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8§ 0 Introduction

In this paper and Part I, we study mirror symmetry of symplectic and complex torus. It
leads us the study of a generalization of a part of the theory of theta functions (line bundles on
complex torus) to the case of (finite or infinite dimensional) vector bundles (or sheaves) and to
multi theta function.

We will define noncommutative complex torus, holomorphic vector bundles on it, and
noncommutative theta functions. We also will show a way to calculate coefficients of theta
series expansion (or theta type integrals) of holomorphic sections of vector bundles on (com-
mutative or noncommutative) complex torus in terms of counting problem of holomorphic
polygons in C" with affine boundary conditions. We will prove that this counting problem
reduces to the Morse theory of quadratic functionsin in the “semi classical limit”.

In the case of (usual) complex torus, the author conjectures that special values of these
multi theta functions give a coefficients of polynomials describing the moduli space of sheaves
and of linear equations describing its cohomol ogy.

Let (M,w) bea 2n-dimensiona symplectic manifold.

Definition 0.1 A Lagrangian foliationon (M,w) isafoliation # on M such that
each leaf is a Lagrangian submanifold. (Namely each leaf F of ¥ isan n-dimensional
submanifold of M suchthat «i. =0.)

In this paper we are mainly concern with the following simple (but nontrivial) example.
(One may find other examples in solve or nil manifolds.)

Example 0.2 Let usconsider atorus T>"=C"/I. (Here I isalaticein C"). We
put a homogeneous nondegenerate two form w on T>" and consider a symplectic manifold
(T",w). We consider affine Lagrangian submanifolds of it. Let LOC" bea Lagrangian
linear subspace. Namely L C" isan n- dimensiona R -linear subspace and wl; =0. We
consider a foliation % induced by the linear action of L on T?". In case when
Lnl 0z", all leaves of F. are compact. Otherwise they are noncompact. In particular if

L+ OC", all leaves are dense.

Hereafter we assumethat R" n I isalatticein R", without loosing generality. Then, in
case when [w] OHY(T?"), there are Lagrangian linear subspaces L suchthat LnT OZ".
In fact we can take L=R"OC". However, in case when [w] OH*(T?"), there may not
exist such L.

This fact is related to Mirror symmetry in the following way. Strominger, Yau, Zaslow
[29] observed that amirror of our symplectic manifold (T>",w) isacomponent of the moduli
space of pairs (L, £) of Lagrangian submanifold L and aflat line bundle £ onit. (In
general, we need to use complexified symplectic form Q =w +J=1B. In that case, the
flatness condition of £ should bereplacedby F, = 2nJ-1B.)



In the case when [w ++/=1B]OH"}(T?"), (and R"n I OZ"), we can certainly find a
complex manifold in thisway. (SeePartl.)

Let us denote by (T?",Q)" the mirror of (T>",Q =w++/-1B). Deformation of the
complex structure of (T°",Q)" is parametrized by H'((T*",Q)", T(T°",Q)") which is
isomorphic to H*"}((T*,Q)") since A"TT® istrivial. Here A“TT?" is the k -th exterior
power (over C) of the tangent bundle of T?". Since Hl”_l((Tzn,Q)D) OH™(T®) by the
definition of Mirror symmetry, the deformation of compexified symplectic form
Q =w +J-1B corresponds to the deformation of complex structure of the mirror.

[17],[25], [2] considered extended def ormati on space of compl ex structure of the Calabi-Y au
manifold M. It is described by the larger vector space pDqH"(M,/\qTM) OO H(M). In
[2], the Frobenius structure is constructed in this extended moduli space. However geometric
meaning of this deformation (other than those corresponding to Hl(M,TM)) ismysterious. If
M” is amirror of M then we have H®(M",A"TM”) OH™%(M). The deformation of
symplectic structure of M is parametrized by H?(M) Dp+Dq_2Hp‘q(M). This group is strictly

bigger than Hl(MD,TMD). For example in case M =T® deformation of the symplectic

structure belonging to  H?(T?") —H"(T?") is a deformation which does not corresponds to
the usua deformation of complex structure of (12", Q)". (It corresponds to

O 2Hp((TZ”,Q)D,/\qT(TZ”,Q)D)— HY{(T*,Q)" " T(T*9)")) The goal of this paper is to
p+q=
find a“geometric” objects which corresponds to such adeformation. Our proposal is:

Heorem' 0.3 The deformation of complex torus  (T*",Q = w ++/-1B)" to the direction
in O 2Hp((TZ”,Q)D,/\qT(TZ”,Q)D)— HY{(T,9)"T(T™,Q") is realized by a noncom-
p+q=

mutative complex torus corresponding to a complexication of the C” -algebra of a Lagrangian
foliation in a symplectic manifold (T?",Q’ = o' + J=1B') where Q' OH™(T™").

Heorem 0.3 might be generalized to K3 surfaces and Calabi-Y au manifolds embedded in
toric variety somehow if we include singular Lagrangian foliation.

C -algebraof afoliation is used by A.Connes extensively in his noncommutative geometry
[3]. In§ 1, werecal its definition in the case we need. We remark that the C" -algebra of a
foliation is regarded as a “ noncommutative space” which is the space of leaves of the foliation.
In many cases (for example in the case of the foliation 7- in Example 0.2 with L+l ach),

the space of leaves is not a Hausdorff space. Connes’ idea s to regard the noncommutative C*
-algebra C(M, #) asthe set of functions on this “ space’.

We remark that the space of leaves is the rea part of the moduli space of (L,£) we
mentioned above.

The “imaginary part” is the moduli space of connectionson £ suchthat F,= J-1B.
We find, by a simple dimension counting, that thereisan n-dimensional family of Lagrangian
Vector spaces L suchthat w+ J—_lB|L~ =0. So werestrict ourselves to a Lagrangian foliation

10.3isnot atheorem in the sense of Mathematics. So | removed “T”.



# such that o+ J—_lB|L~ =0. For smplicity, we suppose that % is ergodic. We consider

theset 4 of al homomorphisms L LiU (1) =v/-1R and regard an element of it as a
leafwiseconnectionsof atrivial linebundleon T2". Wenext consider the gaugetransformations.
The set of gauge transformations (of trivial bundle on TZ”) which preserves 4 isidentified
with Hom(T*",U(1)) 0 Z?". Itsactionon 4 isobtained by logarithm. The key observation is
that the action of Hom(TZ”,U(l)) on A4 isergodic. Hence the “imaginary part” we need to
consider is the quotient space 4/ Hom(T 2”,U(1)) which is not Hausdorff. So again we need a
similar constructionusing C” -algebra. Wewill discuss“imaginary part” and “ complex structure”
of our “noncommutative space’ in part 11 of this paper.

To see more explicitly the meaning of Heorem 0.3, we recall the following dictionary
between symplectic geometry and complex geometry. Thisideais initiated by M. Kontsevich
[17], [18].



Symplectic manifold M

Lag(M) : Moduli space of the pair (L, £)
where L isa Lagrangian submanifold
and £ isalinebundle on it together with
a connection [ with F,=J-1B. We
identify (L,£) and (L',£") if L'=¢(L)
and £'=¢ (£) for a Hamiltonian
diffeomorphism ¢

Hom(Lag(M),ch) : the set of all holomor-
phic  A"functors from the A”category
Lag(M) to the category of chain complex.
(See[10], [12], [9] for the definition of the
terminology we used here.)

HF((L,, £),(L,, £,)): Floer homology.

H. (Hom(F,F,)): where F O
Hom(Lag(M),ch) are A" functors and
Hom(F,F,) is a chain complex of al pre
natural transformations. (See[12].)

HF((Ly, £,), (L5, £5)) U HE((Ly, £5),

(Ls, £3)) » HF((Ly, £,),(Ls, £3)):  Product
strucureof  Floer homology ([10], [13],
[12]).

Higher multiplication of Floer homology
and of A” functors [12].

Complex manifold M"
Hilb(M"): The Hilbert scheme, that is the

compactification of the moduli space of the
complex subvarietiesof M".

Der(Sh(M")): Derived category of the cate-
gory of all coherent sheaveson M".

Ext(i. O(C)),i.O(C,)): where C; OHilb(M )
and O(C) is a structure sheaf and
i:C, » M istheinclusion.

Ext(F,F,): where F ODer(Sh(M")).

Ext(i. (G, i-A(C,)) U Ext(i.0(C,),1.0(G))
- Ext(i.0(C,),i.0(C;)): Yoneda Product.

(Higher) Massey Y oneda Product.



In the symplectic side, Floer homology of Lagrangian submanifold ([8], [21], [14]) plays
the key role in the dictionary. So the main part of this paper is devoted to the study of “Floer
homology between leaves of Lagrangian foliation”.

We recal that Floer homology theory [8], [21] associates a graded vector space
HF(L,,L,) toapair of Lagrangian submanifolds L, L,, (if they are spin and the obstruction
classwe defined in[14] vanishes.) It satisfies

(0.4) Z(-l)kfank HE (L. L) =[L]-[L,],

where right hand side is the intersection number.

Let us consider the case of Example 0.2 with |:1 +I = ﬂz +F=C", |:1 N |:2 ={0. Let
L, beleavesof 7 . Wefindthat #(L, nL,)=co. Hence if we want to find a Floer
homology HF(L,,L,) of leaves of our Lagrangian foliation satisfying (0.4) , then HF(L,,L,)
Is necessary of infinite dimension. Thisis a consequence of the noncompactness of the leaves.

This trouble is similar to the index theory of noncompact manifolds. The idea by Atiyah
[1] is to regard an infinite dimensional vector space (the space of L solutions of an elliptic
operator in Atiyah’s case and Floer homology in our case) as a module of an appropriate C’ -
algebra, then the infinite dimensional vector space becomes manageable.

Our approach is similar to this approach and we will construct Floer homology
HF(ftl,?EZ) as a bimodule over C(M, ffl) and C(M, TEZ). Here C(M, #-) isthe c
-algebraof foliation. (See[3] and §1.)

One important idea of noncommutative geometry is that a module of a C -d gebra C is
a “vector bundle” or a“sheaf” on the “space” corresponding to C. Hence HF( I 7E2) may
be regarded as a “ sheaf” on a direct product of the leaf spaces of fﬁl and '(};:2 . (Butitisnot
coherent in any reasonable sense.)

There might be a generalization of (0.4) which is similar to Atiyah’s I' -index theorem [1]
and Connes' index theorem of foliation[3].

We next generdize the product  structure  of Floer  homology

HF((Ly, £1), (L2, £5)) U HF((Ly, £5), (Ls, £3)) — HF((Ly, £4),(Ls, £3)) introduced in [10], [12].
Let usfix atransversal measure 1; of T - Then we will construct :

M,(T,): HFp(f,:l’ YR U15) Uem ) HFq(Z:Z’f,:g;Tz O1s)
(0.5) ’
- HF'(% 7 1. 015).

Here HF® etc. isan appropriate L° completion of HF(fil,fsz) and Yp+1/q=1r.
(05) isa C(T*", ) c(T?", %) bimodule homomorphism and satisfies associativity
relation

(0.6) m, (M, (x0y) 02)=m,(x 0 my(yd 2)) .



We can generalize A” structure (see [12]) also to our foliation case. More precisely we are
going to construct an A" category whose object is a linear Lagrangian foliation - together
with transversal measure and a morphism between them is an element of the Floer homology
HF(7, . 7 ).

In case I; nlro [2 N OZ" (namely in the case al leaves are compact) each leaf L of
I (which is compact) determines atransversal measure T,. In that case, we have

(0.7) HFp(7~_,7~L_ T 0T;) = HR(L,L) O LG % L)

and (0.5) reduces to the tensor product of the map HF(L,;, L,) O HF(L,,L;) - HF(L,,L;) and
atrivial map :

(0.8) M, L°(Ly ¥ L) O LY(L, X Lg) — L (L % Ly).
Namely

m,(f 0 g)(x.2) = 0, f(X.Y)0(Y. 2.

Thus, in this case, we can identify the map (0.5) with the usual multiplicative structure of
Floer homology.

Thismap HF(L;, L,) OHF(L,,L;) - HF(L;,L;), inthe case of elliptic curve, is calculated
by Kontsevich [18] and is a theta function. Polishchuk and Zaslow studied the case of elliptic
curve in detail by explicit calculation, in [24], [23]. (See § 4, where we discuss the case of
higher dimensional torus.) Thus (0.5) is regarded as a noncommutative theta function.

We will prove, in part 11, that thismap m, is a“holomorphic section” of a*holomorphic
vector bundle” on a noncommutative complex torus.

These constructions may give something new also in the case when the mirror (T,Q) Uis
acomplex torus. (Namely the casewhen Q OH™.) Werecal that, in thiscase, (T,Q)" isa
moduli space of the pairs (L, £4,) of Lagrangiantorus L, and aflat line bundle £, onit
such that the universal cover of L, isparalelto R"OC". We consider theset W of all
Lagrangian linear subspaces L such that Q- =0. (W is n dimensiona if Q isgeneric.)
For each LOW we have Floer homology HF(Z%., #;) whichisa C(M,%,.) C(M, 7-)
bimodule. We remark that the space corresponding to  C(M, %..) is the moduli space of
affine Lagrangian submanifold L, such that its universal cover is parallel to R". Thisisthe
“rea part” of (T,Q)". We canincludeimaginary partin away similar to [18] and [24], then
HF(%,n, #;) asamodule over C(M, %) will be a holomorphic vector bundle of infinite
dimension over (T,Q)"”. (If R" isnot transversa to L then we will obtain a complex of
infinite dimensional holomorphic vector bundles.)

Suppose furthermore that LnT isalaticein L. (If Q isof rational coefficient there
aremany such I".) Then the space corresponding to C(M, #-) isaso ausua (commutative)
space. If we include imaginary part then we obtain another torus, (which is aso a mirror of



(T,Q).) Inthis case, each leaf of 7- is compact and defines a transversal delta measure.
Using this transversal measure, we take a completion of Floer homology HF(%., #;). What

we get is then equivalent to a vector bundle on (T,Q)D. (Therankis Ly* L where L isa
leaf of #-.) Thisconstruction, that is afamily of Floer homologies, gives a systematic way to

construct a vector bundle or a sheaf on (T, Q)D from a Lagrangian submanifold of (T,Q).
This construction isregarded asamap :

(0.9 Object of acategory Lag(M) +— The functor represented by it,

as Kontsevich explained to the author in summer 1997. We studied the homological algebra of
the map (0.9) in [12]. Then we conjecture that our multiplicative structure m, on Floer
homology coincides with (higher) Massey Y oneda product. We will prove this conjecture in
case k=2 in Part Il. In the case of Elliptic curve, this fact was verified by an explicit
calculationin[24], [23].

Thus, (including imaginary part) , the C” agebra C(M, ¥-) isregarded as amoduli space
of vector bundles. It seems that, in the case when L,+ L=1, this construction together with
m, reproduce some part of the theory of theta functions. One might obtain something new if
we consider thecasewhen L,+ L>1 (namely the case of vector bundle), or higher composition
m, (see§5.)

What seems more novel isthe case when #- is ergodic. In this case, we recall that we
regard C(M, 7-) asa“moduli space” of avector bundleson (T, Q)". It followsthat a“point”

of C(M, 7-) is supposed to correspond to a “vector bundle” on (T, Q)". However, in our
case, C(M, #-) is a“noncommutative space”. As a consequence, it does not make sense to
say a point on it.  Therefore, in place of a family of finite dimensional vector bundles
parametrized by a moduli space, we find one infinite dimensional vector bundle on which
C(M, #-) acts.

Thus what we find is a family of infinite dimensional vector bundles parametrized by W .
At specia values (which is at most countable) this infinite dimensional vector bundle splits
into a family of finite dimensional vector bundles. It seems that similar stories are known in
representation theory.

There are various works [27], [19], [30] studying noncommutative torus and its relation
to C algebra and to theta functions. It seems that they are closely related to this paper. We
remark that the deformation constructed in [2] isclosely related to the deformation quatization
and [27], [30] are based on deformation quantization. From our point of view, a theorem of
[26] , which gives a relation of C" algebra of foliation to a C~ algebra obtained from
deformation quatization of atorus, may be regarded as amirror symmetry.

Recently, several authors (for example [4], [6]) discussed a relation of Matrix theory to
noncommutative torus. They might be related also to this paper.

In this paper, we put several lemmata and theorems in quote. The argument we offer to
justify them is not enough to prove them rigorously. The gaps left without proof are, for
example, convergence of integral, justification of the change of variables, transversality etc.



Many of those statements in the quote will then be proved rigorously in the case of Example
0.2. The proofs of the results without “ ” are al rigorous.

The author would like to thank Maxim Kontsevich and Kaoru Ono for helpful suggestions.
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§1 C" algebraof Foliation

In this section, we review the construction of C(M, ¥) of the C"-algebraof foliation 7.
See [7], [31], [3] §11.8 for more detail. There is nothing new in this section. We include it
here for the convenience of the reader and to fix a notation. The reader will find that our
construction in 8 2 is a natural generalization of the construction of this section.

Definition 1.1  The holonomy groupoid G(M, ¥) of the foliation ¥ is the set of all
(% y,[/]) where x,y(OM and /¢ isapathjoining x and y andis contained in aleaf of
F. (Hence x and y lieinthe sameleaf.) Weidentify [¢] and [¢'] if they have the same
holonomy ODiff (R",R"),. (Here Diff(R",R"), isthegroup germ of thelocal diffeomorphisms
R",0) -~ (R",0).) Wedefine

(12 (x yi[D) Wy z[0']) = (%, z[ L= £]).

(Here (o /" is the path obtained by joining ¢ and ¢' a y.) (1.2) defines a groupoid
structureon G(M, 7). We say

M0, ¥ 14]) = (% Yo [l

if there exists a representatives ¢, such that ¢, convergesto /. in C® topology (and
limx, =x_, limy, =y_). Thisdefinesatopology on G(M, 7).

| > o0

Let ¥ bean n-dimensiona foliation on a 2n-dimensional manifold M. We can prove
the following :

Lemma 1.3 G(M,¥) is a 3n-dimensional  smooth  manifold  and
Ty pCM, AHOTMOTF OTFOTM. Here TMO T FOT FOTM is obtained by the
isomorphism TM/T,7 OT M/T # which is induced from the holonomy group of foliation
along /.

We omit the proof. See[31]. Weremark that G(M, #) is not Hausdorff in the genera
case. However it isso in the case of the foliation in Example 0.2. We define:

Definition 1.4 Ceomp(M, #) is the set of all compact support continuous sections of the
AP OA®"*0C on G(M, 7). (Hereand hereafter |LIY2 is the (real) line
bundle whose transition function is |d§ where g; isthe transition function of aline bundle
L.) For f(xy;[4),9(x y;[4]) OComp(M,F), we put

line bundle

(f O9)(% Vil4D) = Jixzp ey T ZIEDAZ VL0 0 1) (X2 €]).
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SR ERICR I )}
They satisfy axiom of *algebra Namely

(c,f +c,0)Uh=cfUh+cglh
(c,f +c,9) =Gf +8g
(1.5) (f Og)Oh = f O(g Oh)
(fOg) =g’Of".

To obtain aC™ agebra we need a completion of Ceomp(M, F). We omit it and refer [3]
section 11.8 . (See however § 3.)

We remark that, in the case of Example 0.2, the holonomy group of foliation is aways
trivial. Hence we can simply write (x,y) in place of (x,y;[¢]). We remark however that

limx =x,, limy; =y, doesnot imply [im(X;,%) = (Xe: Ye) -
| > o0 | - | -
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8§ 2 FHoer homology of Lagrangian Foliation

Let %, % beLagrangian foliationson M. We fix orientations of them. We assume
that % and % are of general position. It is rather delicate to define precisely what one
means by two Lagrangian foliations to be of general position. We do not discuss this point in
this paper, since, in our main example (Example 0.2), we find that all leaves of It is
transversal to T, if I:l N I:2 ={0}. Our goa of this section is to define a C,,,,(M, %),
Coomp(M, %) Z ,-graded differential bimodule (CF™™(7,, 7,),0). (We discuss the case when
L n L, #{0 at theend of this section.)

Definition 2.1 X(M; 7,%) isthesetof al (x,y,z;¢4,¢,) suchthat (x,y;¢,) UG(M, F),
(v,z4,) UG(M, %) and that the leaf of 4, istransversal totheleaf of 7, a y. Topologies
of G(M, %) induceatopology of X(M;%,%) .

Wesay (X, Y,z;01,¢,) OXo(M; F, %) if theisomorphism T .7 O T %, OT M isorientation
preserving. We say (X,Y,z;¢1,0,) OX (M; 7,%,) otherwise. We put deg(y)=d if
(XY z41,6,) OX(M; 7, 7).«

We write an element of X(M;%,%) as (X, Y,z) in casewhen holonomy istrivial, (as
in the case of Example 0.2).

Lemma 2.2 X(M; %, ) iIs a 4n-dimensional smooth manifold and
Ty 2zt XM 7, %) OTHROTMOTE, .

The proof issimilar to Lemma 1.3 and is omitted.

Example 2.3 If Lol ={0, LnT=0LnT={q, then X(M; %, ) isdiffeomor-
phic to (C” XC”)/I'. (Here the action is the diagonal action.)  To see this, let
(% ¥%.2) OX(M; 7, 7 ). Welift yOT*" =C"/l to yOC". Thenlifting x z along curves
on the leaves, we obtain %X,zOC". We put I(x,y,z)E[f(fz]D(C” xC”)/F. It is easy to see
that 1:X(M; %, %) - (c"xc")/r isadiffeomorphism.

Let us defineamap T: X(M;%, %) — M? by TU(X,y,Z/(;,0,) = (x,2). Itiseasy to see
that 1 is a local diffeomorphism. In case 4 is everywhere transversal to 4%,
XM, R, %) - M? IS a covering space.

Weremark that X(M;%,%), X.(M; %, %), have left actions of the groupoid G(M, %)
and right actionsof G(M, %,). Namely we define

(2.9 (X', %0 (X ¥ Z,0,05) = (X', Y, Z Lo by, 05)
(X V2,0, 0,022 50") = (X, %2504, 05 o L"),
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Now we define CF™( %, %) - Using isomorphism
Toeyzprangoy XM 7, %) OTH OTM O T,9, wefind that
(2.5) Ny 2o XM 5, F) OAF O APM O AT 7.

Definition 2.6 ~ CF™™(%,%,) istheset of all continuous sections F of compact support
1/2
of thelinebundle NP OAPE[ “OC on X (M;%,%).

The actions of G(M, %) and G(M,%,) on X,(M;#,%,) determine a Cyynpy(M, %),
Coomp(M, %) bimodule structure on  CF™(#,%) by the following formula. Let
FOCF™™ (%, %), f OCemp(M, #), g OCqomp(M, %) .

(2.7.1) (f OF)(x,y,z Q,£2)=I f(XX 0 F(X Y, Z 0 o by, £,) dX!
(27.2) (F Og)(x.y, z1,45) =[F(xy.2301,05 01 "No(z,z¢)dz'.

Here the integration (2.7.1) is taken over the set of pairs (X,¢) such that
(X, x50 0G(M, ). We remark that  f(x,x")F(x',y,2 is a density with respect to x'.
Similarly the integration (2.7.2) istaken over theleaf of %, containing z.

Now we have:

Lemma 2.8 Products defined by (2.7) are complex bilinear. We have also :
(f,0f)0F=f, O(f,0F). (f OF)Og= fO(F Ug) . FU(g,Ug,) =(F Og,) Ug, .

The proof is immediate from definitions and Fubini’s theorem. We discuss relation to *
product in the next section (Lemma 3.5).

There also exists aleft action of Cyynp(M, %) t0 FS\/I,|/\X 7" OCE and right action

Of Comp(M, %) to TEMNP5["* 0 CE. They are defined by

(2.9.1) (f OF)(x) :J’f(x, X" O)F(x") dx' .
(29.2) (F D)) = [ Fy)a(y'.y: 0) oy -

In case % iseverywhere transversal to 7%, themap T: X(M; %, %) — M? induces a
map

Tt CRE™ (7, %) ~ FEMINP 9] OCEDrMIAP 7 DeE,

by “integration along fiber”. Namely
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(2.10) (MF)(x,2 = > F(X,Y,Z 4,0,).
(%01, 2):(% ¥, 2,0 1,62) X (M 74, F)

The right hand side of (2.10) isafinite sum since F isof compact support. (We remark that
in case when % is not transversal to %, somewhere the right hand side of (2.10) may be
discontinuous.) Itiseasy toseethat 1 is Cyp (M, %) Coorp(M, %) equivariant.

We remark that so far we did not use symplectic structure of our manifold. In fact all
constructions so far work for a pair of oriented n-dimensional foliations in a 2n-dimensional
manifold. This is natural since Floer's chain complex of Lagrangian intersection (if we put
Z, grading) isindependent of symplectic structure, as an abelian group. Symplectic structure
Is used in the construction of boundary operator and of product structure.

We next “define” boundary operator 0. Our discussing on it is not rigorous yet because
of severa technical problems. We remark that, in the case of our main example 7L with

L n L, ={0 , vector space CR™™(#:,%;,) can be nonzero for only one of k=0,1.

Therefore 0 =0. Incase I; N I:2 #{0} we can also check that the construction below works
directly (after moving #- by a Hamiltonian diffeomorphism). Thus the construction is

rigorous in the case of our main example. Another way to construct CR™™ (7 ,#; ) inthe
1 2

case when I:1 N I:2 #{0} istowork out Bott-Morse Floer theory (see[11]) in this case.

In this paper our main concern is Example 0.2, where the role of boundary operator is
rather minor. Symplectic structure is used mainly in the construction of the product structure.
Thisisthe reason why our discussion on the construction of the boundary operatorsis sketchy.

We fix an amost complex structureon M (a compact symplectic manifold) compatible
with our symplectic structure. In the case of our main example, we can take an (integrable)
complex structure compatible with w. (That is the homogeneous tensor J TT2 L 7T,
Werecall that w is homogeneous.) We remark that this complex structure is different from
the obvious complex structure T2" =C"/I which we start with. (w is not compatible with
the original complex structure of T>" =C"/I unless w isof 1.1 type)

Let L, L, be Lagrangian submanifolds which are not necessary compact. Let
a,bUL nL,. Weput

[ ¢ isholomorphic C
1, |e-D=a o@=b -
@ MM Ly L7ab) =807 = My oy oo, if 20002, Imz>0F
H 0@ 0L, if 208D Imz<oF

In a“generic” situation, M(M; L, L,;ab) isaunion of (infinitely many) components, whose
dimension is equal to deg(a)—deg(b) modulo 2. (We do not try to make the assumption
“generic” precisein this paper. See[14].)

Thereisan actionof R [ Iso(Dz,J,(—ll)) on M(M;L,L,;ab). Let ﬂT/[(M;Li,LZ;a, b)
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be the quotient space.
Now we “define” boundary operator

0: CR®™ (%, %) - CRL (R, )
as  follows Let F O e % (Vi 73, B)AP £ OAP ' * 0 CE
(x,0,20,,0,) OX 4 (M; F, ).

“Definition 2.12” (0F)(xa,z(y,(,) = Y +expt- Lwﬁ:(x, 020,500,000 ,).
Herethe sumistaken over al (b,[¢]) such that:
(2131  (xbz4009.0,00 6)OX M, ).

(213.2) Let L, betheleaf of % containing a. Then bOL n L,.
(2133)  [$]10M(M; Ly, Ly;ab).

and

(2.13.4) The component of M(M:; Ly,L,;a b) which contains [¢] isof zero dimensional.

Figure 1

The set of al such (b,[¢]) iscountable. = in “Definition 2.12" is determined by the
orientation of 9\_/[(M;L1,L2;a,b). 0,0 :¢(0D2)m L, isanarcjoining a and b. Weremark
that the leaves of Lagrangian foliation have canonical spin structure (since they have trivid

tangent bundle). Hence M(M;L;,L,;ab) isoriented by [14] , [28].

Conjecture 2.14 The right hand side of Definition 2.12 converges.
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Therearesimilar problemsin the case of usual Floer homology (of Lagrangian intersection).
In that case, we can go around it by introducing Novikov ring. (Roughly speaking this
corresponds to defining the boundary operator as a formal power series on

t, = exp(—Loo) where a Om,(M,L, OL,) runsover agenerator.) It seems harder to dosoin

our case of Lagrangian foliations.

In fact we need to add various other terms to Definition 2.14 in the same way as [14].
Otherwise 0F may not be continuous and the following Lemma 2.15 does not hold. We omit
the detail. We do not need such a correction term in the case when 1, (M,L) =0 hold for all
leaves L of our foliation [8]. This condition is satisfied in the case of our main example.

“Lemma 2.15”  Definition 2.12 determinesa C,,(M, %), Ceonp(M, %) bimodule homo-
morphismad : CR™(%,%) - CR Y (#, %) . If m,(M,L)=0 for all leaveswe also have

00 =0.

The proof is similar to the proof of the same formula for Floer homology of (compact)
Lagrangian intersection. ([8]). We put the lemma in the quote since 0 is not defined in a
rigorous way in general case. Namely we need to prove Conjecture 2.14 to define 0. We put

Ker(0 : CRP™ (%, %) — CFOI® (7, 7))
(0 :CR™ (%, 75) — CR™(7, 7))

(2.16) HRC™ (%,%) =

In fact it seems appropriate to take a completion of CF°™ (4, %) (see § 3) before taking
homology group. Also the author does not know under which condition the image of the
boundary operator (after taking a completion) will haveacl osed range.

We consider the case of linear foliation in T°". Let L1 L OC" be two Lagrangian
linear subspaces such that Ll N L2 #{0}. Then generic leaf of fﬁl does not intersect with the

generic leaf of #- . Incasewhenaleaf L of f7- intersectswithaleaf L, of f%-, we

have dim(L, nL,) Ddim([1 N ﬂz) . To handle this case, we use a Hamiltonian perturbation in
thefollowingway. Let h:T" ~ R beaMorsefunction. For example we take

(2.17) h(xy, -, %,) = > cos2m; .

(Hereweidentify T"=R"/z") Weusean affine diffeomorphism T?"=T" xT" to define
a projection T2" L T". Hence, composing h, we obtain amap h: T" - R. We assume
that the restriction of the differential of T2" - T" to L1 N L2 isinjective. (Thisis possible
by changing the affine projection T LT f necessary.) Let H, be the Hamiltonian
vector field associateto h: T?" - R. (We use our symplectic structure w on " to
define H,.) Weput ®=expeH, for small €. @ isasymplectic diffeomorphism and
d( Ttl) isof general position to 7L~2.
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In this case, we can prove Lemma 2.17 without changing the definition of the boundary
operator d, since T,(M,L)=0. Convergence of 2.16 can be checked also directly in this
case. Hence we can define (rigorously) :

(2.18) HR™ (7, 7 ) = HRZ™(®(7 ). 7 ).

However, in fact, we find that the group HF™™ ( ;.. %) israther pathological. (Namely the
image of the boundary operator is dense in the kernel.) The reason is that generic leaf of Tfl

does not intersect with the generic leaf of #- in the case when fin |:2 #{0}. If wetakea

completion as we will explain in the next section, we find the example that the Floer homology
becomes nontrivial and L n L, Z{0} (3.13).
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8 3 Transversal measure and completion.

In order to construct avon-Neuman algebra from our * algebra C,.,(M, %) andto find
a completion of our infinite dimensional vector space CF°™ (%, %,) to a Hilbert or Banach
space, we need a transversal measure to our Lagrangian foliation 4.

Let t; beatransversal measureto 7. (See[22] for its definition.) It determines a
(distribution valued) section of |N®(TM/T#,). Let (x,y.z) OX(M;%, %) . Then, since

TM=T,%0T,%,

T, and T, determine a distribution valued section (t; OT,)(y) on  TGAPTM|. Here
T X(M; %, %) — M is defined by (x,Y,z;¢,,0,) —Yy. Now we define L* inner product
( ) o, ON CR™(%, %) asfollows,

Definition 3.1

(F1G)rlEIT2 :F‘j F(X 2,41, £5)G(X, Y, Z;gl’gZ)(Tl N Tz)(y) :
X (M 7, 77)

We remark that  F(X Y,z (1,(,)G(X,Y, Z.(;,(,) isasectionof [N % 0 APF|OC. Onthe
other hand, we have A, u 50 XM % %) OATEOANMOANYE.  Therefore
F(X Y,z 01,0,)G(X, Y,z 4,1, )(Tl O Tz)(y) isatop dimensional current (of compact support) on
X(M; %, %,). Definition 3.1 therefore makes sense. The following lemmais easy to prove.

Lemma 3.2 (Cchomp (7 %)\ ( )Tlmz) isa pre Hilbert space.
Definition 3.3  CF (%, 7,1, 0T,) isthecompletion of (CFk°°mp(f1, ) ( )Tlmz).
Hereafter we write CF (%, %1, 01,) inplaceof CF(%,7,;1,01,) for smplicity.

Conjecture3.4 0 is extended to a bounded operator
CR (%1, 72,11 UT3) - CR (1, i1 O T5).

Again, for our example ®( ffl), ffz with I:l N [2 #{0}, we can prove Conjecture 3.4 by

a direct calculation. (In the case when Ifi n I:2 ={CG}, we have 0 =0 and hence there is
nothing to show.)
Next we have:

Lemma 3.5 Actionsof C,,(M, %) on CR°™ (%, %) isextended to a continuous action
on CF.(%, %;t,01,). Wehave
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(f DF’G)Tl[lTZ = (F’f DG)rlDrz
(F Dg’G)TlDTZ :(F’G Dg )TlDTZ ’

The proof is straightforward and is omitted. Lemma 3.5 means that we have a *-
homomorphism

(3.6) Coomp(M, %) ~ End(CR (%, F51,015)).
Here End(CFk( 5O Tz)) isthe algebra of al bounded operators.
Definition 3.7 C(M, 1, 01,) istheweak closure of the image of (3.6).
C(M, %1, 01,) isavon-Neumann agebraby definition.
Lemma 3.8 If f OC(M, %;t,01,),gUC(M, %;1,071,) and F UOCK (%, %;1, UT1,), then
(f OF) Og = f O(F Og).

The lemma follows from von-Neumann’ s double commutation theorem.

We remark that we can find a completion of FH\/I;|/\‘Q'°7{|1/2DCE and
I’B\/I;|/\tfp9'2|l/2DC5. We denote them by ng\/l;|/\t§p}i|1/2DC;Tlg,
LZH\/I;|/\I;’IO }’2|1/2 O C;TZE.

Example 3.9 Let us consider the case of foliations in Example 0.2 such that
I:i n T Oz". Thisis the case when al leaves are compact. (Hence we do not need to use
operator algebra to study Floer homology of leaves. We discuss this example to show that our
construction is a natural generalization of the case when leaves are compact.) We first assume

tha L nL,={0. Wefindthat 10: X(T™; % F) - (TZ”)2 isan |, L] hold covering.

(Here L isaleaf of 7-.) Nowlet t1; bethe (transversal) delta measure supported on L;.
/12

Then LZETZ”;N;’"?LF DC;I@ can beidentified with L*(L,). (Herewe use usual Lebesgue

measure on the leaf L, to define L2(Li) .) Weobtain a *-homomorphism

@10 Con(M.5) -~ End ™

/12
/\t;"’fﬂr 0C;t, ﬁ= End(L*(L.)).

It is easy to see that the image of (3.10) is dense in weak topology.

Therefore, using the fact that Tt: X(TZ“; ftl, TEZ) - (TZ”)2 is a finite covering, we find
that
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(3.11) C(T?", #:1,01,) = End(L*(L,)).
Then again using the fact that Tt: X(T*"; #- ) - (TZ”)2 is|L,* L] hold covering, wefind
(3.12) CF(Tzn;fE Tz ;T1DT2) = 0O (L) 0L,

U7k PN L,

where action of C(TZ”, %;t,01,) is obtained from isomorphism (3.11). Hence by the
isomorphism

K(End(L*(Ly)) 0 End(* (1)) O Z,

our Floer homology correspondsto L, ¢ L,, asexpected.

Next let us consider the case when I:| N 0OZ" but I:1 N I:2 #{0}. Using, for example
the explicit Morse function (2.15), we can prove the following. Let t; be the (transversal)
delta measure supported on the leaf L;. Then

(3.13) HFE(TZ”;fEl,fEZ;r1 DTZ): Hao(l 0 LpiR) Og (L) O (L),

where d =01. Weremark that Floer homology of L, and L, iscaculated as:
HF{L; L) = Hog(L 0 LyR),
in this case.

In case when Tt: X(TZ”;%l,fEZ) R (TZ”)2 is an infinite covering, the “rank” of Floer
homology may be regarded as the “order” of the deck transformation group, (which isinfinite).
So to “count” it correctly, we need some kind of averaging process (similar to [1]). It them
might be related to the “average intersection number” of the leaves. The author does not know
the correct way to do it.

We need also P completion to study product structure. (We remark that the product
structure m, is anonlinear map hence it is unbounded if we use only L2 norm.) We first
take (any) Riemannian metric g, on M. Let Qq, OAP# be the volume form induced

by gy. Let FOCF ™ (%, %). Wemay regard it as

1/2
(3.14) F(4Y.Z 00, 05) = F' (%Y. 20, 0,)|Qr , D Q|

Here F'(x,y,z ¢;,¢,) isacomplex valued function. We put

(3.15) IFIP =

LPguT 0T,

%ﬁ |F'(X’ ¥,z fl’fz)poTxf O QTZT(Tl O Tz)(Y) .
X (M; %1, %)
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Here (rl O rz)(y) D|/\t)‘,’pM| is the distribution section induced by the measures Tt,, T,. Itis

easy to see that (3.15) defines a semi norm on CF°™ (4, %). Let CFP(%,%) bethe
completion of it. Let g, beanother metricon M. Weremark that there exists aconstant C
such that

1
(3.15) EIIFIIp <Al < dAlp

LP, g, 1,07, LP, gu. 107, LP.gy. 107,

for any F. Hence CF’(#,%) isindependent of the choice of g,,. We aso define a
completion CP(M, #) asfollows. Let f OCeomp (M, F) . Then we put

1/2 1/2
(3.16) f(xy:0)= f'(xy; 0]Qr D|Qw| ,
We then put
(317 Mg =] P GYOPQ, 00, DT()
X (M; 7, F,)

We remark that Q. , 0T isadistribution section of [A{"M] . Hence the integration in the

right hand side of (3.17) makes sense. Let CP(M, 7) be the completion of Ceomp(M, ) with
respect to thisnorm. Using Holder inequality, it iseasy to seethat if I/r =1/p+Yq then

(3.18.1) If Odl,r g, . <Clfllo g, Ml -
(3.18.2) [0, sl g
(3.18.3) I OFL g or, SCIFle g, Pl gy e,
(3184) I F Dgl L gy 1101, s CI FI L%gy.1,0 T2"q' LP.ow.ty

Therefore these maps are extended to the L° completions. We remark that we do not use the
metric g,, inthe definition of the mapsin (3.18).

We next remark that we can identify the dual space of CF’(#, %) to CF., (%,%) if
p>1,1Yp+1/g=1. Sowe haveacomplex bilinear map

(3.19) { Yyor, :CR (7, B)OCRL (%, %) - C.
More explicitly, for FOCFY(%, %), GOCR! (%, %), we put

(3.20) \F.Gh 1, =

Ot &

FF F(X,y,Z;Kl,KZ)G(Z,y,X;KZ,Kl)(Tl DTz)(Y) .
X (M3 R, F2)

Weremark that { ), . iscomplex bilinear. We can verify
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(3.21.1) {f OF.G), o,
(3.21.2) {F Og,G)

={F,GOf
={F,g0G

\
/y0t,

\
1,01, /1,01,

for FOCFY(#%, %), GOCR! (%, %), f OC'(M, %), g OC"(M, %) with ¥Yp+1/q+1r =1.
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84 Product Structure and Noncommutative Theta Function.
In this section we construct a map
m, : CR°™ (7, %) O CR™ (%, %) — CRes (1, F2)-
We also construct its completion
my(T ) : CRY(%; . - T, 0 1p) O CR( FriTo 0Tg) » ChRew (7 71 0T,),

in the case of our main example. (Here I/p +1/q=1/r.) Weaso calculateit.
Let L,L, L; beLagrangian submanifoldsof M which are not necessary compact. Let

p O n L. (L, =L, by convention) Wetake -1,-&™,-e™ 09D’ and let 9,D?,

0,D%, 9;D%, bepartsof dD°=S" between -1 and - 7", - ?" and -3, -e7"°
and -1, respectively. We define
S ¢ isholomorphic E
M(M; Ly, Ly, Lgs P, P3) =01 D7 — M@ (=1)= py, ¢ (- ") = p, 0 (™) = ;L.
( L
0 $(@D)0L,i=123 C
T
oD _
4 D°
-1
q0° e
Figure 2

Inthe“generic situation” M(M; Ly, L, Ls; Py, P, P3) iSaunion of (infinitely many) components,
which are oriented manifolds whose dimensionisequal to deg(p,) + deg(p,) +deg(p;) modulo
2. (See [14].) Here deg(p) isas in§2. Wedenote by M, (M;L;,L,, Ls p, Py, P3) the
union of components of dimension k. For ¢ OM(M;L,L,,Ls;pLpps) We put
0,0 :¢'|6iD2' 0,¢ isapathjoining p, to p;,;. Wedefine

“Definition 4.1” Let FOCR ™ (A, %), G UOCR™ (%, %), and
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(%,6Z01,03) UXy 41, (M; 1, 73) . Let T, betransversal measureof #%,. Weput :

(mz(T )(FO G))(X1C,Z;£1’€3)

(4.2 = %] Zi exp(—fq)*oo) F(x,a,y; ¢, 00,0,75)

a,yb¢ OMy(M; Ly, Ly, Ls;a,b,c)

GY,b,Z 05" 20,0,050 ™ 0d5) d,(a,b).

Ly L,

Figure 3

Wewrite m, instead of m,(t,) in case no confusion occur.

Let us explain the notations in (4.2). The domain of integration is the set of all triples
(a,y,b¢,) suchthat all, bOL; and (aY;l,),(bYy.0,0 ol,)OGM,%,). (L isthe
leaf of 4 containing x,c and L; istheleaf of 7% containing zc.) The space of such
triplesisa 2n-dimensional smooth manifold. Let usdenoteit by X(Lj,Ls;%,). Wefind that

(4-3) -IZa,y,b;/,l.Q)X(Ll’ L3;—{F2) = Ta-r}i O -I;/—‘FZ DTb-{}E% O Ty—¢2'

Here the isomorphism T,% UOT,%; is obtained by the holonomy of the foliation 7%. We
remark that
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/2
Fxay) OAP(L) DAY OC
Gy, b, 2) OJA%(7) O AP "D C.

(Here and hereafter we omit to write the path ¢ etc. to simplify the formula, in case no
confusion can occur.) Hence

/12
F(xay)G(y, b2 DT (L) 0 AP O|APs|OC,

by (4.3). We remark that T, determines a distribution section on A% and |AP 7.
These two distribution sections are identified to each other by T,% 0T, % since transversal
measure is holonomy invariant. Therefore by (4.3), we can integrate F(x a y)G(y, b, 2) over
X(L,Ls; %) and obtain an element of |AP(L) O /\tg"’(L3)[U2 OC. We remark that
F(xa Yl 000,0,)G(y,b,z;0; 00,0,0,0 “od;) is zero outside a compact subset of
X(L, Lg;ftz) for given Xx,zc, 4, (5.

The sign in Formula (4.2) is determined by the orientation of the moduli space
My(M; L, Ly, Lgab,c). (See [14].)

Unfortunately we can not prove the convergence of (4.2) in the general case since we do
not have a control of the order of theset M,(M; L, L,, L;;ab,c).

Conjecture 4.4  For any FOCR ™ (%, %), GUOCR™(%, %), (4.2) converges. It
defines a bounded map :

m,(T,): CFk'f(ftl, - 1, 015) 0 CFKZ(%Z, T 01) - CFk;+k2(7E1, 110 13)
for Yp+Yg=YYr.
We can “prove’
(4.5) m,(0F O G) = (-1)"'my(F 03G) =am,(F 0 G)

formally, (that is modulo convergence). The “proof” of (4.5) is similar to the proof of the
associativity formulawe give in the next section. We can prove the following also formally.

“Theorem 4.6” For FUOCR)(%,%), GUCR}(%, %), fOC (M, %), gOC'(M, %),
hOC"(M, %) with ¥/p+1/q+1/r <1. We have

(4.7.2) my((f OF) 0 G) = f Omy(F 0 G),

(4.7.2) m,((F Ug) O G) = my(F O (g UG)),
(4.7.3) m,(F O (GUOh)) = my(F OG)Ch.
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“Proof” (4.7.2) is proved by the calculation below using definition :

(my((F Og) 0 G))(x.C, 2)

£ exp(~[6" ) (FGH(x.a Y)G(y.b.2) dr,(a.b)

Fl]a,y,bcp OM o(M;Lg, Ly, Ly b, ©)

f +exp(~[0') F(xay)dy.y)G(y b2 dr,(ab)
3y by mafy(M Ly, Ly, Lza,b,0)

£ expl~[¢w) F(x,ay)(@TG)(Y,b.2) dr, @ b).

FFa,y’, by OMg(M; L Ly, L ab,0)

The “proofs’ of (4.7.1), (4.7.3) are easier.
(We remark that we use Fubini’s theorem in the “proof” above. Since we do not know

how to find an appropriate estimate to justify it , in general case, weput“ " .)

“Theorem 4.8” If FOCR) (% %), GOCRN(%, %), HOCK (%, %) with
ki +k, +k; =n mod 2, I/p +1/q +1/r =1, then we have

{My(t2)(FO G)H), o =(mo)(G OH).F) o ={my)(HOF).G), . .

“Proof” We calculate

{m,(T,)(FO G),H)

/1,014

- EFmZ(TZ)(F 0 G)(x,62)H(z.¢,x)(t; O0T5)(c)
(4.9)

+ exp(—J'q)*w) F(x,a,Y)

FPa,b, CX,Y,Z OM( M; Ly, Ly, L @, bic)
G(y,b,2)H(z,.c X, 01, O15)@a,b,0).

We explain the notation in the last formula of (4.9). The domain of the integration is the
set of al a,b,c,xy,z such that

(4.10.2) a, x,c liesinthesame leaf of 7.
(4.10.2) a,y,b liesinthesameleaf of 7%.
(4.10.3) C,zb linesinthe same leaf of 7.

(See Figure 3.) (Infact we need to include the path in the definition of X(4, %, 7). We omit
it for simplicity.) Let X(%, %, %;) bethesetof all (a,b,c,x y,2) satisfying (4.10). We have
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T(a,b,c,x,y,z)x(frl’ % h) OTMOT 40T HO Tyffz 07,7,
OTLMOT,%0TA0T, 50T, 7,
ORMOT%0T5 0T, %07,
OLMOT%OTA DTS O T,%
OMOT,%0TA0T,%0T,%
OTMOTAO0TAOT,%0T,%

(4.12)

Let usprove (4.11). Wefirst choose a without restriction. Then (4.10.1) implies that the
set of the directions to which ¢ can moveis T 7. If wefix a,c then (4.10.2) and (4.10.3)
determine b locally. Once (a,b,c) isdetermined, the set of directions to which x,y,z move
is TiH, T,%, T,%, (becauseof (4.10.1), (4.10.2), (4.10.3)) respectively. Thuswe have

Tapexy)X(F o, B UTMOTAO T4 0T, 50T, %.

The proof of other equalities of (4.11) issimilar.

We remark that the isomorpisms among right hand sides of (4.11) is obtained by holonomy
of the foliations. For example TM OT. 4 OT,MUT, ¥, isobtained by the holonomy of #.
On the other hand, TMOT, %, UL L0 LA 0T, % UL A OT, 0 T.% OT,MOT,%, is
obtained by the isomorphism T,#% 0T, %; induced by holonomy of 4.

We next recall

F(xaY)G(y, b 2H(zc,x) DAL % 0 AP F DAY 7.

Hence the integration of X,y,z parameter makes sense. On the other hand, we have a
distribution valued section (1, 01)(@) O (ty)(b) of |[NPLMOAPT,%. We write it
(t;01, O1g)(a,bc). Holonomy invariance of transversal measure implies that we can use
other isomorphism (4.11) and obtain the same result. Thus the last formula of (4.9) makes
sense (modulo convergence).

The equality (4.9) is then immediate from definition. Now, by the fact that we can use
any of the right hand side of (4.11) to define the measure (t, U1, 0 15)(a,b,c), we can check
that the last term of (4.9) is invariant of the change L - L, L, - L;, Ly- L,
(a,b,c) - (b,c,a), (X,¥,2) - (y,zX). The“proof” of “Theorem 4.8” is complete.

Now we prove the following

Theorem 4.12 Conjecture 4.4 and “ Theorems” 4.6,4.8 hold in the case of our example
J-,where L; areof general position.

In fact we can prove more. Namely we calculate the map m, explicitly. The key result
we need is the following Theorem 4.18 which follows from the main theorem in [15]. To state
it we need notations.
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Let us identify the universal cover T2" with C" using a complex structure compatible
with . (We remark again that this complex structure is different from the one with start
with.) Let L1 L2 be affine Lagrangian subspaces of C . By perturbing them a bit, we may
assume that J(Ll) N L ={0}. Weregards C" =T L1 Then it is easy to see that I:2 is
identified with a graph of an exact one form dV(Ll, LZ), where V(Ll,Lz) is a quadratic
function on I:1. We identify I:1 with the O section of C =T Ll We assume that
V(I:1 |:2) isaMorsefunction. (In other words we assume that L1 istransversal to I:2 )

Let L3 be another Lagrangian submanifold satisfying L, n L3 {Q}, L2 nL ={G,
Jl_lnL ={CG. Then L3 Is agraph of dV(L1 L3) for aquadratic function V(L1 LS) We put

(4.13.1) V(L. L) = -V(L, L).
(4.132) V(L L) = V(L,, L) - V(L, L),

Let r](L ) be the Morse index of V(L ) at its unique critical point. (We remark
that V(L ;) isaMorse function since L N L ={0} .)

Definition 414 TheMaslovindex n(L,L,,L,) isdefined by
(L L. L) =n = (n(Ls, L) + (Lo, L) +0(Ls, L)

We put

~

(4.15) azg(nd) ={(L, L, L)| [ n [ =(a}

We can extend the function n to MLG(n3). (Namely we can define r](l;,l:z,I;)
casewhen J(L)nL,#{0 etc) Namely we have:

Lemma 4.16
n(L, L, Ly =n(L,,

is extended continuously to n:MLg(n,3 - Z. It satisfies

n
L, L).

We omit the proof which is not difficult. We find easily that r](l;, I:2 I:3) depends only

on linear part I_i of L Hence we write r](L1 L,L).
We remark that the definition of n(L ;) is rather artificial since it depends on the

~ ~ ~

choice of JI_1 and hence on complex structure. However n(L,L,,L;) depends only on
symplectic structure.

Lemma 4.17 The formal dimension of M,(C"; Ly, L, Ls; B P, Ps) is N(Ly, Ly, Ly).
Here the formal dimension is the index of the linearized operator. Thislemmais not new.

We proveit later using[15].
Now, let {p}= L n L, . Wehavethefollowing:
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Theorem 418  The order counted with sign of ,(C";L,L,,Ls; Py, B Bs) i *1 if
n(L, Ly, L;) =0. Otherwiseit is O.

We explain the sign at the end of this section.
We next define, for a,b,c OC"

(4.19) Q(a,b,c;oo):FF w .

Aab,c

Here A, . isthe (geodesic) triangle whose verticesare a,b,c.

Using Theorem 4.18 we calculate m, inthe case of Theorem 4.12. Let I:1, I:Z, I:3 be
n-dimensional affine subspaces of C" paralel to I:l, I:Z, I:3. We put {a = [10 I:Z,
{b} = I:2 N I:g,{c} = I:3 N I:1 and xDIZl, yDI:2, ZD[3. We recall that the universal cover
of X(T™; %) is C?. Itisregarded asthe set of all (x,y,z) OC*" suchthat x -y OL,,

z—yDLz. In the next formulawe regard F etc. asan nl(X(TZ”;%l,fEZ)) etc. invariant

functionson C ",
Corollary 420  If n(L,L,,L;) =0, then
(MaAFOG) e =[. [ e %™ F(xaya(yb2)dr(L,).

Otherwise m,(t,)(FUO G) =0.

Here we take integration over the set of pairs (I:2,y) where I:2 OC" ispardlée to I:2
and y[OL,. Thetransversal measure 1, determinesameasureontheset of L,.
To show the corollary we consider :

(4.21) S + exp(— Iq)*w) F(xay).

& OM o(M; L3, 55, L5;2,6,8)

where T[(I:i):l_i and a0T*" is a mod I etc. Wefirst remark that
(4.22) i o w=Q(abc;w)

by Stokes' theorem.

On the other hand, by Theorem 4.18, we find that there exists unique
¢ OMy(M; L, L,,Ls;3,0,T) for each lifts a,b,c of &,b,c. Therefore the integration of
(4.22) over the set of all triples (a,y,b) suchthat aOL,, bOL; and (a,y),(y,b) JG(M, %)
is equal to the right hand sides of Corollary 4.20. The proof of Corollary 4.20 is now
complete.



30

Corollary 4.20 looks similar to Weinstein’s formula (2) in [30] p 329. However thereis
J=1 in the exponential in Weinstein's formula. This might be related to the fact that the
deformation constructed by [2] is a deformation quantization with respect to an odd symplectic
form.

We next consider  Q(a,b,c;w). Wefix L, L, and {9= L, n L,. For each vDC”/I:2
There eX|sts unlque L2 correspondlng toit. Wewriteit Lz(v) Weput {a(v)} = L N L2(v)
{b(v)} = L) n Ly, and Qv;Ly, L) =Q(a(y), biv),cw).

We remark a(v)=a(v)—c, B(v)=b(v)—c define linear isomorphisms C”/ ﬂz - I;
C /L2 - L3 We regard ® as an anti symmetric R bilinear map C"O;C" - R. (We
recall that w isof constant coefficient.) We then find

~n 1

(4.23) Qv;L, Lyw) = —Zw(a (V),B(v)).

(4.23) impliesthat Q(v;|:1, |:3;oo) isaquadratic function. We have

Lemma 4.24 Q(v;lii, I:3; w) =20. Equality holdsonly for v with a(v)=B(v) =0.

Proof: Theorem 4.18 implies that there exists a holomorphic map ¢ such that
[¢"0=QiL, Liw).

Hence Q(v;l:l, I:3;oo) >0. If Q(v;I:1, I:3;co) =0 then ¢ must be a constant map. But then

the boundary condition implies that L;(v) n L,(v)n Ly Z0O. Hence a(v) =b(v)=c. The

proof of Lemma4.24 is complete.

Let U c".C n/ ﬁz be the projection. We have

(425 (M )(FOG)xc2)=[ & W= E(xa,y)&(y.b,2) dr, (V).

e, (Y=v vI:C”/L

We fix a flat Riemannian metric on  T2". (It induces one on C"=T".) Furthermore by
Lemma 4.24 we have

(4.26) Qv;Ly, Ly 0) 28 dist(v,Tt; (€))%

Here d isapositive constant depending only on I;,IZZ, |:3. Using (4.25), (4.26) and Holder
inequality it is easy to show Conjecture 4.4 in our case. Also estimate (4.26) gives enough
control to justify the “proofs’ of “Theorems 4.6 and 4.8”. The proof of Theorem 4.12 modulo
Theorem 4.18 is now complete.

We next consider the case when the foliations 7- have compact leaves. Let L; bea
compact leaf and 1, be the (transversal) delta measure supported at L. We assume
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n(L, 5, L) = n and put
(4.27) {a,a}=LnL, {b,-b}=LnL,{TCt=Lnl.
Aswe proved in the last section
HFP(7, 7511, 0T5) =0 (L < L)[3],

HF%%JQQDTQ=9ﬁ01X%MﬁL
HF' (%, %13 01,) =0 L' (Ls X L[E].

Then we find from Corollary 4.24 that m, is the tensor product of the map m, in the
introduction and the map

FRAIED DRIB 1 DR,

whose i, j,k component Z, (L;,L,,L;) isgiven by as follows. Let m:C" - T2" be the
projection. Wefix alift ¢, of C,. Let I:i,l:3 be the orbit of I:1 I:3 containing c,. Let
L,(y) y OZ" bethecomponentsof T (L,). (Here Z" O/ nL,.) Wedefineamap

e AL {L---, 3 x{---, B

A~

L(v) n L) ={a}, m(Ly) n Lg) ={b} = uy)=G.0)
% )=ta, )

We put also

{aly)} =L n Ly(y), {by)} = L n Ly(y).

Now Corollary 4.20 implies

Theorem 4.28 Zy (L, Ly L) = Z exp(—Q(a(y), by),cy; 00))-

yiucy)={i.

Moving L andasoincluding flat linebundleson L, we obtain a holomophic section of
a vector bundle of the products of three complex tori which are mirrors of the torus (with
complexified symplectic structure) we start with. This function is a Theta function as we can
see from Theorem 4.28. This fact is due to Kontsevich [18] in the case of elliptic curve. [24]

[23] studied the case of elliptic curve in more detail. (We remark that Theorem 4.18 istrivial
incase n=1.)
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Finally we prove Theorem 4.18. The basic tool we use is Morse homotopy [13], [15].
We recal that we identified T2"=T'L,. And L,, L, are identified with the graphs of
dV(Ll, LZ) and dV(Ll, L3) respectlvely (Ll isidentified with zero section.) Let Lz(s) and
L3(£) be the graphs of st(Ll, Lz) and st(Ll, L3)

Let

{p} = |— N LZ’{pl(a)} |— N |—z(€) p_l. n(p) = N(p,(e)),
{p}= |—2 N L3 {p,(e)} = |—2 n |—3(3) =M(p,) = N(P,(€)),
(B} =Ly n L, {Rs(e)} = Ly n Ly(e), I03 M(ps) = N(Ps(e)),

where M :T2" :T*I:l - I:1 isthe projection. We put
V(L Lg) = (L, Lg) = V(Ly, ).
We remark that

aV(Ly, L)(py) = dV(Ly, Ly)(py) = aV(Ls, L) () =O0.

We recall that we fix acomplex structureon T2" =T L, compatible with symplectic structure
w. (The symplectlc structure @ coincides with the canonical symplectic structure of the
cotangent bundle T =T L1 .) Hence we obtain a Riemannian metric (Euclidean metric in
fact) on L1 Using it we consider gradient vector fields

grad V(L, L), grad V(L,, L), grad V(Lg, L,).

Let U(p;) be the unstable manifold of the vector field grad V(ﬁi, |:i+1). By definition we
have n(p;) =n—-dimU(p,). The main theorem proved in [15] applied in this situation is

(4.29) U(p) nU(R,) n U(ps) OM(C"; L (e), L(e), Le(e); Pule), Ba(e), Pa(e))

for sufficiently small €. (We remark that, in [15], we studied the case of cotangent bundle of
compact manifold. However the proof there can be applied in our situation also.)

Since V(I:i I:iﬂ) is a quadratic function it follows that U(p,) is an affine subspace.
Therefore if I_i are of general position then U(p,) nU(p,) n U(p;) consists of one point.
(In case when r](L1 L2 L3) 0.

Lemma 4.17 also follows from (4.29) and independence of index under continuous defor-
mation of Fredholm operators. (We proved in[15] that the index of the linearized operators of
right and left sides coincide also.)

We next find that the order counted with sign of
MC " Ly(€), (), Ly(e); Pule), po(€), B(€)) is independent of €. This follows from a well
established cobordism argument using Lemma4.30 below. Theorem 4.18 is proved.
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Lemma 4.30 M€ ;L) L), Ly(t); Bu(®), By (1), By(t)) is compact for generic L .
tO[e 1]
Proof: Suppose that &, 0 (C"; Ly(t), Ly(t), Ly t); Pu(t), o (1), B5(1)) is a divergent se-

quence. Then there exists w; OD? such that ¢, (w) diverges. Let R beasufficiently large
number determined later. Then for large i we have

(4.31) #{i1B(¢: (W), R n [ (1) 20} <1.

Here B($(z),R) isthemetric bal of radius R centered a ¢, (w;). Then, by the reflection
principle, there exists a holomorphic map ¢, :D? - C" suchthat

(4.32.1) ¢,(@D%) OC "~ B(d,(w),R/2),
(4.32.2) ¢ (p) = (W),
(4.32.3) b W< 20/ 0.

Using (4.32.1) and (4.32.2) we have the following estimate :

[0 > CR.
Hence (4.32.3) impliesthat
(4.33) fp2d; 0> CR.
However by Stokes' theorem we have
(4.34) Jor i @ = Q(Ry(t), Pa (), P(ty); ).

We obtain a contradiction from (4.33) and (4.34) by choosing R sufficiently large. The proof
of Lemma4.30 is complete.

We finaly determine the sign in Theorem 4.18. In fact, we need the following data to
determine the orientation of the moduli space M(C";L,,L,,Ls; Py, Py, B5)

(4.35.1) The orientation and the spin structure of L, .
(4.35.2) The path joining T, L, with T, L, intheLagrangian Grassmannian of T, M.
More precisely we need this date modulo two times H; of Lagrangian Grassmannian.

We refer [14] for the proof. We fixed orientation of our Lagrangian submanifolds. Since
they aretorus, wetaketheir canonical spin structure (that isone corresponding to thetrivialization
of the tangent bundle), if we take an orientation of the torus itself. The data (4.35.2), in our
case, is equivalent to fix an orientation of the unstable manifold U(p;) for each p;.

Thus the orientation of ,(C"; Ly,L,,Ls; P, B, Ps)  is determined by the choice of
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orientations of I:, and U(p,). Weremark that, if we make this choice then the orientation of

U(p,) nU(p,) n U(p;) isdetermined in an obvious way. Now by the proof in [15] we find

(4.26) preserves orientation. Namely the order counted with sign of

MO(C”;I;,I:Z,L3;E)1, D,, Ps) istheintersection number U(p;)e U(p,)* U(p;).
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§ 5 Associativity relation and A® structure.

The “proof” of the following “theorem” is not rigorous because we do not know an
estimate to justify the change of the order of the integral in the proof. (There is another
problem to be clarified to make the “proof” rigorous. See Remark 5.5.) Later we will prove it
rigorously in the case of Example 0.2. In this section, we consider only the case when 0 =0
and 13, (M,L) =0, for simplicity.

“Theorem 5.1”

(5.2) m,(m,(FOG) U H)=m,(FOm,(GOH))

for any %1, i=1234 and FOHF(% %1,01,), GOHFY%, %1, O01,),

“Proof”: Let L, bealeaf of %,wlL,, edL nL,. Let XYy,zab,c beasinFigure3

and fOL nL,,g0L;nL,. (SeeFigure4.) Wethenfind:

m, (m,(FOG) O H)(x,e,w)

= z + exp(—J'Lp*oo)mz(F 0 G)(x,c,2H(z,g,w) dt,(c, Q)

(5.3.1) G294 D o(M;Ly, Ly, Lyic, g€)
+ exp(‘fd’ *w) eXp(—ILp *w)
ayb.C.Z,9¢0n, (ML, Ly, Lyia,b,c)y vy (M ;L1 L5 L, c.0.8)

F(x,a,y)G(y,b,z)H(z,g9,w) dt,(a,b) dt;(c,g)

and

m, (F O m,(GO H))(x,e,w)

iexp(—Icl) '*w)F(x,a, YM,(G OH)(y, f,w) dt,(a, )

[Jljav y.f o M (ML, L, Ly sa fle)

(5.3.2)

£ ep(-[9"w) exp(-f ")
a,y,f.b.z,go ‘o (M; Ly, Lo Lasa, ey’ DMo(M; Lz, Ls La b, g, )

F(x,a,y)G(y,b,z2)H(z,g,w) dt,(a, f) dt ;(b,9).
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Figure 4

dt,(a,b) dt,(c,g) = dt,(a, f) dt,(b,g) followsfrom holonomy invariance of the transver-
sal measure. Therefore we are only to show the following :

“Lemma 5.4” For generic L, with m,(M,L)=0 and ab,c,e f,g wehave

sers{-fo'o) ol fu o)
¢ OM o(M; Ly, Ly, Lgya,b, ) OM o (M; Ly, Lg, Ly €,0,€)
- 5 > xer(-forv)ed-fua)
o'OMo(M; L, L, Ly a fey' OMy(M;L,, Ly, Lybg, T)
The idea of the “proof” of “Lemma5.4” isin [10]. So we do not repeat it. The formula

can be “proved” aso in the case when 1i,(M,L)# 0 if we add correction terms similar to
[14].

Remark 5.5 For the reader who is familiar with the technique of pseudoholomorphic curve
in symplectic geometry, we mention another reason we put “ ” to Lemma 5.4. The trouble is
the transversality. The “proof” in[10] is based on the compactification of the moduli space of
holomorphic rectangle which bounds L OL, 0L, 0L,. Forfixed L, L, itispossibleto
find an appropriate perturbation so that the moduli space of such pseudoholomorphic curves
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especially under our assumption 1;, (M, L) = 0. However we are considering a family of such
Lagrangian submanifolds. So we need to show that the equality in Lemma 5.3 holds for
L,L,,L; L, outsideameasure O subset with respect to the transversal measure. Thisrequires
some additional arguments. We explain this point more later. See Conjecture 5.30 for example.

Theorem 5.6 (5.2) holdsfor thefoliations % in Example 0.2 such that I:| N I:j ={0}.

Proof: Using Theorem 4.18 and (4.26) we can justify the calculation in the “proof” .
So we only need to establish “Lemma 5.4” rigoroudly in our case. We prove it by using a
series of lemmata and Theorem 4.18.

We first generalize Definition 4.14. Let L, besuchthat JL nL ={Q}, [ n L, ={0.
Then I:, isagraph of V(I;,I;). We put

and define

(5.7) N(Ly+ L) =n=(n(L, L) + - +n(L. 1)).
We also put

(5.8) MLg(n,k):{(I:i,~-~,I:k)| Ll ={0 i ;tj}.

Then n isextended continuously to MLG(n k). It satisfies

(5.9.0) oG By e Loh)

(5-9-2) ﬂ('—l, I—k) r]('—l, ’ /+1)+r|(|—ﬁ’ ' Lk)

Lemma 5.10 Assume n([i,---, I:4) = 0. Thenthefollowing four conditions are equivalent
to each other.

(5.11.1) (L, L, Ly) =0.

(5.11.2) n(L, Ls,L,) =0.

(5.11.3) n(L,,Ls, L) =0.

(5.11.4) n(L, L,L,)=0.

Proof: (5.9. 1) (5.9.2) and the assumption imply that (5.11.1) - (5.11.2) and (5.11. 3)

= (5.11.4). Let I_i be a connected component of the inverseimageof L; in T2 =C".

usidentify C" =T L1 asin 8 4. Then there exist quadratic functions V(Ll,l_i) such that I_i
isagraph of dV(L,L). Weput f=V(L,L) and f,=0. n(4,L,) isthe number of
negative eigenvalues of the quadratic function f; - f;. Thus Lemma 5.10 is an elementary
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assertion about quadratic forms. It is possible to give purely algebraic proof of it. But we
prove it by using Morse homotopy. We use the notation in [13], [15]. Let p, isthe unique
critical  point  of fol—f. We consider the Morse moduli space

Man(R”:(fl, 5, f5 ).(PL P2, Py, Py)) defined in [15] page 101 (u(p;) there is refated to

(L, L) by W(P)=n=n(L;,Ly)) Namely 9, (R": (1, f,, f5 £).(R po s p)) isthe
union of the following three spaces.

{06y 1x DU(R) 0 U(Ro), yDU(Rs) 0 U(p,), t >0, y = explt(grac, — gradt,))x}

(uv,t) luOU(p,) n U(p,), vOU(p,)n U(py), t>0v= exp(t(gradf4 - gradfz))u}
U(p) nU(p,) n U(py) nU(py).

(See Figure 5.) Here U(p,) isthe unstable manifold of grad(f,, — f;). The curvature Xy,
uv aregradientlinesof f,-f, and f; —f;, respectively.

E, P
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2,
2,
¥
)
2 B
Figure5

By [15] § 12, we can perturb f; without changing it in a neighborhoods of f; - f,, so
that Man(R” : (fl, fy, f3 f4),(pl, Py, Ps, p4)) is a one dimensional manifold with boundary.

(We use the assumption n([i,- I:4) =0 here) Itsboundary isthe union of

(5.12.1) Man(Rn : (fl f2, f3)’(pl’ pzﬂ)) ngRn(Rn :(fr fa, f4)1(q1 Pss p4))
and
(5.12.2) M%n(Rn : (fp f2, f4),(pl,r, p4)) X M%n(Rn : ( f2, f3, f4),(p2, p3,l’)) )

here g, r areuniquecritical pointof f;—f and f,—f, respectively. (See[10], [15].)
Sublemma 5.13 Man(R”:(fl, o, f5 ).(PL Por Py, Py)) s cCOmpact.

Before proving Sublemma 5.13, we complete the proof of Lemma 5.10. We assume
(5.11.1) and (5.11.2). Then (5.12.1) consists of one point. Hence, by cobordism argument,
(5.12.2) is nonempty. It then implies (5.11.3) and (5.114). (Otherwise one of the factors of
(5.11.2) has negative dimension and is empty in the generic case.) The proof of Lemma5.10is
complete.

Proof of Sublemma 5.13: We consider a divergent sequence in
Man(R” (1, 1, s, f4),(p_,p2,p3,p4)). Without loss of generality we may assume that we
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have X OU(p) nU(py), Yy, 0OU(p;) nU(p,) and t=0 such that
Yy, = exp(t;- (gradf3—gradf1)). If thereexists s U[0,1] such that

iI erol exp(sti(gradf3 - gradfl)) =q
then the limit of such a sequenceisin (5.12.2). Hence we may assume that
(5.14) lgracf, - gradf1|exp(ti(gr aty-gact) 2 € 0.
Here s[[0,]] and c isindependent of i. We have

(f, = f)) = (f, = £)(p)= 0
(f5= £)(x) = (fs = £)(p)2 0
(5.15) (f, = f3)(%) —(f, = £)(p) 20
(f, = (%) = (£ = £,)(ps) 20
(fs - fl)(yi)z(fs - t.l.)(xi)

Hence

(f4 - fl)(p4)+(f3 - f4)(p3)2 (f3 - f1)(Yi)

5.16
(5.16) 2 (3 - £)0%) 2 (§ = {)(p) + (f; — L)(R).

(5.14) and (5.16) imply that t; is uniformly bounded. Moreover (5.15) and (5.16) imply that
(f, - f)(x) - (f, - £)(p) and (f, - f5)(y) - (f, - £)(p;) areuniformly bounded. Therefore,
snce x OU(p) nU(p,), v, OU(p;) nU(p) , % and y, arebounded.

This contradicts to the fact that (%, Yi, 1) gives a divergent series of
Man(R” ; (fl, f,, fs, f4),(pl, P,, p3,p4)). The proof of Sublemma 5.13 is complete.

Lemma 5.17 Let a,b,c,e f,g beasinFigure4. Thenwe have:

Qab,c;w) +Q(c,g,.6w) = Q(a, f,e;w) +QYb,g, f; w).

Proof: We use Stokes' theorem and the fact that L, are Lagrangian submanifolds to
show

Qab,c;w) = Q(f,c,aw) +Q(f,g,c;w) +Q(f,b gw)
and
Qc gew) =Q(ac, fw)+Qf,c,gw)+Q(a f,ew).

Since Q(X,Y,Zw) =Q(Y, zZ X;w) = -Q(X,2,y;w), we obtain Lemma5.17.
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Now we are in the position to prove Lemma 5.4 in our case. Let r]([l, I:2, I:3, I:4) =0.
(Otherwise both sides are zero.) Theorem 4.15 implies that

(5.18) > > + exp(—J’q) *w) exp(— G *oo)

¢ OM o(M; Ly, Ly, Ly ab, )y OM o (M; Ly, Lg, Ly ic,9,€)
is
(5.19) exp(-Q(a b.c;w) - Q(c, g, ew))

if (5.11.1) and (5.11.2) hold . (5.18) is zero otherwise. On the other hand

(5.20) > > + exp(—Id) ’*oo) exp(—ILp ’*oo)

¢'OMo(M; Ly, Ly, Lysa fe)pr OMo( M; Ly Ls, Ly b, g, T)
is
(5.21) exp(—Q(a f,ew) — Qb,g, fiw))

if (5.11.3) and (5.11.4) hold and is zero otherwise. Therefore Lemma 5.4 follows from
Lemmata 5.10 and 5.17.
The proof of Lemma5.4 in our case (and hence the proof of Theorem 5.6) is complete.

We remark that we can go around Theorem 4.18 by regarding Corollary 4.20 as adefinition.
(We need to prove Lemma 4.21 by another way. We can prove it also by Morse homotopy.)
The proof of Theorem 5.6 above works also. If we take that way, we do not need to study
holomorphic disks in order to define m,. The story then becomes more elementary and easier
to establish.

Wenext follow the way taken by [10] and “define” higher multiplication m, :

m (T, ) - HF A (F, ;1,1,)0--- 0
(5.22) (t; k) (F1 F2iT1,T5)
OHFEX(%, Ferrs T Tew) — HFPU (R, R T T i)

k
where > Y p =1/p.;-
1=1

For smplicity we concentrate to our Example 0.2 such that I:, N I:j ={0}. Unfortunately,
our discussion is not rigorous even in this case. (But if we assume furthermore that I:| and
I:J- are almost parallel, then our result isrigorous.)

Let I:| be affine Lagrangian submanifoldsof C" and {ﬁj} = I:i N I:J- . Wedefine:
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. ®:D* - C"isholomorhpic E
MLy, L) = 00;2, 2 y) | z 0OD?, (2,2 ;) respectsthe cyclic order of 9DL.
O A L
g d(z) = ﬂ,i+1’¢(6iD2) 0L E

Here 9,0 isapartof dD? between z and z,,. PSL(2R) actonit. Let &(Ly, L ,.y)
be the quotient space.

“Lemma 5.23”  After appropriate perturbation, M ([1,---,I:k+1) is a smooth manifold of
dimension n(L;,---, L)+ k-2.

Modulo transversality problem mentioned in Remark 5.5 we can prove “Lemma 5.23".
The “proof” isin [10]. We remark that k —2 isthe dimension of the moduli space of disks
with k +1 marked points on the boundary.

“Definition 5.24” Let q([i,...,ik+1)+ k-2=0. Welet m(I:,---,I:k+1) be the number of
elementsof M(L,---,L,,,;) counted with sign.

In fact the following Lemma 5.25 is necessary for the definition.

“Lemma 5.25”  If r](il,---,l:k+1)+ k-=2=0 then M(I:l,---,I:k+1) is compact for generic
M(Ll’.“’Lk"'l)'

We explain the argument to “prove” it later. We potpone the discussion on the sign
(orientation) until the end of this section.

“Definition 5.26” m(Ly, -, L,,,) istheorder counted with sign of M (L, -,L,.,).
“Definition 5.27” Let K OCR™(7-, F)» % OL. Thenwe put

M (@2, TR O+ 0 R)(Xes P %)
(5.28) =[ o fo M Ded e -Q o Gori)) R, o)

o Fl(Xs Pk 1 Xiee ) ATo(Lp) - At (L)

Hereweregards F, m (T, - T,,)(RO---0F) as I invariant functionson C"xC",
We take integration over all I:, paralel to I:, using transversal measure, and we put
{p;}=L nL;.

We put “” since we do not know the convergence of the right hand side. Also the
transversality problem and the sign convention in “Definition 5.27” must be clarified to make
“Definition 5.27” rigorous. We will clarify these points in some special cases later.
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Definition 5.29 For n and k we consider the space

0 I:| 0 C" are Lagrangian linear subspace

MQNW@=§LWLM>QnQ=w¢miﬁ,
D ~ ~
H N(L,+, Ly +k=2+0=0

O O0o O™

A(NK) = TH(MLG(N,k,0)) , A(nk ¢) = Tp(MLGIN K, 1)).

For A OA(nk ¢) let MLG(A) betheconnected component of MLG(n,k,¢) corresponding
to it.  Let (L Lwy) OMLGD) and 1<i <j<k+1. The space
C" Ly x--xC" Ly xC/ [y %+ xC" Ly XC"/ Ly x--- xC"[ Ly, is identified with the
set of al configuration of (I:l,---,l:k+1) modulo trandation. Hence we can identify

C L% xCL_y xC /L4y x--xC Ly xC g x---xC"/ Loy
OCT/ Ly - xCTY Ly xCT/ Ly %o xCY L xCTf Ly %o xC Dy

s

We denote this affine space by 7/( I:l,- - Ek+ 1) and put

va)= U UL L)

(Lys-, Les)OMLG (D)

Conjecture 5.30 For A UA(nK), there exists a codimension one real analytic subset W(A)
of Y(A) suchthat m(L,,---,L,,) iswell-defined andlocally constanton V(A)-W(A).

We can verify conjecture easily in the case when n=1. Infact, if n=1 W(A) isa
finite union of codimension one affine subspaces. The fact that m(L,,---, L, ,.;) can jump was
observedin [23] incase n=1.

Let us explain an argument to “prove” Conjecture 5.30 modulo transversality. We
consider the moduli space

(5.31) )= U ML L)
(L L) v @)

“Lemma 5.23" implies that for each (Ll,---,Ekﬂ) OA OA(nk;¢),  the space
ML, -, L,,,) isof —¢ dimensional. We useitsfamily version and find that

(5.32) virdimam (A)=dim?(Q) - /.
We remark that virdim in (5.32) is the virtual dimension, that is the index of the linearized

operator. Now we consider the case when ¢ =0. Then if the transversality is satisfied the
space M(A) isasmooth manifold and



dima(A) = dmv().

We consider the projection m: M(D) - V(D). Then m(I: ,---,I:k+1) should be the order
counted with sugn of T (L1 I:k+1) One would be able to prove easily that this number be
independent of (L1 Lk+1) if 1. M(A) - V(D) were proper. (Note that we used Lemma
4.30 to show that m(Ll, L2 L3) is independent of the deformation of (L1 Lz, L3) in§4.)
However in case when k+1>4 the map T1t: M (A) - V(L) is not proper. We have the
following :

Lemma 5.33 Let A UOA(nK) and 10%Y(A) be a compact subset. Then we can
compactify M(A)(1)=mt*(1) to cM (A)(1) such that

N

M@ -M@NOO U M(LyLL,, Leay) * MLy, L),

(El""":kﬂ)D'
2<j-i<k-3

Lemma5.33 is proved in asimilar way as the proof of Lemma4.30.
Now we assume that the dimension of | isone. Then by “Lemma5.23”

(534) virdm ) (LD Lpe ) =0 GG Do) + k= G -1),

(L )OI o o
(5.35) virdm () s, L) =0, L) +() - -1
(L L)
We recall
(5.36) (L Leg) + k-2=0.

Therefore, using (5.9), wefind:

(5.37) virdm U (L, Lo, L) X M(L -, L) =0,
(L G )0
Namely the boundary cM (A)(1) =M (A)(1) consists of finitely many points if virtual
dimension is equal to the actual dimension. In that case (5.37) is nonempty only if

(5.38) n(L,-L;)+( —i)=Lor 2

If we are allowed to apply various perturbation methods established in the theory of
pseudoholomorphic curve then certainly the transversality isachieved. However in our situation
it is not clear what kind of perturbation is allowed because the wall seems to move if we
change the perturbation.

If the transversality holds then the wall will be described by the union of



45

5 (@G, L) +(-1) =0, E
(5.39.1) Ly, Lyr) OMLGD) | M(L;,--, L) # O for some (-, L; )C
0 R . C
H where L, isparalell tol, E
and
o NGy Gy Dg) vk = (j-1) =0, E
(5.39.2)E(E1,---,Ek+1) OMLG (D) | M(Lyy - Ly, Lyy) £ 0 for some(Ly,- Ly, Lo, Em)E
E where L, isparaell toL, E

This “proves’ Conjecture 5.30. We remark that “Lemma 5.25” is “proved” also by the
same argument.

Remark 5.40 As we mentioned, our number m( ﬁl I:k+1) jumps at the walls W(A).
There is a similar phenomenon in Gauge theory, that is Donaldson invariant in the case when
b, =1, andis called wall crossing formula [5]. We remark that certain remarkable relations
between wall crossing formulato automorphic forms are discovered recently. (16], [20]) .

At the end of this section, we will prove that Conjecture 5.30 holds in the subdomain of
V() where L, areamost parallel to each other.

We put

~ ~ k-1
Definition 541  Q(L;,-+, Li,q; ) = z QP11 Pijr 19 Piagj +2:0) -
i=2

Inaway similar to Lemma5.17, we can prove the following two lemmata :
Lemma 5.42 ql:l,"', I:k+l; (A)) = Q([Z’.."l:k+l’ Ei;(x)) .

Lemma 5.43 QL Ly ) = QL+, Ly 3 ) + QUL -+, Ly @)

The foIIowmg lemma is a generdization of Lemma 4.24. We remark that
Q(Ll,- Lk+1,w) isregarded as afunction on C /L2 - xC"[L,.

Lemma 5.44 If (L L)OAOAMNK)  and  m(Ly L) 20 then
QLy Ly ) 2 0.

The proof is the same as the proof of Lemma 4.24. We remark that Lemma 5.44 itself is
rigorous (if we replace m(Ll, . Lk+1)¢0 by M(Ll, - k+1)¢ 0.)
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Let m:Y(d) - MLG(A) be the projection. If we assume Conjecture 5.30 then we can
construct our operator m,  rigorously on the dense subset of MLG(A)  with
(L,---, L) OA OA(n k). Namely we have:

Theorem 5.45 Let ([1 |:k+l) OA OA(n,K). Assume that Conjecture 5.30 holds in a
neighborhood of (L, Ly,y), and 10XL, - L.,) intersects transversdy with the wall
W(A) . We assume also that the measure Ti(l;-) is either equivalent to the standard
Euclidean measure or a delta measure whose support is digoint from the wall. Then the
integral (5.28) converges.

Proof: We consider the vector space C"/ Lz -xC / L, and regard m(Ll, : I:k+1) as
a function on it. Then it is easy to see that m(Ll, . Lk+1) is invariant of R™ action
(I:l, I:z(vz) Lk(vk) Lk+1) H(Ll, Lz(cvz) Lk(cvk) Lk+1). Therefore Conjecture 5.30 implies
that m, isuniformly bounded.

Let D be aconnected component of the domain

(5.46) (o O] IMF =1 (G L), i D) W)}

In variance of the wall of R* action implies that there are only finitely many connected
components of (5.46) if Conjecture 5.30 hold. By Lemma 5.44 and its proof we find that

(5.47) QUL (Vo) Le(Vie), Liag);0) > O

if (vp,---,\) isintheclosureof D. Infact, inthe casewhen (v,,---,\) isin the closure of
D, there exists aunion of holomorphic disks such that the sum of the sympl ectlc area of them
is Q(Ll, Lk+1,w) (Lemma 5.33). Since L1 n L2 (W) Nn--n Lk(vk) n Lk+1 =0, one of
such holomorphic disks is necessary non constant. (5.47) follows.

(5.47) impliesthat there exists >0 such that

(5.48) QAULy L)+ L), L)) > 8 [

for each (V,,---%) with m(L, Ly(Vy), (), L) 20. It is then easy to prove the
convergenceof (5.28) . The proof of Theorem 5.45 is now complete.

We remark that in the case when all the leaves of % are compact and 1, are delta

measure supported on a leaf L, the integral (5.28) WI|| be a tensor product of matrix
m,(L,---, L) and the trivial map

LP(Ly X Lp) % - X LX(Ly X Lg) » LU(Ly X L)

Let us write the formula of matrix m,(L;,---,L,) we obtain. Let L nL,, = {pl, R, }
Then
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HF(Li’Li+1):90[pi,j]-
Wefix L,--,L,. Sothat rr(l:k+1n I:i): Py, Where T:C" . C"/I". Wedefine

mrEk H{l...,Ni}
by
py )i =1 if T{Vi(L) 0 Viwa(G )= By where T:C" . C/T.

Now m (L, L ):c™MO...0C™ - cMe s the higher multiplication of Floer homology
whose coefficient is are described by :

Zk (Lla' Ty Lk)jl,"'vjk+1
(649 = 5 (LY Vi) ) e -QL YD) v (. ).

y=(pm?
u(y):(jlv“"jkﬂ)

Moving L we may regards (5.49) as a function. If we include imaginary part in the
same way as [18], [24] then we obtain a holomophic function. (See Part Il.) However as was
observed in [23] in case n=1, this function is discontinuous at the point where
(L Y2(L2) - Yi(Li), Lisr) meetsthewall W(A).

We go back to the case when the foliations  7- can be ergodic and will discuss the
propertiesof m,. Thefollowing isan analogy of Theorems 4.6 and 4.8.

“Theorem 5.50” Let FOHF(7, 7. ), f0C(T™, #;). Thenwe have

(6511)  m(t, 1 )(ROR) OO R)=fOm(t, 1 )R O 0F),
M@+ TR O+ 0 RO (fig OR )0 -0 Fiy)

= rnK(TZ""'Tk—l)(Fl O---0 (F| Dfi+1) Uk, 00 Fk—l)’
(5.51.3) mk(TZ""!Tk)(Fl 0--0(F ka+1)) =Mty T)(R O+ O R) Ofiy
<mk(T 27""Tk)(Fl O---0 Fk)! F|<+1>TkDTI

= M (T TR OO Ra) R -

(5.51.2)

(5.51.4)

We put this theorem in the quote since we assume Conjecture 5.30 to “prove’ it. The sign
Isaso to be clarified to make it rigorous.

As we pointed out in [15], Formula (5.51.4) seems to be closely related to the theory of
cyclic homology (see[3]). It may therefore suggests arelation of this paper to [32].
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The “proof” of “Theorem 5.50” is similar to Theorems 4.6 and 4.8 and is omitted.
We next state the higher associativity relation.
“Theorem 5.52” I (L, L,,,) OA OA(mK,1) wehave

(5.53) Z m_,(RO--OFROmME0 R ) OFRL e 0--OFR)=0.

n,/

“Theorem 5.52" will follow from Lemma 5.43 and the following “Lemma 5.54” , in a
way similar to the “proof” of “Theorem 5.1".

“Lemma 5.54”  If (L,-, Ly,) OA OA(nk,1) then

(5.55) z My pea(by LML Loag)s L psn - Liea) = 0.

n,/

The idea of the proof of “Lemma5.54” isin [10]. Namely we consider M(El,---,£k+1) .
It isaone dimensional manifold. Its boundary givesthe right hand side of (5.55).

In the case when I:, are almost parallel to each other, we can reduce the calculation of
m(L,,---,L.,,) toaproblem on quadratic Morse function as follows.

We regards T*I:1:'I~'2” and let I:, be the graph of the exact form df, on I:l. Here f
is a quadratic function on I:1. Weput O=f. Let L(g) bethe graph of edf. Let
I:i(s) n I:Hl(s):{ﬁ(s)} and T{f(¢)) = p . Thenwe provedin [15] the following equality in
the case when n([i,-'~,l:k+1)+ k-2=0.

(556) MLy (), (€)= Mg R™: (fu fra) (P, o)

Here the right hand side is the Morse moduli space defined in [15] and is similar to
Man(R” (1, 5, 5 £,).( . P, p3,p4)) which we explained during the proof of Lemma5.7.

We remark that (5.56) is not enough to calculate the number m(I:1,--~, |:k+1) in general
since we do not have an analogy of Lemma 4.30 and hence the order of M (fi(e),--~, I:k,,l(a )
may depend on €.

Now we are in the position to clarify two points we postponed in the case when I:, are
amost parallel to each other. One is the orientation of the moduli space
9\7[( I:1, I:2(s ),y I:k(e ), I:k+1) and the other is the proof of Conjecture 5.30.

To prove Conjecture 5.30 in the case when I:, are aimost paralel to each other, we only
need to show the same satement for the Morse moduli  space
Man(R” (- fer) (P, Pra)) - But thisis almost obviousin the case of Morse homotopy
of quadratic functions. Instead of giving the detail of the proof, we will describe the “Morse
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homotopy limit” of thewall W(A) inthe casewhen k =4 later. (Proposition 5.59).
Next we consider the orientation. If we find an orientation on Morse moduli space
Man(R”:(fl,---, fk+1),(pl,---, pkﬂ)), then we can use the number  of

Man(R” (£ fien) (Pue+) Pry)) counted with sign to define m(Ly ).+, Ly 4(€)). Thisis
justified by (5.56). To define an orientation on Morse moduli space, we use the map EXP
defined in [15] p 160. We recall that we fixed orientation of the unstable manifolds U(p,)
and orientation of L, (end of §4.) Themap EXP in our situation is

m g1 i1

(557) EXP): Ly xGr @ <[ []UeP) - ﬂ@ <[] ng

h=1 j=i,

Here Gr(9 isthe moduli space of metric Ribbon tree introduced in [15]. See[15] for
other notations.
A dense subset of Mq;n(Rn . (fl,---’ fk+l)’(p_l_""1 pK+1)) is the union of

(5.58) EXP(¢) " (Diagonal)

where ¢ runsover trivalent graphs. (See[15] p 160 the definition of Diagonal.)

We proved in[15] § 14 that Gr (9 isdiffeomorphic to an open subset of the moduli space
of [z,+,z.,] where z 00D” and z respectscyclic order. Weidentify [z, -,z,] with
[2,+.24,1] if thereexits ¢ OPSL(2R) suchthat Z =¢(z).

Using this diffeomorphism we find an orientation on Gr (2. The spaces in (5.57) then
are al oriented. Therefore (5.58) is oriented. Thus we obtain an orientation of

Man(R”;(fl k+l) (p.L H<+1))

Finally, we show how the Morse moduli space Man(R”;(fl,..., ferah (P ﬂ<+1))
jumps inthe casewhen k =3. Let usconsider the following figurewhere k=3, n=2.
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Figure 6

Here n(p,)=n(p,) =n(ps)=1and n(p,) =0. Thelines p,x p,Xx pgy areunstable manifolds
U(p), U(p,), U(py) - (U(p4):R2.) The curve passing X,y isthe gradient line of f; - f.
The figure shows that Man(R”:(fl,---, f4),(pl,---,p4)) contains onein this case.

If we move p, totheleft, then x also movesto theleft. Let z be the critical point of
f; — f,. (Weassumethat theindex of f; —f is1l.) Then, at some moment x will meet the
stable manifold of z. After that the gradient line of f; —f, containing x will not meet the

unstable manifold p,y. Namely the moduli space Man(Rz:(fl,---, £ (Py++ pa)) jumps.

We recall that all stable and unstable manifolds are affine in the case of quadratic Morse
function. On the other hand, the jump of the moduli space Man(R2 (6, f)(pes p4))
occurs when

31, (R%: (1 ot (P P 2) %9, (R (5, £ E( P Ps2)
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or

Man(Rz : (f4’ f1, f2)1(p4’ pl'W)) XMan(RZ : (f2’ 3, f4),(p2, p3,W))

becomes nonempty. Here z isthe critical point of f;—f, and w isa critical point of
f,— f,. Therefore the following proposition holds.

Proposition 5.59 If k=3 (and any n) the Morse homotopy analogue of the Wall (in
Conjecture 5.30) isa union of codimension one affine subspacesin R*" =C"/L, xC "/ L.

The author has no idea how to describe the wall in the general case.
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