∧) be the de Rham
complex of L. It is a differential graded algebra which can be regarded as an A∞
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algebra (Ω(L),m) with the definitions of m1 and m2 and mk = 0 for k ≥ 3 as in
Remark 7.4 (2).

We will deform this A∞ algebra adding contributions by holomorphic discs. For
the purpose of proving Proposition 37.38, we will need only its leading order terms.
The description of the leading order terms is now in order.

We recall that M1(β) is a smooth manifold for the case of our interest. How-
ever the evaluation map ev : M1(β) → L may not still be a submersion in gen-
eral. Therefore we will increase the dimension of the moduli space by including
an obstruction bundle and enlarge M1(β) to M1(β)+ equipped with the obstruc-
tion bundle E → M1(β)+ and a section s thereof so that s−1(0) = M1(β) and
ev+ : M1(β)+ → L becomes a submersion. In other words, M1(β)+ is nothing but
a Kuranishi neighborhood constructed in Proposition 29.1.

We then take a manifold W0 and a family {sw}w∈W0 of perturbations of s pa-
rameterized by w such that, as a section of the bundle E → M+

1 (β) × W0, s is
transversal to the zero section and so the zero set

M1(β)s = {(x,w) ∈ M1(β) × W0 | sw(x) = 0}

becomes a smooth manifold. By suitably choosing s, we can also assume that the
restriction of the map given by (x,w) 7→ ev+(x) to M1(β)s defines a submersion

evs
0 : M1(β)s → L.

We take a smooth form ωW0 with compact support in W0 and of the top degree
such that

∫
W0

ωW0 = 1. We pull it back to M1(β)s and denote it by the same
symbol. Now we explain how to define a k-linear map

mdR
k,β : Bk(Ω(L)[1]) → Ω(L)

for each integer k ≥ 1. Let u1, · · · , uk ∈ Ω(L) and

Ck = {(t1, · · · , tk) ∈ [0, 1]k | t1 < · · · < tk}.

We define
ev(k),s = (evs

1, · · · , evs
k, evs

0) : M1(β)s × Ck → Lk+1

by

evs
i ((x,w), (t1, · · · , tk)) =

{
`x(e2π

√
−1ti) for i 6= 0,

`x(1) for i = 0.

Here `x : S1 → L be the boundary value of the map corresponding to x.
Now we put

(37.52) mdR
k,β(u1, · · · , uk) = evs

0! ((ev
s
1, · · · , evs

k)∗(u1 × · · · × uk) ∧ ωW0) .
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Here evs
0! is the integration along the fiber. We remark that the right hand side of

(37.52) is a smooth form since evs
0 is a submersion and ωW0 has compact support.

We then take the sum

(37.53) m
dR(1)
k = mk ±

∑
β

eµL(γ)/2TmdR
k,β

where ‘(1)’ stands for the ‘first order’. (Here and hereafter in this section, we omit
the detail of argument on signs. Actually, it can be handled in the same way as
in §33 and §53.) We say that (C,m) is a filtered A∞ algebra modulo T 2 if the A∞
relations hold modulo T 2.

Lemma 37.54. The family of the operators m
dR(1)
k defines a structure of filtered

A∞ algebra modulo T 2 on Ω(L) ⊗ ΛR
0,nov.

Proof. Since M1(β) is a manifold without boundary, mdR
k,β : BkΩ(L)[1] → Ω(L) can

be easily shown to be a chain homomorphism. The lemma follows easily. ¤

We remark that Theorem 31.1 implies that there exists a homotopy equivalence
f from (RXL, m) to (Ω(L), m). Here (RXL, m) is the tensor product

(RXL,m) = R ⊗ (ZXL, mL)

where (ZXL, mL) is the A∞ algebra constructed in Theorem 9.8.
We recall that in the course of the construction of the filtered A∞ algebra in

§30, we take a complex C(L; ΛQ
0,nov) containing QXL. By the same way as in

the proof of Theorem 33.1 we can extend the A∞-morphism f to C(L; ΛR
0,nov) =

C(L; ΛQ
0,nov) ⊗Q R. We denote this extension by the same symbol f.

The next lemma is the most essential part of the proof of Proposition 37.38.

Lemma 37.55. There exists a strict A∞ homomorphism f modulo T 2 from
(C(L; ΛR

0,nov),m) to (Ω(L) ⊗ ΛR
0,nov,mdR(1)) which reduces to f after reducing the

coefficient ring to R.

Since the proof of this lemma is rather lengthy, we postpone the proof until the
end of this subsection and first complete the proof of Proposition 37.38 using this
lemma.

Because f is a homotopy equivalence, Lemma 37.55 and the obvious analogs
of Lemma 30.74, Lemma 30.128 and Proposition 36.21 imply that there exists a
structure of filtered A∞ algebra mdR on Ω(L)⊗ΛR

0,nov which coincides with (Ω(L)⊗
ΛR

0,nov,m
dR(1)
k ) modulo T 2. Moreover there exists a homotopy equivalence f from

(C(L; R),m) to (Ω(L)⊗ΛR
0,nov,mdR) which is equal to f(1) modulo T 2. Therefore it

suffices to study the canonical model of the symmetrization of (Ω(L)⊗ΛR
0,nov,mdR).
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Let (Ω(L) ⊗ ΛR
0,nov, ldR) be the symmetrization of (Ω(L) ⊗ ΛR

0,nov,mdR). Let
xi ∈ H∗(L; R) be a cohomology class and ui ∈ Ω(L) any smooth form representing
the class xi. Then it is easy to see from the definition of ldR

k+1 that

(37.56)
ldR
k+1(u1, · · · , uk, u0) ≡

± 1
k!

eµL(γ)/2T
(
ev(k)∗(x1 × · · · × xk × x0)([M1(β) × (S1)k])

)
mod T 2.

Thus we only need to show that (37.56) implies the same formula for the canonical
model. To prove this, we need to recall the proof of Theorem 36.18 which is an L∞
analog to the proof of Theorem 23.2 given in §23.4. The construction of the filtered
L∞ structure lcan on the canonical model and that of the filtered L∞ homomorphism
from (Ω(L)⊗ΛR

0,nov, ldR) to its canonical model can be done by the same induction
argument using the versions of (23.34) and (23.36) if we replace m by ldR. Here we
remark that ldR

k ≡ 0 mod T for k 6= 1 by Proposition 36.10 and ldR
1 ≡ ±d mod T 2.

We denote the set of harmonic forms on L with respect to a metric on g by

H(L) ⊂ Ω(L) ⊗ ΛR
0,nov.

Then it is easy to see from (23.34) and (23.36) that f restricts to the identity on
H(L) mod T and ldR restricts to lcal mod T 2 on H(L). The identity (37.56) then
implies the same formula on H(L) which in turn implies Proposition 37.38 because
H(L) is a canonical model of Ω(L)⊗ΛR

0,nov. The proof of Proposition 37.38 is now
complete modulo the proof of Lemma 37.55. ¤

Now the proof of Lemma 37.55 occupies the rest of this subsection.

Proof of Lemma 37.55. We may regard fk as a filtered A∞ homomorphism modulo
T from (C(L; ΛR

0,nov),m) to (Ω(L) ⊗ ΛR
0,nov). We will add the term fk,β to f to get

a filtered A∞ homomorphism f + qµL(γ)/2T fβ modulo T 2. For this purpose we use
an argument similar to the one used in §30.9 and §33.5.

For the construction of A∞ homomorphism, we need to use the moduli spaces

Mmain
k+1 ({Jρ,s0}ρ : β; top(ρ))

and
Mmain

k+1 ({Jρ,s0}ρ : β; top(ρ); ~P )

as in Definitions 19.8 and 19.10. In this section, we only need to consider the choices

ψ = id, {Jρ}ρ with Jρ ≡ J

of the symplectic diffeomorphism ψ and of the family with Jρ ≡ J of almost complex
structures, and β a generator of π1(Cn+1, L). (We recall the standing hypothesis
L ∼ S1 × Sn.)
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We recall that the moduli space Mmain
k+1 ({Jρ,s0}ρ : β; top(ρ)) given in Defini-

tion 19.8 is the set of equivalence classes of the bordered stable Riemann surfaces
decorated by the time allocation, which was denoted by ((Σ, ~z), (uα), (ρα)).

Let Σ =
⋃

α Σα be the decomposition as in Definition 19.6 : Namely each Σα

contains a single irreducible disc component to which a finite set of bubble trees
of sphere components are attached. The map uα : (Σα, ∂Σα) → (Cn+1, L) is Jρα

holomorphic. Namely it is J holomorphic in the current context. Now we assign a
special point zα ∈ ∂Σα to each α as follows : If Σα is the component containing
the 0-th marked point, we put zα to be the 0-th marked point. On the other hand,
if Σ is not the component, we note that there exists a unique α′ such that Σα′ is
adjacent to Σα and

Σα′ > Σα

where > is the order defined in Definition 19.6. This follows from the definition of
the order > and from the fact that Σ has genus zero. This allows us to define zα to
be the singular point zα ∈ Σα ∩Σα′ for such α′. (See Figure 19.4.) Then we derive
the following from the fact that β is a primitive class :

(37.57.1) There exists one and only one α, say α0, such that ((Σα, zα), uα) is an
element of M1(β).
(37.57.2) If α 6= α0, then uα is constant.

Recall that in §30.8 we used the moduli space Mmain
k+1 ({Jρ}ρ : β; top(ρ); ~P ) in our

definition of the filtered A∞ homomorphism between the A∞ algebras associated
to two Lagrangian submanifolds. In the current context involving the de Rham
model, we need to use a modification of the moduli space because our A∞ algebra
Ω(L) satisfies mk = 0 for k ≥ 3. This modification is somewhat similar to the way
we construct N ′

k+1 out of Nk+1 in Theorem 29.51. (See the proof of Proposition
33.43.)

More precisely, we will cut-down Mmain
k+1 ({Jρ}ρ : β; top(ρ); ~P ) by an equivalence

relation ∼ which similar to (33.44).

Definition 37.58. Let ((Σ, ~z), (uα), (ρα)) ∈ Mmain
k+1 ({Jρ}ρ : β; top(ρ)). We con-

sider the union of all the components Σα with the following properties.

(37.59.1) ρα = 1.
(37.59.2) Σα0 < Σα, (α 6= α0), where α0 is as in (37.57.1) and < is defined in
Definition 19.6.

We denote its union by Σ0.
Recalling all uα are constant maps for α 6= α0, we say

((Σ, ~z), (uα), (ρα)) ∼ ((Σ′, ~z), (u′
α), (ρ′α)),

if the complement Σ\Σ0 together with the restriction of ~z, (uα), (ρα) there coincides
with the restriction of ((Σ′, ~z), (u′

α), (ρ′α)) to Σ′ \Σ′
0. We denote the quotient space
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by

N ′
k+1(β) = Mmain

k+1 ({Jρ}ρ : β; top(ρ))/ ∼ .

We alert the readers that N ′
k+1(β) here has nothing to do with the moduli space

that appeared in Definition 5.36, although we happen use the same calligraphic
letter N for the notations.

Lemma 37.60. N ′
k+1(β) has a Kuranishi structure.

Proof. For the proof, we can repeat the same arguments used in §29.5 using the
moduli space N ′

k+1(β) instead of Mmain
k+1 ({Jρ}ρ : β; top(ρ)) : This time N ′

k+1 re-
places the role of Nk+1 used in §29.5 and Proposition 33.43 replaces Theorem 29.51
in the proof. ¤

We next study the boundary of N ′
k+1(β). We first remark that a compactification

of M1(β)×Ck, together with evaluation maps, can be identified with Mmain
k+1 (β) as

a space with Kuranishi structure. We recall that in §33.5 we constructed a family
of spaces N ′

k+1 which we used in the definition of the homomorphisms fk. The
boundary of the space N ′

k+1(β) can be described in the following Lemma 37.61,
which is similar to the descriptions in (33.42) and Lemma 33.45 of the boundaries
of other somewhat similarly defined moduli spaces. Let k∗ = {1, · · · , k} ∪ {∗} and
A ∈ (k∗)`. We denote by N ′

A(β) a copy of N ′
`+1(β). Mmain

A (β) and N ′
A are as in

(33.42).

Lemma 37.61. ∂N ′
(1,··· ,k)(β) is a union of the following five types of components.

(37.62.1) Mmain
(i+1,··· ,i+`) (β) ×N ′

(0,··· ,i,∗,i+`+1,··· ,k). (0 ≤ i, 0 ≤ `, i + ` ≤ k.)

(37.62.2) Mmain
(i+1,··· ,i+`)(β0) ×N ′

(1,··· ,i,∗,i+`+1,··· ,k)(β). (0 ≤ i, 1 ≤ `, i + ` ≤ k.)

(37.62.3) N ′
(1,··· ,`)(β) ×N ′

(`+1,··· ,k). (1 ≤ ` ≤ k − 1.)

(37.62.4) N ′
(1,··· ,`) ×N ′

(`+1,··· ,k)(β). (1 ≤ ` ≤ k − 1.)

(37.62.5)
(∏m

i=1 N ′
(`i−1+1,··· ,`i)

)
× Mmain

m+1(β), where 0 = `0 < `1 < · · · < `m =
k − 1.
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See Figures 37.1 - 37.4.

Figure 37.1 (37.62.1)

Figure 37.2 (37.62.2)
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Figure 37.3 (37.62.3)

Figure 37.4 (37.62.5)

Remark 37.63. When k + 1 = 2, Lemma 37.61 implies

∂N ′
(1)(β) =

(
Mmain

∅ (β) × (N ′
(1,∗) ∪N ′

(∗,1))
)
∪

(
N ′

(1) ×Mmain
1+1 (β)

)
.

It corresponds to the formula

(d ◦ f1,β − f1,β ◦ d)(x) = (−1)deg′ xf2(x,m0,β(1)) + f2(m0,β(1), x) − mdR
1,β(f1(x)).

Proof of Lemma 37.61. We remark that an element ((Σ, ~z), (uα), (ρα)) of

Mmain
k+1 ({Jρ}ρ : β; top(ρ))
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is on the boundary if ρα = 0 or ρα = 1 for some α. (Other boundary components
cancel one another in the same way as (19.9.1) cancels (19.9.2).)

The case ρα = 1 for some α are divided into two cases. One is the case ρα0 = 1
where α0 is as in (37.57). The other is ρα0 6= 1.

If we take the quotient of the totality of elements of ((Σ, ~z), (uα), (ρα)) with
ρα0 = 1 by the equivalence relation ∼, then we obtain (37.62.5). From the other
case ρα = 1, ρα0 6= 1 we obtain (37.62.3) or (37.62.4) after taking the quotient by
∼.

Let us consider the case ρα = 0 for some α. If ρα0 = 0, we obtain (37.62.1). (We
use the fact that the equivalence relation ∼ is a version of the one that appeared in
(33.44).) If ρα = 0 for some α but ρα0 6= 0, then we obtain (37.62.2). The proof of
Lemma 37.61 is complete. ¤

The rest of the proof of Lemma 37.55 is a straightforward analog of §33.5. Let
Pi be the chains in C(L; ΛR

0,nov). We remark that there is an evaluation map

ev = (ev1, · · · , evk, ev0) : N ′
k+1(β) → Lk+1.

We put

(37.64) N ′
k+1(β;P1, · · · , Pk) = N ′

k+1(β) (ev1,··· ,evk) ×Lk (P1 × · · · × Pk).

Then N ′
k+1(β;P1, · · · , Pk) has a Kuranishi structure and carries the evaluation map

ev0 : N ′
k+1(β;P1, · · · , Pk) → L.

Now we have the boundary of N ′
k+1(β;P1, · · · , Pk)

∂N ′
k+1(β;P1, · · · , Pk) = (∂N ′

k+1(β))(ev1,··· ,evk) ×Lk (P1 × · · · × Pk)

+
k∑

j=1

±N ′
k+1(P1 × · · · × ∂Pj × · · · × Pk).

Here the terms in the summation sign of this boundary correspond to(
f
(1)
1 ◦ d

)
(P1, · · · , Pk).

The first term of the boundary, which now is the same as

(d ◦ f
(1)
1 − f

(1)
1 ◦ d)(P1, · · · , Pk),

can be described using Lemma 37.61. More precisely, the five types (37.62.1)-
(37.62.5) of the boundary components of N ′

k+1(β) give rise to the corresponding
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boundary components (37.65.1)-(37.65.5) of N ′
k+1(β;P1, · · · , Pk) given below, re-

spectively.
For each given A = (a1, · · · , am) ∈ (k∗)m, we define N ′

A(β;Pa1 , · · · , Pam
) by the

same way as (37.64). Then we define

(37.65.1) N ′
(1,··· ,i,∗,i+`+1,··· ,k) ev ×Lk−`+1 (P1 × · · ·Pi × Qi+1,` × Pi+`+1 · · · × Pk)

where we define

Qi+1,` = m`,β(Pi+1, · · · , Pi+`) = ev0,∗ (M`+1(β) ×L` (Pi+1, · · · , Pi+`)) ,

and

(37.65.2) N ′
(1,··· ,i,∗,i+`+1,··· ,k)(β;P1, · · · , Pi, Ri+1,`, Pi+`+1, · · · , Pk)

where we define
Ri+1,` = m`(Pi+1, · · · , Pi+`),

(37.65.3) N ′
(1,··· ,`)(β;P1, · · · , P`) × (N ′

(`+1,··· ,k) ev ×Lk−` (P`+1 × · · · × Pk)),

(37.65.4) (N ′
(1,··· ,`) ev ×L` (P1 × · · · × P`)) ×N ′

(`+1,··· ,k)(β;P`+1, · · · , Pk),

(37.65.5)

Mmain
m+1(β) ×Lm

m∏
i=1

(
N ′

(`i−1+1,··· ,`i) ev ×L`i−`i−1 (P`i−1+1 × · · · × P`i)
)

.

Now we take a family of sections tfβ ,k+1 of some Kuranishi neighborhoods of
N ′

k+1(β;P1, · · · , Pk) inductively over k so that they are compatible with the follow-
ing (families of) sections :

(37.66.1) The family of sections constructed at the earlier stage of induction.
(37.66.2) The W` parameterized family t

(P1,··· ,P`)
f,`+1 of sections defined in Lemma

33.54 in §33.5. It was used to define f`(P1, · · · , P`).
(37.66.3) The W parameterized family s of sections on Mmain

m+1(β)+ used to define
mdR

m,β .

(37.66.4) The multi-section s
(P1,··· ,Pm)
m,m+1 of Mmain

m+1(β;P1, · · · , Pm) used to define
mm,β .

Existence of such sections t
(P1,··· ,Pk)
fβ ,k+1 is a consequence of the standard transversality

theorem.
In the way similar to the definition of f, we can use this family of sections

t
(P1,··· ,Pk)
fβ ,k+1 on N ′

k+1(β;P1, · · · , Pk) to obtain fβ , which we now explain.
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Let our family tfβ ,k+1 be parameterized by W+
k = Wk × W0 × W , where Wk is

as in §33.5, W0 is as in the beginning of this subsection, and the additional factor
W is a manifold of sufficiently large dimension. On each Kuranishi neighborhood
Vj of Nk+1(β;P1, · · · , Pk) we consider the zero set

Xj = {(x,w) ∈ Vj × W+
k | tfβ ,k+1(x, w) = 0}.

We may choose tfβ ,k+1 so that Xj is a smooth manifold. (Note in our case the
automorphism group is trivial.) By gluing the families obtained for various j’s,
we obtain a smooth manifold X with the projection map π : X → W+

k and the
evaluation map ev0 : X → L. We then define

(37.67) fk,β(β;P1, · · · , Pk) = ev0!(π
∗ωW+

k
)

where ev0! is the integration along the fiber and ωW+
k

is a smooth probability mea-
sure on W+

k . Then we put

(37.68) fk = fk +
∑

β

eµL(γ)/2T fk,β .

We now prove that (37.68) defines a filtered A∞ homomorphism modulo T 2. We will
use Lemma 33.10 and the description (37.65) of the boundary of Nk+1(β;P1, · · · , Pk)
for this purpose. Observe that (37.65.1)-(37.65.5) give the following terms

(37.69.1) fk+`−1(P1, · · · ,m`,β(Pi+1, · · · , Pi+`), · · · , Pk),
(37.69.2) fk+`−1,β(P1, · · · , m`(Pi+1, · · · , Pi+`), · · · , Pk),
(37.69.3) f`,β(P1, · · · , P`) ∧ fk−`(P`+1, · · · , Pk),
(37.69.4) f`(P1, · · · , P`) ∧ fk−`,β(P`+1, · · · , Pk),

(37.69.5) mdR
m,β

(
f`1(P1, · · · , P`1), · · · , fk−`m−1

(P`m−1+1, · · · , Pk)
)

,

respectively. Thus we conclude that the sum of the terms (37.69.1), . . . ,(37.69.5)
is equal to

(d ◦ f
(1)
1 − f

(1)
1 ◦ d)(P1, · · · , Pk).

This is implies that f is a filtered A∞ homomorphism modulo T 2. The proof of
Lemma 37.55 is now complete. (We remark that the sign can be handled in the
same way as in §53.) ¤
Remark 37.70. We remark that the proof of Proposition 37.38 works not only for
S1×Sn but for the general semi-positive Lagrangian submanifolds with no essential
change and can be used to study the leading order term of the filtered L∞ structure.

37.5. Dependence of the filtered A∞ algebra on perturbations : An
example.
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In §37.3, we have used de Rham theory to simplify the discussion on the contri-
bution from the (classical) rational homotopy type of L. Since our constructions
in the previous chapters are based on the singular chains, it is not manifest how
the two constructions are related to each other. Therefore we illustrate a direct use
of the singular chains in our computation of (the leading term of) the A∞ struc-
ture. Along the way, we also demonstrate, by an example, that our A∞ structure
itself really depends on perturbations, although its homotopy type does not. (See
Chapter 4.)

Consider the Lagrangian submanifold L ⊂ Cn

L ∼ S1 × Sn with µL(γ) = 2.

Then M0(β) is a compact smooth manifold with dimM0(β) = n. We also assume
that the evaluation map

ev0 : M1(β) → L ∼ S1 × Sn

pushes down to the diffeomorphism on the quotient

M0(β) ∼= M1(β)/S1 → (S1 × Sn)/S1 ∼= Sn,

where the S1-actions on both sides are the obvious ones. Then each x ∈ Sn has
a unique correspondence with a holomorphic map (D2, ∂D2) → (Cn+1, L) whose
boundary value is the horizontal loop given by `x(t) = (t, x) (upto the reparameteri-
zation). (We remark that at least in the homology level such an example indeed can
be constructed from the example mentioned in (37.2) which is constructed from the
standard embedding S1 → C and the Whitney Lagrangian immersion Sn → Cn.)

Then, without perturbation, Mmain
k+1 (β) becomes a compact smooth manifold

(with boundary and corners) for a generic choice of almost complex structure, and
in fact we have

Mmain
k+1 (β) ∼= Sn × S1 × Ck.

Under this identification, the the evaluation map ev = (ev1, · · · , evk, ev0) can be
written as

(37.71) ev((x, t0), (t1, · · · , tk)) = ((x, t0 + t1), · · · , (x, t0 + tk), (x, t0)).

Let P (s) = {s} × Sn be a cycle representing the cohomology class a1. (Precisely
speaking we fix a simplicial decomposition of Sn and regard P (s) as a singular
chain.) If s1, · · · , sk are all distinct, we have

(37.72)
mk,β(P (s1), · · · , P (sk))) = ev0,∗(Mmain

k+1 (β) ×Lk (P (s1) × · · · × P (sk)))

=
{

[(sk, s1) × Sn] if (s1, · · · , sk) respects the cyclic order of S1,
0 otherwise.
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Here (sk, s1) denotes the arc between sk and s1 i.e.,

(sk, s1) := {s ∈ S1 | (s1, · · · , sk, s) respects the cyclic order}.

By symmetrizing mk,β , we obtain

(37.73) lk,β(P (s1), · · · , P (sk))) =
1
k!

[S1 × Sn].

This is consistent with Theorem 37.32.
It is more difficult to study the case where si = sj for some i 6= j. This is be-

cause transversality breaks down and we need to perturb the moduli chain. For
simplicity, we consider only the case k = 2 and s1 = s2 = s. In this case,
the fiber product Mmain

2+1 (β) ×Lk (P (s) × P (s)) is not transversal. So to define
m2,β(P (s), P (s))) we need to perturb the moduli chain (Mmain

2+1 (β), ev). Since we
know the space Mmain

2+1 (β) itself is smooth, we will perturb just the evaluation map
ev = (ev1, ev2, ev0) : We choose δ with its absolute value sufficiently small and
perturb ev = (ev1, ev2, ev0) to

evδ((x, t0), (t1, t2)) := ((x, t0 + t1 + δ), (x, t0 + t1 − δ), (x, t0))

near t1 = t2. We denote by mδ
2,β the corresponding perturbed m2,β . Then in the

limit δ → 0, the chain mδ
2,β(P (s), P (s))) has the formula

(37.74) mδ
2,β(P (s), P (s))) =

{
[S1 × Sn] if δ > 0 and δ → 0,

0 if δ < 0 and δ → 0.

This, in particular, demonstrates that different perturbations lead to different A∞
operators m. For each of the two perturbations, the operator is defined over Z. Its
average, which however is not defied over Z, gives a result consistent with Theorem
37.32.

Let m>0
∗ and m<0

∗ be the operations defined by the above perturbation with
δ > 0 and δ < 0, respectively. As we already proved in Chapter 4, there exists a
filtered A∞ homomorphism f : (C(L; Λ0,nov),m>0

∗ ) → (C(L; Λ0,nov),m<0
∗ ) that is

a homotopy equivalence. We now describe (a part of) f in this case, following the
construction of Chapters 4 and 7.

The key to the construction of an A∞ homotopy equivalence is the construc-
tion of an A∞ homomorphism between the classical parts, (C(L; Q), m>0

∗ ) and
(C(L; Q), m<0

∗ ). For this purpose, we need to understand the classical parts m<0
k ’s

of the A∞ homomorphism between them.
For k = 2, it turns out that we have

(37.75) m<0
2 (P (s), P (s)) = m>0

2 (P (s), P (s)) = 0.
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To see this, we recall the construction from §30 and the proof of (37.74). We
remark that the intersection P (s)∩P (s) = P (s) is not transversal since dim P (s) <
dimL. Therefore we need to choose a suitable perturbation of the moduli chains to
define which led us to the perturbed chains m<0

2 (P (s), P (s)) and m>0
2 (P (s), P (s)).

The perturbations should be consistent with that of [Mmain
2+1 (β), ev] given above :

More precisely speaking, we first perturb Mmain
2+1 (β0) to define m<0

2 and then choose
a perturbation of Mmain

2+1 (β) so that it is consistent with the definition of m<0
2,β .

Following the recipe in §30, we consider a pair of diffeomorphisms

(ϕ0,δ, ϕ1,δ) : L → L × L

given by
(ϕ0,δ(t, x), ϕ1,δ(t, x)) = ((t + δ, x), (t − δ, x)).

Then according to §30.3 we have

m>0
2 (P (s), P (s)) = {p ∈ L | ϕ0,δ(p) ∈ P (s), ϕ1,δ(p) ∈ P (s)}

for δ > 0 and similarly for δ < 0. It easily follows that

m>0
2 (P (s), P (s)) = 0 = m<0

2 (P (s), P (s)).

Now to construct an A∞ homomorphism

(C(L; Q), m>0
∗ ) → (C(L; Q), m<0

∗ ),

we need to take a homotopy between the two perturbations, one corresponding to
(ϕ0,δ, ϕ1,δ) and the other corresponding to (ϕ0,−δ, ϕ1,−δ) for δ > 0. The obvious
choice of such a homotopy is H : L × [−1, 1] → L × L defined by

(p, u) 7→ (ϕ0,uδ(p), ϕ1,uδ(p)).

By the definition of the map f2 which is induced by H, we obtain

f2(P (s), P (s)) = {p ∈ L | ∃u ∈ [−1, 1], H(p, u) ∈ P (s) × P (s)}

which gives rise to
f2(P (s), P (s)) = [P (s)].

Note we do not need to perturb moduli chain (Mmain
1+1 (β), ev) to define the map

m1,β . This is because it follows from the formula (37.71) that the fiber product

Mmain
1+1 (β) ×L P
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is always transversal for any chain P ⊂ L. In particular, this leads to the identity
m>0

1,β = m<0
1,β and allows us to choose f1 = id for the map f1. We also derive

m1,β(P (s)) = [S1 × Sn]

from (37.71).
Combining all these, we obtain the identities

(37.76)

m>0
2,β(f1(P (s)), f1(P (s)))

= m>0
2,β(P (s), P (s)) = [S1 × Sn]

= m1,β(f2(P (s), P (s))) + m<0
2,β(f1(P (s)), f1(P (s))).

The identity between the first line and the last in (37.76) is precisely the one required
for f to be a filtered A2 homomorphism modulo T 2.

37.6. Further study of Floer theory of S1 × Sn ⊂ Cn+1.

We next explain some ideas how one can improve the proofs of Theorems 37.30
and 37.32 and obtain additional information on the integer λ given in (37.33) and
others.

We recall the definition of l+k+1,β from (37.26). The following information can be
easily read off from Lemma 37.41, 37.42 and 37.44.

Proposition 37.77. Let L ⊂ Cn+1 be a Lagrangian submanifold which is homeo-
morphic to S1 × Sn. Then l+k+1,β ≡ 0 mod T 2 unless one of the following alterna-
tives holds :

(1) µL(γ) = 2,
(2) n is odd and µL(γ) = n + 1,
(3) n is even and µL(γ) = 2 − n.

Proof. When n = 1, the assertion is obvious. So we may assume that n 6= 1. Let
γ = ∂β ∈ π1(L) be the boundary class of β. Based on Proposition 37.38, it suffices
to show that ev∗([M0(β)]) ∈ HµL(γ)+n−2(L(L; γ)/S1; Q) is zero otherwise.

Suppose to the contrary that ev∗([M0(β)]) is non-zero. According to Lemmas
37.41, 37.42 and 37.44, the homology group Hm(L(L; γ)/S1; Q) is nonzero only for

m = k(n − 1), or k(n − 1) + n for k ∈ Z≥0 when n is odd,

and

m = 0, (2` + 1)(n − 1), or 2`(n − 1) + n for ` ∈ Z≥0 when n is even.
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Therefore it is easy to see that one of the three possibilities must occur if µL(γ) +
n−2 ≤ 2n−1. On the other hand if µL(γ)+n−2 > 2n−1, we have µL(γ) ≥ n+2
: This has been already ruled out in Theorem 37.4. This finishes the proof. ¤

Possibilities (1), (2) are the cases discussed in Theorems 37.21 and 37.22 and
indeed occur as shown in (37.1), (37.2) and Lemma 37.3. (Compare Remark 37.5
also.)

The discussion in the rest of this section will be brief the details of which will
be treated elsewhere. We will study the first nonzero term of the l+k+1 particularly
for the case where the homology class ev∗([M0(β)]) ∈ HµL(γ)+n−2(L(L; γ)/S1; Q)
is zero.

‘Proposition 37.78’. Suppose that n is odd and `µL(γ) = n + 1 with ` 6= 1, n+1
2 .

Then, we have :

(37.79) l+k+2(a
k
1 , an, an+1) ≡ ± 1

k!
e(n+1)/2`kT ` mod T `+1.

Here the ± is independent of k. Moreover the left hand side is independent of the
permutation of the variables modulo T `+1. All the other operations are zero modulo
T `+1.

We have the same conclusion when µL(γ) = 2 = (n+1)/` and l+k+1(a
k
1 , an+1) ≡ 0

mod T 2.

Sketch of the proof. We proved that ev∗([M0(β)]) ∈ HµL(γ)+n−2(L(L; γ)/S1; Q) is
zero in the course of the proof of Proposition 37.77 under the given hypotheses
on µL(γ). We assume that ev∗([M0(β)]) is zero not only as a homology class but
also as a chain. Then by the same argument as the proof of Lemma 37.36, we can
prove that M0(2β) is a manifold without boundary for a generic almost complex
structure. Its homology class lies in H2µL(γ)+n−2(L(L; γ)/S1; Q) and hence is zero
by the degree reason, unless ` = 2. We assume that ev∗([M0(2β)]) is zero as a
chain. Using this assumption, we can continue. Then (under these assumptions)
we find a manifold without boundary M0(`β) which represents a homology class in
H2n−1(L(L; `γ)/S1; Q). This is because H∗(L(L; `γ)/S1; Q) = 0 for ∗ = n + 1, n +
2, · · · , 2n− 2 and mµL(γ) + n− 2 ∈ {n + 2, n + 4, · · · , 2n− 2} for m = 1, · · · , `− 1.

Using M0(`β) we can repeat the proof of Theorem 37.30 and obtain the following
conclusion : Define λ by

(37.80) ev∗([M0(`β)]) = λI((x ⊗ zn)∗).

(Compare this with (37.40) and (37.45).) We remark that in our case I : L(Sn) →
L(L; `γ)/S1 is not a homotopy equivalence. (Compare Lemma 37.41). However it
induces an isomorphism on homology group over Q.

We first prove

(37.81) l+k+2(a
k
1 , an, an+1) ≡ ± λ

k!
e(n+1)/2`kT ` mod T `+1.
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By the linearity, it suffices to consider the case λ = 1 in (37.80). Then we may
assume in addition that ev∗([M0(`β)]) is realized by P × S1 where P is a chain on
L(Sn) as in the proof of Lemma 37.47. Then

evk+1 : M1(`β) × (S1)k+1 → (S1 × Sn)k+1

is given as

(37.82)
evk+1((x, s), (t1, · · · , tk+1))

= ((`x(t1), s + `t1), · · · , (`x(tk+1), s + `tk+1), (`x(1), s)).

We remark that (37.82) is slightly different from (37.50). Namely we have s + `ti
in place of s+ ti in the right hand side. We use (37.82) to show (37.81) in the same
way as the proof of Lemma 37.47.

We next show λ = 1. This follows from l1(αn) = λe(n+1)/2T `a0 and Proposition
37.15.

Therefore we have proved (37.79).

Thus, the proof of Proposition 37.78 is finished under the assumptions mentioned
above. However one of the chains M0(mβ) in HmµL(γ)+n−2(L(L;mγ)/S1; Q), which
is zero as a homology class, may be nonzero as a chain. Therefore to handle the
fictitious assumptions in the above proof, we need to work everything in the chain
level and to inductively find a sequence of chains on the loop space that bounds
the cycles ev∗([M0(mβ)]) for various m’s. This inductive argument is very similar
to those presented in the earlier chapters of this book. The only difference is that
we have constructed bounding chains as the chains on the manifold L itself in this
book, while we now need to do a similar construction on the loop space of L. An
outline of the details of this construction is given in [Fuk05II] and the full details
thereof will be provided in [Fuk07II]. ¤

We remark that ‘Proposition 37.78’ also implies that the sign in (37.17.1) coin-
cides with sign in (37.17.2).

We next consider the case when n is even.

‘Proposition 37.83’. The possibility (37.12) does not occur.

Sketch of the proof. We prove this by contradiction. Suppose to the contrary that
(37.12) occurs. Then, by the argument in the proof of Theorem 37.4, we have
δ2 = 0. This means that ev∗([M0(β)]) is zero as a homology class. We assume
that it is zero as a chain. Now we repeat the process similar to the sketch of the
proof of ‘Proposition 37.78’ until we arrive in the first nontrivial homology class
ev∗([M0(mβ)]). On the other hand we have the formula (37.12),

δ
(n)

(n+2)/2(an) = ±a1
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which we proved under the assumption (37.12). This implies that the homology
class ev∗([M0(((n + 2)/2 − 1)β)]) ∈ H2n−2(L(L; γ)/S1; Q) is nonzero. This is
however impossible since H2n−2(L(L; γ)/S1; Q) = 0 by Lemmas 37.41, 37.42 and
37.44 unless n = 2. (We remark that n is even in our situation. The nontriviality
of the differential in Lemma 37.44 plays a crucial role here.) In case that n = 2, we
find that H2(L(S1 × S2; γ)/S1; Q) ∼= H2(L(S2); Q) is generated by 1 ⊗ z2. We can
use it to show that m1,β(an) = 0 again. The current proof is incomplete because
of the same reason as that of ‘Proposition 37.78’ is. (But it is rigorous in case
n = 2.) ¤

‘Proposition 37.84’. When n is even, λ in Theorem 37.32 satisfies λ = ±1.

Proof. By ‘Proposition 37.83’ and Proposition 37.10, we have δ
(1)

2 (a1) = ±a0. This
implies λ = ±1 in Theorem 37.32. ¤

§38. Anti-symplectic involutions.

In the rest of this chapter we work in the following situation. Let (M,ω) be
a compact symplectic manifold. An involution τ of (M,ω) is assumed to be anti-
symplectic. Namely we assume

(38.1) τ∗(ω) = −ω.

We also assume that the fixed point set L = Fix τ of τ is non-empty. It is then
easy to see that L is a Lagrangian submanifold.

Let Jω be the set of all ω compatible almost complex structures, and J τ
ω be its

subset consisting of almost complex structures J satisfying

(38.2) τ∗J = −J.

Such an almost complex structure J is said to be τ -anti-invariant.

Lemma 38.3. The space J τ
ω is non-empty and contractible. It becomes an infinite

dimensional (Frechet) manifold.

Proof. For given J ∈ J τ
ω , its tangent space TJJ τ

ω consists of sections Y of the bundle
End(TM) whose fiber at p ∈ M is the space of linear maps Y : TpM → TpM such
that

Y J + JY = 0, ω(Y v,w) + ω(v, Y w) = 0, τ∗Y = −Y.
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Note that the second condition means that JY is a symmetric endomorphism with
respect to the metric gJ = ω(·, J ·). It immediately follows that J τ

ω becomes a
manifold. The fact that J τ

ω is non-empty (and contractible) follows from the polar
decomposition theorem by choosing a τ -invariant Riemannian metric on M . ¤

We recall Definition 5.17 where we introduce the Γ-equivalence relation ∼ and
the quotient group

Π(L) = π2(M,L)/ ∼

which is abelian. Then for each β ∈ Π(L), we defined the moduli space M(J ;β) as
the union ⋃

B∈β⊂π2(M,L)

M(J ;B).

We also recall that Mk+1,m(J ;β) is the set of all bordered stable maps of genus
zero representing the class β with k + 1 boundary and m interior marked points.
Let Mreg

k+1,m(J ;β) be its subsets consisting of all elements [((Σ, ~z, ~z+), w)] such that
Σ = D2. Here ~z = (z0, · · · , zk) are boundary marked points, and z+

1 , · · · , z+
m are

interior marked points. (See Definition 2.27.)
We now go back to our discussion. Let J ∈ J τ

ω . For a J holomorphic curve
w : (D2, ∂D2) → (M,L), u : S2 → M , we define w̃, ũ by

(38.4) w̃(z) = (τ ◦ w)(z), ũ(z) = (τ ◦ u)(z).

For [(D2, w)] ∈ Mreg(J ;β), [((D2, ~z, ~z+), w)] ∈ Mreg
k+1,m(J ;β) we define

(38.5) τ∗([(D2, w)]) = [(D2, w̃)], τ∗([((D2, ~z, ~z+), w)]) = [((D2,~z,~z
+
), w̃)],

where
~z = (z0, · · · , zk), ~z

+
= (z+

0 , · · · , z+
m).

For β = [w], we put τ∗β = [w̃]. Note if τ] : π2(M,L) → π2(M,L) is the homomor-
phism induced by τ then τ∗β = −τ]β. This is because z 7→ z is of degree −1. In
fact we have

τ∗(β) = β

on Π(L), since τ∗ preserves both energy and Maslov index.

Lemma 38.6. The definition (38.5) induces the maps

τ∗ : Mreg(J ;β) → Mreg(J ;β), τ∗ : Mreg
k+1,m(J ;β) → Mreg

k+1,m(J ;β),

which satisfy τ∗ ◦ τ∗ = id.

Proof. If (w, (z0, · · · , zk), (z+
1 , · · · , z+

m)) ∼ (w′, (z′0, · · · , z′k), (z′+1 , · · · , z′+m )), then there
exists ϕ ∈ PSL(2, R) = Aut(D2) such that w′ = w ◦ ϕ−1, z′i = ϕ(zi), z′+i = ϕ(z+

i ).
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We put ϕ(z) = (ϕ(z)). Then ϕ ∈ PSL(2, R) and w̃′ = w̃ ◦ ϕ−1, z′i = ϕ(zi),
z′+i = ϕ(z+

i ). The property τ∗ ◦ τ∗ = id is straightforward. ¤
We remark that the mapping ϕ 7→ ϕ, PSL(2, R) → PSL(2, R) is orientation

preserving.

In §44.1 Chapter 9, we will show that a choice of stable conjugacy class [V, σ] ∈
Spin(M,L) of relative spin structure on L induces an orientation on Mk+1,m(L;β)
for any given β ∈ Π(L). Hereafter we use this orientation to regard Mk+1,m(L;β)
being oriented as a space with Kuranishi structure. We write as Mk+1,m(L;β)[V,σ]

when we specify the stable conjugacy class of relative spin structure.
For an anti-symplectic involution τ of (M,ω), we will define the pull back, which

is denoted by τ∗[V, σ], of the stable conjugacy class of relative spin structure [V, σ]
in §44.5. Then from the definition of the map τ∗ in Lemma 38.6 we have

τ∗ : Mreg(J ;β)τ∗[V,σ] → Mreg(J ;β)[V,σ],

τ∗ : Mreg
k+1,m(J ;β)τ∗[V,σ] → Mreg

k+1,m(J ;β)[V,σ].

Note that if τ∗[V, σ] = [V, σ] as stable conjugacy classes, it is called a τ -relatively
spin structure (Definition 44.17). Thus if the relative spin structure is τ -relatively
spin, τ∗ defines an involution of the space with Kuranishi structure. (Sometimes,
we will also use the terminology “involution” for the case that the orientation on
the source space is opposite to one on the target, when no confusion can occur.)
The notion of the group action on the space with Kuranishi structure is defined
in §A1.3 Definition A1.45. It is easy to see that if L is spin, it is automatically
τ -relatively spin. See Remark 44.18.

Proposition 38.7. Let J ∈ J τ
ω . The map τ∗ : Mreg(J ;β)τ∗[V,σ] → Mreg(J ;β)[V,σ]

is orientation preserving if µL(β) ≡ 0 mod 4 and is orientation reversing if µL(β) ≡
2 mod 4.

We will prove this proposition in §47.2, Chapter 9 (Proposition 44.21). Here we
give some examples.

Example 38.8. (1) Consider the case of M = CPn, L = RPn. In this case, each
Maslov index µL(β) has the form

µL(β) = `β(n + 1)

where β = `β times the generator. We know that when n is even L is not orientable,
and so we consider only the case where n is odd. On the other hand, when n is odd,
L is relatively spin. The class st will be the generator of H2(CPn; Z2). Moreover
we will show in Proposition 44.19, §44.5 that RP 4n+3 (n ≥ 0) is τ -relatively spin,
(indeed, RP 4n+3 is spin), but RP 4n+1 (n ≥ 1) is not τ -relatively spin. Then using
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the above formula for the Maslov index, we can conclude from Proposition 38.7 that
the map τ∗ : Mreg(J ;β)[V,σ] → Mreg(J ;β)[V,σ] is always an orientation preserving
involution for any τ -relatively spin structure [V, σ] of RP 4n+3.

Of course, RP 1 is spin and so τ -relatively spin. The map τ∗ is an orientation
preserving involution if `β is even, and an orientation reversing involution if `β is
odd.

(2) Let M be a Calabi-Yau 3-fold and L ⊂ M be the set of real points (i.e.,
the fixed point set of an anti-holomorphic involutive isometry). In this case, L is
orientable (because it is a special Lagrangian) and spin (because any orientable
3-manifold is spin). Furthermore µL(β) = 0 for any β ∈ π2(M,L). Therefore
Proposition 38.7 implies that the map τ∗ : Mreg(J ;β)[V,σ] → Mreg(J ;β)[V,σ] is
orientation preserving for any τ -relatively spin structure [V, σ].

We next include markings. We consider the moduli space Mreg
k+1,m(J ;β).

Lemma 38.9. The map τ∗ : Mreg
k+1,m(J ;β)τ∗[V,σ] → Mreg

k+1,m(J ;β)[V,σ] is orienta-
tion preserving if and only if µL(β)/2 + k + 1 + m is even.

Proof. Admitting Proposition 38.7, we prove Lemma 38.9. Let us consider the
diagram :

(S1)k+1 × (D2)m c−−−−→ (S1)k+1 × (D2)m

inclusion

x inclusion

x
((S1)k+1 × (D2)m)0

c−−−−→ ((S1)k+1 × (D2)m)0y y
M̃reg

k+1,m(J ;β)τ∗[V,σ] Lemma 38.9−−−−−−−→ M̃reg
k+1,m(J ;β)[V,σ]

forget

y forget

y
M̃reg(J ;β)τ∗[V,σ] Proposition 38.7−−−−−−−−−−→ M̃reg(J ;β)[V,σ]

Diagram 38.1.

Here c is defined by c(z0, z1 · · · , zk, z+
1 , · · · , z+

m) = (z0, z1, · · · , zk, z+
1 , · · · , z+

m) and
forget are the forgetful maps of marked points. ((S1)k+1 × (D2)m)0 is the set of all
c(z0, z1 · · · , zk, z+

1 , · · · , z+
m) such that zi 6= zj , z+

i 6= z+
j for i 6= j.

Lemma 38.9 then follows from Proposition 38.7 and the fact that Z2 action of
PSL(2, R) is orientation preserving. ¤

We will next extend τ∗ to the compactification and define a continuous map

(38.10) τ∗ : Mk+1,m(J ;β)τ∗[V,σ] → Mk+1,m(J ;β)[V,σ].
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Proposition 38.11. The map τ∗ : Mreg
k+1,m(J ;β)τ∗[V,σ] → Mreg

k+1,m(J ;β)[V,σ] ex-
tends to a map τ∗, denoted by the same symbol, as in (38.10). It preserves orienta-
tion if and only if µL(β)/2+k+1+m is even. In particular, if [V, σ] is a τ -relatively
spin structure, it can be regarded as an involution on the space Mk+1,m(J ;β)[V,σ]

with Kuranishi structure.

Proof. We define τ∗ by a double induction over E(β) and k. Namely we define an
order on the set of triples (β, k,m) by the relation

(38.12.1) E(β′) < E(β).
(38.12.2) E(β′) = E(β), k′ < k.

With respect to this order, we will define the map (38.10) for (β, k,m) under the
assumption that the map is already defined for all (β′, k′,m′) smaller than (β, k,m).

Let [((Σ, ~z, ~z +), w)] ∈ Mk+1,m(J ;β). We first assume that Σ has a sphere bubble
S2 ⊂ Σ. We remove it from Σ to obtain Σ0. We add one more marked point to Σ0

at the location where the sphere bubble used to be attached. We then obtain an
element

[((Σ0, ~z, ~z(0)), w0)] ∈ Mk+1,m+1−`(J ;β′).

Here ` is the number of marked points on S2. By the induction hypothesis, τ∗ is
already defined on Mk+1,m+1−`(J ;β′) since E(β) > E(β′). We denote

τ∗([((Σ0, ~z, ~z(0)), w0)]) = [((Σ′
0, ~z

′, ~z(0)′), w′
0)].

We define v|S2 : S2 → M by
v(z) = w|S2(z).

We assume that the singular point of S2, i.e., the point in Σ0 ∩ S2 corresponds to
0 ∈ C∪ {∞} ∼= S2. We also map ` marked points on S2 by z 7→ z whose images we
denote by ~z(1) ∈ S2. We then glue ((S2, ~z(1)), w̃) to ((Σ′

0, ~z
′, ~z(0)′), w̃) at the point

0 ∈ S2 and at the last marked point of (Σ0, ~z, ~z(0)) and obtain a curve which is to
be the definition of τ∗([((Σ, ~z, ~z +), w)]).

Next suppose that there is no sphere bubble on Σ. Let Σ0 be the component
containing the 0-th marked point. If there is only one irreducible component of
Σ, then τ∗ is already defined there. So we assume that there is at least one disc
component other than Σ0. Then Σ is a union of Σ0 and Σi for i = 1, · · · ,m (m ≥ 1).
We regard the unique point in Σ0∩Σi for i = 1, · · · ,m as marked points of Σ0. Here
each of Σi itself is a union of disc components and is connected. We also regard the
point in Σ0 ∩Σi as 0 ∈ D2 ∼= H∪{∞} where D2 is the irreducible component of Σi

joined to Σ0, and also as one of the marked points of Σi. This defines an element
[((Σi, ~z

(i), ~z (i)+), w(i))] for each i = 0, · · · ,m. By an easy combinatorics and the
induction hypothesis, we can show that τ∗ is already constructed on them. Now we
define τ∗([((Σ, ~z, ~z +), w)]) by gluing τ∗([((Σi, ~z

(i), ~z (i)+), w(i))]).
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We next consider Kuranishi structure on a neighborhood around the element
τ∗([((Σ, ~z, ~z +), w)]) in Mk+1,m(J ;β). We first observe that the map u 7→ ũ on the
moduli space of spheres defined in (38.4) can be regarded as an involution on the
space with Kuranishi structure, in the same way as the proof of Proposition 38.7.
Then we can show that (38.10) induces a map of the space with Kuranishi structure
by the same induction process as its construction. More precisely, we will prove
existence of an involution for Mk+1,m(J ;β) assuming that τ∗ induces involutions
on spaces with Kuranishi structures on Mk+1,m+1−`(J ;β′) for all (β′, k′,m′) smaller
than (β, k,m).

Let [((Σ, ~z, ~z +), w)] ∈ Mk+1,m(J ;β). If it is in Mreg
k+1,m(J ;β), we have defined

an involution on its Kuranishi neighborhood in Proposition 38.7. If Σ is not irre-
ducible, then [((Σ, ~z, ~z +), w)] is obtained by gluing some elements corresponding
to (β′, k′,m′) < (β, k,m). For each irreducible component, the involution of its
Kuranishi neighborhood is constructed by the induction hypothesis. A Kuranishi
neighborhood of [((Σ, ~z, ~z +), w)] is a fiber product of the Kuranishi neighborhoods
of the gluing pieces and the space of the smoothing parameters of the singular
points. By definition, our involution obviously commutes with the process to take
the fiber product. For the parameter space smoothing the interior singularities, the
action of the involution is the complex conjugation. For the parameter space of
smoothing boundary singularities, the action of involution is trivial. The analysis
we worked out in §29 of the gluing is obviously compatible with the involution.
Thus τ∗ defines an involution on Mk+1,m(J ;β) with Kuranishi structure.

The statement on the orientation follows from the corresponding statement on
Mreg

k+1,m(J ;β) of Lemma 38.9. ¤

We next restrict our maps to the main component of Mk+1,m(J ;β). We remark
that τ∗ : Mk+1,m(J ;β) → Mk+1,m(J ;β) does not preserve the main component for
k > 1. On the other hand the assignment given by

(38.13)
(w, (z0, z1, z2, · · · , zk−1, zk), (z+

1 , · · · , z+
m))

7−→ (w̃, (z0, zk, zk−1, · · · , z2, z1), (z+
1 , · · · , z+

m))

respects the counter-clockwise cyclic order of S1 = ∂D2 and so preserves the main
component, where w̃ is as in (38.4). Therefore we consider this map instead which
we denote by

τmain
∗ : Mmain

k+1,m(J ;β)τ∗[V,σ] → Mmain
k+1,m(J ;β)[V,σ].

Lemma 38.14. The map τmain
∗ defines a map between the spaces with Kuranishi

structures and satisfies τ∗ ◦ τ∗ = id. In particular, if [V, σ] is τ -relatively spin, it
defines an involution of the space with Kuranishi structure.

The proof is the same as the proof of Propositions 38.7 and 38.11 and so omitted.
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We now have the following commutative diagram,

(S1)k+1 × (D2)m c′−−−−→ (S1)k+1 × (D2)m

inclusion

x inclusion

x
((S1)k+1 × (D2)m)00

c′−−−−→ ((S1)k+1 × (D2)m)00y y
M̃main

k+1,m(J ;β)τ∗[V,σ] τmain
∗−−−−→ M̃main

k+1,m(J ;β)[V,σ]

forget

y forget

y
M̃(J ;β)τ∗[V,σ] τ∗−−−−→ M̃(J ;β)[V,σ]

Diagram 38.2.

where c′ is defined by c′(z0, z1 · · · , zk, z+
1 , · · · , z+

m) = (z0, zk, · · · , z1, z
+
1 , · · · , z+

m)
and forget are the forgetful maps of marked points. ((S1)k+1 × (D2)m)00 is the
open subset of (S1)k+1 × (D2)m consisting of the points such that all zi’s and z+

j ’s
are distinct respectively.

Let Revk : Lk+1 → Lk+1 be the map defined by

Revk(x0, x1, · · · , xk) = (x0, xk, · · · , x1).

It is easy to see that

(38.15) ev ◦ τ∗ = Revk ◦ ev.

We remark that Revk = id, and τmain
∗ = τ∗ for k = 0, 1.

Let P1, · · · , Pk be chains on L. By taking the fiber product and using (38.13),
we obtain a map

(38.16) τmain
∗ : Mmain

k+1,m(J ;β;P1, · · · , Pk)τ∗[V,σ] → Mmain
k+1,m(J ;β;Pk, · · · , P1)[V,σ]

which satisfies τmain
∗ ◦ τmain

∗ = id. We put

ε = µL(β)/2 + k + 1 + m +
∑

1≤i<j≤k

deg′ Pi deg′ Pj .

Lemma 38.17. The map (38.16) preserves orientation if ε is even, and reverses
orientation if ε is odd.

The proof of Lemma 38.17 is in §47.2, Chapter 9 (Proposition 44.23).
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Now we are ready to give the proofs of Theorem 34.20 and Proposition 34.25.

Proof of Theorem 34.20. We can take a system of multi-sections s on
Mmain

k+1 (J ;β;P1, · · · , Pk) which is preserved by (38.16). This is possible since (38.16)
is an automorphism of order 2. (Namely we take quotient by Lemma A1.49, take
a perturbed multi-section of the quotient, and lift it.) Theorem 34.20 then is an
immediate consequence of the definition of the operator mk and Lemma 38.17. (We
remark that there may be a fixed point of (38.16). But this does not cause any
problem as far as we work with multi-section and study virtual fundamental chain
over Q.) ¤
Proof of Proposition 34.25. Let (N,ω) be a symplectic manifold, M = N ×N , and
ωM = ωN⊕(−ωN ). We consider τ : M → M , τ(x, y) = (y, x). Then L = N = Fix τ .
Let JN be a compatible almost structure on N , and JM = JN ⊗ 1 − 1 ⊗ JN . The
almost complex structure JM is compatible with ωM . Let v : S2 → N be a JN -
holomorphic map. We fix 3 marked points 0, 1,∞ ∈ S2 = C ∪ {∞}. Then we
consider the upper half plane H ⊂ {∞} ⊂ C∪{∞} and define the map I(v) : H → M
by

I(v)(z) = (v(z), v(z)).

Identifying (H, (0, 1,∞)) with (D2, (−1, 1,
√
−1)) with (−1, 1,

√
−1) ∈ ∂D2, we ob-

tain a map from (D2, ∂D2) to (M,N) which we also denote by I(v). One can
easily check the converse : for any given map JM -holomorphic w : (D2, ∂D2) ∼=
(H, R ∪ {∞}) → (M,N) = (N × N, ∆N ), the assignment

v(z) =
{

w(z) for z ∈ H
τ ◦ w(z) for z ∈ C with z ∈ H

defines a JN -holomorphic sphere on N . Therefore the map v 7→ I(v) gives an iso-
morphism between the moduli spaces of JN -holomorphic spheres and JM -holomorphic
discs with boundary in N . We can easily check that it is induced by the isomorphism
of Kuranishi structures. Proposition 34.25 follows. ¤
Proof of Theorem N. Let L be as in Theorem N. By Theorem 34.20 we have

m0,β(1) = −m0,β(1) = 0

for all β ∈ Π(L) and hence M(L; Q) 6= ∅.
On the other hand, c1(M) = 0 implies µL = 0. (Recall that L = Fix τ .)

Therefore the conclusion follows from Theorem 24.21. ¤
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§39. Generic invariant almost complex structure.

In this section we show that for L = Fix τ the transversality result in Chapter 7
and §35 can be proved using only the τ -anti-invariant J ’s :

τ∗J = −J.

We recall that a symplectic manifold (M,ω) is said to be semi-positive if for each
α ∈ π2(M) we have either ω(α) ≤ 0 or c1(β) /∈ [3−n, 0]. We first prove the following
proposition.

Proposition 39.1. Let (M,ω) is a symplectic manifold and τ : M → M is anti-
symplectic involution.

(1) If M is semi-positive, then there exists J ∈ J τ
ω , such that every J-holomorphic

sphere v : S2 → M satisfies c1(M)[v] ≥ 0.
(2) If M is (positively spherically) monotone or dimR M = 4, then there exists

J ∈ J τ
ω , such that every non-constant J-holomorphic sphere v : S2 → M satisfies

c1(M)[v] > 0.

Proof. For the proof we need some notations. Let J ∈ J τ
ω .

Definition 39.2. A J-holomorphic sphere v : S2 → M is said to be τ -somewhere
injective if there exists z ∈ S2 such that

(39.3.1) v is an immersion at z,
(39.3.2) v(z) /∈ v(S2\{z}),
(39.3.3) v(z) /∈ τ(v(S2)).

Let w : (D2, ∂D2) → (M,L) a J-holomorphic disc. We say that it is τ -somewhere
injective if there exists z ∈ IntD2 such that

(39.4.1) w is an immersion at z,
(39.4.2) w(z) /∈ w(D2\{z}),
(39.4.3) w(z) /∈ τ(w(D2)).

Let v : S2 → M be a J-holomorphic sphere and w : (D2, ∂D2) → (M,L) a
J-holomorphic disc. Recalling the definition of the non-linear Cauchy-Riemann
operator denoted by ∂, we consider its linearizations along the map-direction

(39.5) Dv∂ : Γ(S2, v∗TM) → Γ(S2,Λ0,1 ⊗ v∗TM)

and

(39.6) Dw∂ : Γ((D2, ∂D2), (w∗TM,w|∗∂D2(TL))) → Γ(D2,Λ0,1 ⊗ w|∗∂D2TM).
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Lemma 39.7. For generic J ∈ J τ
ω , (39.5) is surjective for any τ -somewhere in-

jective sphere v and (39.6) is surjective for all τ -somewhere injective disc w.

Proof. The proof is a minor modification of that of [McD87]. Let v : S2 → M be a
τ -somewhere injective J-holomorphic sphere. By considering the linearization of ∂
along the J-direction, we obtain a linear map

DJ∂ : TJJ τ
ω → Γ(S2,Λ0,1 ⊗ v∗TM).

To prove the first half of the statement, it suffices to show

Γ(S2,Λ0,1 ⊗ v∗TM) = Im Dv∂ + Im DJ∂

where the right hand side is the same as the image of the total linearization of ∂ at
(v, J).

Let z ∈ S2 be a point as in (39.3). Then we can choose a small neighborhood W
of v(z) in M such that

W ∩ τ(W ) = ∅

and a small neighborhood U of z in S2 that satisfies

W ∩ v(S2 \ U) = ∅, W ∩ τ(v(S2)) = ∅.

Denote by Jω(W ) the set of all compatible almost complex structures J ′ that coin-
cide with J outside W . (Note that elements of Jω(W ) may not be τ -anti-invariant.)
Then it follows from [McD87] that

(39.8) (DJ∂)(TJJω(W )) + Im(Dv∂) = Γ(S2,Λ0,1 ⊗ v∗TM).

We define a map S : Jω(W ) → J τ
ω by putting

S(J ′) =
{ −τ∗(J ′) on τ(W ),

J ′ outside τ(W )

for J ′ ∈ Jω(W ). Using the property W ∩ τ(W ) = ∅ of W , we can easily check
that S(J ′) is τ -anti-invariant. On the other hand, it follows from the property
τ(W ) ∩ v(S2) = ∅ that DJ∂ ◦ DS = DJ∂ at (v, J). Therefore

(DJ∂)(TJJω(W )) ⊂ (DJ∂)(TJJ τ
ω ).

Combining this with (39.8), we have proved

(DJ∂)(TJJ τ
ω ) + Im(Dv∂) = Γ(S2,Λ0,1 ⊗ v∗TM)

which is precisely what we wanted to prove. This finishes the proof for the spheres
v. The argument for τ -somewhere injective discs is similar and omitted. ¤
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Remark 39.9. McDuff proved that every J-holomorphic sphere is a branched
covering of somewhere injective sphere [McD87]. On the other hand, if we define
somewhere injectivity of J-holomorphic disc by (39.4.1) and (39.4.2), then it is not
the case in general that every J-holomorphic disc is branched covering of a some-
where injective disc. While analyzing the structure of the image of J-holomorphic
discs requires more delicate study given as in [KwOh00] (see [Lazz00] also), we do
not need the deep structure theorem in the proof of Proposition 39.1.

Now we go back to the proof of Proposition 39.1. We assume (M,ω) is semi-
positive. Let us take a compatible almost complex structure satisfying the con-
clusion of Lemma 39.7. Then the semi-positivity of M implies that there exists
no τ -somewhere injective J-holomorphic sphere v : S2 → M with c1(M)[v] < 0
because τ -somewhere injectivity implies somewhere injectivity. Note that in gen-
eral J-holomorphic sphere is not necessarily a branched covering of τ -somewhere
injective one. So we need some more argument to prove Proposition 39.1.

Let v : S2 → M be a J-holomorphic sphere satisfying c1(M)[v] < 0. Then v
cannot be τ -somewhere injective by Lemma 39.7 and by the semi-positivity of M .
(See [McD87].) If v is not somewhere injective either, we can find a somewhere
injective sphere v such that v is a (branched) covering of v. Evidently we have
c1(M)[v] < 0. Therefore, replacing v by v if necessary, we may and will assume
that v : S2 → M is somewhere injective. However v itself may not be necessarily
τ -somewhere injective.

Since v is somewhere injective, it is immersed away from a finite number of points
in S2. On the other hand, since it is not τ -somewhere injective, it follows that

τ(v(S2)) = v(S2).

Therefore τ : M → M induces an involution

τ̃ : S2 → S2

by the formula
v ◦ τ̃ = τ ◦ v.

Using the immersion property of v, one can check that τ̃ is smooth. Furthermore
it also satisfies T τ̃ ◦ j = −j ◦ T τ̃ , i.e., τ̃ defines an anti-holomorphic involution on
S2. (In this section we denote by Tf the differential of a map f .)

We consider the linearization map along the v-direction

(39.10) Dv∂ : Γ(S2, v∗TM) → Γ(S2,Λ0,1 ⊗ v∗TM).

Using τ and τ̃ , we define an involution I on Γ(S2, v∗TM) by

(39.11.1) (I(u))(z) = (Tτ)−1(u(τ̃(z))).
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An involution I on Γ(S2,Λ0,1 ⊗ v∗TM) is also defined by

(39.11.2) (I(α))(z) = (Tτ)−1 ◦ α(τ̃(z)) ◦ T τ̃ ,

where α(z) ∈ (Λ0,1 ⊗ v∗TM)z is regarded as an anti-complex linear map : TzΣ →
Tv(z)M .

It is easy to see that Dv∂ commutes with I. Let

Γ(S2, v∗TM) = Γ(S2, v∗TM)+ ⊕ Γ(S2, v∗TM)−

be the decomposition of Γ(S2, v∗TM) according to the I-invariant and I-anti-
invariant parts. We define Γ(S2,Λ0,1⊗v∗TM)± in a similar way. Then the complex
(39.10) splits into

(39.12.1) (Dv∂)+ : Γ(S2, v∗TM)+ → Γ(S2,Λ0,1 ⊗ v∗TM)+,

(39.12.2) (Dv∂)− : Γ(S2, v∗TM)− → Γ(S2,Λ0,1 ⊗ v∗TM)−.

Lemma 39.13.
Index(Dv∂)+ = Index(Dv∂)−.

Here Index stands for the real index.

Proof. J induces isomorphisms on Γ(S2, v∗TM) and Γ(S2,Λ0,1 ⊗ v∗TM) by u 7→
J ◦ u and α 7→ J ◦α, respectively. (Here we are using the notations of (39.11).) We
denote them also by J . It is easy to see from (39.11) and the definition of J that
IJ = −JI. Hence J exchanges Γ(S2,Λ0,1 ⊗ v∗TM)+ and Γ(S2,Λ0,1 ⊗ v∗TM)−.

Moreover J commutes with the symbol of the operator Dv∂. (Note J may not
commutes with Dv∂.) The lemma then follows from the fact that the index depends
only on the symbol. ¤

Now we prove the following lemma.

Lemma 39.14. For a generic element J of J τ
ω , the operator (39.12.1) is surjective

for any somewhere injective sphere v (which may not necessarily be τ -somewhere
injective).

Proof. The lemma follows from Lemmas 39.7 and 39.13, if v is τ -somewhere injec-
tive. Therefore it remains to consider the case where v is not τ -somewhere injective.
Then there exists an anti-holomorphic involution τ̃ : S2 → S2 defined by τ ◦v = v◦τ̃
as before. This induces the splitting

Γ(S2,Λ0,1 ⊗ v∗TM) = Γ(S2,Λ0,1 ⊗ v∗TM)+ ⊕ Γ(S2,Λ0,1 ⊗ v∗TM)−
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corresponding to the eigenspaces of I with the eigenvalue ±1. Using the same
notation as in the proof of Lemma 39.7, we consider the linearization of ∂ in the
J-direction

DJ∂ : TJJ τ
ω → Γ(S2,Λ0,1 ⊗ v∗TM).

We denote by (DJ∂)+ the projection of DJ∂ with respect to the above splitting. It
now suffices to show

(39.15) (DJ∂)+(TJJ τ
ω (W )) + Im((Dv∂)+) = Γ(S2,Λ0,1 ⊗ v∗TM)+

by a similar reason as for (39.8). By the somewhere injectivity of v, we have a point
z ∈ S2 that satisfies (39.3.1) and (39.3.2) ( but not necessarily (39.3.3)). By slightly
moving z, we may assume that z is not a fixed point of τ̃ . Then we can choose an
open neighborhood U of z such that τ̃(U) ∩ U = ∅. We also choose an open subset
W of M such that v(U) ⊂ W and τ(W ) ∩ W = ∅. Again we have (39.8).

We now recall the set Jω(W ) and the map S : Jω(W ) → J τ
ω defined in the end

of the proof of Lemma 39.7. We will now prove

(39.16) (DJ∂)+ ◦ DS = (DJ∂)+

at (v, J). Let δJ ∈ TJ(Jw(W )) ⊆ Γ(W,EndR(TM)). Then we have

(39.17) (DS)(δJ)τ(p) = −(Tτ)−1 ◦ δJ(p) ◦ Tτ

for p ∈ W ⊂ M . On the other hand, from the definition

(39.18) ∂v =
1
2
(Tv + J ◦ Tv ◦ j)

we have the formula

(39.19) (DJ∂)(δJ) =
1
2
δJ ◦ Tv ◦ j

for δJ ∈ TJJw ⊂ Γ(M,EndR(TM)). Combining j ◦T τ̃ = −T τ̃ ◦j, (39.11.2), (39.17)
and (39.19), we derive

(I ◦ DJ∂ ◦ DS)(δJ)(z)

=
1
2
(Tτ)−1 ◦ DS(δJ)

eτ(z) ◦ Tv ◦ j ◦ T τ̃

=
1
2
DS(δJ)p ◦ (Tτ)−1 ◦ Tv ◦ T τ̃ ◦ j.

By differentiating τ−1 ◦ v ◦ τ̃ = v, we show that the last term becomes 1
2DS(δJ)p ◦

Tv ◦ j from which we conclude

(I ◦ DJ∂ ◦ DS)(δJ) = (DJ∂ ◦ DS)(δJ)
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at (v, J). Projecting this identity to the eigenspace Γ(S2,Λ0,1⊗v∗TM)+ of I (with
eigenvalue 1), the identity (39.16) follows.

Then (39.16) and (39.8) imply (39.15) which finishes the proof of Lemma 39.14. ¤
Now we assume that J satisfies the conclusion of Lemmas 39.14 and 39.7. We

now wrap up the proof of Proposition 39.1 (1) by showing that for such J the
conclusion of Proposition 39.1 (1) holds. Suppose to the contrary c1(M)[v] < 0 for
a J-holomorphic v. By the semi-positivity of M , this implies

c1(M)[v] < 3 − n or c1(M)[v] + n < 3.

By taking Lemma 39.13 into account, this implies that the real index of the operator
(39.12.1), which is given by c1(M)[v] + n, is less than 3.

On the other hand, since Lemma 39.14 shows that the operator (Dv∂)+ at v
is surjective by the choice of J , c1(M)[v] + n is the actual real dimension of the
τ -invariant part of the moduli space containing v. There are two cases for the
restriction of τ to the domain of v. Namely, the reflection along the equator or the
antipodal map. In the first case, the group of automorphisms of CP 1 commuting
with the reflection is isomorphic to PSL(2; R). In the second case, the group of
automorphisms commuting with the antipodal map is SO(3). In both cases, the
automorphism group is real 3-dimensional. Since v is non-constant, the actual
dimension of the τ -invariant part of the moduli space must be at least greater than
equal to 3, which gives rise to a contradiction. The proof of Proposition 39.1 (1) is
now complete.

We next consider the situation of Proposition 39.1 (2). We remark that since
(M,ω) is monotone or dimR M = 4, it follows that (M,ω) is semi-positive. We take
J which satisfies the conclusion of Lemmas 39.14 and 39.7. Let v : S2 → M be
a J holomorphic sphere. We already proved c1(M)[v] ≥ 0. If (M,ω) is positively
monotone, we can prove c1(M)[v] = 0 if and only if ω[v] = 0. Such a v is necessarily
constant. We next assume dimR M = 4 and c1(M)[v] = 0. We may replace v by
somewhere injective disc. Then Lemma 39.12 imples that the real index of the
operator (39.12.1), which is given by c1(M)[v] + 2, is less than 3. By the same
argument as (1) above, we obtain a contradiction. The proof of Proposition 39.1
(2) is now complete. ¤
Corollary 39.20. Let (M,ω) be a symplectic manifold with anti symplectic invo-
lution τ . We put L = Fix τ .

(1) If (M,ω) is semi-positive, then there exists J ∈ J τ
ω , such that every J-

holomorphic disc w : (D2, ∂D2) → (M,L) satisfies µL([w]) ≥ 0.
(2) If (M,ω) is (positively spherically) monotone or dimR M = 4, then there

exists J ∈ J τ
ω , such that every nonconstant J-holomorphic disc w : (D2, ∂D2) →

(M,L) satisfies µL([w]) > 0.

Proof. We consider the case of (1). We choose J satisfying the conclusion of Propo-
sition 39.1. Let w : (D2, ∂D2) → (M,L) be a J-holomorphic disc. We consider
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its double v : S2 → M , which is a J-holomorphic sphere. Proposition 39.1 implies
c1(M)[v] ≥ 0. On the other hand, a simple topological calculation proves the gluing
formula

2c1(w1#w2) = µL(w1) + µL(w2)

for two discs wi : (D2, ∂D2) → (M,L), i = 1, 2 satisfying w1|∂D2 = w2|∂D2 . Here
w2 denotes the obvious map induced by w2 which is defined on the lower hemi-
sphere by considering the reflection along the equator of S2. (See [Vit87] for its
proof.) On the other hand, when L = Fix τ and w1 = w and w2 = w̃, this reduces
to c1(M)[v] = µL([w]) because we have µL([w]) = µL([w̃]). Therefore Proposition
39.1 (1) implies µL([w]) ≥ 0.

The proof of case (2) is the same by using Proposition 39.1 (2). ¤

The proof of Corollary 39.20 implies also the following.

Lemma 39.21. Let L = Fixτ . If there exists a J holomorphic disc w : (D2, ∂D2) →
(M,L) with µ[w] < 0, ω[w] ≤ E0, then there exists a J holomorphic sphere
v : S2 → M with c1[w] < 0, ω[v] ≤ 2E0.

By the proof of Theorems 34.11, we can use the almost complex structure J
satisfying the conclusion of Proposition 39.1 and Corollary 39.20, and an abstract
perturbation (that is, a perturbation of the Kuranishi map) to obtain the filtered A∞
algebras mentioned in Theorems 34.4 and 34.7. However to apply the cancellation
argument, we still need to construct a τ∗-invariant perturbation sε. When τ∗ does
not have a fixed point, such construction is easy to carry out. However, since τ∗ may
have a fixed point in general, it is not a trivial matter to construct a τ∗-invariant
(abstract) perturbation sε so that the τ -invariant version of Theorem 34.11 holds.
We will resolve this trouble in the next four sections.

Proof of Theorem 34.16 ⇒ Theorem 34.17. Proposition 39.1 (2) implies that J c1>0
ω ∩

J τ
ω is nonempty if (M,ω) is (positively spherically) monotone or dimR M = 4.

Clearly if (M,J) is Fano then J ∈ J c1>0
ω . Moreover if Ji ∈ J c1>0

(Mi,ωi)
then

∏
Ji ∈

J c1>0
Q

(Mi,ωi)
. Therefore under assumption of Theorem 34.17, J c1>0

ω ∩J τ
ω is nonempty.

Hence Theorem 34.16 implies that Conjecture 34.14 holds for (M,ω), as required. ¤

§40. Lantern.

In §40 - §42 we consider M,ω, J , and τ such that (M,ω) is semi-positive, J is
compatible almost complex structure τ is (M,J) anti-holomorphic involution. We
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also assume that J satisfies the conclusion of Proposition 39.11 (1). Let β ∈ Π(L).
Hereafter we will write Mmain

k+1 (β) in place of Mmain
k+1 (J ;β). We are going to study

(40.1) τ∗ : Mmain
k+1 (β) → Mmain

k+1 (τ∗β) = Mmain
k+1 (β), (k = 0, 1)

defined in (38.5) where we recall

β = τ∗β in Π(L).

In the rest of this chapter, we omit the symbol “main” since there is only one
component for k = 0, 1. In this section we study the fixed point set of τ∗.

We first consider M2(β). In this section we consider its subset Mreg
2 (β). Here

Mreg
k+1(β) is a subset of Mk+1(β) consisting of elements [((Σ, ~z), w)] such that Σ =

D2. (Namely it consists of the elements without bubble.)
To study the fixed point set of τ∗, we construct a map

D : Mreg
2 (β) → Mreg

2 (β + τ∗β) = Mreg
2 (2β).

Let ((D2, (z0, z1)), w) represent an element [((D2, (z0, z1)), w)] of Mreg
2 (β). By re-

quiring z0 = 1, z1 = −1, the representative ((D2, (1,−1)), w) is uniquely determined
modulo the action of Aut(D2; 1,−1) which is isomorphic to R.

Denote the upper and lower semi-discs by

D2
± = {z ∈ D2 | ± Im z ≥ 0}.

We take a conformal isomorphism ρ+ : D2
+ → D2 such that ρ+(±1) = ±1 and

define the conformal isomorphism ρ− : D2
− → D2 by ρ−(z) = (ρ+(z)).

Now for a given w : (D2, ∂D2) → (M,L) with L = Fix τ , we define another map
w̃ : (D2, ∂D2) → (M,L)

(40.2) w̃(z) =

{
w(ρ−(z)) if z ∈ D2

−,

(τ ◦ w)
(
ρ+(z)

)
if z ∈ D2

+

by gluing w and τ ◦ w. Using this gluing, we define the map D by

(40.3) D([((D2, (1,−1)), w)]) = [((D2, (1,−1)), w̃)].

We like to remark that we have given the definition of D only for the regular
elements [((Σ, (z0, z1)), w)] i.e., on Mreg

2 (β).
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Lemma 40.4. The definitions (40.2) and (40.3) give a well-defined map

D = Dβ : Mreg
2 (β) → Mreg

2 (2β).

D is independent of the choice of ρ+. Moreover D satisfies

(40.5) τ∗ ◦ D = D.

Proof. If z ∈ D2
− ∩ D2

+ = R ∩ D2, ρ−(z) = ρ+(z) by definition of ρ± and so

w(ρ−(z)) = w
(
ρ+(z)

)
. Since both the upper and lower parts of w̃ are pseudo-

holomorphic, this matching condition along D2
− ∩ D2

+ implies that w̃ is smooth
on D2 and pseudo-holomorphic. Furthermore it follows w̃(∂D2) ⊂ L from the
definition (40.2) of w̃. Therefore w̃ defines an element in Mreg

2 (2β).
If we take another choice ρ′+ of a conformal diffeomorphism from D2

+ to D2 with
ρ+(±1) = ±1, then we have ρ′± = ρ+ ◦ r where r ∈ Aut(D2; 1,−1) ∼= R. Therefore
the map w̃′ defined as in (40.2) this time using ρ′+ will satisfy w̃′ = w̃ ◦ r. This
implies [w̃′] = [w̃] as an element of M2(2β). This proves that the definition (40.3)
is independent to a representative (D2, (1,−1), w) but depends only on the stable
map [(D2, (1,−1), w)] in Mreg

2 (β).
The identity (40.5) immediately follows from the definition (40.3) of D. ¤

A fixed point of τ∗ (that is an image of D) is a pseudo-holomorphic disc that can
be pictured as in Figures 40.1 and 40.2 below.

Figure 40.1.
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Figure 40.2.

Now we describe the fixed point set of τ∗ : Mreg
2 (β) → Mreg

2 (β) in more detail.

Lemma 40.6. If w ∈ Mreg
2 (β) with τ∗(w) = w, then there exist β′ and w′ ∈

Mreg
2 (β′) satisfying

(40.6.1) β′ + τ∗β
′ = 2β′ = β, w = D(w′).

In other words, the fixed point of τ∗ on Mreg
2 (β) coincides with the image of D of

Mreg
2 (β′).
Moreover β′ and w′ are uniquely determined by w.

Proof. We may assume that w is represented by ((D2, (1,−1)), w). By assumption,
there exists r ∈ Aut(D2; 1,−1) ∼= R such that (τ ◦ w)(z) = (w ◦ r)(z). Using the
fact that r commutes with complex conjugation and τ is an involution, we have

w(z) = (τ ◦ τ ◦ w)(z) = (τ ◦ w ◦ r)(z) = (w ◦ r ◦ r)(z).

This implies that r ◦ r is the identity and so is r. Therefore we derive

(40.7) (τ ◦ w)(z) = w(z)

from the last identity of the above equation. It follows that (τ ◦ w)(z) = w(z) and
so w(z) ∈ Fix τ for z ∈ R ∩ D2. Namely we have w(R ∩ D2) ⊂ L.

We consider the map w′ defined by w′ = w ◦ ρ−. It follows from w(R ∩D2) ⊂ L
that w′(∂D2) ⊂ L and hence w′ ∈ Mreg

2 (β′) for β′ = [w′] ∈ Π(L). By the definition
of D, (40.7) implies

D([((D2, (1,−1)), w′)]) = [((D2, (1,−1)), w)].
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Now we prove the uniqueness of β′ and w′ among those satisfying (40.6.1). Suppose
w = D(w′), β′ = [w′] and

D([((D2, (1,−1)), w′)]) = [((D2, (1,−1)), w)].

Then by the discussion as above, we prove that there exists r ∈ Aut(D2; 1,−1) such
that w ◦ ρ− = w′ ◦ r, i.e., that w′ is uniquely determined by w modulo the action
of Aut(D2; 1,−1). Hence the equivalence class of w′ depends only on w. ¤
Remark 40.8. One may be able to extend the definition of D to the whole com-
pactified moduli space M2(β) but the analog to Lemma 40.6 more specifically the
uniqueness result will no longer hold. See §43.1.

By iterating the construction in Lemma 40.6, we now obtain the following propo-
sition.

Proposition 40.9. For each w ∈ Mreg
2 (β) there exist unique β(0), w0 ∈ Mreg

2 (β(0))
and ` respectively such that

w = D`(w0), β = 2`β(0),

and
w0 6= τ∗(w0).

Here D` is the `-th iteration of D. (` = 0, 1, 2, · · · ).

Proof. Let w ∈ Mreg
2 (β) be a fixed point of τ∗ and let β′, w′ be those obtained in

Lemma 40.6. We consider the image of τ∗(w′) again. If τ∗(w′) 6= w′, we are done
with ` = 1, w0 = w′ and β(0) = β′. If not, we apply Lemma 40.6 to w′ again. By
repeatedly applying Lemma 40.6, we obtain a sequence of elements

w(i) ∈ Mreg
2 (β(i)) i = 0, 1, · · ·

such that w(i−1) = D(w(i)) with w(−1) := w. By construction, we have ω(w(i+1)) =
1
2ω(w(i)). On the other hand, there exists c > 0 depending only on (M,J, ω) and
L such that E(w) ≥ c > 0 for any J-holomorphic disc w : (D2, ∂D2) → (M,L).
Therefore the above iteration process should terminate in finite steps, say in the
`-th step. We put w0 = w(`) and β(0) = [w(`)]. This finishes the proof. ¤

We can reduce the case of Mreg
1 (β) to the case of Mreg

2 (β) by using the following
lemma.

Lemma 40.10. If w = [((D2, z0), w)] ∈ Mreg
1 (β) is a fixed point of τ∗, then

there exists w+ = [((D2, (z0, z1)), w)] ∈ Mreg
2 (β) such that τ∗w

+ = w+ and that
forget(w+) = w, where forget : Mreg

2 (β) → Mreg
1 (β) is the map forgetting the second

marked point. Such w+ is unique.
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Proof. Without loss of any generality, we may assume z0 = 1. Let h : H → D2

be a conformal diffeomorphism, where H = {z ∈ C | Im z ≥ 0} with h(∞) = 1,
h(0) = −1 and h(z) = h(−z). Existence of such a conformal diffeomorphism can be
easily seen from the symmetry consideration of the Riemann mapping theorem, or
by an explicit construction. We like to note that the imaginary axis

√
−1R+ ⊂ H

is mapped to the diameter R ∩ D2 ⊂ D2 under any such h.
We denote w′ := w ◦ h. We remark that under the isomorphism h the complex

conjugation c : z 7→ z on D2 is transformed to the anti-holomorphic involution

z 7→ −z

on H. Therefore by the assumption w ∈ Fix τ∗ which in particular implies τ ◦w◦c =
w modulo the action of Aut(D2; 1), it follows that there exists ϕ ∈ Aut(H;∞) such
that

(40.11) (τ ◦ w′)(−z) = (w′ ◦ ϕ)(z).

Since ϕ(∞) = ∞, ϕ must be of the form

ϕ(z) = az + b

for some a, b ∈ R with a > 0. Now we obtain a chain of identities

w′(−z) = (τ◦τ◦w′)(−z) = (τ◦w′)(az+b) = w′(a(−(az + b))+b) = w′(−a2z+b−ab).

Hence a = 1 and so ϕ(z) = z + b. To construct a fixed point of τ∗ in Mreg
2 (β) out

of w ∈ Mreg
1 (β), it is enough to find a point z1 ∈ R that solves the equation

−z1 = −z1 = ϕ(z1) = z1 + b

which results in z1 = − b
2 . Now translating these information on H back to D2 via

h, it follows that w+ = [((D2, (1, h(−b/2))), w)] has all the required properties. The
uniqueness automatically follows from this construction. ¤

§41. Symmetry and invariant perturbation of the moduli space.

In this section and the next, we construct an appropriate perturbation of the
Kuranishi map on Mreg

2 (β) that is invariant under the given symmetries. In §43,
we will complete the proof of Theorems 34.16 using this perturbation.
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For given β ∈ Π(L), we define

D−m
∗ (β) =

{
β′ ∈ Π(L) | 2m−1β′ + 2m−1τ∗β

′ = β, Mreg
2 (β′) 6= ∅

}
.

By Lemma 40.6, Proposition 40.9 and the property τ∗β
′ = β′, it follows that

D−m
∗ (β) is either empty or consists of a single element. We write {2−mβ} = D−m

∗ (β)
if it is nonempty. We obtain a map

Dm : Mreg
2 (2−mβ) → Mreg

2 (β).

We denote

(41.1) Mreg ,(m)
2 (β) = Im

(
Dm : Mreg

2 (2−mβ) → Mreg
2 (β)

)
.

It is easy to see that

(41.2) Mreg ,(m)
2 (β) ⊃ Mreg ,(m+1)

2 (β).

Namely Mreg ,(m)
2 (β) defines a downward stratification of Mreg

2 (β). Moreover there
exists an integer m(β) such that

(41.3) Mreg ,(m(β))
2 (β) 6= ∅, Mreg ,(m(β)+1)

2 (β) = ∅.

(See the proof of Proposition 40.9.) We note that τ∗ induces an involution

(41.4) τ∗ : Mreg
2 (2−mβ) → Mreg

2 (2−mβ).

This involution induces an involution

(41.5) τ
(m)
∗ : Mreg ,(m)

2 (β) → Mreg ,(m)
2 (β)

on Mreg ,(m)
2 (β), that is defined by the identity

(41.6) τ
(m)
∗ ◦ Dm = Dm ◦ τ∗.

(41.5) is well-defined by Proposition 40.9. We remark that the well-definedness of
τ

(m)
∗ strongly depends on the uniqueness statement on w0 in Proposition 40.9.

Since Mreg ,(m+1)
2 (β) is the image under Dm of the fixed point of (41.4), it follows

from (41.3) that there exists an integer m such that τ
(m)
∗ w is well-defined and

different from w.
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The secondary involution τ
(2)
∗ looks like drawn as in Figures 41.1 and 41.2 below.

Figure 41.1.

Figure 41.2.

Now an idea to resolve the trouble coming from the presence of fixed points of
τ∗ can be summarized as follows. On the part where the involution τ

(m)
∗ is free,

we can apply the proof of §35 and obtain a section sε that satisfies the conclusion
of Theorem 34.11 and is invariant under τ

(m)
∗ . Then we can use the cancellation

argument of τ -symmetric pairs mentioned before to prove Theorems 34.16.
To carry out this plan, we first need to extend the involution τ

(m)
∗ to a (Kuranishi)

neighborhood of Mreg ,(m)
2 (β).

Proposition 41.7. Mreg
2 (β) has a Kuranishi structure, (which we call the ambient

Kuranishi structure in this proposition to distinguish it from Kuranishi structures
on various fixed point sets of involutions), with the following property : For each



106 FUKAYA, OH, OHTA, ONO

m, there exists a Kuranishi neighborhood U (m)(β) of Mreg ,(m)
2 (β) in the ambient

Kuranishi structure and an involution τ
(m)
∗ on it satisfying the following:

(41.8.1) τ
(m)
∗ defines an involution of the space with Kuranishi structure. (See

§A1.3 Definition A1.45 for the definition of the group action on a space with Ku-
ranishi structure.)
(41.8.2) When we restrict τ

(m)
∗ to Mreg ,(m)

2 (β), it coincides with the one defined
by (41.6).
(41.8.3) For m < `, the set U (m)(β)∩U (`)(β) is invariant of both τ

(m)
∗ and τ

(`)
∗ .

On this set, we have :
τ

(m)
∗ ◦ τ

(`)
∗ = τ

(`)
∗ ◦ τ

(m)
∗ .

(41.8.4) ev ◦ τ
(m)
∗ = ev|Mreg ,(m)

2 (β)
. Here τ

(m)
∗ : Mreg, (m)

2 (β) → Mreg, (m)
2 (β) is

the involution given in (41.6) by (41.8.2) and ev : Mreg
2 (β) → L2 is the canonical

evaluation map.

We will prove Proposition 41.7 in the next section.

We next treat the case of Mreg ,(m)
1 (β). Consider the forgetful map

forget : Mreg
2 (β) → Mreg

1 (β)

and put

(41.9) Mreg ,(m)
1 (β) = forget(Mreg ,(m)

2 (β)).

We remark that forget : Mreg ,(m)
2 (β) → Mreg ,(m)

1 (β) is a homeomorphism by the
uniqueness part of Lemma 40.10.

Proposition 41.10. Mreg
1 (β) has a Kuranishi structure, (which we also call am-

bient Kuranishi structure as in Proposition 41.7), with the following property : For
each m, there exists a Kuranishi neighborhood U (m)(β) of Mreg ,(m)

1 (β) in the am-
bient Kuranishi structure and an involution τ

(m)
∗ on it satisfying the following:

(41.11.1) τ
(m)
∗ can be regarded as an involution of the space with Kuranishi struc-

ture.
(41.11.2) forget(U (m)(β)) ⊆ U (m)(β) and τ

(m)
∗ ◦ forget = forget ◦ τ

(m)
∗ .

(41.11.3) For m < `, the set U (m)(β)∩U (`)(β) is invariant of both τ
(m)
∗ and τ

(`)
∗ .

On this set, we have :
τ

(m)
∗ ◦ τ

(`)
∗ = τ

(`)
∗ ◦ τ

(m)
∗ .

(41.11.4) ev ◦ τ
(m)
∗ = ev. Here ev : Mreg

1 (β) → L is the evaluation map.

The proof of Proposition 41.10 follows on the same line as that of Proposition
41.7 which will be given in the next section.
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We now explain how we use Propositions 41.7 and 41.10 for the construction
of a single-valued section of some Kuranishi structure on each of Mreg ,(m)

2 (β) and
Mreg ,(m)

1 (β). In general, τ
(m)
∗ may have a fixed point in U (m)(β). We will take

another Kuranishi neighborhood U ′(m)(β) such that τ
(m)
∗ is fixed point free on

U ′(m)(β).
We will define the subset U ′(m)(β) ⊂ U (m)(β) by a downward induction on

m = 0, 1, 2, · · · so that the following hold :

(41.12.1) U ′(m(β))(β) = U (m(β))(β).
(41.12.2) U ′(m)(β) is a Kuranishi neighborhood of Mreg ,(m)

2 (β) \
⋃

`>m U ′(`)(β)
and is invariant under τ

(m)
∗ .

Obviously we have τ
(0)
∗ = τ∗ from definition and (41.12.2) implies that

{U ′(m)(β)}m(β)
m=0 covers Mreg

2 (β). By shrinking U ′(m)(β) further if necessary, we
can choose U ′(m)(β) so that they satisfy the following additional conditions :

(41.12.3) τ
(m)
∗ is free on U ′(m)(β).

(41.12.4) U ′(m)(β) ∩ U ′(`)(β) is invariant under τ
(m)
∗ and τ

(`)
∗ .

We define U ′(m)(β) ⊂ U (m)(β) in a similar way.
Let P be a chain on L. By taking the fiber product U ′(m)(β) ev1 ×L P we obtain

U ′(m)(β;P ) ⊂ Mreg
2 (β;P ). It follows from (41.8.4) that τ

(m)
∗ induces an involution

on U ′(m)(β;P ), which we also denote by τ
(m)
∗ .

Proposition 41.13. There exists a family of single valued sections sε of the
obstruction bundles on Mreg

1 (β) and on Mreg
2 (β). The sections sε are transversal

to zero and satisfy the following property :

(41.14) The sections sε are invariant under τ
(m)
∗ on U ′(m)(β;P ) and U ′(m)(β)

respectively.

Before proving Proposition 41.13, we explain how we will use this proposition in
the proof of Theorem 34.17.

We use the sections sε provided in Proposition 41.13 to define a filtered A∞
structure of L (over Z2). Let β 6= β0 = 0. Then we prove

(ev0)∗(Mreg
2 (β;P )sε

) = 0,(41.15.1)

(ev0)∗(Mreg
1 (β)sε

) = 0(41.15.2)

as Z2-chains. To prove (41.15.1), we use (41.14). We consider

(41.16) (ev0)∗(Mreg
2 (β;P )sε

∩ U ′(m)(β;P )), m = 0, 1, 2, · · · .

It follows from (41.14), (41.12.3) and (41.8.4) that (41.16) is zero as a Z2-chain.
Since ∪mU ′(m)(β;P ) ⊃ Mreg

2 (β;P ), (41.15.1) follows. The proof of (41.15.2) is
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similar. To finish the proof of Theorem 34.17, we need to study the singular part
of the moduli spaces, i.e., the strata consisting of stable maps whose domains are
not the smooth disc D2. This will be carried out in §43.

Proof of Proposition 41.13. Take the open subsets (in the Kuranishi neighborhood)

U ′(m)(β;P ) = U
(m)
0 (β;P ) ⊂ U

(m)
1 (β;P ) ⊂ · · · ⊂ U

(m)
2m(β)+2(β;P ) ⊂ U (m)(β;P )

so that

(41.17.1) The closure of U
(m)
i (β;P ) is in the interior of U

(m)
i+1 (β;P ).

(41.17.2) U
(m)
i (β;P ) ∩U

(`)
i (β;P ) is invariant under the actions of τ

(m)
∗ and τ

(`)
∗ .

(41.17.3) The action of τ
(m)
∗ is free on U

(m)
2m(β)+2(β;P ).

Let I be the set of all ~m = (m1, · · · ,m`) with 0 < m1 < · · · < m` ≤ m(β). We
put ` = |~m|. For ~m ∈ I, we define

(41.18) W~m(β;P ) =
⋂

j=1,··· ,|~m|

U
(mj)

2+2|~m|(β;P ).

Note that {W~m(β;P ) | ~m ∈ I} forms a covering of Mreg
2 (β;P ).

Lemma 41.19. For each ~m ∈ I, there exists a section sε
~m of the obstruction bundle

on W~m with the following properties.

(41.20.1) sε
~m is invariant under τ

(mj)
∗ (j = 1, · · · , |~m|).

(41.20.2) sε
~m is transversal to zero.

Proof. We first observe that, on Mreg
k+1(β), the automorphism groups (that is the

group Γp appeared is the definition of Kuranishi structure (Definition A1.1)) is
always trivial.

We take the quotient by the (free) Z|~m|
2 action generated by τ

(mj)
∗ (j = 1, · · · , |~m|)

on W~m and obtain a Kuranishi structure on the quotient space. (See §A1.3 Lemma
A1.49.) The automorphism group is still trivial. Hence we obtain a perturbation
of the Kuranishi map transversal to zero. We then lift it to W~m to obtain desired
sε

~m. ¤

We next glue the sections sε
~m to obtain the section sε required in Proposition

41.13. For ~m = (m1, · · · ,m`), ~m′ = (m′
1, · · · ,m′

`′) ∈ I, we say

~m < ~m′ if {m1, · · · ,m`} ⊂ {m′
1, · · · ,m′

`′}.

We denote

(41.21) U~m(β;P ) = W~m(β;P ) \
⋃

~m′>~m

⋂
j=1,··· ,|~m′|

U
(m′

j)

1+2|~m′|(β;P ),

where U
(m′

j)

1+2|~m′|(β;P ) is the closure of U
(m′

j)

1+2|~m′|(β;P ).
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Lemma 41.22. The collection {U~m(β;P ) | ~m ∈ I} covers Mreg
2 (β;P ).

Proof. We first remark

(41.23) W~m(β;P ) ⊆ U~m(β;P ) ∪
⋃

~m′>~m

W~m′(β;P ).

In fact, by (41.17.1) and (41.18), we have⋂
j=1,··· ,|~m′|

U
(m′

j)

1+2|~m′|(β;P ) ⊂
⋂

j=1,··· ,|~m′|

U
(m′

j)

2+2|~m′|(β;P ) = W~m′(β;P ).

The inclusion (41.23) then follows from (41.21). Using (41.23) and a downward
induction on |~m|, we can prove⋃

~m′≥~m

W~m′(β;P ) ⊆
⋃

~m′≥~m

U~m′(β;P ).

Since {W~m(β;P ) | ~m ∈ I} covers Mreg
2 (β;P ), this proves the lemma. ¤

Lemma 41.24. If U~m(β;P ) ∩ U ′(m)(β;P ) 6= ∅, then ~m contains m.

Proof. We assume m /∈ ~m. We put ~m+ = ~m ∪ {m}. Then ~m+ > ~m. Therefore
(41.21) implies

(41.25) U~m(β;P ) ∩
⋂

j=1,··· ,|~m+|

U
(m+

j )

1+2|~m+|(β;P ) = ∅.

We remark that⋂
j=1,··· ,|~m+|

U
(m+

j )

1+2|~m+|(β;P ) =
⋂

j=1,··· ,|~m|

U
(mj)

1+2|~m|+2(β;P ) ∩ U
(m)
1+2|~m|+2(β;P )

⊇ W~m(β;P ) ∩ U ′(m)(β;P )

⊇ U~m(β;P ) ∩ U ′(m)(β;P ).

Then using (41.25), we have obtained U~m(β;P )∩U ′(m)(β;P ) = ∅. This contradicts
the hypothesis and hence the proof. ¤

Now, we take a partitions of unity {(χ~m : U~m(β;P )) | ~m ∈ I} subordinate to the
covering {U~m(β;P ) | ~m ∈ I} of Mreg

2 (β;P ) so that χ~m is invariant under a series
of involutions τ

(mj)
∗ and define

sε =
∑

χ~msε
~m.
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Lemma 41.26. sε is invariant under τ
(m)
∗ on U ′(m)(β;P ).

Proof. Lemma 41.24 implies that if χ~m is nonzero at some point of U ′(m)(β;P ) then
sε

~m is τ
(m)
∗ invariant. The lemma follows immediately. ¤

By the argument used in the proof of Lemma 41.19, we can also prove that for a
generic choice of sε

~m, the section sε is transversal to zero. Thus sε has the required
properties. The proof for the case Mreg ,(m)

1 (β) is similar, and so omitted. Now the
proof of Proposition 41.13 is complete. ¤

§42. Family index and extension of
symmetry to a Kuranishi neighborhood.

The purpose of this section is to prove Propositions 41.7 and 41.10. We first
reduce the problem to a problem of family index. To make more transparent the
problem for us to deal with, we describe the problem in the general context of spaces
with Kuranishi structure.

We study a space X with Kuranishi structure on which the group Z2 acts by the
involution τ . Let F ⊂ X be the fixed point set of τ . For each x ∈ F ⊂ X we take
its Kuranishi neighborhood (V,E, Γ, ψ, s) in X. Let VF ⊂ V , EF ⊂ E, ΓF ⊂ Γ be
the fixed point set of Z2 actions respectively. By the definition of the action of a
group on a space with Kuranishi structure (see Definition A1.45), (VF , EF ,ΓF , ψ, s)
defines a Kuranishi structure on F . Let τ ′ be another Z2 action on this space F
with Kuranishi structure. We are looking for the condition under which this second
Z2 action can be extended to a Kuranishi neighborhood of F in X.

For x ∈ F , we consider the fiber derivative of s, which we denote by dxs : TxV →
Ex. If E is the trivial bundle E = V × E0 as in Definition A1.1 where E0 denotes
a typical fiber, the fiber derivative is nothing but the ordinary derivative of the
E0-component of s : V → V × E0. With an abuse of notation, we will write the
corresponding map TxV → E0 by the same notation dxs : TxV → E0.

The fiber derivative dxs gives rise to the following diagram

TxVF
dxs−−−−→ (EF )xy y

TxV
dxs−−−−→ Ex

Diagram 42.1.
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Here the vertical arrows are the obvious inclusions. When we move x, both of
dxs : TxVF → (EF )x and dxs : TxV → Ex can be regarded as bundle systems. (See
Definition 5.10 [FuOn99II] or §A1.1 Definition A1.33 for the definition of bundle
system). Diagram 42.1 may be regarded as an inclusion between bundle systems.
We remark that we have the action of τ ′ on the bundle system dxs : TxVF → (EF )x

and that of τ on dxs : TxV → Ex. Moreover restriction of the τ -action to the
bundle system dxs : TxVF → (EF )x is trivial.

Proposition 42.1. We assume that the τ ′-action is lifted to the bundle system
{dxs : TxV → Ex}x∈V so that the lifted action covers the τ ′ action on the base F
and that the lifted τ ′-action commutes with the τ -action on dxs : TxV → Ex, x ∈ F .
Then the τ ′-action on F extends to its Kuranishi neighborhood so that the extension
commutes with the τ -action on it.

We prove a more general statement (Proposition 42.5) later.

In Proposition 42.1, we consider the case where we have only two actions. To deal
with the case of Proposition 41.7, we need to consider an arbitrary finite number of
actions. We now describe the general setting which enables us to study the general
case in a systematic way.

First, let X be a space with Kuranishi structure acted by an involution τ0. We
call the Kuranishi structure on X the ambient Kuranishi structure in this section to
distinguish it from Kuranishi structures on various fixed point sets of involutions.
Denote by F0 the fixed point set of τ0,

F0 = Fix τ0.

At each x ∈ F0, we consider the τ0-invariant part of its Kuranishi neighborhood
(Vx, Ex,Γx, sx) which we denote by

(V τ0
x , Eτ0

x ,Γτ0
x , sx).

This defines a Kuranishi structure on F0.
Next, suppose that we are given an involution τ1 on F0 in the sense of Definition

A1.45. We denote by F1 be the fixed point set of τ1,

F1 = Fix τ1.

At each x ∈ F1, the above defined Kuranishi structure on F0 provides a Kuranishi
neighborhood (V τ0

x , Eτ0
x ,Γτ0

x , sx) of x ∈ F0. Since τ1 is an involution on F0 regarded
as a space with Kuranishi structure, it induces an involution on (V τ0

x , Eτ0
x ,Γτ0

x , sx).
We denote by

(V τ0,τ1
x , Eτ0,τ1

x ,Γτ0,τ1
x , sx),

the fixed point part thereof under the τ1-action, which then define a Kuranishi
structure on F1.
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Next we assume that there exists an involution τ2 on F1 as above, and put F2 =
Fix τ2. Then we similarly obtain a Kuranishi neighborhood (V τ0,τ1

x , Eτ0,τ1
x ,Γτ0,τ1

x , sx)
of F1 at each x ∈ F2 ⊂ F1. By considering the τ2-fixed point set of this Kuranishi
neighborhood, which we denote by

(V τ0,τ1,τ2
x , Eτ0,τ1,τ2

x ,Γτ0,τ1,τ2
x , sx),

we obtain a Kuranishi structure on F2. We inductively impose the hypotheses that
there exist a sequence of involutions τm defined on Fm−1 for m = 0, · · · ,m0 where
F−1 = X and Fm−1 = Fix τm−1 for m ≥ 1.

In summary, we have defined a Kuranishi structure on Fm assuming the existence
of an involution τm on Fm−1 in the sense of Definition A1.45. Furthermore we
assume that the action of τm0 on Fm0−1 is free.

In this situation, we would like to extend the involution τm on Fm−1 to its
Kuranishi neighborhood in X. Proposition 42.5 below provides a sufficient condition
for this extension to be possible.

To describe this condition we need to prepare with some more notations. Let
x ∈ Fm and assume that for each m′ ≤ m and x ∈ Fm a Kuranishi neighborhood
(V τ0,··· ,τm′

x , E
τ0,··· ,τm′
x ,Γτ0,··· ,τm′

x , sx) of x on Fm′ has been defined. We consider

(42.2) dxsx : TxV τ0,··· ,τm′
x → (Eτ0,··· ,τm′

x )x.

Varying x ∈ Fm, the maps (42.2) over x ∈ Fm define a bundle system on Fm.
We denote this bundle system by Tan(m′)

Fm
for each m′ ∈ {−1, 0, · · · ,m}. Here Tan

stands for tangential complex and Tan(m′)
Fm

for m′ = −1 stands for nothing but the
restriction of the initial bundle system dxs : TxVx → (Ex)x on X.

For given m′′ < m′ with m′′ < m′ ≤ m, we have the obvious inclusion of bundle
systems Tan(m′)

Fm
→ Tan(m′′)

Fm
i.e., the commutative diagram

TxV
τ0,··· ,τm′
x

dxs−−−−→ (Eτ0,··· ,τm′
x )xy y

TxV
τ0,··· ,τm′′
x

dxs−−−−→ (Eτ0,··· ,τm′′
x )x

Diagram 42.2.

We consider the group Zm+2
2 and write its generators τ0, τ1, · · · , τm+1, i.e.,

τi = (1, · · · , 1,
i+1
− 1, 1, · · · , 1).

The group Zm+2
2 acts on Fm in the way that the action of τi is trivial for i =

0, 1, · · · ,m. Recall that τm+1 is an involution defined on Fm and that we put

Fm+1 := Fix τm+1.
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Assumption 42.3. The action of Zm+2
2 on Fm lifts to an action to Tan(m′)

Fm
for

each m′ = 0, · · · , m. This action satisfies the following properties :

(42.4.1) If m′′ ≤ m′, then the action of τm′′ on Tan(m′)
Fm

is trivial.

(42.4.2) The action of τm′+1 on Tan(m′)
Fm

coincides with one induced by τm′+1

action on Fm′ .
(42.4.3) The embedding Tan(m′)

Fm
→ Tan(m′′)

Fm
is Zm+2

2 equivariant for m′′ ≤ m′.

Now we are ready to state a generalization of Proposition 42.1 we need.

Proposition 42.5. Let τ0, · · · , τm+1 be a sequence of involutions given as above
that satisfy Assumption 42.3. Then, we can perturb the Kuranishi map s : V → E,
so that, for each m, there exists a Kuranishi neighborhood Um = (Vm, Em,Γm, sm)
of Fm in the ambient Kuranishi structure with the following properties :

(1) The Z2-action on Fm via τm+1 extends to Um as an action on a space with
Kuranishi structure.
(2) For m′,m′′ ≤ m, the intersection Um′ ∩ Um′′ is invariant under the actions
of both τm′ and τm′′ . Moreover τm′ commutes with τm′′ on Um′ ∩ Um′′ .

Proof. At x ∈ Fm, we have the decomposition

TxV ∼=
m⊕

i=0

TxV
τ0,··· ,τi−1
x

TxV τ0,··· ,τi
x

⊕ TxV τ0,··· ,τm
x .

Therefore we have the isomorphism

(42.6) (NV
τ0,··· ,τm

x
Vx)x

∼=
m⊕

i=0

TxV
τ0,··· ,τi−1
x

TxV τ0,··· ,τi
x

where NV
τ0,··· ,τm

x
Vx is the normal bundle of V τ0,··· ,τm

x in Vx with respect to the
Kuranishi structure of Fm. It follows from Definition A1.45 that we are given
a τm+1-action on V τ0,··· ,τm

x since τm+1 acts on Fm and V τ0,··· ,τm
x is a Kuranishi

neighborhood of x.
The Zm+2

2 -action on the tangential complex in Assumption 42.3 canonically in-
duces a Zm+2

2 -action on NV
τ0,··· ,τm

x
Vx via (42.6).

Therefore an identification of a neighborhood of V
τ0,··· ,τm′
x in Vx with that of

the zero section of the normal bundle NV
τ0,··· ,τm

x
Vx, induces a Zm+2

2 -action on a
neighborhood of V τ0,··· ,τm

x in Vx. Then (42.4) implies that this action can be glued
and the glued action is one that has the required properties. Moreover we can
lift the Zm+2

2 -action to the obstruction bundle E since existence of such a lift is
assumed in Assumption 42.3. Finally we perturb the Kuranishi map s. Take a
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small open neighborhood Um of Fm for each m. By choosing another neighborhood
Vm if necessary, we may assume that

m0⋃
m=0

Vm ⊃X,

Vm ∩ Fm′ =∅ if m′ > m,

and that there exists a Zm+2
2 action on Vm. Let χm be a Zm+2

2 -invariant partition
of unity of X subordinate to the covering {Vm}. We then define

s(m) = 2−(m+2)
∑

~ρ∈Zm+2
2

ρ ◦ s ◦ ρ, s′ =
∑

χms(m).

It is easy to see that s′ defines a Kuranishi structure on its zero point set and also
it is Zm+2

2 invariant in the neighborhood of Fm. ¤

Now we restrict our study to the case considered in Proposition 41.7. We first
explain how the case considered in Proposition 41.7 can be put into the context
of Assumption 42.3 and its proof is reduced to that of Proposition 42.5 : The
space Mreg

2 (β) is our X. The first involution on it is τ0 = τ∗. Its fixed point set
F0 is Mreg ,(1)

2 (β) which is the image of D on Mreg
2 (β′) with β′ + τ∗β

′ = β. Let
p ∈ Mreg

2 (β′) and let
(UD(p), ED(p),ΓD(p), sD(p))

be a Kuranishi neighborhood of D(p) in Mreg
2 (β). Denote by Uτ0

D(p), Eτ0
D(p), Γτ0

D(p)

the fixed point set of τ0 acting on the Kuranishi neighborhood. Then the Kuranishi
structure of F0 at D(p) is defined by the collection of Kuranishi neighborhoods

(Uτ0
D(p), E

τ0
D(p),Γ

τ0
D(p), sD(p))

of D(p) for p ∈ F0.

Lemma 42.7. The Kuranishi structure on F0 = Mreg ,(1)
2 (β) defined above is iden-

tified with the Kuranishi structure on Mreg
2 (2−1β) by D.

Proof. The proof is immediate from construction. ¤

Now the involution τ∗ on Mreg
2 (2−1β) defines an involution τ1 = τ

(1)
∗ on F0 =

Mreg ,(1)
2 (β). Its fixed point set is F1 = Mreg ,(2)

2 (β). We can continue and identify
Fm−1 = Mreg ,(m)

2 (β). We also have :
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Lemma 42.8. The Kuranishi structure on Fm−1 = Mreg ,(m)
2 (β) defined above is

identified with the Kuranishi structure on Mreg
2 (2−mβ) by Dm.

The proof is immediate from Lemma 42.7.
Thus we are in the situation of Proposition 42.5. Therefore for the proof of Propo-

sition 41.7, it suffices to check Assumption 42.3 for the case considered. Namely
we need to define a lift of Zm+1

2 action to the tangential complex Tan(m′)
Fm−1

for
m′ ≤ m − 1 satisfying (42.4). (Note that since

Mreg ,(m)
2 (β) = Fm−1,

we adopt the situation in Assumption 42.3 for the case of m − 1. )
Consider the strip

Σ = {z ∈ C | |Imz| ≤ 1}

which we know is conformally isomorphic to D2 \ {±1}. We use the standard
coordinate z = s+

√
−1t, |t| ≤ 1 on Σ ⊂ C. Note that (z0, z1) = (1,−1) corresponds

to (∞,−∞). (In this and the next sections we use s in place of τ as the coordinate
of the first factor in order to avoid a confusion with the involution τ : M → M .)

Let w ∈ Mreg
2 (β) and regard it as a map from Σ. Now we will construct a

Zm+1
2 -action in a Kuranishi neighborhood of

Dm([((Σ, (∞,−∞)), w)]).

Let
Σ± = {z ∈ ∂Σ | ±Imz ≥ 0}, ∂±Σ = ∂Σ ∩ Σ±.

We define I± : Σ → Σ± as follows

(42.9.1) I−(z) =
z −

√
−1

2
, I+(z) = I−(z).

I− is holomorphic and I+ is anti-holomorphic.
Let w : Σ → M be a pseudo-holomorphic map with w(∂Σ) ⊂ L. We define

D(w) : Σ → M by

(42.9.2) D(w)(z) =
{

w(I−1
− (z)) = w(2z +

√
−1) if Im z ≤ 0,

τ(w(I−1
+ (z))) = τ(w(2z̄ +

√
−1)) if Im z ≥ 0.

It is easy to see that

[((Σ, (∞,−∞)),D(w))] = D([((Σ, (∞,−∞)), w)]).

We consider the deformation complex of w in our moduli space. It is induced by
the operator defined in (29.9). We recall its definition in the current context. See
Lemma 29.5. Let δ > 0 and let | · |′ be a smooth function : R → [0,∞) such that
|s|′ = |s| outside a compact set.
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Definition 42.10. We consider triples (V, (v+∞, v−∞)) such that

(42.11.1) V is a section of w∗(TM) of W 1,p
loc -class.

(42.11.2) v±∞ ∈ Tw(±∞)L respectively.
(42.11.3) ∫ +∞

0

∫ 1

−1

eδ|s|′(|∇(V − Pal v+∞)|p + |V − Pal v+∞|p) dsdt < ∞∫ 0

−∞

∫ 1

−1

eδ|s|′(|∇(V − Pal v−∞)|p + |V − Pal v−∞|p) dsdt < ∞.

Here Pal : Tw(±∞)M → Tw(s,t)M stands for the parallel transport.
(42.11.4) V (s,−1) ∈ Tw(s,−1)L.
(42.11.5) V (s, 1) ∈ Tw(s,1)L.

We remark that v±∞ ∈ Tw(±∞)L satisfying (42.11.3) are determined by V above.
We denote by

C0
δ,p(Σ, w)

the set of such (V, (v+∞, v−∞))’s. The p-th power |(V, (v+∞, v−∞))|p of the L1,p

norm of (V, (v+∞, v−∞)) is, by definition, the sum of the two terms in left hand
side of (42.11.3) and |v−∞|p + |v+∞|p. Equipped with this norm, C0

δ,p(Σ, w) then
becomes a Banach space.

We define the Banach space

W 1,p
δ (Σ, ∂Σ; w∗TM,w|∗∂ΣTL) = {V | (V, (0, 0)) ∈ C0

δ,p(Σ, w)}.

Next we define the Banach space

W 1,p
δ (Σ, ∂−Σ, ∂+Σ; w∗TM,w|∗∂−ΣTL, Jw|∗∂+ΣTL)

to be the set of all V such that (V, (0, 0)) satisfies (42.11.1)-(42.11.4) with (42.11.5)
replaced by the following condition

(42.11.5’) V (s, 1) ∈ JTw(s,1)L.

Finally we denote

C1
δ,p(Σ, w) = W 0,p

δ (Σ;Λ0,1 ⊗ w∗TM)

which is the set of all sections V of Λ0,1(Σ) ⊗ w∗TM of Lp
loc-class that satisfy∫ +∞

−∞

∫ 1

−1

eδ|s|′ |V |p dsdt < ∞.
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The formal linearization Dw∂ induces the following Fredholm operators

Dw∂ : C0
δ,p(Σ, w) → C1

δ,p(Σ, w),

D0
w∂ : W 1,p

δ (Σ, ∂Σ; w∗TM,w|∗∂ΣTL) → C1
δ,p(Σ, w),

DJ
w∂ : W 1,p

δ (Σ, ∂−Σ, ∂+Σ; w∗TM,w|∗∂−ΣTL, J · w|∗∂+ΣTL) → C1
δ,p(Σ, w).

As we discussed in §29, the operator Dw∂ defines the tangential complex

(C∗
δ,p(Σ, w), Dw∂)

of the deformation of w ∈ Mreg
2 (β) whose index of Dw∂ is given by µL(β) + n.

Now we firstly define a Zk
2-action on the tangential complex

(C∗
δ,p(Σ,Dk(w)), DDk(w)∂).

After that we will define one more Z2-action which commutes with the Zk
2-action.

For each section V of w∗TM satisfying (42.11.4), (42.11.5), we define

(42.12.1) (I′,0
+ (V ))(z) =

{
V (I−1

− (z)) = V (2z +
√
−1) z ∈ Σ−

(Tτ)−1(V (I−1
+ (z)) = (Tτ)−1(V (2z̄ +

√
−1) z ∈ Σ+,

and for one satisfying (42.11.4), (42.11.5’), we define

(42.12.2) (I′,0
− (V ))(z) =

{
V (I−1

− (z)) z ∈ Σ−

−(Tτ)−1(V (I−1
+ (z)) z ∈ Σ+.

Here we denote by Tτ the differential of τ and see (42.9.1) for the definition of the
maps I±.

These give rise to the linear maps

I′,0
+ : C0

δ,p(Σ, w) → C0
δ,p(Σ,D(w))

I′,0
− : W 1,p

δ (Σ, ∂−Σ, ∂+Σ; w∗TM,w|∗∂−ΣTL, Jw|∗∂+ΣTL) → C0
δ,p(Σ,D(w))

defined by
I′,0

+ (V, (v+∞, v−∞)) = (I′,0
+ (V ), (v+∞, v−∞)),

I′,0
− (V, (0, 0)) = (I′,0

− (V ), (0, 0)).

Similarly we also define the maps I′,1
± : C1

δ,p(Σ, w) → C1
δ,p(Σ,D(w)) by the formula

(42.12.3) (I′,1
+ (V ))(z) =

{
V (I−1

− (z)) z ∈ Σ−

(Tτ)−1(V (I−1
+ (z)) z ∈ Σ+,
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and then (I′,1
− (V )) by

(42.12.4) (I′,1
− (V ))(z) =

{
V (I−1

− (z)) ◦ (TI−)−1 z ∈ Σ−

−(Tτ)−1 ◦ (V (I−1
+ (z)) ◦ (TI+)−1 z ∈ Σ+.

(TI± is the differential of I± respectively.)
Let τ̃ : Σ → Σ be the anti-holomorphic involution τ̃(z) = z. We define the

involution τ∗ on Ci
δ,p(Σ, w) for each i = 0, 1 by

τ∗(V, (v+∞, v−∞)) =
{

(τ∗(V ), (v+∞, v−∞)) i = 0
τ∗(V ) i = 1,

where we set

(τ∗(V ))(z) = (Tτ)−1(V (τ̃(z)) i = 0(42.13.1)

(τ∗(V ))(z) = (Tτ)−1 ◦ V (τ̃(z)) ◦ T τ̃ i = 1.(42.13.1)

(Compare these definitions with those in (39.11). Note in (39.11) we wrote I in
place of τ∗.)

Hereafter we simply write I′
± for both of I′,0

± and I′,1
± when no confusion can

occur.

Lemma 42.14. (1) I′
+ and I′

− are well-defined. I′
+ is an isomorphism onto

{V = (V, (v+∞, v−∞)) ∈ C0
δ,p(Σ,D(w)) | τ∗V = V}.

(2) I′
− is an isomorphism onto

{(V, (0, 0)) ∈ C0
δ,p(Σ,D(w)) | τ∗V = −V }.

(3) And I′
± restricts to an isomorphism between

W 1,p
δ (Σ, ∂Σ; w∗TM,w|∗∂ΣTL)

resp.
W 1,p

δ (Σ, ∂−Σ, ∂+Σ; w∗TM,w|∗∂−ΣTL, Jw|∗∂+ΣTL)

and{
V ∈ W 1,p

δ (Σ, ∂−Σ, ∂+Σ; D(w)∗TM, D(w)|∗∂−ΣTL, D(w)|∗∂+ΣTL)
∣∣∣ τ∗V = ±V

}
,

respectively.
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Proof. Using the fact that dτ = id on TL and dτ = −id on J(TL), we can show
that I′

±(V ) are continuous along Σ+ ∩ Σ− and so are well-defined. The rest of
the proof is straightforward and omitted. In the claim (2) we remark that τ(V) =
−V implies τ∗(v+∞) = −v+∞ and τ∗(v−∞) = −v−∞. Thus by (42.11.2) we have
(v+∞, v−∞) = (0, 0). ¤

Consider a family of the bundle maps Kt : TM → TM defined by

(42.15) Kt(V ) =
(

cos
π(t + 1)

4

)
V +

(
sin

π(t + 1)
4

)
J(V ).

This induces a linear map

K : W 1,p
δ (Σ, ∂Σ; w∗TM, (w|∂Σ)∗TL)

→ W 1,p
δ (Σ, ∂−Σ, ∂+Σ; w∗TM, (w|∂−Σ)∗TL, J(w|∂+Σ)∗TL)

by

(42.16) (K(V ))(s, t) = Kt(V (s, t)).

It follows that K is an isomorphism. We define another linear map, which we denote
by the same letter,

K : C1
δ,p(Σ, w) → C1

δ,p(Σ, w)

by the same formula.
We put

(42.17) I+ = I′
+ and I− = I′

− ◦ K

and I(1) = (I+,I−). Then I(1) defines isomorphisms

(42.18.1) I(1) : C0
δ,p(Σ, w) ⊕ W 1,p

δ (Σ, ∂Σ; w∗TM,w|∗∂ΣTL) → C0
δ,p(Σ,D(w))

and

(42.18.2) I(1) : C1
δ,p(Σ, w) ⊕ C1

δ,p(Σ, w) → C1
δ,p(Σ,D(w))

respectively.

Lemma 42.19. Let w : Σ → M be a pseudo-holomorphic map with w(∂Σ) ⊂ L
with finite energy, and c ∈ R be any given constant. Then there exists δ = δ(w) > 0
depending only on w, such that we have the identity

I−1
(1) ◦ (DD(w)∂ + c) ◦ I(1) ≡

(
2Dw∂ + c, 2Dw∂ + c − π

4

)
modulo a compact operator
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as a Fredholm linear map from

C0
δ,p(Σ, w) ⊕ W 1,p

δ (Σ, ∂Σ; w∗TM,w|∗∂ΣTL)

to
C1

δ,p(Σ, w) ⊕ C1
δ,p(Σ, w).

Proof. Let ∇ is an almost complex connection of J . Then we have the linearization

Dw∂ =
1
2
(∇ ∂

∂s
+ J ∇ ∂

∂t
) +

(
T

(
∂w

∂s
, V

)
+ JT

(
∂w

∂t
, V

))
where T is the torsion tensor of the connection ∇. Since the terms involving T are
of the zero-th order, it follows from a straightforward calculation that we have

(42.20) (K−1 ◦ Dw∂ ◦ K)(V ) = (Dw∂)(V ) − π

8
V + Err−(V ),

for any J-holomorphic map w, where Err− is the term involving the torsion T and
DJ
dt (w(s, t)).

Now from the definition (42.9.2) of D(w) and I(1), we can calculate I−1
(1)◦DD(w)∂◦

I(1) separately on Σ+ = R × [0, 1] and Σ− = R × [−1, 0]. We start with Σ−. On
R × [−1, 0], we have

(I−1
(1) ◦ DD(w)∂ ◦ I(1))(V )(z) = (I′−1

− ◦ K)−1 ◦ DD(w) ◦ (I′
− ◦ K)(V )(z)

= K−1
(
(I′−1

− )−1 ◦ DD(w) ◦ I′
−

)
(K(V ))(z).

Now, recalling that I− is a conformal map given by

I−(z) =
z −

√
−1

2
,

it is straightforward to check that (42.20) implies

(I−1
(1) ◦ DD(w)∂ ◦ I(1))(V )(z) = 2(Dw∂)(V )(z) − π

4
V (z) + Err−(V )(z)

for z ∈ R × [−1, 0]. Here the term Err−(V )(z) does not involve derivatives of V

and decays as fast as e−δ′|s| for some δ′ > 0 which depends only on the exponential
order with which w(s, t) converges to w(±∞) as s → ∞. On the other hand, such
δ′ always exists : For the finite energy condition of w : Σ = R × [−1, 1] → M
together with the Lagrangian boundary condition w(∂Σ) ⊂ L enables one to apply
the removable singularity theorem and to get the Hölder estimates around ±∞.
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(See [Proposition 3.6, Oh92].) This then is translated back into the exponential
decay estimate of w on Σ.

Next we consider I−1
(1) ◦ DD(w)∂ ◦ I(1) on the domain Σ+ = R × [0, 1]. This time

it is much easier to verify that(
I−1

(1) ◦ DD(w)∂ ◦ I(1)

)
(V )(z) = 2Dw∂(V )(z) + Err+(V )(z)

where Err+(V ) is a term that has the decay estimates similar to Err−(V ).
Combining the two, if we choose a constant δ > 0 even smaller than δ′, the

operator
Err = (Err+,Err−)

becomes a compact operator. This finishes the proof. ¤
Now we consider Dm(w) and will promote the isomorphisms (42.18) to the iso-

morphisms

(42.21.1)
I(m) : C0

δ,p(Σ, w) ⊕ (W 1,p
δ (Σ, ∂Σ; w∗TM,w|∗∂ΣTL))⊕(2m−1) → C0

δ,p(Σ,Dm(w))

and

(42.21.2) I(m) : C1
δ,p(Σ, w)⊕(2m) → C1

δ,p(Σ,Dm(w))

for general m ≥ 2.
Let ~ε = (ε0, · · · , εm−1) ∈ {±1}m. To define the isomorphism (42.21.1) we write

an element of

C0
δ,p(Σ, w) ⊕ (W 1,p

δ (Σ, ∂Σ; w∗TM,w|∗∂ΣTL))⊕(2m−1)

as (V~ε)~ε∈{±1}m , where V(1,··· ,1) denotes the C0
δ,p(Σ, w)-component. We denote

(42.22.1) Iε0,··· ,εm−1 = Iεm−1 ◦ · · · ◦ Iε0

where

Iε =
{

I+ if ε = +1
I− if ε = −1,

(see (42.17) for the definition of I±) and then define

(42.22.2) I(m) = (Iε0,··· ,εm−1)(ε0,··· ,εm−1)∈{±1}m .

The definition of (42.21.2) is the same. Lemma 42.14 implies that (42.21) are
isomorphisms.
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Now using the isomorphisms (42.21), we are ready to define a Zm
2 -action on the

spaces
C0

δ,p(Σ, w) ⊕ (W 1,p
δ (Σ, ∂Σ; w∗TM,w|∗∂ΣTL))⊕(2m−1)

and C1
δ,p(Σ, w)⊕(2m). Let (Vε0,··· ,εm−1)(ε0,··· ,εm−1)∈{±1}m be an element of either of

the two spaces, and ~ρ = (ρ0, · · · , ρm−1) ∈ {±1}m = Zm
2 . We define an action of ~ρ

by

(~ρ V )ε0,··· ,εm−1 =

 ∏
i;ρi=−1

εi

 Vε0,··· ,εm−1 .

This action induces a Zm
2 -action on Ci

δ,p(D
m(w)) via the isomorphisms (42.21) for

each i = 0, 1 respectively.
We next define one more Z2 action on the bundle Ci

δ,p(ImDm) :

Ci
δ,p(Im Dm) :

⋃
w

{w} × Ci
δ,p(D

m(w)) → Im Dm

which lifts τ
(m)
∗ by(

I(m)((Vε0,··· ,εm−1)(ε0,··· ,εm−1)),D
m(w)

)
7→

(
I(m)((τ∗Vε0,··· ,εm−1)(ε0,··· ,εm−1)),D

m(τ∗w)
)
.

We remark that
Dm(τ∗w) = τ

(m)
∗ Dm(w).

It is easy to see that this Z2 action commutes with the Zm
2 action and hence defines

a Zm+1
2 action. By abuse of notation, we use the same notation (ρ0, · · · , ρm−1, ρm)

to denote an element of this group Zm+1
2 .

We next verify that this action satisfies the properties analogous to (42.4). (We
remark again that we adopt the situation of (42.4) for the case of m − 1, because
Mreg,(m)

2 = Fm−1 in our notation.) We have an embedding

(42.23) Ik
+ : C∗

δ,p(D
m(w)) → C∗

δ,p(D
m+k(w)),

which is the k-th iteration of I+. We define a homomorphism Ik : Zm+1
2 → Zm+k+1

2

by Ik(ρ0, · · · , ρm) = (ρ0, · · · , ρm, 1, · · · , 1).

Lemma 42.24.

(42.25.1) Consider the action of Zm+1
2 on the bundle C∗

δ,p(Im Dm+k) induced by
Ik. Then the embedding (42.23) is equivariant under this Zm+1

2 -action.
(42.25.2) Let (1, · · · , 1,−1) ∈ Zm+1

2 . The (1, · · · , 1,−1)-invariant part of the
bundle C∗

δ,p(Im Dm) coincides with the image of I+ : C∗
δ,p(Im Dm−1) → C∗

δ,p(ImDm).
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(42.25.3) The natural action of τ∗ = τ
(0)
∗ on C∗

δ,p(ImDm) coincides with the
action of (−1, 1, · · · , 1).

The proof is obvious from definition.
We now verify Assumption 42.3 in our present context of Mreg

2 . For this purpose,
we use Lemma 42.24 and the fact that our Kuranishi structure is constructed from
the deformation complex

DDm(w)∂ : C0
δ,p(D

m(w)) → C1
δ,p(D

m(w))

by a finite dimensional reduction. The next lemma will be also used in an essential
way.

Lemma 42.26. For ~ρ ∈ Zm+1
2 , the operator

DDm(w)∂ − ~ρ ◦ DDm(w)∂ ◦ ~ρ : C0
δ,p(D

m(w)) → C1
δ,p(D

m(w))

is a compact operator.

Proof. We first express the conjugate of the linearization DDm(w)∂ by the isomor-
phism (42.21). We denote this conjugate by

D : C0
δ,p(Σ, w) ⊕ (W 1,p

δ (Σ, ∂Σ;w∗TM,w|∗∂ΣTL))⊕(2m−1) → C1
δ,p(Σ, w)⊕(2m)

with D = (D~ε)~ε∈{−1,+1}m where its ~ε-component is given by

(42.27) D~ε = 2m

(
Dw∂ −

m∑
i=1

2−3−i(1 − εi)π

)
.

Applying Lemma 42.19 inductively over m, we can prove that

D ◦ I(m) − I(m) ◦ DD(w)∂

is a compact operator. Obviously the Zm+1
2 -action commutes with D. Now this

implies Lemma 42.26 via (42.21) and (42.25.2). This finishes the proof. We remark
that the first eigen value of the operator 1

2J ∂
∂τ on W 1,p([−1, 1], ∂[−1, 1]; Cn, Rn) is

equal to π/2 which satisfies

π

2
>

m∑
i=1

2−3−i(1 − εi)π.

¤
To construct a Kuranishi structure from the tangent complex, we need to choose

a finite dimensional subspace Ep of C1
δ,p(p) for each of p ∈ Mreg

2 (β). (See §29.)
In case p = Dm(p′) with p′ = [((Σ, (∞,−∞)), w)] ∈ Mreg

2 (2−mβ), we choose
Ep ⊆ C1

δ,p(D
m(w)) so that the following condition is satisfied.
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Condition 42.28. Let χ : {±1}m+1 → [0, 1] be a function such that∑
~ρ∈{±1}m+1

χ(~ρ) = 1.

Consider the operator Dχ : C0
δ,p(D

m(w)) → C1
δ,p(D

m(w)) defined by

Dχ =
∑

~ρ∈{±1}m+1

χ(~ρ)(~ρ ◦ DDmw∂ ◦ ~ρ).

Then Ep satisfies
ImDχ + Ep = C1

δ,p(D
m(w))

for any χ. We also assume that Ep is invariant under the above Zm+1
2 -action.

We can find such Ep by Lemma 42.26, since the set of all such χ is a compact
subset of [0, 1]2

m+1
.

We want to use this choice of Ep’s to construct a Kuranishi structure in the
same way as in §29. We need to handle one more trouble. Namely the map
(Σ, w′) 7→ ∂w′ = s(w′) may not be invariant under the Zm+1

2 action when we
vary [(Σ, (∞,−∞)), w′] in a neighborhood of p = Dm(p′) in the Banach mani-
fold W 1,p

2 ((Σ, ∂Σ), (M,L))/R. (W 1,p
2 ((Σ, ∂Σ), (M,L)) is defined in the same way as

Definition 29.3.)
Now we explain how we take care of this trouble. For each m ≤ m(β), we consider

a small neighborhood Vm of

Fm−1 = Mreg,(m)
2 (β)

in W 1,p
2 ((Σ, ∂Σ), (M,L))/R for m = 0, 1, · · · . (Here F−1 = M(β)reg.) Shrinking

Vm if necessary, we may assume that

m(β)⋃
m=0

Vm ⊃ Mreg
2 (β),(42.29.1)

Vm1 ∩ Fm2 = ∅ if m2 > m1.(42.29.2)

We can choose Vm so small that the infinitesimal Zm+1
2 -action on C0

δ,p(D
m(w))

induces a Zm+1
2 action on Vm by exponentiation, and this action can be lifted to an

action of the bundle p 7→ C1
δ,p(p) where p ∈ Vm. We also assume that the actions

on various Vm’s are compatible on the overlapped parts. Then we define s(m) by

s(m)(p) = 2−(m+1)
∑

~ρ∈Zm+1
2

(~ρ ◦ s)(~ρp) ∈ C1
δ,p(p)
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on each Vm. Here s denotes the original Kuranishi map given by

s(p) = ∂w, p = ((Σ, (∞,−∞)), w) ∈ Vm.

We observe that s(m) is Zm+1
2 -equivariant.

Choosing a partition of unity χm subordinate to Vm, we define

s′(p) =
∑
m

χm(p)s(m)(p).

Now we use Condition 42.28 and choose Vm sufficiently close to Fm−1 = Mreg,(m)
2 (β)

so that the composition

π ◦ dps′ : C0
δ,p(p) → C1

δ,p(p)/Ep

is surjective. Therefore we replace the equation (29.16) by

(42.30) s′(p) ≡ 0 mod Ep

to define a space with Kuranishi structure. Then we derive from (42.29.2) that
(42.30) is invariant under the Zm+1

2 -action on the neighborhood Vm of Fm−1 =
Mreg,(m)

2 (β). This implies that the Kuranishi structure thus constructed carries a
Zm+1

2 -action on Vm. Then it follows from Lemma 42.24 that this action satisfies
Assumption 42.3. Applying Proposition 42.5, we now finish the proof of Proposition
41.7. The proof of Proposition 41.10 is similar and omitted. ¤

§43. Completion of the proof of Theorem 34.16.

The main purpose of this section is to complete the proof of Theorem 34.16. We
remark that we did not use spherical positivity yet in the previous sections. It is in
the discussion of this section we need to use this unpleasant assumption.

Because we will often use the moduli space of pseudo-holomorphic spheres of M
in this section which we denote by M(M ;α), we write M(L;β) in place of M(β) for
the moduli space of pseudo-holomorphic discs to avoid causing possible confusion
from the readers.

43.1. A problem to extend τ
(i)
∗ to the compactification.
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The principal reason why we need to assume Condition 34.15 lies in the fact that
the perturbation sε we produced in §41 and §42 may not extend to the compactified
moduli space.

First, we provide an example which illustrates how this continuous extension
is obstructed. Let S = R × [−1, 1] ⊂ C, where z = s +

√
−1t is the standard

complex coordinate of C, and a compatible almost complex structure J on M be
given. Consider a pseudo-holomorphic map u : (S, ∂S) → (M,L) and denote by
[((S, (+∞,−∞)), u)] the corresponding element in Mreg

2 (L;β). Here ±∞ are the
marked points on ∂S which is the limit of s → ±∞. We will often denote by the
same letter S for the compactified disc including the two ‘infinities’ to S. This
should not cause any confusion. Suppose u satisfies

(43.1.1) τ∗((S, (+∞,−∞)), u) = ((S, (+∞,−∞)), u).

By definition, we have

u(R × {0}) ⊂ Fix τ = L, τ(u(s,−t)) = u(s, t).

In addition, we suppose

(43.1.2) τ
(1)
∗ ((S, (+∞,−∞)), u) 6= ((S, (+∞,−∞)), u).

Let v : S2 → M be a pseudo-holomorphic sphere such that τ(v(z)) = v(z).
Here we regard S2 = C ∪ {∞}. Then ((S2, 0), v) is an element of M1(M ; β̃), the
moduli space of pseudo-holomorphic sphere with one marked point. It follows that
v(R) ⊂ L where R ⊂ C ⊂ S2. We restrict to the case of v’s such that v satisfies
v(0) = u(0, 0) and its group of automorphisms is trivial.

We glue S2 to S by identifying 0 ∈ S2 with (0, 0) ∈ S and denote by Σ the
resulting semi-stable curve.

We now define a stable map w : (Σ, ∂Σ) → (M,L) by setting

w = u on S and w = v on S2.

Obviously we have

τ∗((Σ, (+∞,−∞)), w) = ((Σ, (+∞,−∞)), w)

and (Σ, (+∞,−∞), w) ∈ M2(L;β + β̃). We are going to observe that τ
(1)
∗ does not

extend to ((Σ, (+∞,−∞)), w).
Recall that the set of smoothing parameters of the double point of Σ is C and for

each z in a neighborhood of 0 we obtain a smooth curve which we denote by Σz. If
the obstruction bundle of M2(L;β + β̃) at ((Σ, (+∞,−∞)), w) is zero, for example,



CHAPTER 8. LAGRANGIAN FLOER THEORY OVER Z 127

then ((Σz, (+∞,−∞)), wz) ∈ M2(L;β + β̃) would converge to ((Σ, (+∞,−∞)), w)
as z → 0 and satisfies

τ∗((Σz, (+∞,−∞)), wz) = ((Σz, (+∞,−∞)), wz).

In particular for the real parameter r ∈ (−ε,+ε) \ {0}, we obtain an element
((Σr, (+∞,−∞)), wr) ∈ Mreg

2 (L;β + β̃), which is fixed by τ∗. Therefore we can
define τ

(1)
∗ ((Σr, (+∞,−∞)), wr) as in §41. We claim

(43.2) lim
r↑0

τ
(1)
∗ ((Σr, (+∞,−∞)), wr) 6= lim

r↓0
τ

(1)
∗ ((Σr, (+∞,−∞)), wr)

which will show that the map τ
(1)
∗ : Mreg

2 (L;β + β̃) → Mreg
2 (L;β + β̃) cannot be

continuously extended to the compactification M2(L;β + β̃).

To show (43.2) we give the descriptions of the right and left hand sides thereof.
We regard the restriction of v : C ∪ {∞} → M to H as a map v1 : (D2, ∂D2) →
(M,L) where 0 ∈ ∂H is identified with 1 ∈ ∂D2. Then (((D2, ∂D2), 1), v1) ∈
M1(L;β1). Let τ∗(((D2, ∂D2), 1), v1) = (((D2, ∂D2), 1), v2) ∈ M1(L;β2). (In fact,
if we regard βi ∈ π2(M,L), then β2 = τ∗(β1).) Then v is obtained by gluing v1 and
v2 along their boundaries.

We take two copies of D2 and denote them by D2
−, D2

+ respectively. We glue
S with D2

− and D2
+ by identifying (0,−1) ∈ S with 1 ∈ D2

− and also identifying
(0,+1) ∈ S with 1 ∈ D2

+. We denote by Σ′ the bordered semi-stable curve obtained
by it. We define wi : (Σ(0,0), ∂Σ(0,0)) → (M,L) for i = 1, 2 as follows. See Figures
43.1 and 43.2.

w1(z) =


(τ (1)

∗ (u))(z) z ∈ S

v1(z) z ∈ D2
−

v2(z) z ∈ D2
+,

(43.3.1)

w2(z) =


(τ (1)

∗ (u))(z) z ∈ S

v2(z) z ∈ D2
−

v1(z) z ∈ D2
+.

(43.3.2)
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Figure 43.1

Figure 43.2

It is easy to prove

(43.4)


lim
r↑0

τ
(1)
∗ ((Σr, (+∞,−∞)), wr) = ((Σ(0,0), (+∞,−∞)), w1)

lim
r↓0

τ
(1)
∗ ((Σr, (+∞,−∞)), wr) = ((Σ(0,0), (+∞,−∞)), w2).

Thus the argument of §41 and §42 to cancel the effect of pseudo-holomorphic
discs by secondary and higher involutions does not directly apply at the singular
strata. In fact the trouble becomes more serious if the sphere bubble v as above is a
multiple (say 2k-th) cover. In that case there is a non trivial automorphism (cyclic
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group of order 2k) in the sphere bubble side. On the other hand, in the disc bubble
side, we have an element of the image of Dk−1 as the disc bubble. The symmetry
we find for such element is Zk−1

2 . It appears that these two symmetries are not
compatible to each other as, for example, the groups are different.

Here enters the additional assumption the spherical positivity which will make
the image of the evaluation map of the bubble have smaller dimension than that
of Mreg

2 (β + β̃). This will enable us to derive vanishing of the obstruction of Floer
cohomology and and collapsing of the associated spectral sequence in the E2-level,
which will lead to the proof of Theorem 34.16.

43.2. Estimate of the dimension of the ‘infinity’ of the moduli space.

In this subsection, we use spherical positivity of J to show that the evaluation
image of the singular strata of the moduli space of J-holomorphic discs has the
dimension strictly smaller than that of the image of the regular strata. (See Propo-
sition 43.9.)

Definition 43.5. Let E > 0. We denote by J c1>0
ω,E or J c1>0

(M,ω),E the set of all ω

compatible almost complex structures on M such that every J-holomorphic sphere
v : S2 → M with c1(M)[v] ≤ 0, ω[v] ≤ E is constant. Clearly

⋂
E J c1>0

ω,E = J c1>0
ω .

The following lemma will be needed for the proof of Theorem 34.16.

Lemma 43.6. If J ∈ J c1>0
ω 6= ∅, for each given E > 0 there exists an open

neighborhood Vω≤E(J) of J in Jω such that Vω≤E(J) ⊂ J c1>0
ω,E .

Proof. Define

Γ′
ω,J = {ω(u) | u : S2 → M non-constant J-holomorphic}

and denote by λω,J the minimum of Γ′
ω,J which is positive by ε-regulaity. Then

Gromov’s compactness gives rise to upper semi-continuity of the function J 7→ λω,J

and so we can choose a C∞-neighborhood V0(J) of J in Jω such that

λω,J′ ≥ λω,J

for all J ′ ∈ V0(J).
Gromov’s compactness also implies that Γ′

ω,J is a discrete subset of R+. We
enumerate

Γ′
ω,J = {λω,J = λ1, λ2, · · · , λj → ∞}.

We denote by Γω,J the monoid generated by Γ′
ω,J and set

Γω,J;j := {λ ∈ Γω,J | λ ≤ λj}.
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We denote
δj = min{|λ − µ| | λ, µ ∈ Γω,J;j}.

We fix the sequence EN so that

EN = λN +
δN

2
.

We now inductively prove the lemma over E = Ej . We start with E = E1.
Suppose to the contrary that there exists a sequence Ji ∈ Jω be a sequence with
Ji → J such that Ji carries a non-constant Ji-holomorphic sphere ui satisfying

c1([ui]) ≤ 0, ω([ui]) ≤ E1.

Since ui is non-constant, we have

ω([ui]) ≥ λω,Ji ≥ λω,J

where the first inequality follows from the definition of λω,Ji and the second from
the upper semi-continuity of the function J 7→ λω,J .

On the other hand by the energy bound and the convergence Ji → J , we can
find a subsequence still denoted by ui such that ui converges to a J-holomorphic
stable map u∞. Since ω(u∞) = limi→∞ ω([ui]), we have

λω,J ≤ ω(u∞) ≤ E1.

In particular ui → u∞ in C∞ (modulo reparameterization) by the choice of E1 above
and u∞ must be a non-constant smooth J-holomorphic sphere and [ui] = [u∞] in
H2(M). Since J does not carry non-constant J-holomorphic sphere with negative
c1, we have c1([ui]) = c1([u∞]) > 0, a contradiction to the hypothesis c1([ui]) ≤ 0.
Therefore there exists an open neighborhood Vω≤E1(J) ⊂ V0(J) that satisfies the
property stated in the lemma.

Now suppose we have produced such neighborhoods Vω≤Ej (J) for all j ≤ N .
Without loss of generality, by taking intersections, we may assume

Vω≤Ej+1(J) ⊂ Vω≤Ej
(J)

for all 1 ≤ j ≤ N . Again suppose to the contrary that we have a sequence ui of
Ji-holomorphic with Ji → J and Ji ∈ Jω such that c1(ui) ≤ 0 and ω([ui]) ≤ EN+1.
By the induction hypothesis, it must hold ω([ui]) > EN for all sufficiently large i.
By the energy bound, we have the stable map convergence ui → u∞ after taking
a subsequence and so [ui] = [u∞] in H2(M). The inequality ω([ui]) > EN implies
u∞ cannot be constant and so has positive c1 and so c1([ui]) > 0, a contradiction.
This finishes the proof. ¤
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Before launching the main goal of analyzing the structure of singular part of the
moduli space M2(L;β), we first need to equip ourselves with a variety of definitions.

Let Msing
k+1(L;β) = Mk+1(L;β) \Mreg

k+1(L;β). We take a set of smooth singular
cycles Pj = (|Pj |, fj) with j = 1, · · · ,dimH(L; Z2) whose homology classes generate
H∗(L; Z2). Note a singular cycle Pj of degree dj is written as

Pj =
kj∑

`=1

(∆dj , fj,`)

where fj,` is a smooth map from the simplex ∆dj to L. Since ∂Pj = 0 as a singular
chain we can glue simplicies to obtain a simplicial complex |Pj | and a piecewise
smooth map fj : |Pj | → M .

We denote

(43.7) Msing
2 (L;β, Pj) = Msing

2 (L;β) ev1 ×fj
|Pj |.

Definition 43.8. Let J0 ∈ J c1>0
ω 6= ∅ and E0 > 0. Let Vω≤E0(J0) be as in Lemma

43.6. We put

Π(M,E0, J) = {β ∈ Π(L) | E(β) ≤ 2E0,Mk+1(L, J ;β) 6= ∅}.
and

Π(M,E0,Vω≤E0(J0)) =
⋃

J∈Vω≤E0 (J0)

Π(M,E0, J).

It follows from Gromov’s compactness theorem that Π(M,E0, J) has a finite order.
In the same way as the proof of Lemma 43.6, we may choose Vω≤E0(J0) small
enough such that Π(M,E0,Vω≤E0(J0)) is also of finite orer. We put

Π(M,E0,Vω≤E0(J0)) = {β0, · · · , βN}
so that E(βi) ≤ E(βi+1).

For α ∈ π2(M), we denote by Mreg
1 (M ;α) the moduli space of pseudo-holomorphic

spheres with one marked point and of homotopy class α. We denote by Mreg
1 (M ;α)inj

(resp. Mreg(M ;α)inj) the set of elements of Mreg
1 (M ;α) (resp. Mreg(M ;α)) rep-

resented by somewhere injective spheres, and we put

Mreg
1 (M ;α)inj,τ := forget−1(Mreg(M ;α)inj,τ )).

Here Mreg(M ;α)inj,τ is the τ -fixed point set of Mreg(M ;α)inj and

forget : Mreg
1 (M ;α)inj → Mreg(M ;α)inj

is the forgetful map of the marked point. The map evint : M1(M ;α) → M denotes
the evaluation map at the (unique) interior marked point.

Let Mreg
k+1,1(L;β) be the moduli space of pseudo-holomorphic discs with one

interior marked point and k+1 boundary marked points and of the class in β ∈ Π(L).
We denote by evint : Mreg

k+1,1(L;β) → M the evaluation map at the interior marked
point, and evi : Mreg

k+1,1(L;β) → L is the evaluation map at the i-th boundary
marked point for i = 0, 1, 2, · · · , k respectively.
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Proposition 43.9. Let J0 ∈ J c1>0
ω 6= ∅, E0 > 0, Vω≤E0(J0) and βi are as in

Definition 43.8. Then the following holds for J in a dense subset of Vω≤E0(J0).
There exist a finite number of (paracompact) smooth manifolds S(βi, `), S(βi, `, j)

and fi,` : S(βi, `) → L, fi,`,j : S(βi, `, j) → L such that the following holds.

(43.10.1) dimS(βi, `) ≤ dimM1(L;βi) − 1.
(43.10.2) dimS(βi, `, j) ≤ dimM2(L;βi, Pj) − 1.
(43.10.3)

⋃
` fi,`(S(βi, `)) = ev0(Msing

1 (L;βi)).
(43.10.4)

⋃
` fi,`,j(S(βi, `, j)) = ev0(Msing

2 (L;βi, Pj)).
(43.10.5) For each given βi and `, we have ⋂

K⊆S(βi,`) is compact

fi,`(S(βi, `) \ K)

 ⊂
⋃
`′<`

fi,`′(S(βi, `
′)).

(43.10.6) For each given βi, ` and j, we have ⋂
K⊆S(βi,`,j) is compact

fi,`,j(S(βi, `, j) \ K)

 ⊂
⋃
`′<`

fi,`′,j(S(βi, `
′, j)).

Note we write M1(L;β) etc. in place of M1(L, J ;β) in (43.10) and also in the
proof of Proposition 43.9.

We remark that the conclusion of Proposition 43.9 is related to the notion of
pseudo-cycle. (See [McSa94, §7.1].)

We note that we will not use abstract perturbations but only use perturbations
of J for the proof of Proposition 43.9. After we have proved Proposition 43.9, we
use abstract perturbations in §43.4 and §43.5. We need to use both perturbations
of J and abstract perturbations to prove Theorem 34.16.

In the proof below we use the non-existence of J-holomorphic disk of Maslov
index 0 but will not use yet the non-existence of J-holomorphic sphere of Chern
number 0.

Proof. Let β ∈ Π(L).
We consider the following four kinds of moduli spaces :

(43.11.1) Mreg
1 (L;β′). Here E(β′) < E(β) and µL(β′) < µL(β).

(43.11.2) Mreg
1 (M ;α)inj

evint ×M L. Here the element α ∈ π2(M) is assumed to
satisfy E(α) ≤ E(β), 2c1(M)(α) ≤ µL(β).
(43.11.3) Mreg

1 (M ;α)inj
evint ×evint M

reg
1,1(L;β′). Here the elements α ∈ π2(M),

β′ ∈ Π(L) are assumed to satisfy

E(α) + E(β′) ≤ E(β), 2c1(M)(α) + µL(β′) ≤ µL(β).
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(43.11.4) Mreg
1 (M ;α)inj

evint ×ev1 M
reg
2,0(L;β′). Here α, β′ are as in (43.11.3).

See Figures 43.3–43.5.

Figure 43.3. (43.11.2) Figure 43.4. (43.11.3)

Figure 43.5. (43.11.4)

The following lemma will be crucial for the proof of Z2-unobstructedness of L =
Fix τ in §43.4.

Lemma 43.12. The image ev0(Msing
1 (L;β)) is contained in the union of images

of the evaluation maps of the moduli spaces (43.11.1) − (43.11.4).

Proof. Let ((Σ, z0), w) ∈ Msing
1 (L;β) be a singular element of M1(L;β), i.e., assume

that Σ has at least two irreducible components. We denote by Σ0 the component
of Σ that contains the 0-th marked point z0.

(Case 1) : We first consider the case where w is non-constant on Σ0. Let β′ =
[w|Σ0 ]. It follows from stability of ((Σ, z0), w) that there exists at least one other
component Σ1 on which w is non-constant.
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If Σ1 is a disc, then J ∈ J c1>0
ω,E0

and Lemma 39.21 imply that

E(β′) < E(β), µL(β′) < µL(β).

Therefore the images ev0((Σ, z0), w) = w(z0) of such w is contained in the image of
the evaluation map of the moduli space in (43.11.1).

Next assume Σ0 is the only non-constant disc component of Σ. Then Σ1 must
be a sphere component. By re-choosing Σ1 if necessary, again by the stability of
((Σ, z0), w), we may assume that there exists a point z1 ∈ Σ1 such that w(z1) =
w(z′1) for z′1 ∈ Σ0. Replacing w by its reduced curve, we may assume that the
restriction of w on Σ1 is somewhere injective.

If z′1 ∈ IntΣ0, we glue Σ0 and Σ1 at z′1 and z1 and obtain a connected Σ′. We
denote the restriction of w to Σ′ by ((Σ′, z0), w′). Then this defines an element of
the moduli space (43.11.3) and hence the image ev0((Σ, z0), w) = ev0((Σ′, z0), w′)
lies in the image of the moduli space (43.11.3). If z′1 ∈ ∂Σ0, then we find that
ev0((Σ, z0), w) lies in the image of the moduli space (43.11.4).

(Case 2) : We next consider the case where w is constant on Σ0, but there is
another disc component Σ′

0 on which w is non-constant. Then by re-choosing Σ′
0

if necessary we can find a connected chain of disc components {Σi} joining Σ0 and
Σ′

0 such that w is constant on each Σi. Then we have z′0 ∈ ∂Σ′
0 at which w satisfies

w(z0) = w(z′0). We put w′ = w|Σ′
0

and β′ = [w|Σ′
0
]. Then replacing ((Σ0, z0), w)

by ((Σ′
0, z

′
0), w

′), we can apply the same argument as in (Case 1) and prove that
the image w(z′0)(= w(z0)) is contained in the image of the evaluation map of the
moduli space in (43.11.1), (43.11.3) or (43.11.4).

(Case 3) : Finally we assume that w is constant on all the disc components of Σ′.
We take a sphere component Σ1 on which w is non-constant. By the same argument
as in (Case 2), we may assume that Σ1 has attached to Σ0 and so there is a point
z1 ∈ Σ1 with w(z1) = w(z0). Denote α = [w|Σ1 ]. Then ev0((Σ, z0), w) = w(z1) is
contained in the image of the evaluation map of the moduli space in (43.11.2). As
before we can replace w by somewhere injective one.

The proof of Lemma 43.12 is then complete. ¤
Now we order the moduli spaces appearing in (43.11.1)–(43.11.4) by the energy

E(β′), E(α) or E(β′) + E(α) respectively. We denote them as S(β, `) which are
precisely those appearing in Proposition 43.9.

The identity (43.10.3) immediately follows from Lemma 43.12 and (43.10.5) fol-
lows from the proof of Lemma 43.12.

We now check (43.10.1). If S(β, `) is the moduli space from (43.11.1), then
(43.10.1) is obvious by the inequality µL(β′) < µL(β).

Next consider the case where S(β, `) is one of the moduli spaces of the type

(43.11.2.1) (Mreg
1 (M ;α)inj \Mreg

1 (M ;α)inj,τ )evint ×M L
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from (43.11.2). We note that spheres in Mreg
1 (M ;α)inj \ Mreg

1 (M ;α)inj,τ are τ -
somewhere injective by definition and so Lemma 39.7 implies that for a generic
choice of J ∈ J τ

ω , evint : (Mreg
1 (M ;α)inj \Mreg

1 (M ;α)inj,τ ) → M is transversal to
L. We remark that it is essential here to remove Mreg

1 (M ;α)inj,τ since we need to
take J ∈ J τ

ω for our purpose. (See Remark 43.15. There we will show an example
that this transversality breaks down without removing Mreg

1 (M ;α)inj,τ .) Then we
have

dim
(
(Mreg

1 (M ;α)inj \Mreg
1 (M ;α)inj,τ ) evint ×M L

)
= 2 + (2n + 2c1(M)(α) − 6) + n − 2n

≤ n + µL(β) − 4 < n + µL(β) − 2 = dimM1(L;β),

as required for the type (43.11.2.1). On the other hand, we find that the removed
part

(43.11.2.2) Mreg
1 (M ;α)inj,τ

evint ×M L

in (43.11.2) has smaller dimension than (43.11.2.1) because we have

dim
(
Mreg

1 (M ;α)inj,τ
evint ×M L

)
= 2 +

1
2
(2n + 2c1(M)(α) − 6) + n − 2n

≤ 2 + (2n + 2c1(M)(α) − 6) + n − 2n

< dimM1(L;β).

We recall that Mreg
1 (M ;α)inj,τ is not the τ -fixed point set of Mreg

1 (M ;α)inj but is
the inverse image of the τ -fixed point set Mreg(M ;α)inj,τ in Mreg(M ;α)inj under
the forgetful map of the marked point. So evint may not take values in L = Mτ .
Here we used the following slight modification of Lemma 39.14 for the calculation of
the dimension of (43.11.2.2). Hence we have checked (43.10.1) for the case (43.11.2).

Lemma 39.14bis. Let Q be a smooth singular chain in M . For a generic J ∈ J τ
ω

(depending on Q), the evaluation map evint : Mreg
1 (M ;α)inj,τ → M is transversal

to Q in addition to the condition that the operator (39.12.1) is surjective.

We next consider the case of (43.11.3). We also separate the argument into two
cases as above. We observe that the fiber product

(43.11.3.1) (Mreg
1 (M ;α)inj \Mreg

1 (M ;α)inj,τ ) evint ×evint M
reg
1,1(L;β′)

is transversal for a generic J ∈ J τ
ω . (We again use the fact that the τ -invariant part

Mreg
1 (M ;α)inj,τ was removed from Mreg

1 (M ;α)inj.) Hence

dim
(
(Mreg

1 (M ;α)inj \Mreg
1 (M ;α)inj,τ )evint ×evint M

reg
1,1(L;β′)

)
= (2n + 2c1(M)(α) − 4) + (n + µL(β′)) − 2n

≤ n + µL(β) − 4 < n + µL(β) − 2 = dimM1(L;β),
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as required. For the case

(43.11.3.2) Mreg
1 (M ;α)inj,τ

evint ×evint M
reg
1,1(L;β′),

we can show, by using Lemma 39.14bis, that it has smaller dimension than (43.11.3.1)
in a way similar to the case of (43.11.2).

We finally consider the case (43.11.4). In the same way as above, we have

dim
(
(Mreg

1 (M ;α)inj \Mreg
1 (M ;α)inj,τ )evint ×ev1 M

reg
2,0(L;β′)

)
= (2n + 2c1(M)(α) − 4) + (n + µL(β′)) − 1 − 2n

< dimM1(L;β),

as required. For the part Mreg
1 (M ;α)inj,τ

evint ×ev1 Mreg
2,0(L;β′), the argument is

similar.
Therefore we completed the proof of Proposition 43.9 for the part S(βi, `) or

Msing
1 (L;β).

Now we consider the case of S(βi, `, j). This will involve the moduli spaces
M2(L;β, Pj). We will show that the singular strata thereof consist of the following
types, which replaces (43.11) for this case :

(43.13.1) Mreg
2 (L;β1) ×L Mreg

2 (L;β2) · · · ×L Mreg
2 (L;βm) ×L Pj . Here m > 1

and
∑m

k=1 E(βk) ≤ E(β),
∑m

k=1 µL(βi) ≤ µL(β). (Figure 43.6).
(43.13.2) Mreg

2 (L;β′, Pj). Here E(β′) < E(β) and µL(β′) < µL(β).
(43.13.3) Mreg

1 (M ;α)inj
evint ×M Pj . Here the element α ∈ π2(M) is assumed to

satisfy E(α) ≤ E(β), 2c1(M)(α) ≤ µL(β). (Figure 43.7).
(43.13.4.1) Mreg

1 (M ;α)inj
evint ×evint M

reg
2,1(L;β′, Pj). Here

Mreg
2,1(L;β′, Pj) = Mreg

2,1(L;β′) ev1 ×L Pj .

The elements α ∈ π2(M), β′ ∈ Π(L) are assumed to satisfy E(α) + E(β′) ≤ E(β)
and 2c1(M)(α) + µL(β′) ≤ µL(β). (Figure 43.8).
(43.13.4.2) Mreg

1 (M ;α)inj
evint ×ev1 M

reg
2,0(L;β′, Pj). Here

Mreg
2,0(L;β′, Pj) = Mreg

2,0(L;β′) ev1 ×L Pj .

The elements α ∈ π2(M), β′ ∈ Π(L) are assumed to satisfy E(α) + E(β′) ≤ E(β)
and 2c1(M)(α) + µL(β′) ≤ µL(β). (Figure 43.9).
(43.13.4.3) (evint(Mreg

1 (M ;α)inj)∩Pj)×ev1 M
reg
2,0(L;β′). Here the elements α ∈

π2(M), β′ ∈ Π(L) are assumed to satisfy E(α) + E(β′) ≤ E(β) and 2c1(M)(α) +
µL(β′) ≤ µL(β). (Figure 43.10).
(43.13.5.1) (Pj × Mreg

1 (M ;α)inj) (fj ,evint) ×(ev1,ev2) M
reg
3,0(L;β′). Here the ele-

ments α ∈ π2(M), β′ ∈ Π(L) are assumed to satisfy E(α) + E(β′) ≤ E(β) and
2c1(M)(α) + µL(β′) ≤ µL(β). (Figure 43.11).
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(43.13.5.2) (Mreg
1 (M ;α)inj × Pj) (evint,fj) ×(ev1,ev2) M

reg
3,0(L;β′). Here the ele-

ments α ∈ π2(M), β′ ∈ Π(L) are assumed to satisfy E(α) + E(β′) ≤ E(β) and
2c1(M)(α) + µL(β′) ≤ µL(β). (Figure 43.12).

(43.13.6) Mreg
1 (L;β′) ev0 ×L Pj . Here E(β′) ≤ E(β) and µL(β′) ≤ µL(β). (Fig-

ure 43.13).

Figure 43.6. (43.13.1) Figure 43.7. (43.13.3)

Figure 43.8. (43.13.4.1) Figure 43.9. (43.13.4.2)
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Figure 43.10. (43.13.4.3)

Figure 43.11. (43.13.5.1)
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Figure 43.12. (43.13.5.2)

Figure 43.13. (43.13.6)

The following lemma will be essential for the proof of collapsing of the spectral
sequence associated to the Floer coboundary map in the E2-level. See §43.5.

Lemma 43.14. The image ev0(Msing
2 (L, β, Pj)) is contained in the union of the

image of evaluation maps of the moduli spaces in (43.13.1) − (43.13.6).

Proof. Let ((Σ, (z0, z1)), w, x) be an element of Msing
2 (L;β, Pj). (Namely we have

((Σ, (z0, z1)), w) ∈ Msing
2 (L;β) and x ∈ Pj such that w(z1) = fj(x).)

We consider the minimum union Σ′ of (disc) components of Σ such that Σ′ is
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connected and contains both z0 and z1. (Figure 43.14).

Figure 43.14.

(Case 1) : If Σ′ contains at least two components on which w is nontrivial, then

ev0((Σ, (z0, z1)), w, x) = w(z0)

lies in the image of ev0 of the moduli space of the form (43.13.1). (See Figure 43.6.)

(Case 2) : We next assume that Σ′ contains exactly one component Σ′
0 on which

w is nonconstant. Let β′ = [w|Σ′
0
]. (Σ′

0 may or may not coincide with Σ0.) There
exist z′0, z

′
1 ∈ Σ′

0 such that w(z0) = w(z′0), w(z1) = w(z′1).

If there is at least one disc component other than Σ′
0 on which w is nonconstant,

then Condition 43.5 implies that µL(β′) < µL(β) and E(β′) < E(β). Therefore
w(z0) = w(z′0) is contained in M2(L;β′, Pj) satisfying (43.13.2).

Let us assume Σ′
0 is the only disc component of Σ on which w is nonconstant.

Then there exists a sphere component Σ2 on which w is nontrivial. We may assume
that there exist z′2 ∈ Σ′

0 and z2 ∈ Σ2 such that w(z′2) = w(z2).

Then w(z′0) is contained in the ev0 image of the moduli space in either (43.13.4.1)
or (43.13.4.2),(43.13.4.3),(43.13.5.1),(43.13.5.2), according to whether z′2 is in the
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interior or the exterior of the disc Σ′
0. (See Figures 43.15–43.18 below.)

Figure 43.15. (43.13.4.1)

Figure 43.16. (43.13.4.3)
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Figure 43.17. (43.13.5.1)

Figure 43.18. (43.13.4.2)

(Case 3) : We next consider the case when w is constant on Σ′.
We first consider the case when there is a disc component Σ2 (outside Σ′) on

which w is nonconstant. We may assume that there is a union Σ′′ of disc components
joining Σ′ to Σ2 such that w is constant on Σ′′ and that Σ′′ is connected. It follows
that there exists z2 ∈ Σ2 such that w(z0) = w(z1) = w(z2). Therefore w(z0) is



CHAPTER 8. LAGRANGIAN FLOER THEORY OVER Z 143

contained in the ev0 image of the moduli spaces in (43.13.6). (See Figure 43.19
below.)

Finally we consider the case when w is constant on all of the disc components of Σ.
We then can find a sphere component Σ2 and z2 ∈ Σ2 such that w is nonconstant on
Σ2 and w(z0) = w(z1) = w(z2). Thus w(z0) is contained in the image of (43.13.3).
(See Figure 43.20 below.) We may replace w|Σ2 by somewhere injective one.

The proof of Lemma 43.14 is now complete. ¤

Figure 43.19. (43.13.6)

Figure 43.20. (43.13.3)
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We define S(βi, `, j) by ordering the moduli spaces in (43.13.1) ∼ (43.13.6) ac-
cording to its energy.

The properties (43.10.4) and (43.10.6) are easy to check from Lemma 43.14 and
its proof. It is also easy to check (43.10.2) in case (43.13.1),(43.13.2). In case
(43.13.3) we have

dim
(
(Mreg

1 (M ;α)inj \Mreg
1 (M ;α)inj,τ ) evint ×M Pj

)
= (2n + 2c1(M)(α) − 4) + dimPj − 2n

≤ dimPj − 4 + µL(β) < dimPj − 1 + µL(β) = dimM2(L;β, Pj),

as required. Thanks to Lemma 39.14bis again, we can estimate the dimension of
the removed part Mreg

1 (M ;α)inj,τ
evint ×M Pj in a way similar to the case S(β, `)

as before and get also the required inequality for this part. So we do not repeat
the argument. As for the other cases below, the treatment of the τ -fixed part is
similar. Thus we only consider the case where the fiber product of the τ -fixed part
Mreg

1 (M ;α)inj,τ is removed below.
In case (43.13.4.1), we have

dim
(
(Mreg

1 (M ;α)inj \Mreg
1 (M ;α)inj,τ ) evint ×evint M

reg
2,1(L;β′, Pj)

)
= (2n + 2c1(M)(α) − 4) + (dimPj + 1 + µL(β′)) − 2n

≤ dimPj − 3 + µL(β) < dimPj − 1 + µL(β) = dimM2(L;β, Pj),

as required. In the cases (43.13.4.2), we have

dim
(
(Mreg

1 (M ;α)inj \Mreg
1 (M ;α)inj,τ ) evint ×ev1 M

reg
2,0(L;β′, Pj)

)
= (2n + 2c1(M)(α) − 4) + (dimPj − 1 + µL(β′)) − 2n

≤ dimPj − 5 + µL(β) < dimPj − 1 + µL(β) = dimM2(L;β, Pj),

as required. In the cases (43.13.4.3), we have

dim
(
(evint(Mreg

1 (M ;α)inj \Mreg
1 (M ;α)inj,τ ) ∩ Pj) ×ev1 M

reg
2,0(L;β′)

)
= ((2n + 2c1(M)(α) − 4) + dimPj − 2n) + (n − 1 + µL(β′)) − n

≤ dimPj − 5 + µL(β) < dimPj − 1 + µL(β) = dimM2(L;β, Pj),

as required. In case (43.13.5.1)

dim
(
(Pj × (Mreg

1 (M ;α)inj \Mreg
1 (M ;α)inj,τ )) (fj ,evint) ×(ev1,ev2) M

reg
3,0(L;β′)

)
= dimPj + (2n + 2c1(M)(α) − 4) + (n + µL(β′)) − 3n

≤ dimPj − 4 + µL(β) < dimPj − 1 + µL(β) = dimM2(L;β, Pj),

as required. Note we are taking fiber product over L × M whose dimension is 3n.
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The case (43.13.5.2) is similar. In case (43.13.6), we have

dimM1(L, β′)ev0 ×L Pj

= (n + µL(β′) − 2) + dim Pj − n = µL(β′) − 2 + dimPj

< dimPj − 1 + µL(β) = dimM2(L;β, Pj),

as required.
The proof of Proposition 43.9 is now complete. ¤

Remark 43.15. The conclusion of Proposition 43.9 does not hold without the
assumption that J ∈ J c1>0

ω,E0
(or the spherical positivity of J0) as the following

example illustrates.
Suppose that M(L, J ;β) 6= ∅ and µL(β) = 0. Let w : (D2, ∂D2) → (M,L)

be a J-holomorphic disc representing an element of M(L;β). We obtain a map
u : S2 → M by gluing w and τ∗w along their boundaries. We glue u with a trivial
disc (at its interior) to obtain an element of Msing

1 (L;β + τ∗β). By varying the
element (D2, w) in Mreg(L;β) we obtain a family X of elements of Msing

1 (L;β+τ∗β).
The image by ev0 of this family X is an n − 2 dimensional chain in L. We remark
that n − 2 = dimMreg

1 (L;β + τ∗β). Therefore we can not find S(β + τ∗β, `) that
satisfies (43.10.1) and (43.10.3).

We remark that this phenomenon always occurs as far as there exists a pseudo-
holomorphic disc with Maslov index zero.

We note that this example is also the example for which we can not extend
τ

(1)
∗ . (See §43.1.) Because of the presence of this phenomenon, the authors have

not been able to prove the Arnold-Givental conjecture for semi-positive Lagrangian
submanifold in general yet at the time of writing this book.

43.3. A topological lemma.

The condition below is the conclusion of Proposition 43.9.

Condition 43.16. We consider a sequence of smooth manifolds Si,` and smooth
maps fi,` : Si,` → L and positive integers di,`. We assume that

(43.17.1) dimSi,` < di,`.
(43.17.2) For each given i and `, we have ⋂

K⊆Si,` is compact

fi,`(Si,` \ K)

 ⊂
⋃

`′<`,di,`′≤di,`

fi,`′(Si,`′).

(43.17.3) The union Sd
i =

⋃
`,di,`≤d fi,`(Si,`) is compact.
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We fix a metric on L. For each subset X ⊂ L and ε > 0, we consider the
neighborhood given by

Bε(X) = {x ∈ L | d(x, X) < ε}.

Lemma 43.18. Suppose that Si,`, fi,` and di,` satisfy Condition 43.16. Then for
each δ > 0 there exists ε > 0 such that the inclusion Bε(Sd

i ) → Bδ(Sd
i ) induces zero

on Hd(Bε(Sd
i ); Z2) → Hd(Bδ(Sd

i ); Z2).

Proof. Choose a closed domain U ⊂ Bδ(Sd
i ) that has smooth boundary and con-

tains Bδ/2(Sd
i ). Let (Qk, ∂Qk) ∈ C∗(U, ∂U) (k = 1, 2, · · · ) be the n− d dimensional

relative (singular) cycles that generate Hn−d(U, ∂U ; Z2). By the standard transver-
sality theorem and a dimension counting argument, we can perturb Qk so that
Qk ∩ fi,`(Si,`) = ∅ for all i, ` with di,` ≤ d. This can be carried out inductively over
` using the conditions (43.17). By compactness of Qi and by the finiteness of the
sets Si,`, there exists ε > 0 such that Qk ∩Bε(Si,`) = ∅. The conclusion now follows
from the Poincaré duality. ¤

For each given δ > 0, let
ε(Sd

i , δ)

be the supremum of ε > 0 satisfying the conclusion of Lemma 43.18. We define the
function of t

h(t;Sd
i ) = inf{δ | ε(Sd

i , δ/2) > t}.

The following corollary is easy to prove by definition and Lemma 43.18, whose proof
is left to readers.

Corollary 43.19. Let h(t;Sd
i ) be as above. Then the followings hold :

(43.19.1) The natural homomorphism

Hd(Bε(Sd
i ); Z2) → Hd(Bh(ε;Sd

i )(S
d
i ); Z2)

induced by the inclusion Bε(Sd
i ) → Bh(ε;Sd

i )(Sd
i ) becomes zero for each integer d.

(43.19.2) We have limε→0 h(ε;Sd
i ) = 0.

(43.19.3) The function t 7→ h(t;Sd
i ) is defined on a neighborhood of 0 in [0, 1).

In the next two subsections we will consider another functions h′
i defined on a

neighborhood of 0 in [0, 1) such that limε→0 h′
i(ε) = 0. Using these functions, we

will inductively define hi(ε;S) by the formula

(43.20)
h1(ε;S) = h(ε;S), hi(ε;S) = h(h′

i(h
i−1(ε;S));S),

h(ε;S) = max
i,d

h(ε;Sd
i ) or max

i,d,j
h(ε;Sd

i,j),
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where Sd
i =

⋃
`,di,`<d fi,`(Si,`) is given by (43.17.3) with Si,` = S(βi, `) or Sd

i,j =⋃
`,di,`,j<d fi,`,j(Si,`,j) with Si,`,j = S(βi, `, j), respectively, as in Proposition 43.9.

The former case will be used in §43.4 and the latter will be used in §43.5. Note that
in our situation the possibility of i, d, j is finite.

43.4. L is unobstructed over Z2.

In the rest of this section, we assume that J0 is spherically positive and τ :
(M,J0) → (M,J0) is an anti-holomorphic involution. By Theorem 34.7, we have a
filtered A∞ algebra (C(L, J0; ΛZ2

0,nov),mJ0) over ΛZ2
0,nov coefficient. Our goal of this

subsection is to prove that (C(L, J0; ΛZ2
0,nov),mJ0) is unobstructed. For given E > 0,

we take Vω≤E(J0) as in Definition 43.8 and Proposition 43.9. We may assume that
Vω≤E(J0) is connected.

We enumerate the set Π(M,E,Vω≤E(J0)) which we defined in Definition 43.8,
as

0 = β0, β1, · · · , βm′ ∈ Π(L) = π2(M,L)/ ∼

so that E(βi) ≤ E(βi+1). We list the energies in the set {E(βi) | i = 0, · · ·m′} as

E0 < E1 < · · · < Em.

For simplicity of notation, we assume that

E(β0) < E(β1) < · · · < E(βm),

that is,
m = m′.

We will prove the following by induction on i.

Proposition 43.21. Let J ∈ Vω≤E(J0) satisfy the conclusion of Proposition 43.9.
There is a choice of

(1) a sequence of b(βi) ∈ C1−µL(βi)(L, J),
(2) a sequence of functions h′

i : [0, ε) → R+ satisfying h′
i(ε) → 0 as ε → 0,

(3) a compatible system of single valued sections sε of obstruction bundles for
Mk(L, J ;βi),

(4) the countable set of chains Xg(L, J) as in §30,
so that they satisfy the following properties :

(43.22.1) For each i, we have

mJ
1,0(b(βi))+

∑
k

∑
∗

mJ
k,βi(0)

(b(βi(1)), · · · , b(βi(k))) = 0.
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Here summation ∗ is taken over all i(0), · · · , i(k) such that∑
j

E(βi(j)) = E(βi),
∑

j

µL(βi(j)) = µL(βi).

(43.22.2) The support of cochain b(βi) is contained in
⋃

` Bhi(ε;S)(fi,`(S(βi, `))).
Here hi is inductively defined by (43.20), using h′

i given in (2) above.
(43.22.3) sε satisfies the conclusion of Theorem 34.11.

Proof. The proof is by induction on i. For the first step β0 = 0 there is nothing
to show. We assume the proposition for all i′ with i′ < i and prove it for i. We
consider

mJ
0,βi

(1) = (ev0)∗
(
M1(L, J ;βi)sε

)
∈ C2−µL(βi)(L, J ; Z2),

(sε will be determined later). We denote

o(βi) = mJ
0,βi

(1) +
∑

k

∑
∗

mJ
k,βi(0)

(b(βi(1)), · · · , b(βi(k))).

Here the summation ∗ is taken over all i(0), · · · , i(k) satisfying
∑

E(βi(j)) = E(βi),∑
µL(βi(j)) = µL(βi). As in the proof of Theorem 11.8, we find that

(43.23) δ(o(βi)) = 0.

We now prove :

Lemma 43.24. There exist functions h′
i such that h′

i(ε) → 0 as ε → 0 and we can
choose sε so that the support of the cochain o(βi) defined above is contained in

Bh′
i(h

i−1(ε;S))

(⋃
`

fi,`(S(βi, `))

)
.

Proof. Proposition 41.13 implies that we may choose sε so that the chain
ev0∗

(
M1(L, J ;βi)sε)

cancels each other to give zero outside an arbitrary small
neighborhood of ev0∗(Msing

1 (L, J ;βi)). Therefore we may choose sε so that the
support of m0,βi(1) is contained in the set Bh′

i(h
i−1(ε;S))(

⋃
` fi,`(S(βi, `))). More pre-

cisely, in a neighborhood of
⋃

` fi,`(S(βi, `)), we take a normally polynomial pertur-
bation as in §35 and use Proposition 43.13 outside a neighborhood of

⋃
` fi,`(S(βi, `))

to obtain sε. Here it is essential to use normally polynomial perturbation in order
the perturbed moduli space to have a smooth triangulation.

Let us consider the other terms

(43.25) mJ
k,βi(0)

(b(βi(1)), · · · , b(βi(k))).

By the induction hypothesis, the support of (43.25) is contained in the union of

(43.26) ev0

Mk+1(L, J ;βi(0)) ×Lk

k∏
j=1

Bhi−1(ε;S)

(⋃
`

fi(j),`(S(βi(j), `))

) ,

where we have
∑

j E(βi(j)) = E(βi),
∑

j µL(βi(j)) = µL(βi).
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Sublemma 43.27.

ev0

Mk+1(L, J ;βi(0)) ×Lk

k∏
j=1

⋃
`

fi(j),`(S(βi(j), `))

 ⊆ ev0

(⋃
`

fi,`(S(βi, `))

)
.

Proof. We recall that S(βi(j), `) is one of the moduli spaces of the form (43.11.1),
(43.11.2), (43.11.3) or (43.11.4). After taking a fiber product, we obtain an element
of Msing

1 (L, J ;β′) with E(β′) ≤ E(βi), µL(β′) ≤ µL(βi). Sublemma 43.27 then
follows from Lemma 43.12. ¤

Sublemma 43.27 implies that we can choose h′
i : [0, εi) → R+ for some εi > 0 so

that (43.26) is contained in the neighborhood

Bh′
i(h

i−1(ε;S))

(⋃
`

fi,`(ev0(S(βi, `)))

)

of
⋃

` fi,`(ev0(S(βi, `))). The proof of Lemma 43.24 is complete. ¤
Lemma 43.24, (43.23) and Lemma 43.18 imply that we can find b(βi) satisfying

(43.22.1) and (43.22.2). We may choose Xg(L, J) so that C(L, J) contains b(βi).
The proof of Proposition 43.21 is now complete. ¤

We choose J(E) ∈ Vω≤E(J0) such that the conclusion of Proposition 43.9 holds.
Since J(E) ∈ J c1>0

ω,E it follows from the proof of Theorem 34.7 (and the argument
of §30) that filtered An(E),K(E) algebra (C(L, J(E); ΛZ2

0,nov),mJ(E)) is defined with
limE→∞ n(E) = limE→∞ K(E) = ∞. Moreover since Vω≤E(J0) is connected it
follows from An(E),K(E) version of Theorem 34.7 that (C(L, J(E); ΛZ2

0,nov),mJ(E)) is
An(E),K(E) homotopy equivalent to (C(L, J0; ΛZ2

0,nov),mJ0). Therefore, Proposition
43.21 implies that we can make the choice so that the obstruction of the filtered
A∞ algebra (C(L, J0; ΛZ2

0,nov),mJ0) vanishes up to the m-stage for any given m. We
then prove the following :

Corollary 43.28. (C(L, J0; ΛZ2
0,nov),mJ0) is unobstructed.

Proof. We have already proved that (C(L, J0; ΛZ2
0,nov),mJ0) is unobstructed modulo

TE for any E > 0. To complete the proof, we proceed in the same way as in
the proof of Lemma 30.156. We replace C(L, J0; ΛZ2

0,nov) by the canonical model
(H∗(L; ΛZ2

0,nov),m). Then the existence of b(βi) up to E(βi) ≤ E is equivalent to
the existence of a solution of finitely many algebraic equations with finitely many
variables. In particular (since we are working over the Z2-coefficient), the set

B(E) = {b ∈ H1(L; ΛZ2
0,nov)/TEH1(L; ΛZ2

0,nov) | d̂(eb) ≡ 0 mod TE}
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is a finite set. For E < E′, there exists a natural map B(E′) → B(E). It follows
that this defines an inverse system {B(E)}. The projective limit

lim
←−

B(E)

coincides with M̂(H∗(L; ΛZ2
0,nov),m) (that is the set of all bounding cochains).

Proposition 43.21 implies that B(E) for each given E > 0 is nonempty. Since they
are finite sets, it follows that the projective limit is also nonempty. This implies
that L is unobstructed over Z2. ¤

43.5. Degeneration of spectral sequence for HF (L, L) over Z2.

In this subsection we prove existence of a bounding cochain b for which we have
the isomorphism

HF ((L, b), (L, b); ΛZ2
0,nov) ∼= H(L; Z2) ⊗ ΛZ2

0,nov

and complete the proof of Theorem 34.16. We use the same notation as §43.4.
We recall that the cohomology classes dual to {Pj | j = 1, · · · ,dimH(L; Z2)}

form a basis of H(L; Z2). We will construct Q(βi, Pj) so that the chain

(43.29) P̃j = Pj +
∑

i ; E(βi)<E

TE(βi)eµL(βi)/2Q(βi, Pj)

will satisfy

(43.30) mJ(eb, P̃j , e
b) ≡ 0 mod TE .

This then implies that δr[Pj ] = 0 for r satisfying rλ0 < E.
For this purpose, we will prove the following by the induction.

Proposition 43.31. There exist a choice of b (a bounding cochain modulo TE),
a sequence of chains Q(βi, Pj) ∈ Cdeg Pj+1−µL(βi)(L, J ; Z2), a compatible system
of single valued sections sε of the obstruction bundles, the countable set of chains
Xg(L, J) as in §30, and the functions h′

i, with the following properties.

(43.32.1) We have :∑
i′<i

mJ(eb, TE(βi′ )eµL(βi′ )/2Q(βi′ , Pj), eb)

+ mJ(eb, Pj , e
b) + mJ

1,β0
(TE(βi)eµL(βi)/2Q(βi, Pj)) ≡ 0 mod TEi+1 .
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(43.32.2) The support of Q(βi, Pj) is in
⋃

` Bhi(ε;S)(fi,`,j(S(βi, `, j))). Here hi is
inductively defined by (43.20), using h′

i, as in Proposition 43.21.
(43.32.3) sε satisfies the conclusion of Theorem 34.11.

We remark that (43.32.1) is equivalent to (43.30).

Proof. We first choose b’s for which Lemma 43.24 holds. The lemma will then be
proved by induction on i. Suppose that Q(βi′ , Pj) have been constructed for βi′

with E(βi′) < E(βi). We then define

o(βi, Pj) =∑
k1,k2,i′<i,j

∑
(1)

mJ
k,βi(0)

(b(βi(1,1)), · · · , b(βi(1,k1)),

Q(βi′ , Pj), b(βi(2,1)), · · · , b(βi(2,k2)))

+
∑
k1,k2

∑
(2)

mJ
k,βi(0)

(b(βi(1,1)), · · · , b(βi(1,k1)),

Pj , b(βi(2,1)), · · · , b(βi(2,k2))).

Here the first summation over (1) stands for the summation over i(0), i(1, ∗), i(2, ∗)
and i′ that satisfy

(43.33)


E(βi(0)) + E(βi(1,1)) + · · · + E(βi(1,k1)) + E(βi′)

+ E(βi(2,1)) + · · · + E(βi(2,k2)) = E(βi),

µL(βi(0)) + µL(βi(1,1)) + · · · + µL(βi(1,k1)) + µL(βi′)

+ µL(βi(2,1)) + · · · + µL(βi(2,k2)) = µL(βi).

The second summation over (2) is taken over those i(0), i(1, ∗) and i(2, ∗) that
satisfy

(43.34)


E(βi(0))+E(βi(1,1)) + · · · + E(βi(1,k1))+

E(βi(2,1)) + · · · + E(βi(2,k2)) = E(βi),

µL(βi(0))+µL(βi(1,1)) + · · · + µL(βi(1,k1))+

µL(βi(2,1)) + · · · + µL(βi(2,k2)) = µL(βi).

(43.32.1) then is equivalent to

(43.35) o(βi, Pj) + mJ
1,β0

(Q(βi, Pj)) = 0.
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Lemma 43.36. mJ
1,β0

(o(βi, Pj)) = 0.

Proof. By the induction hypothesis, we have

(43.37)
∑
i′<i

mJ((eb, eµL(βi′ )/2TE(βi′ )Q(βi′ , Pj), eb) + mJ(eb, Pj , e
b) ≡ 0 mod TEi .

Then, by definition,

(43.38)

∑
i′<i

mJ((eb, eµL(βi′ )/2TE(βi′ )Q(βi′ , Pj), eb) + mJ(eb, Pj , e
b)

≡ TE(βi)eµL(βi)/2o(βi, Pj) mod TEi+1 .

The A∞ formula and d̂(eb) = 0 imply

(43.39)∑
i′<i

mJ(eb,mJ(eb, eµL(βi′ )/2TEi′ Q(βi′ , Pj), eb), eb) + mJ(eb,mJ(eb, Pj , e
b), eb) = 0.

By (43.38) the coefficient of TE(βi)eµL(βi)/2 of (43.39) is mJ
1,β0

(o(βi, Pj)) = 0. ¤
Lemma 43.40. We can choose h′

i with limε→0 h′
i(ε) = 0 and then sε so that the

support of o(βi, Pj) defined above is contained in

(43.41) Bh′
i(h

i−1(ε;S))(fi,`,j(S(βi, `, j))).

Proof. The term mJ
1,βi

(Pj) is

(43.42) ev0,∗

(
M2(L;βi, Pj)sε

)
.

By Proposition 41.13 and Proposition 43.9, we may choose sε satisfying (43.32.3)
such that the support of (43.42) is in (43.41). By induction hypothesis the support
of the sum of the other terms are contained in the ev0,∗ images of the unions of

(43.43)

Mk1+k2+2(L, J ;βi(0)) ×Lk1+k2

 k1∏
j=1

Bhi−1(ε;S)

⋃
`j

fi(1,j),`j
(S(βi(1,j), `j))


×

⋃
`

Bhi−1(ε;S) (fi′,`,j(S(βi′ , `, j)))

×
k2∏

j=1

Bhi−1(ε;S)

⋃
`′j

fi(2,j),`′j
(S(βi(2,j), `

′
j))
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with (43.33), k1 + k2 ≥ 0 and

(43.44)

Mk1+k2+2(L, J ;βi(0)) ×Lk1+k2

 k1∏
j=1

Bhi−1(ε;S)

⋃
`j

fi(1,j),`j
(S(βi(1,j), `j))


× Pj ×

k2∏
j=1

Bhi−1(ε;S)

⋃
`′j

fi(2,j),`′j
(S(βi(2,j), `

′
j))


with (43.34), k1 + k2 ≥ 1. We can use Lemma 43.9 and Sublemma 43.27 to show
that the ev0,∗ image of (43.43) is contained in (43.41). In the same way as the proof
of Lemma 43.14, we can show that the ev0,∗ image of (43.44) is contained in (43.41).
The proof of Lemma 43.40 is complete. ¤

We go back to the proof of Proposition 43.31. Combination of Lemmas 43.18,
43.36 and 43.40 now give rise to the construction of Q(βi, Pj)’s. The proof of
Proposition 43.31 is complete. ¤

We now study the spectral sequence associated to (C(L, J0,ΛZ2
0,nov),mb

1) for an
appropriate b ∈ M̂(L, J0,ΛZ2

0,nov).

Corollary 43.45. For each m, we can choose b so that the differential δr of the
spectral sequence to calculate HF ((L, b), (L, b); ΛZ2

0,nov) is zero for 2 ≤ i ≤ m.

Proof. We use homotopy equivalence

C(L, J0,ΛZ2
0,nov) → C(L, J(E),ΛZ2

0,nov)

of filtered An(E),λ(E) algebras. It preserves the filtrations

FqC(L, J0,ΛZ2
0,nov) = F qλ0C(L, J0,ΛZ2

0,nov)

FqC(L, J,ΛZ2
0,nov) = F qλ0C(L, J,ΛZ2

0,nov).

Hence it induces an isomorphism of spectral sequence after E2 term. (See §24.1.)
We define P̃j by (43.29). Then Proposition 43.31 implies (43.30). Therefore, if
mλ0 < E0, then the differential δr[Pj ] is zero for 2 ≤ r ≤ m. (This is a consequence
of (43.30).) Corollary 43.45 follows. ¤

Remark 43.46. In the above argument we consider the moduli spaces M(L, J ;β)
for E(β) < E for some fixed E only. This is the reason why it suffices to assume
J ∈ J c1>0

ω,E so that we have virual fundamental chains over Z2.
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Corollary 43.47. We may choose b so that the spectral sequence calculating the
Floer cohomology HF ((L, b), (L, b); ΛZ2

0,nov) degenerates at the E2-level.

Proof. We replace C(L; ΛZ2
0,nov) by the canonical model (H∗(L; ΛZ2

0,nov),m). Let
P1, · · · , Pm be a basis of H∗(L; Z2). We put dj = deg Pj . We consider the set of
(b̃, P̃1, · · · , P̃m) such that

(43.48.1) b̃ ∈ H1(L; ΛZ2
0,nov)/TEH1(L; ΛZ2

0,nov).
(43.48.2) P̃j ∈ Hdj (L; ΛZ2

0,nov)/TEHdj (L; ΛZ2
0,nov).

(43.48.3) d̂(eb̃) ≡ 0 mod TE .
(43.48.4) P̃j ≡ Pj mod Λ+,Z2

0,nov.
(43.48.5) m(eb̃, P̃j , e

b̃) ≡ 0 mod TE .

Let BDeg(E) be the set of such (b̃, P̃1, · · · , P̃m)’s. It follows that this is a finite
set. We also have a natural map BDeg(E′) → BDeg(E) for E′ > E which defines
an inverse system {BDeg(E) | E > 0}. It follows from Corollary 43.45 that the
BDeg(E) is nonempty for each E. Hence the projective limit

lim
←−

BDeg(E)

as E → ∞ becomes nonempty. This proves Corollary 43.47. ¤
Finally, the proof of Theorem 34.16 has been completed by Corollaries 43.28 and

43.47. ¤


