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§ 0  Introduction

In this paper and Part II, we study mirror symmetry of symplectic and complex torus.  It

leads us the study of a generalization of a part of the theory of theta functions (line bundles on

complex torus) to the case of (finite or infinite dimensional) vector bundles (or sheaves) and to

multi theta function.

We will define noncommutative complex torus, holomorphic vector bundles on it, and

noncommutative theta functions. We also will show a way to calculate coefficients of theta

series expansion (or theta type integrals) of holomorphic sections of vector bundles on (com-

mutative or noncommutative) complex torus in terms of counting problem of holomorphic

polygons  in  C n   with affine boundary conditions.  We will prove that this counting problem

reduces to the Morse theory of quadratic functions in in the “semi classical limit”.

In the case of (usual) complex torus, the author conjectures that special values of these

multi theta functions give a coefficients of polynomials describing the moduli space of sheaves

and of linear equations describing its cohomology.

Let  (M,ω)   be a 2n-dimensional symplectic manifold.

Definition 0.1 A Lagrangian foliation on  (M,ω)   is a foliation    F   on  M   such that

each leaf is a Lagrangian submanifold.  (Namely each leaf  F   of    F   is an  n -dimensional

submanifold of  M    such that  ω F = 0 .)

In this paper we are mainly concern with the following simple (but nontrivial) example.

(One may find other examples in solve or nil manifolds.)

Example 0.2 Let  us consider a torus  T2 n = Cn Γ .  (Here  Γ   is a lattice in  C n ).  We

put a homogeneous nondegenerate two form  ω   on  T2 n   and consider a symplectic manifold

(T2 n ,ω ) .  We consider affine Lagrangian submanifolds of it.  Let  ˜ L ⊂ Cn   be a Lagrangian

linear subspace.  Namely  ˜ L ⊂ Cn   is an  n - dimensional R -linear subspace and  ω ˜ L = 0 .  We

consider a foliation     F ˜ L 
  induced by the linear action of  ˜ L   on  T2 n .  In case when

˜ L ∩ Γ ≅ Z n , all leaves of    F ˜ L 
  are compact.  Otherwise they are noncompact.  In particular if

˜ L + Γ ≅ C n ,  all leaves are dense.

Hereafter we assume that Rn ∩ Γ  is a lattice in  Rn ,  without loosing generality.  Then, in

case when  [ω] ∈H1,1(T2 n) , there are Lagrangian linear subspaces  ˜ L   such that  ˜ L ∩ Γ ≅ Z n .

In fact we can take  ˜ L = Rn ⊂ Cn .  However, in case when  [ω] ∉H1,1(T2 n) ,  there may not

exist such  ˜ L .

This fact is related to Mirror symmetry in the following way.  Strominger, Yau, Zaslow

[29]  observed that a mirror of our symplectic manifold  (T2 n ,ω )   is a component of the moduli

space of pairs    (L, L)   of Lagrangian submanifold  L   and a flat line bundle    L   on it.  (In

general, we need to use complexified symplectic form  Ω = ω + −1B .  In that case, the

flatness condition of    L   should be replaced by    FL = 2π −1B.)
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In the case when  [ω + −1B]∈H1,1(T 2n ),  (and  Rn ∩ Γ ≅ Z n),  we can certainly find a

complex manifold in this way.  (See Part II.)

Let us denote by  (T2 n ,Ω)∨   the mirror of (T2 n ,Ω = ω + −1B).  Deformation of the

complex structure of  (T2 n ,Ω)∨   is parametrized by  H1 (T2 n ,Ω)∨ ,T(T2 n,Ω)∨( )   which is

isomorphic to  H1,n −1 (T 2n ,Ω)∨( )   since  ΛnTT 2n   is trivial.  Here ΛkTT 2 n  is the k -th exterior

power (over  C )  of the tangent bundle of  T2 n .   Since    H1, n −1 (T2 n ,Ω)∨( ) ≅ H1,1(T2n)  by the

definition of Mirror symmetry,  the deformation of compexified symplectic form

Ω = ω + −1B   corresponds to the deformation of complex structure of the mirror.

[17], [25], [2] considered extended deformation space of complex structure of the Calabi-Yau

manifold  M .  It is described by the larger vector space  ⊕
p, q

Hp M ,ΛqTM( ) ≅ ⊕
p,q

Hp ,n −q(M) .   In

[2],  the Frobenius structure is constructed in this extended moduli space.  However geometric

meaning of this deformation (other than those corresponding to  H1 M,TM( ) )  is mysterious.  If

M∨   is a mirror of  M   then we have  Hp M∨ ,ΛqTM∨( ) ≅ H p, q(M). The deformation of

symplectic structure of  M   is parametrized by  H2 (M) ≅ ⊕
p + q= 2

H p, q(M) .  This group is strictly

bigger than  H1 M∨ , TM∨( ) .  For example in case  M = T 2n   deformation of the symplectic

structure belonging to  H2 (T 2n) − H1,1(T 2n )  is a deformation which does not corresponds to

the usual deformation of complex structure of  (T2 n ,Ω)∨ .  (It corresponds to

⊕
p +q = 2

H p (T 2n ,Ω)∨ ,ΛqT(T2n ,Ω)∨( ) − H1 (T2n ,Ω)∨,T(T 2n ,Ω)∨( ).)  The goal of this paper is to

find a “geometric” objects which corresponds to such a deformation.  Our proposal is :

Heorem1 0.3 The deformation of complex torus   (T2 n ,Ω = ω + −1B)∨   to the direction

in  ⊕
p +q = 2

H p (T 2n ,Ω)∨ ,ΛqT(T2n ,Ω)∨( ) − H1 (T2n ,Ω)∨,T(T 2n ,Ω)∨( )  is realized by a noncom-

mutative complex torus corresponding to a complexication of the  C* -algebra of a Lagrangian

foliation in a symplectic manifold (T2n , ′ Ω = ′ ω + −1 ′ B )  where  ′ Ω ∉H1,1(T2n ) .

Heorem 0.3 might be generalized to K3 surfaces and Calabi-Yau manifolds embedded in

toric variety somehow if we include singular Lagrangian foliation.

C* -algebra of a foliation is used by A.Connes extensively in his noncommutative geometry

[3].   In § 1, we recall its definition in the case we need.  We remark that the C* -algebra of a

foliation is regarded as a “noncommutative space” which is the space of leaves of the foliation.

In many cases (for example in the case of the foliation    F ˜ L 
 in Example 0.2 with ˜ L + Γ ≅ C n ),

the space of leaves is not a Hausdorff space.  Connes’ idea is to regard the noncommutative C*

-algebra   C(M,F )   as the set of functions on this “space”.

We remark that the space of leaves is the real part of the moduli space of    (L,L)   we

mentioned above.

The “imaginary part” is the moduli space of connections on    L   such that  F∇ = −1B .

We find, by a simple dimension counting, that there is an  n -dimensional family of Lagrangian

1 0.3 is not a theorem in the sense of Mathematics.  So I removed “T”.

vector spaces  ˜ L   such that  ω + −1B ˜ L 
= 0 . So we restrict ourselves to a Lagrangian foliation
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  F ˜ L 
 such that  ω + −1B ˜ L 

= 0 .  For simplicity, we suppose that    F ˜ L 
  is ergodic.  We consider

the set    A   of all homomorphisms  ˜ L → Lie(U(1)) = −1R  and regard an element of it as a

leafwise connections of a trivial line bundle on  T2 n .  We next consider the gauge transformations.

The set of gauge transformations (of trivial bundle on  T2 n )  which preserves    A   is identified

with Hom(T2n ,U(1)) ≅ Z2 n .  Its action on    A   is obtained by logarithm.  The key observation is

that the action of  Hom(T2n ,U(1))   on     A   is ergodic.  Hence the “imaginary part” we need to

consider is the quotient space     A Hom(T 2n ,U(1))  which is not Hausdorff.  So again we need a

similar construction using C* -algebra.  We will discuss “imaginary part” and “complex structure”

of our “noncommutative space” in part II  of this paper.

To see more explicitly the meaning of Heorem 0.3, we recall the following dictionary

between symplectic geometry and complex geometry.  This idea is initiated by M. Kontsevich

[17], [18].
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           Symplectic manifold  M

Lag(M) : Moduli space of the pair    (L, L)
where  L   is a Lagrangian submanifold　
and    L   is a line bundle on it together with
a connection  ∇  with  F∇ = −1B .  We

identify    (L,L)  and   ( ′ L , ′ L )  if  ′ L = ϕ(L)
and    ′ L = ϕ *(L)  for a Hamiltonian
diffeomorphism  ϕ

Hom(Lag(M),ch) : the set of all holomor-
phic 　 A∞functors from the A∞category
Lag(M)   to the category of chain complex.
(See [10], [12], [9] for the definition of the
terminology we  used here.)

  HF((L1 ,L1),(L2,L2 )): Floer homology.

H* (Hom(F1 ,F2 )): where Fi ∈
Hom(Lag(M),ch)　are  A∞ functors and
Hom(F1 ,F2) is a chain complex of all pre
natural transformations.  (See [12].)

  HF((L1,L1),(L2 ,L2)) ⊗ HF((L2 ,L2),

  (L3,L3))   → HF((L1,L1),(L3,L3 )):  Product

strucure of Floer homology ([10], [13],
[12] ).

Higher multiplication of Floer homology
and of A∞  functors  [12].

 Complex manifold  M∨

Hilb(M∨) :  The Hilbert scheme, that is the
compactification of the moduli space of the
complex subvarieties of  M∨ .

Der(Sh(M∨ )) :  Derived category of the cate-
gory of all coherent sheaves on  M∨ .

Ext(i*O(C1),i*O(C2)): where Ci ∈Hilb(M∨)

and O(Ci)  is a structure sheaf and

i :Ci → M∨   is the inclusion.

Ext(F1,F2) :  where  Fi ∈Der(Sh(M∨)) .

Ext(i*O(C1),i*O(C2)) ⊗ Ext(i*O(C2 ),i*O(C3))

→ Ext(i*O(C1),i*O(C3)) :  Yoneda Product.

(Higher) Massey Yoneda Product.
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In the symplectic side, Floer homology of Lagrangian submanifold ([8], [21], [14])  plays

the key role in the dictionary.  So the main part of this paper is devoted to the study of “Floer

homology between leaves of Lagrangian foliation”.

We recall that Floer homology theory [8], [21] associates a graded vector space

HF(L1 ,L2)   to a pair of Lagrangian submanifolds L1, L2 ,  (if they are spin and the obstruction

class we defined in [14] vanishes.)   It satisfies

(0.4) (−1)k rank HFk (L1 , L2 )
k

∑ = [L1 ]•[L2] ,

where right hand side is the intersection number.

Let us consider the case of Example 0.2 with  ˜ L 1 + Γ = ˜ L 2 + Γ = C n ,  ˜ L 1 ∩ ˜ L 2 = {0} .  Let

Li   be leaves of  
  
F ˜ L i

.  We find that   # L1 ∩ L2( ) = ∞ .  Hence if we want to find a Floer

homology HF(L1 ,L2)  of leaves of our Lagrangian foliation satisfying (0.4) , then HF(L1 ,L2)

is necessary of infinite dimension.  This is a consequence of the noncompactness of the leaves.

This trouble is similar to the index theory of noncompact manifolds.  The idea by Atiyah

[1] is to regard an infinite dimensional vector space (the space of  L2  solutions of an elliptic

operator in Atiyah’s case and Floer homology in our case) as a module of an appropriate  C* -

algebra, then the infinite dimensional vector space becomes manageable.

Our approach is similar to this approach and we will construct Floer homology

  
HF(F ˜ L 1

,F ˜ L 2
)  as a bimodule over  

  
C(M,F ˜ L 1

)  and  
  
C(M,F ˜ L 2

).  Here   C(M,F ˜ L 
)   is the  C*

-algebra of foliation.  (See [3]  and § 1.)

One important idea of noncommutative geometry is that a module of a  C* -algebra  C   is

a “vector bundle” or a “sheaf” on the “space” corresponding to C .  Hence  
  
HF(F ˜ L 1

,F ˜ L 2
)  may

be regarded as a “sheaf” on a direct product of the leaf spaces of  
  
F ˜ L 1

  and  
  
F ˜ L 2

.  (But it is not

coherent in any reasonable sense.)

There might be a generalization of (0.4) which is similar to Atiyah’s Γ -index theorem [1]

and Connes’ index theorem of foliation [3].

We next generalize the product structure of Floer homology

  HF((L1,L1),(L2 ,L2)) ⊗ HF((L2 ,L2),(L3,L3)) → HF(( L1,L1),(L3,L3))   introduced in  [10], [12].

Let us fix a transversal measure  τ i   of   
  
F ˜ L i

.  Then we will construct  :

(0.5)

  

m2(τ 2) : HF p(F ˜ L 1
,F ˜ L 2

;τ1 ⊗ τ2 ) ⊗C (M ,F ˜ L 2
) HFq(F ˜ L 2

,F ˜ L 3
;τ 2 ⊗ τ3)

→ HFr (F ˜ L 1
,F ˜ L 3

;τ1 ⊗ τ3).

Here  HFp   etc. is an appropriate  Lp   completion of 
  
HF(F ˜ L 1

,F ˜ L 2
)  and  1 p +1 q = 1 r .

(0.5) is a  
  
C(T2 n,F ˜ L 1

)  
  
C(T2 n,F ˜ L 3

)  bimodule homomorphism and satisfies associativity

relation

(0.6) m2 (m2(x ⊗ y) ⊗ z) = m2(x ⊗ m2 (y⊗ z)) .
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We can generalize A∞ structure (see [12]) also to our foliation case.   More precisely we are

going to construct an  A∞  category whose object is a linear Lagrangian foliation    F ˜ L 
  together

with transversal measure and a morphism between them is an element of the Floer homology

  
HF(F ˜ L 1

,F ˜ L 2
).

In case ˜ L 1 ∩ Γ ≅ ˜ L 2 ∩ Γ ≅ Z n   (namely in the case all leaves are compact) each leaf Li   of

  
F ˜ L i

  (which is compact) determines a transversal measure  τ i .  In that case, we have

(0.7)
  
HFp(F ˜ L i

,F ˜ L j
;τ i ⊗τ j ) = HF(Li ,L j) ⊗ Lp(Li × L j)

and (0.5) reduces to the tensor product of the map HF(L1, L2 ) ⊗ HF(L2 ,L3) → HF(L1 ,L3)   and

a trivial map :

(0.8) m 2 : Lp(L1 × L2 )⊗ Lq(L2 × L3) → Lr (L1 × L3).

Namely

m 2 f ⊗ g( )(x,z) = f (x ,y)g(y, z)y ∈L2
∫ .

Thus, in this case, we can identify the map (0.5) with the usual multiplicative structure of

Floer homology.

This map HF(L1, L2 ) ⊗ HF(L2 ,L3) → HF(L1 ,L3) , in the case of elliptic curve, is calculated

by Kontsevich [18] and is a theta function.  Polishchuk and Zaslow studied the case of elliptic

curve in detail by explicit calculation, in [24], [23]. (See § 4, where we discuss the case of

higher dimensional torus.)   Thus (0.5) is regarded as a noncommutative theta function.

We will prove, in part II, that this map  m2  is a “holomorphic section” of a “holomorphic

vector bundle” on a noncommutative complex torus.

These constructions may give something new also in the case when the mirror  (T,Ω)∨   is

a complex torus.  (Namely the case when  Ω ∈H1,1.)  We recall that, in this case,  (T,Ω)∨   is a

moduli space of the pairs    (L0 ,L0 )   of Lagrangian torus  L0   and a flat line bundle    L0   on it

such that  the universal cover of  L0   is parallel to  Rn ⊆ C n .  We consider the set    W   of all

Lagrangian linear subspaces  ˜ L   such that  Ω ˜ L = 0 .  (   W  is  n   dimensional if  Ω   is generic.)

For each    ̃  L ∈W   we have Floer homology    HF(F
R n ,F ˜ L 

)   which is a     C(M,F
R n )    C(M,F ˜ L 

)

bimodule.  We remark that the space corresponding to     C(M,F
R n )  is the moduli space of

affine Lagrangian submanifold L0  such that  its universal cover is parallel to  Rn .  This is the

“real part” of  (T,Ω)∨ .  We can include imaginary part in a way similar to  [18]  and  [24], then

  HF(F
R n ,F ˜ L 

)   as a module over    C(M,F
R n )   will be a holomorphic vector bundle of infinite

dimension over  (T,Ω)∨ .  (If  Rn   is not transversal to  ˜ L   then we will obtain a complex of

infinite dimensional holomorphic vector bundles.)

Suppose furthermore that  ˜ L ∩ Γ  is a lattice in  ˜ L .  (If  Ω   is of rational coefficient there

are many such  Γ .)  Then the space corresponding to    C(M,F ˜ L 
)   is also a usual (commutative)

space.  If we include imaginary part then we obtain another torus, (which is also a mirror of



8

(T,Ω) .)  In this case, each leaf of     F ˜ L 
  is compact and defines a transversal delta measure.

Using this transversal measure, we take a completion of Floer homology     HF(F
R n ,F ˜ L 

) .  What

we get is then equivalent to a vector bundle on  (T,Ω)∨ .  (The rank is  L0 • L   where  L   is a

leaf of    F ˜ L 
.)   This construction, that is a family of Floer homologies, gives a systematic way to

construct a vector bundle or a sheaf on  (T,Ω)∨   from a Lagrangian submanifold of  (T,Ω) .

This construction is regarded as a map :

(0.9) Object of a category  Lag(M)     a  The functor represented by it,

as Kontsevich explained to the author in summer 1997.  We studied the homological algebra of

the map (0.9) in  [12].  Then we conjecture that our multiplicative structure  mk   on Floer

homology coincides with (higher)  Massey Yoneda product.  We will prove this conjecture in

case k = 2 in Part II.  In the case of Elliptic curve, this fact was verified by an explicit

calculation in [24], [23].

Thus, (including imaginary part) , the C*  algebra    C(M,F ˜ L 
)  is regarded as a moduli space

of vector bundles.  It seems that, in the case when  L0 • L = 1,  this construction together with

m2   reproduce some part of the theory of theta functions.  One might obtain something new if

we consider the case when  L0 • L > 1  (namely the case of vector bundle), or higher composition

mk   (see § 5.)

What seems more novel is the case when    F ˜ L 
  is ergodic.  In this case,  we recall that we

regard    C(M,F ˜ L 
)   as a “moduli space” of a vector bundles on (T,Ω)∨ .  It follows that a “point”

of    C(M,F ˜ L 
)   is supposed to correspond to a “vector bundle” on  (T,Ω)∨ .  However, in our

case,   C(M,F ˜ L 
)   is a “noncommutative space”.  As a consequence, it does not make sense to

say a point on it.   Therefore, in place of a family of finite dimensional vector bundles

parametrized by a moduli space, we find one infinite dimensional vector bundle on which

  C(M,F ˜ L 
)   acts.

Thus what we find is a family of infinite dimensional vector bundles parametrized by    W .

At special values (which is at most countable)  this infinite dimensional vector bundle splits

into a family of finite dimensional vector bundles. It seems that similar stories are known in

representation theory.

There are various works  [27], [19], [30]  studying noncommutative torus and its relation

to C*  algebra and to theta functions.  It seems that they are closely related to this paper.  We

remark that the deformation constructed in  [2]  is closely related to the deformation quatization

and [27], [30]  are based on deformation quantization.  From our point of view, a theorem of

[26] , which gives a relation of C∗  algebra of foliation to a  C∗  algebra obtained from

deformation quatization of a torus, may be regarded as a mirror symmetry.

Recently, several authors (for example [4], [6]) discussed a relation of Matrix theory to

noncommutative torus.   They might be related also to this paper.

In this paper, we put several lemmata and theorems in quote.  The argument we offer to

justify them is not enough to prove them rigorously.  The gaps left without proof are, for

example, convergence of integral, justification of the change of variables, transversality etc.
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Many of those statements in the quote will then be proved rigorously in the case of Example

0.2.  The proofs of the results without “ ”  are all rigorous.

The author would like to thank Maxim Kontsevich and Kaoru Ono for helpful suggestions.
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§ 1  C* algebra of Foliation
　

In this section, we review the construction of    C(M ,F )   of the C* -algebra of foliation    F .

See [7], [31], [3] § II.8 for more detail.  There is nothing new in this section.  We include it

here for the convenience of the reader and to fix a notation.  The reader will find that our

construction in § 2 is a natural generalization of the construction of this section.

Definition 1.1 The holonomy groupoid    G(M,F )  of the foliation    F   is the set of all

  (x, y;[l])   where  x, y ∈ M   and    l   is a path joining  x   and  y   and is contained in a leaf of

  F .  (Hence  x   and  y   lie in the same leaf.)  We identify   [l]  and   [ ′ l ]   if they have the same

holonomy ∈Diff (Rn ,Rn )0 .  (Here Diff(R n ,Rn )0  is the group germ of the local diffeomorphisms

(R n, 0) → (Rn ,0) .)  We define

(1.2)   (x, y;[l]) ⋅(y,z;[ ′ l ]) = (x, z;[l o ′ l ]).

(Here   l o ′ l  is the path obtained by joining    l   and    ′ l   at  y .)   (1.2) defines a groupoid

structure on    G(M,F ) .  We say

  
lim
i →∞

(x i ,yi ;[li]) = (x∞ , y∞ ;[l∞])

if there exists a representatives    l i   such that    l i   converges to    l∞   in  C0   topology (and

lim
i→ ∞

x i = x∞ , lim
i→ ∞

yi = y∞ ).  This defines a topology on    G(M,F ) .

Let    F   be an n -dimensional foliation on a 2n -dimensional manifold  M .  We can prove

the following :

Lemma 1.3   G(M,F )  is a  3n-dimensional smooth manifold and

    T( x, y,[ l ])G(M,F ) ≅ TxM ⊕ TyF ≅ TxF ⊕ TyM .  Here    TxM ⊕ TyF ≅ TxF ⊕ TyM  is obtained by the

isomorphism    TxM TxF ≅ TyM TyF  which  is induced from the holonomy group of foliation

along    l .

We omit the proof.  See [31].  We remark that    G(M,F )   is not Hausdorff in the general

case.  However it is so in the case of the foliation in Example 0.2.  We define :

Definition 1.4   Ccomp(M,F )  is the set of all compact support continuous sections of the

line bundle    Λ x
topF ⊗ Λ y

topF
1/ 2

⊗C  on    G(M,F ) .  (Here and hereafter   L 1 /2   is the (real) line

bundle whose transition function is  g ij
2

  where  gij   is the transition function of a line bundle

L .)  For      f (x,y;[l]), g(x, y;[l]) ∈Ccomp(M,F ) ,  we put

  f ∗ g( )(x, y;[l]) = f( x,z ,[ ′ l ])∫ (x ,z;[ ′ l ])g(z, y;[ ′ l −1 o l]) d(x,z;[ ′ l ]) .
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  f
*(x,y;[l]) = f (y, x;[l− 1]).

They satisfy axiom of *algebra.  Namely

(c1f + c2g)∗ h = c1 f ∗ h + c2g ∗ h

(c1f + c2g)* = c 1 f * + c 2g*

(1.5) f ∗ g( )∗ h = f ∗ g ∗ h( )
f ∗ g( )* = g∗ ∗ f ∗.

To obtain a C*  algebra we need a completion of    Ccomp(M,F ).  We omit it and refer [3]

section II.8 . (See however § 3.)

We remark that, in the case of Example 0.2, the holonomy group of foliation is always

trivial.  Hence we can simply write  (x, y)   in place of    (x, y;[l]) .  We remark however that

lim
i →∞

xi = x∞ , lim
i →∞

yi = y∞   does not imply  lim
i →∞

(x i ,yi ) = (x∞ , y∞) .
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§ 2  Floer homology of Lagrangian Foliation

Let    F1 ,   F2   be Lagrangian foliations on  M .  We fix orientations of them.  We assume

that    F1   and    F2   are of general position.  It is rather delicate to define precisely what one

means by two Lagrangian foliations to be of general position.  We do not discuss this point in

this paper, since, in our main example (Example 0.2), we find that all leaves of  
  
F ˜ L 1

  is

transversal to 
  
F ˜ L 2

  if  ˜ L 1 ∩ ˜ L 2 = {0}.  Our goal of this section is to define a   Ccomp(M,F1),

  Ccomp(M,F2)   Z 2-graded differential bimodule    (CFk
comp(F1 ,F2),∂ ).  (We discuss the case when

˜ L 1 ∩ ˜ L 2 ≠ {0}  at the end of this section.)

Definition 2.1   X(M;F1 ,F2)   is the set of all    (x, y,z;l1,l2)  such that      (x, y;l1) ∈G(M,F1) ,

    (y,z;l2 ) ∈G(M ,F2 )   and that the leaf of    F1   is transversal to the leaf of    F2   at  y .  Topologies

of    G(M,Fi)   induce a topology of    X(M;F1 ,F2) .

We say      (x, y,z;l1,l2) ∈X0(M;F1,F2)   if the isomorphism    TyF1 ⊕ TyF2 ≅ TyM   is orientation

preserving.  We say      (x, y,z;l1,l2) ∈X1(M;F1,F2)  otherwise.  We put  deg(y) = d   if

    (x, y, z;l1 ,l2 ) ∈Xd (M;F1 ,F2) .

We write an element of     X(M;F1 ,F2)   as  (x, y,z)   in case when holonomy is trivial,  (as

in the case of Example 0.2).

Lemma 2.2   X(M;F1 ,F2)   is a 4n-dimensional smooth manifold and

    T( x, y, z ;[l1 ],[l2 ])X(M;F1,F2 ) ≅ TxF1 ⊕ TyM ⊕ TzF2 .

The proof is similar to Lemma 1.3 and is omitted.

Example 2.3 If  ˜ L 1 ∩ ˜ L 2 = {0}, ˜ L 1 ∩ Γ = ˜ L 2 ∩ Γ = {0},  then  
  
X(M;F ˜ L 1

,F ˜ L 2
)  is diffeomor-

phic to  Cn × Cn( ) Γ .  (Here the action is the diagonal action.)   To see this, let

  
(x, y,z) ∈X(M;F ˜ L 1

,F ˜ L 2
) .  We lift  y ∈T2n = C n Γ   to  ˜ y ∈C n .  Then lifting  x, z   along curves

on the leaves, we obtain  ˜ x , ˜ z ∈C n .  We put I(x, y, z) ≡ [ ˜ x , ˜ z ] ∈ Cn ×C n( ) Γ .  It is easy to see

that  
  
I : X(M;F ˜ L 1

,F ˜ L 2
) → C n × C n( ) Γ   is a diffeomorphism.

Let us define a map    π : X(M;F1,F2) → M2   by    π(x ,y, z;l1, l2) = (x,z).  It is easy to see

that  π   is a local diffeomorphism.  In case    F1   is everywhere transversal to    F2 ,

  π : X(M;F1,F2) → M2   is a covering space.

We remark that    X(M;F1 ,F2) ,    X k(M;F1 ,F2) , have left actions of the groupoid    G(M,F1)

and right actions of    G(M,F2 ).  Namely we define

(2.4)   ( ′ x , x;l)(x, y,z;l1,l2) = ( ′ x ,y, z;l o l1 ,l2 )

  (x, y,z;l1,l2)(z, ′ z ; ′ l ) = (x, y, ′ z ;l1 ,l2 o ′ l ) .
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Now we define    CFk
comp(F1 ,F2) .  Using isomorphism

    T( x, y, z ;[l1 ],[l2 ])X(M;F1,F2 ) ≅ TxF1 ⊕ TyM ⊕ TzF2   we find that

(2.5)     Λ ( x, y, z;[l 1],[ l 2 ])
top X(M;F1 ,F2) ≅ Λx

topF1 ⊗ Λy
topM ⊗ Λ z

topF2 .

Definition 2.6   CFk
comp(F1 ,F2)   is the set of all continuous sections  F   of compact support

of the line bundle     Λx
topF1 ⊗ Λ z

topF2

1 /2
⊗C   on    X k(M;F1 ,F2) .

The actions of    G(M,F1)  and    G(M ,F2 )   on    X k(M;F1 ,F2)   determine a   Ccomp(M,F1),

  Ccomp(M,F2)  bimodule structure on    CFk
comp(F1 ,F2)   by the following formula.  Let

  F ∈CFk
comp(F1,F2 ),   f ∈Ccomp (M,F1) ,   g ∈Ccomp(M,F2) .

(2.7.1)
  

f ∗ F( )(x ,y ,z; l1 ,l2 ) = f (x ,∫ ′ x ;l)F( ′ x ,y,z;l− 1 o l1, l2) d ′ x 

(2.7.2)
  
F ∗ g( )(x,y, z;l1 ,l2 ) = F(x, y, ′ z ;l1 ,l2 o ′ l −1)g( ′ z ,z; ′ l )∫ d ′ z .

Here the integration (2.7.1) is taken over the set of pairs    ( ′ x , l)  such that

    (x, ′ x ;l) ∈G(M,F1).  We remark that   f (x, ′ x )F( ′ x ,y ,z)   is a density with respect to  ′ x .

Similarly the integration (2.7.2) is taken over the leaf of    F2   containing  z .

Now we have :

Lemma 2.8 Products defined by (2.7) are complex bilinear.  We have also :

( f1 ∗ f2) ∗ F = f1 ∗( f2 ∗ F) . ( f ∗ F)∗ g = f ∗ (F ∗ g) .  F ∗ (g1 ∗ g2 ) = (F ∗ g1) ∗ g2 .

The proof is immediate from definitions and Fubini’s theorem.  We discuss relation to *

product in the next section (Lemma 3.5).

There also exists a left action of    Ccomp(M,F1)  to  
  
Γ M; Λx

topF1

1 /2
⊗C 

 
 
   and  right action

of    Ccomp(M,F2)   to  
  
Γ M; Λx

topF2

1 / 2
⊗ C 

 
 
 .  They are defined by

(2.9.1)
  

f ∗ F( )(x) = f (x, ′ x ;l)F( ′ x ) d ′ x ∫ .

(2.9.2)
  
F ∗ g( )(y) = F( ′ y )g( ′ y ,y;l)∫ d ′ y .

In case   F1   is everywhere transversal to    F2 , the map    π : X(M;F1,F2) → M2   induces a

map

  
π!: CFk

comp (F1,F2) → Γ M; Λx
topF1

1 /2
⊗C 

 
 
 ⊗ Γ M; Λx

topF2

1 / 2
⊗ C 

 
 
 ,

by “integration along fiber”.  Namely
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(2.10)
    
π!F( )(x ,z) =

( y;l1,l2 ):( x, y, z;l 1,l2 ) ∈X (M ;F 1,F2 )
∑ F(x ,y, z; l1 ,l2 ) .

The right hand side of (2.10) is a finite sum since  F   is of compact support.  (We remark that

in case when   F1   is not transversal to    F2  somewhere the right hand side of (2.10) may be

discontinuous.)  It is easy to see that  π! is    Ccomp(M,F1)   Ccomp(M,F2)   equivariant.

We remark that so far we did not use symplectic structure of our manifold.  In fact all

constructions so far work for a pair of oriented n -dimensional foliations in a 2n -dimensional

manifold.  This is natural since Floer’s chain complex of Lagrangian intersection (if we put

Z 2   grading) is independent of symplectic structure, as an abelian group.  Symplectic structure

is used in the construction of boundary operator and of product structure.

We next “define” boundary operator  ∂ .  Our discussing on it is not rigorous yet because

of several technical problems.  We remark that, in the case of our main example  
  
F ˜ L i

  with

˜ L 1 ∩ ˜ L 2 = {0} , vector space  
  
CFk

comp(F ˜ L 1
,F ˜ L 2

)   can be nonzero for only one of  k = 0,1.

Therefore  ∂ = 0 .  In case  ˜ L 1 ∩ ˜ L 2 ≠ {0}  we can also check that the construction below works

directly (after moving  
  
F ˜ L 1

  by a Hamiltonian diffeomorphism).  Thus the construction is

rigorous in the case of our main example.   Another way to construct  
  
CFk

comp (F ˜ L 1
,F ˜ L 2

)  in the

case when  ˜ L 1 ∩ ˜ L 2 ≠ {0}  is to work out Bott-Morse Floer theory (see [11]) in this case.

In this paper our main concern is Example 0.2, where the role of boundary operator is

rather minor. Symplectic structure is used mainly in the construction of the product structure.

This is the reason why our discussion on the construction of the boundary operators is sketchy.

We fix an almost complex structure on  M   (a compact symplectic manifold) compatible

with our symplectic structure.  In the case of our main example, we can take an (integrable)

complex structure compatible with  ω .  (That is the homogeneous tensor  J : TT2 n → TT 2n .

We recall that  ω   is homogeneous.)  We remark that this complex structure is different from

the obvious complex structure  T2 n = Cn Γ   which we start with.  (ω   is not compatible with

the original complex structure of  T2 n = Cn Γ   unless  ω   is of 1.1 type.)

Let  L1 , L2   be Lagrangian submanifolds which are not necessary compact.  Let

a,b ∈L1 ∩ L2 .  We put

(2.11)

  

M (M; L1, L2 ; a,b) = ϕ : D2 → M

ϕ  is holomorphic

ϕ(−1) = a, ϕ(1) = b

ϕ(z) ∈ L1  if  z ∈∂D2 , Im z > 0

ϕ(z) ∈ L2   if  z ∈∂D2 , Im z < 0

 

 
 
 

 
 
 

 

 
 
 

 
 
 

.

In a “generic” situation,    M (M; L1, L2 ; a,b)   is a union of (infinitely many) components, whose

dimension is equal to  deg(a) − deg(b)  modulo 2. (We do not try to make the assumption

“generic” precise in this paper.  See [14].)

There is an action of  R ≅ Iso(D2 , J ,(−1,1))  on    M (M; L1, L2 ; a,b) .  Let    M (M; L1 ,L2 ;a, b)
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be the quotient space.

Now we “define” boundary operator

  ∂ : CFk
comp(F1 ,F2) → CFk −1

comp (F1,F2)

as follows.  Let  
  
F ∈Γcompact Xk (M;F1,F2), Λx

topF1 ⊗ Λ z
topF2

1 / 2
⊗ C 

 
 
   and

    (x,b,z;l1,l2) ∈ Xk −1(M;F1,F2) .

“Definition 2.12”  
  
∂F( )(x,a,z;l1,l2) = ± exp − ω

ϕ∫
 
 
  

 
 ∑ F x, b, z;l1 o∂1ϕ ,∂2ϕ o l2( ) .

Here the sum is taken over all  (b,[ϕ])   such that :

(2.13.1)     x,b,z;l1 o ∂1ϕ,∂ 2ϕ o l2( ) ∈ Xk − 1( M;F1,F2 ) .

(2.13.2) Let  Li   be the leaf of    Fi   containing  a .  Then  b ∈L1 ∩ L2 .

(2.13.3)   [ϕ] ∈M (M; L1, L2 ;a,b) .

(2.13.4) The component of    M (M; L1 ,L2 ;a, b)   which contains  [ϕ]  is of zero dimensional.

Figure 1

The set of all such  (b,[ϕ])   is countable.  ±   in “Definition 2.12” is determined by the

orientation of    M (M; L1 ,L2 ;a, b) .  ∂iϕ = ϕ(∂D2) ∩ Li   is an arc joining  a   and  b .  We remark

that the leaves of Lagrangian foliation have canonical spin structure (since they have trivial

tangent bundle).  Hence    M (M; L1 ,L2 ;a, b)   is oriented by  [14] , [28].

Conjecture 2.14 The right hand side of Definition 2.12 converges.
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There are similar problems in the case of usual Floer homology (of Lagrangian intersection).

In that case, we can go around it by introducing Novikov ring.  (Roughly speaking this

corresponds to defining the boundary operator as a formal power series on

tα = exp − ω
α∫( )  where  α ∈π2(M, L1 ∪ L2)  runs over a generator.)  It seems harder to do so in

our case of Lagrangian foliations.

In fact we need to add various other terms to Definition 2.14  in the same way as [14].

Otherwise ∂F   may not be continuous and the following Lemma 2.15 does not hold.  We omit

the detail.  We do not need such a correction term in the case when  π2 (M, L) = 0   hold for all

leaves  L   of our foliation [8].  This condition is satisfied in the case of our main example.

“Lemma 2.15” Definition 2.12 determines a    Ccomp(M,F1),   Ccomp(M,F2)  bimodule homo-

morphism   ∂ : CFk
comp(F1 ,F2) → CFk −1

comp (F1,F2) . If  π2 (M, L) = 0   for all leaves we also have

∂∂ = 0 .

The proof is similar to the proof of the same formula for Floer homology of (compact)

Lagrangian intersection.  ([8]).  We put the lemma in the quote since  ∂   is not defined in a

rigorous way in general case.  Namely we need to prove Conjecture 2.14 to define  ∂ .  We put

(2.16)

  
HFk

comp (F1 ,F2 ) =
Ker ∂ : CFk

comp(F1,F2) → CFk− 1
comp (F1,F2)( )

Im ∂ :CFk +1
comp (F1,F2 ) → CFk

comp(F1,F2)( ) .

In fact it seems appropriate to take a completion of    CFk
comp (F1,F2)   (see § 3) before taking

homology group.  Also the author does not know under which condition the image of the

boundary operator (after taking a completion) will have a closed range.

We consider the case of linear foliation in  T2 n .  Let  ˜ L 1 , ˜ L 2 ⊆Cn   be two Lagrangian

linear subspaces such that  ˜ L 1 ∩ ˜ L 2 ≠ {0}.  Then generic leaf of  
  
F ˜ L 1

  does not intersect with the

generic leaf of   
  
F ˜ L 2

.  In case when a leaf  L1   of  
  
F ˜ L 1

  intersects with a leaf  L2   of  
  
F ˜ L 2

,  we

have  dim(L1 ∩ L2) ≅ dim( ˜ L 1 ∩ ˜ L 2) .  To handle this case, we use a Hamiltonian perturbation in

the following way.  Let  h : Tn → R   be a Morse function.  For example we take

(2.17)   h (x1,L, xn ) = cos 2πxi∑ .

(Here we identify  Tn = R n Z n .)   We use an affine diffeomorphism  T2 n = Tn × T n   to define

a projection  T2 n → T n .  Hence, composing  h ,  we obtain a map  h : T2n → R .  We assume

that the restriction of the differential of    T2 n → T n   to  ˜ L 1 ∩ ˜ L 2   is injective.  (This is possible

by changing the affine projection  T2 n → T n   if necessary.)  Let  Hh   be the Hamiltonian

vector field associate to  h : T2n → R .  (We use our symplectic structure  ω    on  T2 n   to

define  Hh .)  We put  Φ = exp εHh   for small  ε .  Φ   is a symplectic diffeomorphism and

  
Φ(F ˜ L 1

)   is of general position to  
  
F ˜ L 2

.
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In this case, we can prove Lemma 2.17 without changing the definition of the boundary

operator  ∂ ,  since  π2 (M, L) = 0 .  Convergence of 2.16 can be checked also directly in this

case.  Hence we can define (rigorously)  :

(2.18)
  
HFk

comp (F ˜ L 1
,F ˜ L 2

) = HFk
comp(Φ(F ˜ L 1

),F ˜ L 2
) .

However, in fact, we find that the group  
  
HFk

comp (F ˜ L 1
,F ˜ L 2

)  is rather pathological. (Namely the

image of the boundary operator is dense in the kernel.)  The reason is that generic leaf of  
  
F ˜ L 1

does not intersect with the generic leaf of  
  
F ˜ L 2

  in the case when  ˜ L 1 ∩ ˜ L 2 ≠ {0}.  If we take a

completion as we will explain in the next section, we find the example that the Floer homology

becomes nontrivial and  ˜ L 1 ∩ ˜ L 2 ≠ {0}  (3.13).
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§ 3  Transversal measure and completion.

In order to construct a von-Neuman algebra from our  * algebra    Ccomp(M,Fi)   and to find

a completion of our infinite dimensional vector space    CFk
comp (F1,F2)   to a Hilbert or Banach

space, we need a transversal measure to our Lagrangian foliation    Fi .

Let  τ i   be a transversal measure to    Fi .   (See [22] for its definition.)   It determines a

(distribution valued) section of    Λ
top TM TF i( ) .  Let    (x, y,z) ∈X(M;F1 ,F2) .  Then, since

  Ty M = TyF1 ⊕ TyF2 ,

τ1  and τ2   determine a distribution valued section τ1 ⊗ τ2( )(y)  on   π2
* ΛtopTM .  Here

  π2 : X(M;F1,F2) → M   is defined by    (x, y,z;l1,l2) a y .  Now we define  L2  inner product

( )τ1 ⊗τ 2
  on    CFk

comp (F1,F2)   as follows.

Definition 3.1

    
F ,G( )τ 1⊗τ 2

= F(x, y,z;l1,l2)G(x ,y, z;l1 ,l2 ) τ1 ⊗ τ2( )(y)
Xk ( M;F1,F 2 )

⌠ 
⌡ 
 .

We remark that     F(x, y,z;l1,l2)G(x ,y, z;l1 ,l2 )  is a section of    Λx
topF1 ⊗ Λ z

topF2 ⊗ C .  On the

other hand, we have      Λ ( x, y, z;[l 1],[ l 2 ])
top X(M;F1 ,F2) ≅ Λx

topF1 ⊗ Λy
topM ⊗ Λ z

topF2 .  Therefore

  F(x, y,z;l1,l2)G(x ,y, z;l1 ,l2 ) τ1 ⊗ τ2( )(y)   is a top dimensional current (of compact support) on

  Xk(M;F1 ,F2).  Definition 3.1 therefore makes sense.  The following lemma is easy to prove.

Lemma 3.2
  
CFk

comp (F1,F2),( )τ1 ⊗τ 2
( )  is a pre Hilbert space.

Definition 3.3   CFk
2(F1 ,F2;τ1 ⊗τ 2)   is the completion of  

  
CFk

comp (F1,F2),( )τ1 ⊗τ 2
( ).

Hereafter we write    CFk(F1,F2 ;τ1 ⊗τ2 )   in place of    CFk
2(F1 ,F2;τ1 ⊗τ 2)   for simplicity.

Conjecture 3.4 ∂   is extended to a bounded operator

  CFk(F1,F2 ;τ1 ⊗τ2 ) → CFk −1(F1,F2 ;τ1 ⊗ τ2 ).

Again, for our example  
  
Φ(F ˜ L 1

),F ˜ L 2
  with  ˜ L 1 ∩ ˜ L 2 ≠ {0},  we can prove Conjecture 3.4 by

a direct calculation.  (In the case when  ˜ L 1 ∩ ˜ L 2 = {0},  we have  ∂ = 0   and hence there is

nothing to show.)

Next we have :

Lemma 3.5 Actions of    Ccomp(M,Fi)   on    CFk
comp (F1,F2)   is extended to a continuous action

on    CFk(F1,F2 ;τ1 ⊗τ2 ) .  We have
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f ∗ F,G( )τ1 ⊗τ2
= F, f * ∗ G( )τ1 ⊗τ 2

F ∗ g,G( )τ 1⊗τ 2
= F,G ∗ g*( )τ 1 ⊗τ2

.

The proof is straightforward and is omitted.  Lemma 3.5 means that we have a  *-

homomorphism

(3.6)   Ccomp(M,Fi) → End CFk(F1 ,F 2;τ1 ⊗ τ2)( ) .

Here    End CFk (F1,F2 ;τ1 ⊗ τ2 )( )  is the algebra of all bounded operators.

Definition 3.7   C(M,Fi ;τ1 ⊗ τ2 )  is the weak closure of the image of (3.6).

  C(M,Fi ;τ1 ⊗ τ2 )  is a von-Neumann algebra by definition.

Lemma 3.8 If    f ∈C(M,F1 ;τ1 ⊗τ2) ,   g ∈C(M,F2 ;τ1 ⊗ τ2)   and    F ∈CFk(F1,F2 ;τ1 ⊗τ2 ) , then

f ∗ F( ) ∗ g = f ∗ F ∗ g( ) .

The lemma follows from von-Neumann’s double commutation theorem.

We remark that we can find a completion of  
  
Γ M; Λx

topF1

1 /2
⊗C 

 
 
   and

  
Γ M; Λx

topF2

1 / 2
⊗ C 

 
 
 .  We denote them by  

  
L2 M; Λx

topF1

1 /2
⊗C;τ1

 
 

 
 ,

  
L2 M; Λx

topF2

1 / 2
⊗ C;τ2

 
 

 
 .

Example 3.9 Let us consider the case of foliations in Example 0.2 such that
˜ L i ∩ Γ ≅ Z n .  This is the case when all leaves are compact.  (Hence we do not need to use

operator algebra to study Floer homology of leaves.  We discuss this example to show that our

construction is a natural generalization of the case when leaves are compact.)  We first assume

that  ˜ L 1 ∩ ˜ L 2 = {0}.  We find that  
  
π : X(T2n ;F ˜ L 1

,F ˜ L 2
) → T2n( )2

  is an  L1 • L2   hold covering.

(Here  Li   is a leaf of  
  
F ˜ L i

.)  Now let  τ i   be the (transversal) delta measure supported on  Li .

Then  
  
L2 T 2 n ;Λ x

topF ˜ L i

1 / 2

⊗ C;τi
 
 
 

 
 
   can be identified with  L2(Li) .  (Here we use usual Lebesgue

measure on the leaf  Li   to define   L2(Li) .)  We obtain a  *-homomorphism

(3.10)
  
Ccomp(M,Fi) → End L2 T2n ; Λx

topF ˜ L i

1 / 2

⊗ C;τi
 
 
 

 
 
 

 
 
 

 
 
 = End(L2(Li)) .

It is easy to see that the image of (3.10) is dense in weak topology.

Therefore, using the fact that  
  
π : X(T2n ;F ˜ L 1

,F ˜ L 2
) → T2n( )2

  is a finite covering, we find

that
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(3.11)   C(T2 n,Fi ;τ1 ⊗τ 2) = End(L2(Li )).

Then again using the fact that  
  
π : X(T2n ;F ˜ L 1

,F ˜ L 2
) → T2n( )2

  is L1 • L2   hold covering, we find

(3.12)
  
CF T2n ;F ˜ L 1

,F ˜ L 2
;τ1 ⊗ τ2( ) = ⊕

p ∈L1∩ L2

L2(L1) ˆ ⊗ L2(L2)[p],

where action of    C(T2 n,Fi ;τ1 ⊗τ 2)   is obtained from isomorphism (3.11).  Hence by the

isomorphism

K End L2(L1)( )⊗ End L2 (L2 )( )( ) ≅ Z ,

our Floer homology corresponds to  L1 • L2 ,  as expected.

Next let us consider the case when  ˜ L i ∩ Γ ≅ Z n   but  ˜ L 1 ∩ ˜ L 2 ≠ {0}.  Using, for example

the explicit Morse function (2.15), we can prove the following.  Let  τ i   be the (transversal)

delta measure supported on the leaf  Li .  Then

(3.13)
  
HF∗ T2 n ;F ˜ L 1

,F ˜ L 2
;τ1 ⊗ τ2( ) = H∗+ d(L1 ∩ L2 ;R ) ⊗R L2(L1) ˆ ⊗ L2(L2)( ),

where  d = 0,1 .  We remark that Floer homology of  L1   and  L2   is calculated as :

HF∗ L1 ; L2( ) = H∗+ d(L1 ∩ L2 ;R) ,

in this case.

In case when  
  
π : X(T2n ;F ˜ L 1

,F ˜ L 2
) → T2n( )2

 is an infinite covering, the “rank” of Floer

homology may be regarded as the “order” of the deck transformation group, (which is infinite).

So to “count” it correctly, we need some kind of averaging process (similar to [1]).  It them

might be related to the “average intersection number” of the leaves.  The author does not know

the correct way to do it.

We need also  Lp   completion to study product structure.  (We remark that the product

structure  m2   is a nonlinear map hence it is unbounded if we use only  L2   norm.)  We first

take (any) Riemannian metric  gM   on  M .  Let    ΩTxF ∈ Λx
topF   be the volume form induced

by  gM .  Let    F ∈CFk
comp (F1,F2) .  We may regard it as

(3.14)
    
F(x, y,z;l1,l2) = ′ F (x, y,z;l1,l2) ΩTxF ⊗ ΩTzF

1 /2
.

Here   ′ F (x,y, z; l1 ,l2 )  is a complex valued function.  We put

(3.15)
    
F

Lp , gM,τ1 ⊗τ2

p = ′ F (x, y,z;l1,l2)
pΩTxF ⊗ ΩTzF

τ1 ⊗ τ2( )(y)
Xk ( M;F1, F2 )

⌠ 
⌡ 
 .
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Here τ1 ⊗ τ2( )(y) ∈ Λ y
topM   is the distribution section induced by the measures  τ1 , τ2 .  It is

easy to see that (3.15)  defines a semi norm on    CFk
comp (F1,F2) .  Let    CFk

p(F1,F2 )   be the

completion of it.  Let  ′ g M   be another metric on  M .  We remark that there exists a constant  C

such that

(3.15)   
1

C
F

Lp, ′ g M ,τ1⊗ τ2

p ≤ F
Lp, gM ,τ1⊗ τ2

p ≤ C F
Lp , ′ g M ,τ1⊗ τ2

p

for any  F .  Hence    CFk
p(F1,F2 )   is independent of the choice of  gM .  We also define a

completion    C
p(M,F )   as follows.  Let    f ∈Ccomp (M,F ) .  Then we put

(3.16)
    
f (x,y;l) = ′ f (x,y; l) ΩTxF

1 / 2
⊗ ΩTyF

1 / 2
,

We then put

(3.17)
    
f

L
p

,gM ,τ
p = ′ f (x , y;l)

pΩTx F ⊗ ΩTy F ⊗τ (y)
Xk ( M;F1 ,F 2 )

⌠ 
⌡ .

We remark that  
  
ΩTyF ⊗τ   is a distribution section of  Λy

top M  .  Hence the integration in the

right hand side of (3.17) makes sense.  Let    C
p(M,F )   be the completion of    Ccomp(M,F )  with

respect to this norm.  Using Hölder inequality, it is easy to see that  if  1 r = 1 p +1 q   then

(3.18.1) f ∗ g Lr, gM ,τ ≤ C f Lp ,gM ,τ g Lq, gM ,τ ,

(3.18.2) f *

L p, gM ,τ
≤ C f Lp , gM,τ ,

(3.18.3) f ∗ F Lr, gM, τ1 ⊗τ2
≤ C f Lp ,gM ,τ1

F Lq, gM ,τ1⊗τ 2
,

(3.18.4) F ∗ g Lr,gM ,τ 1 ⊗τ2
≤ C F Lq ,gM ,τ1⊗ τ2

g Lp ,gM ,τ2
.

Therefore these maps  are extended to the  Lp   completions.  We remark that we do not use the

metric  gM   in the definition of the  maps in (3.18).

We next remark that we can identify the dual space of    CFk
p(F1,F2 )   to    CFn −k

q (F2 ,F1)   if

p > 1, 1 p +1 q = 1 .  So we have a complex bilinear map

(3.19)
  τ1 ⊗τ 2

: CFk
p(F1,F2) ⊗CFn − k

q (F2 ,F1) → C .

More explicitly,  for    F ∈CFk
p(F1,F2 ) ,   G ∈CFn − k

q (F2 ,F1),  we put

(3.20)
    
F ,G τ1⊗ τ 2

= F(x, y,z;l1,l2)G(z, y, x;l2 ,l1) τ1 ⊗ τ2( )(y)
Xk ( M ;F1,F 2 )

⌠ 
⌡ 
 .

We remark that  τ1 ⊗τ 2
  is complex bilinear.  We can verify
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(3.21.1) f ∗ F,G τ1 ⊗τ 2
= F,G ∗ f τ1 ⊗τ 2

(3.21.2) F ∗ g,G τ1⊗ τ 2
= F,g ∗ G τ1 ⊗τ 2

,

for    F ∈CFk
p(F1,F2 ) ,   G ∈CFn − k

q (F2 ,F1),   f ∈C r(M,F1),   g ∈C r(M,F2)  with  1 p +1 q +1 r = 1.
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§ 4  Product Structure and Noncommutative Theta Function.

In this section we construct a map

  m2 : CFk1

comp (F1,F2) ⊗ CFk2

comp(F2 ,F3) → CFk1 +k 2

comp(F1 ,F2).

We also construct its completion

  
m2(τ 2) : CFk1

p(F ˜ L 1
,F ˜ L 2

;τ1 ⊗ τ2) ⊗ CFk 2

q(F ˜ L 2
,F ˜ L 3

;τ2 ⊗ τ3) → CFk1 +k 2

r (F ˜ L 1
,F ˜ L 3

;τ1 ⊗ τ3) ,

in the case of our main example.  (Here  1 p +1 q = 1 r .)  We also calculate it.

Let  L1 ,L2, L3   be Lagrangian submanifolds of  M   which are not necessary compact.  Let

pi ∈Li ∩ Li +1 .  (L3+ 1 = L1   by convention.)  We take  −1,−e2π 3 ,−e−2 π 3 ∈∂D2 and let  ∂1D
2 ,

∂2 D2 , ∂3D2 ,  be parts of  ∂D2 = S1   between   −1   and  −e− 2π 3 ,  −e− 2π 3   and  −e2π 3,  −e− 2π 3

and  −1 ,  respectively.  We define

  

M (M; L1, L2 , L3 ;p1, p2 , p3) = ϕ : D2 → M

ϕ  is holomorphic

ϕ(−1) = p1, ϕ(−e− 2π 3) = p2, ϕ(−e2π 3) = p3

ϕ(∂i D
2 ) ⊆ Li , i = 1,2,3

 

 
 

 
 

 

 
 

 
 

.

Figure 2

In the “generic situation”    M (M; L1, L2 , L3 ;p1, p2 , p3)  is a union of (infinitely many) components,

which are oriented manifolds whose dimension is equal to  deg( p1) + deg(p2 ) + deg(p3)   modulo

2.  (See  [14].)  Here  deg( pi)   is as  in § 2.  We denote by    M k(M;L1, L2 , L3; p1, p2 , p3)   the

union of components of dimension  k .  For    ϕ ∈M (M; L1 ,L2 ,L3 ;p1, p2 , p3)   we put

∂iϕ = ϕ ∂iD
2 .  ∂iϕ   is a path joining  pi   to  pi +1 .  We define

“Definition 4.1” Let    F ∈CFk1

comp (F1,F2) ,   G ∈CFk 2

comp(F2 ,F3),  and
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    (x,c, z;l1,l3) ∈Xk1+ k2
(M;F1,F3) .  Let  τ2   be transversal measure of    F2 .  We put :

(4.2)

    

m2(τ 2)(F ⊗ G)( )(x ,c,z;l1,l3)

= ± exp − ϕ*ω∫( )
ϕ ∈M 0( M ; L1, L2, L3; a, b,c)

∑
a, y, b

⌠ 
⌡ 
 F(x ,a,y;l1 o ∂1ϕ,l2)

G(y,b,z;l2
−1 o ∂2ϕ,∂3ϕ

−1 oϕ3) dτ 2(a,b).

Figure 3

We write  m2  instead of  m2(τ 2)   in case no confusion occur.

Let us explain the notations in (4.2).  The domain of integration is the set of all triples

  (a, y,b;l2)   such that  a ∈L1 ,  b ∈L3  and      (a, y;l2 ),(b, y;∂2ϕ
−1 o l2 ) ∈G(M ,F2).  ( L1   is the

leaf of    F1   containing  x,c   and  L3    is the leaf of    F3   containing  z,c .)  The space of such

triples is a 2n -dimensional smooth manifold.  Let us denote it by    X(L1, L3 ;F2).  We find that

(4.3)
    T( a, y, b;l1,l 3)X(L1, L3 ;F2 ) = TaF1 ⊕ TyF2 ≅ TbF3 ⊕ TyF2 .

Here the isomorphism    TaF1 ≅ TbF3   is obtained by the holonomy of the foliation    F2 .  We

remark that
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  F(x, a, y) ∈Λ x
top(L1) ⊗ Λy

top(F2 )
1 / 2

⊗ C

  G(y, b, z) ∈ Λy
top(F2 ) ⊗ Λz

top(L3)
1 / 2

⊗ C .

(Here and hereafter we omit to write the path    l   etc. to simplify the formula, in case no

confusion can occur.)  Hence

  F(x, a, y)G(y, b, z) ∈ Λx
top(L1) ⊗ Λ z

top(L3)
1 / 2

⊗ Λy
topF2 ⊗C ,

by (4.3).  We remark that  τ2   determines a distribution section on    Λa
topF1   and    Λb

topF3 .

These two distribution sections are identified to each other by     TaF1 ≅ TcF3  since transversal

measure is holonomy invariant.  Therefore by (4.3), we can integrate F(x, a, y)G(y, b, z)  over

  X(L1, L3 ;F2)  and obtain an element of  Λx
top(L1) ⊗ Λ z

top (L3)
1 / 2

⊗ C .  We remark that

  F(x, a, y;l1 o ∂1ϕ ,l2)G(y,b,z;l2
−1 o∂2ϕ,∂3ϕ

−1 oϕ3)   is zero outside a compact subset of

  
X(L1, L3 ;F ˜ L 2

)  for given    x, z,c,l1, l3 .

The sign in Formula (4.2) is determined by the orientation of the moduli space

  M 0(M; L1, L2 , L3;a,b,c).  (See  [14].)

Unfortunately we can not prove the convergence of (4.2) in the general case since we do

not have a control of the order of the set    M 0(M; L1, L2 , L3;a,b,c).

Conjecture 4.4 For any    F ∈CFk1

comp (F1,F2) ,   G ∈CFk 2

comp(F2 ,F3),  (4.2) converges.   It

defines a bounded map :

  
m2(τ 2) : CFk1

p(F ˜ L 1
,F ˜ L 2

;τ1 ⊗ τ2) ⊗ CFk 2

q(F ˜ L 2
,F ˜ L 3

;τ2 ⊗ τ3) → CFk1 +k 2

r (F ˜ L 1
,F ˜ L 3

;τ1 ⊗ τ3)

for  1 p +1 q = 1 r .

We can “prove”

(4.5) m2(∂F ⊗ G) = (−1)k1m2(F ⊗∂G) = ∂m2(F ⊗ G)

formally, (that is modulo convergence).  The “proof” of (4.5) is similar to the proof of the

associativity formula we give in the next section.  We can prove the following also formally.

“Theorem 4.6” For    F ∈CFk1

p(F1,F2 ) ,   G ∈CFk 2

q(F2 ,F3) ,    f ∈C r(M,F1) ,   g ∈C r(M,F2) ,

  h ∈C r(M,F3)   with  1 p +1 q +1 r ≤1 .  We have

(4.7.1) m2(( f ∗ F) ⊗ G) = f ∗ m2(F ⊗ G) ,

(4.7.2) m2((F ∗ g) ⊗ G) = m2(F ⊗(g ∗ G)),

(4.7.3) m2(F ⊗ (G∗ h)) = m2(F ⊗G)∗ h .
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“Proof” (4.7.2) is proved by the calculation below using definition :

  

m2((F ∗ g) ⊗ G)( )(x,c, z)

=
ϕ ∈M 0( M ;L1, L2 , L3; a,b, c)

∑
a ,y, b

⌠ 
⌡ 
 ± exp − ϕ*ω∫( ) (F∗ g)(x ,a, y)G(y,b,z) dτ2(a,b)

=
ϕ ∈M 0 (M ;L1, L2 , L3;a ,b, c)

∑
a ,y, ′ y ,b

⌠ 
⌡  ± exp − ϕ*ω∫( ) F(x, a, y)g(y, ′ y )G( ′ y ,b,z) dτ2 (a, b)

=
ϕ ∈M 0( M; L1, L2, L3; a,b ,c)

∑
a , ′ y , b

⌠ 
⌡ 
 ± exp − ϕ*ω∫( ) F(x ,a, ′ y )(g∗ G)( ′ y ,b,z) dτ2 (a, b).

The “proofs” of (4.7.1), (4.7.3) are easier.

(We remark that we use Fubini’s theorem in the “proof” above.  Since we do not know

how to find an appropriate estimate to justify it , in general case, we put “ ” .)

“Theorem 4.8” If   F ∈CFk1

p(F1,F2 ) ,   G ∈CFk 2

q(F2 ,F3) ,   H ∈CFk 3

r (F1,F3)  with

k1 + k2 + k3 ≡ n  mod 2, 1 p +1 q +1 r = 1,  then we have

m2(τ 2)(F ⊗ G),H τ1 ⊗τ 3
= m2(τ3)(G ⊗ H ),F τ2 ⊗τ 1

= m2(τ1)(H ⊗ F),G τ3 ⊗τ 2
.

“Proof” We calculate

(4.9)

  

m2(τ 2)(F ⊗ G),H τ1 ⊗τ 3

= m2(τ2)(F ⊗ G)(x ,c,z)H(z,c,x) τ1 ⊗τ 3( )(c)⌠ 
⌡ 
 

=
ϕ ∈M 0( M; L1, L2, L3; a, b,c )

∑
a,b, c,x , y, z

⌠ 
⌡ 
 ± exp − ϕ*ω∫( ) F(x ,a, y)

G(y,b,z)H(z ,c, x) τ1 ⊗ τ2 ⊗τ 3( )(a,b,c).

We explain the notation in the last formula of (4.9).  The domain of the integration is the

set of all  a,b,c, x, y,z   such that

(4.10.1) a, x,c  lies in the same leaf of    F1 .

(4.10.2) a, y,b  lies in the same leaf of    F2 .

(4.10.3) c, z,b  lines in the same leaf of    F3 .

(See Figure 3.)  (In fact we need to include the path in the definition of    X(F1,F2 ,F3).  We omit

it for simplicity.)  Let    X(F1,F2 ,F3)  be the set of all  (a,b,c,x, y,z)   satisfying (4.10).  We have
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(4.11)

  

T a,b, c, x, y ,z( )X(F1,F2 ,F3) ≅ TaM ⊕ TcF1 ⊕ TxF1 ⊕ TyF2 ⊕ TzF3

≅ TaM ⊕ TbF2 ⊕ TxF1 ⊕ TyF2 ⊕ TzF3

≅ Tb M ⊕ TaF2 ⊕ TxF1 ⊕ TyF2 ⊕ TzF3

≅ Tb M ⊕ TcF3 ⊕ TxF1 ⊕ TyF2 ⊕ TzF3

≅ Tc M ⊕TbF3 ⊕ TxF1 ⊕ TyF2 ⊕ TzF3

≅ TcM ⊕ TaF1 ⊕ TxF1 ⊕ TyF2 ⊕ TzF3.

Let us prove (4.11).  We first choose  a  without restriction.  Then (4.10.1) implies that the

set of the directions to which  c   can move is   TcF1.  If we fix  a,c   then (4.10.2) and (4.10.3)

determine  b   locally.  Once (a,b,c)   is determined, the set of directions to which x, y,z   move

is    TxF1,    TyF2 ,    TzF3 ,  (because of (4.10.1), (4.10.2), (4.10.3))  respectively.  Thus we have

  
T a,b, c, x, y ,z( )X(F1,F2 ,F3) ≅ TaM ⊕ TcF1 ⊕ TxF1 ⊕ TyF2 ⊕ TzF3.

The proof of other equalities of (4.11) is similar.

We remark that the isomorpisms among right hand sides of (4.11) is obtained by holonomy

of the foliations.  For example   TaM ⊕ TcF1 ≅ Ta M ⊕ TbF2  is obtained by the holonomy of    F3 .

On the other hand,    TaM ⊕ TbF2 ≅ TaF2 ⊕ TaF1 ⊕ TbF2 ≅ TaF2 ⊕ TbF3 ⊕ TcF2 ≅ Tb M ⊕ TaF2   is

obtained by the isomorphism    TaF1 ≅ TbF3   induced by holonomy of    F2 .

We next recall

  F(x, a, y)G(y, b, z)H(z,c, x) ∈ Λx
topF1 ⊗ Λy

topF2 ⊗ Λ z
topF3 .

Hence the integration of  x, y,z   parameter makes sense.  On the other hand, we have a

distribution valued section   (τ 2 ⊗ τ3)(a) ⊗ (τ1)(b)  of    Λ
topTa M ⊕ ΛtopTbF1 .  We write it

(τ1 ⊗ τ2 ⊗ τ3)(a,b,c) .  Holonomy invariance of transversal measure implies that we can use

other isomorphism (4.11) and obtain the same result.  Thus the last formula of (4.9) makes

sense (modulo convergence).

The equality (4.9) is then immediate from definition.  Now, by the fact that we can use

any of the right hand side of (4.11) to define the measure  (τ1 ⊗ τ2 ⊗ τ3)(a,b,c) ,  we can check

that the last term of (4.9) is invariant of the change  L1 → L2  L2 → L3 , L3 → L1,

(a,b,c) → (b,c,a), (x, y,z) → (y,z,x).  The “proof” of “Theorem 4.8” is complete.

Now we prove the following

Theorem 4.12 Conjecture 4.4 and “Theorems” 4.6,4.8 hold in the case of our example

  
F ˜ L i

, where  ˜ L i   are of general position.

In fact we can prove more.  Namely we calculate the map  m2   explicitly.  The key result

we need is the following Theorem 4.18 which follows from the main theorem in  [15].  To state

it we need notations.
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Let us identify the universal cover   ˜ T 2 n   with  C n   using a complex structure compatible

with  ω .  (We remark again that this complex structure is different from the one with start

with.)  Let  ˆ L 1 , ˆ L 2  be affine Lagrangian subspaces of  C n .  By perturbing them a bit, we may

assume that J( ˜ L 1) ∩ ˜ L 2 = {0}.   We regards  C n = T* ˆ L 1 .  Then it is easy to see that  ˆ L 2   is

identified with a graph of an exact one form  dV( ˆ L 1,
ˆ L 2) ,  where V( ˆ L 1 , ˆ L 2)  is a quadratic

function  on  ˆ L 1 .  We identify  ˆ L 1   with the 0 section of   C n = T* ˆ L 1 .   We assume that

V( ˆ L 1 , ˆ L 2)   is a Morse function.  (In other words we assume that  ˆ L 1   is transversal to  ˆ L 2 .)

Let  ˆ L 3   be another Lagrangian submanifold satisfying  ˜ L 1 ∩ ˜ L 3 = {0},  ˜ L 2 ∩ ˜ L 3 = {0},

J ˜ L 1 ∩ ˜ L 3 = {0}.  Then  ˆ L 3   is a graph of  dV ( ˆ L 1 , ˆ L 3)   for a quadratic function  V( ˆ L 1 , ˆ L 3) .  We put

(4.13.1) V( ˆ L 3 , ˆ L 1) = −V( ˆ L 1,
ˆ L 3 ).

(4.13.2) V( ˆ L 2 , ˆ L 3) = V( ˆ L 1,
ˆ L 3) − V( ˆ L 1,

ˆ L 2 ).

Let  η( ˆ L i ,
ˆ L j)   be the Morse index of  V( ˆ L i ,

ˆ L j )   at its unique critical point.  (We remark

that  V( ˆ L i ,
ˆ L j )   is a Morse function since  ˜ L i ∩ ˜ L j = {0} .)

Definition 4.14 The Maslov index  η( ˆ L 1,
ˆ L 2 , ˆ L 3)   is defined by

η( ˆ L 1,
ˆ L 2 , ˆ L 3) = n − η( ˆ L 1 , ˆ L 2) + η( ˆ L 2 , ˆ L 3) +η( ˆ L 3 , ˆ L 1)( ) .

We put

(4.15)
  
MLG(n,3) = ( ˆ L 1 , ˆ L 2 , ˆ L 3) ˜ L i ∩ ˜ L j = {0}{ } .

We can extend the function  η   to    MLG(n,3).  (Namely we can define  η( ˆ L 1,
ˆ L 2 , ˆ L 3)   in

case when   J( ˜ L 1) ∩ ˜ L 2 ≠ {0}  etc.)  Namely we have :

Lemma 4.16 η   is extended continuously to    η :MLG (n,3) → Z .  It satisfies

η( ˆ L 1,
ˆ L 2 , ˆ L 3) = η( ˆ L 2,

ˆ L 3,
ˆ L 1).

We omit the proof, which is not difficult.  We find easily that   η( ˆ L 1,
ˆ L 2 , ˆ L 3)   depends only

on linear part  ˜ L i   of  ˆ L i .  Hence we write  η( ˜ L 1,
˜ L 2 , ˜ L 3) .

We remark that the definition of  η( ˆ L i ,
ˆ L j)   is rather artificial since it depends on the

choice of  J ˜ L 1   and hence on complex structure.  However  η( ˜ L 1,
˜ L 2 , ˜ L 3)   depends only on

symplectic structure.

Lemma 4.17 The formal dimension of    M 0(Cn ; ˆ L 1 , ˆ L 2 , ˆ L 3 ; ˆ p 1, ˆ p 2 , ˆ p 3)  is  η( ˜ L 1,
˜ L 2 , ˜ L 3).

Here the formal dimension is the index of the linearized operator.  This lemma is not new.

We prove it later using [15].

Now, let  {ˆ p i}= ˆ L i ∩ ˆ L i +1 .  We have the following :
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Theorem 4.18 The order counted with sign of    M 0(Cn ; ˆ L 1 , ˆ L 2 , ˆ L 3 ; ˆ p 1, ˆ p 2 , ˆ p 3)  is ±1  if

η( ˜ L 1,
˜ L 2 , ˜ L 3) = 0 . Otherwise it  is  0.

We explain the sign at the end of this section.

We next define, for  a,b,c ∈Cn

(4.19) Q(a,b,c;ω) = ω
∆ a,b ,c

⌠ 
⌡ 
 .

Here  ∆ a,b, c  is the (geodesic) triangle whose vertices are  a,b,c .

Using Theorem 4.18 we calculate  m2   in the case of Theorem 4.12.  Let  ˆ L 1 , ˆ L 2 , ˆ L 3  be

n -dimensional affine subspaces of  C n   parallel to  ˜ L 1 , ˜ L 2 , ˜ L 3 .  We put  {a}= ˆ L 1 ∩ ˆ L 2 ,

{b}= ˆ L 2 ∩ ˆ L 3 , {c} = ˆ L 3 ∩ ˆ L 1   and  x ∈ ˆ L 1 ,   y ∈ ˆ L 2 ,  z ∈ ˆ L 3 .  We recall that the universal cover

of  
  
X(T2n ;F ˜ L 1

,F ˜ L 2
)  is  C 2n .  It is regarded as the set of all  (x, y,z) ∈C3n   such that  x − y ∈ ˜ L 1,

z − y ∈ ˜ L 2 .  In the next formula we regard  F   etc.  as an  
  
π1 X(T2n ;F ˜ L 1

,F ˜ L 2
)( )   etc. invariant

functions on  C 2n .

Corollary 4.20   If  η( ˜ L 1,
˜ L 2 , ˜ L 3) = 0 , then

m2(τ 2)(F ⊗ G)( )(x ,c,z) = ˆ L 2
∫ y ∈L2

∫ e− Q(a,b ,c ;ω ) F(x,a, y)G(y,b,z) dτ2 ( ˆ L 2 ).

Otherwise  m2(τ 2)(F ⊗ G) = 0 .

Here we take integration over the set of pairs  ( ˆ L 2 ,y)  where ˆ L 2 ⊆ C n   is parallel to  ˜ L 2
and  y ∈ ˆ L 2 .  The transversal measure  τ2   determines a measure on the set of  ˆ L 2 .

To show the corollary we consider :

(4.21)

  ϕ ∈M 0( M; L1, L2 , L3;a ,b ,c )
∑ ± exp − ϕ*ω∫( ) F(x , a , y ).

where  π( ˆ L i ) = Li   and  a ∈T 2 n  is  a   mod  Γ   etc.  We first remark that

(4.22) ϕ*ω∫ = Q(a,b,c;ω)

by Stokes’ theorem.

On the other hand, by Theorem 4.18, we find that there exists unique

  ϕ ∈M 0(M; L1, L2 , L3 ;a , b ,c )  for each lifts  a,b,c   of  a ,b ,c .  Therefore the integration of

(4.22) over the set of all triples  (a, y,b)  such that  a ∈ ˆ L 1 ,  b ∈ ˆ L 3  and    (a, y),(y,b) ∈G(M,F2)

is equal to the right hand sides of Corollary 4.20.  The proof of Corollary 4.20 is now

complete.
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Corollary 4.20 looks similar to Weinstein’s formula (2) in [30] p 329.  However there is

−1   in the exponential in Weinstein’s formula.  This might be related to the fact that the

deformation constructed by  [2] is a deformation quantization with respect to an odd symplectic

form.

We next consider   Q(a,b,c;ω) .  We fix ˆ L 1 , ˆ L 3  and  {c} = ˆ L 3 ∩ ˆ L 1 .  For each  v ∈Cn ˜ L 2 .

There exists unique  ˆ L 2   corresponding to it.  We write it  ˆ L 2(v).  We put  {a(v)} = ˆ L 1 ∩ ˆ L 2(v),

{b(v)} = ˆ L 2 (v) ∩ ˆ L 3 , and  Q(v; ˆ L 1,
ˆ L 3;ω) = Q(a(v), b(v),c;ω ).

We remark α(v) = a(v) − c ,  β(v) = b(v) − c   define linear isomorphisms  C n ˜ L 2 → ˜ L 1 ,

C n ˜ L 2 → ˜ L 3 .  We regard  ω   as an anti symmetric R  bilinear map  C n ⊗R C n → R .  (We

recall that  ω   is of constant coefficient.)  We then find

(4.23) Q(v; ˆ L 1,
ˆ L 3;ω) =

1

2
ω(α(v),β(v)).

(4.23) implies that  Q(v; ˆ L 1,
ˆ L 3;ω)   is a quadratic function.  We have

Lemma 4.24 Q(v; ˆ L 1,
ˆ L 3;ω) ≥ 0 .  Equality holds only for  v   with  α(v) = β(v) = 0 .

Proof: Theorem 4.18 implies that there exists a holomorphic map ϕ   such that

ϕ*ω∫ = Q(v; ˆ L 1,
ˆ L 3 ;ω) .

Hence  Q(v; ˆ L 1,
ˆ L 3;ω) ≥ 0 .  If  Q(v; ˆ L 1,

ˆ L 3;ω) = 0  then  ϕ   must be a constant map.  But then

the boundary condition implies that  ˆ L 1(v) ∩ ˆ L 2(v) ∩ ˆ L 3 ≠ ∅ .  Hence a(v) = b(v) = c .  The

proof of Lemma 4.24 is complete.

Let  π ˜ L 2
:C n → C n ˜ L 2   be the projection.  We have

(4.25) m2(τ 2)(F ⊗ G)( )(x ,c,z) =
π ˜ L 2

( y) = v∫ e− Q(v ; ˆ L 1 , ˆ L 3 ;ω ) F(x,a, y)G(y,b,z) dτ2 (v)
v∈C n ˜ L 2

∫ .

We fix a flat Riemannian metric on  T2 n .  (It induces one on  C n = ˜ T n .)  Furthermore by

Lemma 4.24 we have

(4.26) Q(v; ˆ L 1,
ˆ L 3;ω) ≥ δ dist(v,π ˜ L 2

(c))2.

Here δ    is a positive constant depending only on  ˜ L 1 , ˜ L 2,
˜ L 3 .  Using (4.25), (4.26) and Hölder

inequality it is easy to show Conjecture 4.4 in our case.  Also estimate (4.26) gives enough

control to justify the “proofs” of “Theorems 4.6 and 4.8”.  The proof of Theorem 4.12 modulo

Theorem 4.18 is now complete.

We next consider the case when the foliations  
  
F ˜ L i

  have compact leaves.  Let  Li   be a

compact leaf and  τ i   be the (transversal) delta measure supported at  Li .  We assume
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η( ˜ L 1,
˜ L 2 , ˜ L 3) = n  and put

(4.27)   {a 1,L,a I} = L1 ∩ L2 ,    {b 1 ,L,b J} = L2 ∩ L3,   {c 1,L,c K} = L3 ∩ L1 .

As we proved in the last section

  
HFp(F1 ,F2 ;τ1 ⊗τ 2) = ⊕

i
Lp(L1 × L2 )[a i ],

  
HFq(F2,F3 ;τ2 ⊗ τ3) = ⊕

j
Lq (L2 × L3)[b j ],

  
HF r(F3,F1 ;τ3 ⊗ τ1) = ⊕

k
Lr(L3 × L1)[c k ].

Then we find from Corollary 4.24 that  m2   is the tensor product of the map  m 2   in the

introduction and the map

⊕
i
R[a i ]

 
 
  

 
 ⊗ ⊕

j
R[b j ]

 
 
  

 
 → ⊕

k
R[c k] ,

whose  i, j,k  component  Zijk (L1, L2 , L3)   is given by as follows.  Let  π :C n → T2 n  be the

projection.  We fix a lift  ck   of  c k .  Let  ˆ L 1 , ˆ L 3   be the orbit of  ˜ L 1 , ˜ L 3   containing  ck .  Let
ˆ L 2(γ )   γ ∈Zn   be the components of  π− 1(L2) .  (Here  Z n ≅ Γ Γ ∩ ˜ L 2 .)   We define a map

  µ : Zn → {1,L, I}×{1,L, J}

by

π ˆ L 2(γ ) ∩ ˆ L 1( ) = {ai}, π ˆ L 2(γ ) ∩ ˆ L 3( ) ={bj} ⇔ µ(γ ) = (i , j).

We put also

{a(γ )} = ˆ L 1 ∩ ˆ L 2(γ ) ,  {b(γ )} = ˆ L 3 ∩ ˆ L 2(γ ) .

Now  Corollary 4.20 implies

Theorem 4.28 Zijk (L1, L2 , L3) =
γ : µ (γ )= {i, j}

∑ exp −Q(a(γ ), b(γ ),ck;ω)( ).

Moving  Li   and also including flat line bundles on  Li   we obtain a holomophic section of

a vector bundle of the products of three complex tori which are mirrors of the torus (with

complexified symplectic structure) we start with.   This function is a Theta function as we can

see from Theorem 4.28.  This fact is due to Kontsevich [18] in the case of elliptic curve.  [24]

[23] studied the case of  elliptic curve in more detail.  (We remark that Theorem 4.18  is trivial

in case  n = 1 .)
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Finally we prove Theorem 4.18.  The basic tool we use is Morse homotopy [13], [15].

We recall that we identified  ˜ T 2 n = T* ˆ L 1 .  And  ˆ L 2 , ˆ L 3   are identified with the graphs of

dV( ˆ L 1,
ˆ L 2)  and  dV( ˆ L 1,

ˆ L 3)   respectively.  ( ˆ L 1   is identified with zero section.)  Let  ˆ L 2(ε)   and
ˆ L 3(ε)   be the graphs of  εdV( ˆ L 1,

ˆ L 2)   and  εdV( ˆ L 1,
ˆ L 3) .

Let

{ˆ p 1} = ˆ L 1 ∩ ˆ L 2 , {ˆ p 1(ε)} = ˆ L 1 ∩ ˆ L 2(ε) ,  p1 = Π( ˆ p 1) = Π( ˆ p 1(ε)) ,

{ˆ p 2}= ˆ L 2 ∩ ˆ L 3 , {ˆ p 2(ε)}= ˆ L 2 ∩ ˆ L 3(ε) ,  p2 = Π( ˆ p 2) = Π( ˆ p 2(ε)) ,

{ˆ p 3} = ˆ L 3 ∩ ˆ L 1 , {ˆ p 3(ε)} = ˆ L 3 ∩ ˆ L 1(ε ),  p3 = Π( ˆ p 3) = Π( ˆ p 3(ε)) ,

where  Π : ˜ T 2 n = T * ˜ L 1 → ˜ L 1   is the projection.  We put

V( ˆ L 2 , ˆ L 3) = V( ˆ L 1,
ˆ L 3) − V( ˆ L 1,

ˆ L 2) .

We remark that

dV( ˆ L 1,
ˆ L 2)(p1) = dV( ˆ L 2,

ˆ L 3)(p2) = dV( ˆ L 3,
ˆ L 1)( p3) = 0 .

We recall that we fix a complex structure on  ˜ T 2 n = T* ˆ L 1   compatible with symplectic structure

ω .  (The symplectic structure  ω   coincides with the canonical symplectic structure of the

cotangent bundle  ˜ T 2 n = T* ˆ L 1 .)  Hence we obtain a Riemannian metric (Euclidean metric in

fact)  on  ˆ L 1 .  Using it we consider gradient vector fields

grad V( ˆ L 1,
ˆ L 2) , grad V( ˆ L 2 , ˆ L 3), grad V( ˆ L 3 , ˆ L 1).

Let  U(pi)   be the unstable manifold of the vector field  grad V( ˆ L i,
ˆ L i +1) .  By definition we

have  η(pi) = n − dim U(pi) .  The main theorem proved in [15] applied in this situation is

(4.29)   U(p1) ∩U(p2 ) ∩ U(p3) ≅ M (Cn ; ˆ L 1(ε), ˆ L 2(ε), ˆ L 3(ε); ˆ p 1(ε), ˆ p 2(ε), ˆ p 3(ε))

for sufficiently small  ε .  (We remark that, in [15], we studied the case of cotangent bundle of

compact manifold.  However the proof there can be applied in our situation also.)

Since V( ˆ L i ,
ˆ L i +1)  is a quadratic function it follows that   U(pi)   is an affine subspace.

Therefore if  ˆ L i   are of general position then  U(p1) ∩U(p2 ) ∩ U(p3)   consists of one point.

(In case when  η( ˜ L 1,
˜ L 2 , ˜ L 3) = 0 .)

Lemma 4.17 also follows from (4.29) and independence of index under continuous defor-

mation of Fredholm operators.  (We proved in [15] that the index of the linearized operators of

right and left sides coincide also.)

We next find that  the order counted with sign of

  M (C n; ˆ L 1(ε), ˆ L 2(ε), ˆ L 3(ε); ˆ p 1(ε), ˆ p 2(ε), ˆ p 3(ε))   is independent of  ε .  This follows from a well

established cobordism argument using Lemma 4.30 below.   Theorem 4.18  is proved.
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Lemma 4.30
    

M (C n ; ˆ L 1(t),
ˆ L 2(t), ˆ L 3(t); ˆ p 1(t), ˆ p 2 (t), ˆ p 3(t))

t∈[ε ,1]
U   is compact for generic  ˜ L i  .

Proof: Suppose that    ϕ i ∈M (Cn ; ˆ L 1(t),
ˆ L 2(t), ˆ L 3(t); ˆ p 1(t), ˆ p 2(t), ˆ p 3(t))  is a divergent se-

quence.  Then there exists  wi ∈D2   such that  ϕ i (wi)   diverges.  Let  R   be a sufficiently large

number determined later.  Then for large  i   we have

(4.31) # i B(ϕi (wi), R) ∩ ˆ L i (ti) ≠ ∅{ } ≤ 1.

Here  B(ϕi(zi),R)  is the metric ball of radius  R   centered at  ϕ i (wi) .  Then, by the reflection

principle, there exists a holomorphic map   ˜ ϕ i : D2 →C n   such that

(4.32.1) ˜ ϕ i (∂D2) ⊆C n − B(ϕ i(wi ), R / 2),

(4.32.2) ˜ ϕ i (p) = ϕi (wi) ,

(4.32.3) ˜ ϕ i
*ωD2∫ < 2 ϕi

*ωD2∫ .

Using (4.32.1) and (4.32.2) we have the following estimate :

˜ ϕ i
*ωD2∫ > CR2 .

Hence  (4.32.3) implies that

(4.33) ϕi
*ωD2∫ > CR2 .

However by Stokes’ theorem we have

(4.34) ϕi
*ωD2∫ = Q( ˆ p 1(t i), ˆ p 2(ti ), ˆ p 3(t i);ω).

We obtain a contradiction from (4.33) and (4.34) by choosing  R   sufficiently large.  The proof

of Lemma 4.30 is complete.

We finally determine the sign in Theorem 4.18.  In fact, we need the following data to

determine the orientation of the moduli space    M (C n; ˆ L 1,
ˆ L 2 , ˆ L 3; ˆ p 1 , ˆ p 2, ˆ p 3)

(4.35.1) The orientation and the spin structure of  Li .

(4.35.2) The path joining  Tpi
Li   with  Tpi

Li +1   in the Lagrangian Grassmannian of  Tpi
M .

More precisely we need this date modulo two times H1  of Lagrangian Grassmannian.

We refer [14] for the proof.  We fixed orientation of our Lagrangian submanifolds.  Since

they are torus, we take their canonical spin structure (that is one corresponding to the trivialization

of the tangent bundle), if we take an orientation of the torus itself. The data (4.35.2), in our

case, is equivalent to fix an orientation of the unstable manifold  U(pi)   for each  pi .

Thus the orientation of    M 0(Cn ; ˆ L 1 , ˆ L 2 , ˆ L 3 ; ˆ p 1, ˆ p 2 , ˆ p 3)  is determined by the choice of
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orientations of  ˆ L i   and  U(pi) .  We remark that, if we make this choice then the orientation of

U(p1) ∩U(p2 ) ∩ U(p3)   is determined in an obvious way.  Now by the proof in  [15]  we find

(4.26) preserves orientation.  Namely the order counted with sign of

  M 0(Cn ; ˆ L 1 , ˆ L 2 , ˆ L 3 ; ˆ p 1, ˆ p 2 , ˆ p 3)  is the intersection number  U(p1)• U(p2 ) • U(p3) .
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§ 5  Associativity relation and A∞ structure.

The “proof” of the following “theorem” is not rigorous because we do not know an

estimate to justify the change of the order of the integral in the proof.  (There is another

problem to be clarified to make the “proof” rigorous.  See Remark 5.5.)  Later we will prove it

rigorously in the case of Example 0.2.  In this section, we consider only the case when  ∂ = 0

and  π2 (M, L) = 0 ,  for simplicity.

“Theorem 5.1”

(5.2) m2 (m2(F ⊗ G) ⊗ H ) = m2(F ⊗ m2(G ⊗ H))

for any    Fi ,τ i   i =1,2,3, 4   and    F ∈HFp (F1,F2 ;τ1 ⊗τ 2 ),   G ∈HFq(F2 ,F3;τ2 ⊗ τ3),

  H ∈HF r(F3 ,F4;τ 3 ⊗ τ 4)   with  1 p +1 q +1 r ≤1 .

“Proof”: Let  Li   be a leaf of    Fi , w ∈L4 , e ∈L1 ∩ L4 .  Let  x, y, z, a,b,c   be as in Figure 3

and  f ∈L2 ∩ L4 , g ∈L3 ∩ L4 .  (See Figure 4.)  We then find :

(5.3.1)

  

m2 m2 (F ⊗ G) ⊗ H( )(x,e,w)

=
ψ ∈M 0 ( M; L1 , L3 , L4 ;c, g,e)

∑ ± exp − ψ *ω∫( )m2(F ⊗ G)(x ,c, z)H(z ,g,w) dτ3(c, g)
c, z,g

⌠ 
⌡ 
 

=
ϕ∈M 0 ( M ;L1, L2 , L3 ;a ,b ,c )

∑
a, y,b ,c ,z , g

⌠ 
⌡ 

ψ ∈M 0 (M ;L1 ,L 3 ,L4 ;c ,g ,e )
∑ ± exp − ϕ*ω∫( ) exp − ψ *ω∫( )

F(x ,a, y)G(y,b, z)H(z,g,w) dτ 2(a,b) dτ3 (c,g)

and

(5.3.2)

  

m2 F ⊗ m2(G ⊗ H )( )(x,e,w)

=
′ ϕ ∈M 0 (M ;L 1, L2 ,L4 ; a, f ,e )

∑ ± exp − ′ ϕ *ω∫( )F(x,a, y)m2(G ⊗ H )(y, f ,w) dτ 2(a, f )
a, y, f

⌠ 
⌡ 
 

=
′ ϕ ∈M 0 (M ; L1, L2 ,L4 ;a , f ,e )

∑
′ ψ ∈M 0 ( M ; L2 , L3 ,L4 ;b, g, f )

∑ ± exp − ′ ϕ *ω∫( ) exp − ′ ψ *ω∫( )
a , y, f ,b ,z, g

⌠ 
⌡  

F(x ,a, y)G(y,b, z)H(z,g,w) dτ 2(a, f) dτ 3(b,g).
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Figure 4

dτ 2(a,b) dτ3(c,g) = dτ2(a, f) dτ3 (b,g)  follows from holonomy invariance of the transver-

sal measure.  Therefore we are only to show the following :

“Lemma 5.4”   For generic  Li    with  π2 (M, Li ) = 0   and  a,b,c,e, f ,g   we have

  

ϕ ∈M 0( M; L1, L2 , L3; a,b, c)
∑

ψ ∈M 0 (M; L1, L3, L4 ;c ,g ,e)
∑ ± exp − ϕ*ω∫( ) exp − ψ *ω∫( )

=
′ ϕ ∈M 0 (M ; L1, L2 , L4; a, f ,e )

∑
′ ψ ∈M 0 ( M ;L2, L3, L4 ;b, g, f )

∑ ± exp − ′ ϕ *ω∫( ) exp − ′ ψ *ω∫( ).

The idea of the “proof” of “Lemma 5.4” is in [10].  So we do not repeat it.  The formula

can be “proved” also in the case when  π2 (M, Li ) ≠ 0  if we add correction terms similar to

[14].

Remark 5.5   For the reader who is familiar with the technique of pseudoholomorphic curve

in symplectic geometry, we mention another reason we put “ ” to Lemma 5.4. The trouble is

the transversality.  The “proof” in [10] is based on the compactification of the moduli space of

holomorphic rectangle which bounds  L1 ∪ L2 ∪ L3 ∪ L4 .  For fixed    L1 ,L,L4, it is possible to

find an appropriate perturbation so that the moduli space of such pseudoholomorphic curves
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especially under our assumption π2 (M, Li ) = 0 .  However we are considering a family of such

Lagrangian submanifolds.  So we need to show that the equality in Lemma 5.3 holds for

L1, L2 , L3, L4   outside a measure 0  subset with respect to the transversal measure. This requires

some additional arguments.  We explain this point more later.  See Conjecture 5.30 for example.

Theorem 5.6 (5.2)  holds for the foliations  
  
F ˜ L i

  in Example 0.2 such that  ˜ L i ∩ ˜ L j ={0}.

Proof: Using Theorem 4.18  and (4.26) we can justify the calculation in the “proof” .

So we only need to establish “Lemma 5.4” rigorously in our case.  We prove it by using a

series of lemmata and Theorem 4.18.

We first generalize Definition 4.14.  Let  ˜ L i   be such that  J ˜ L 1 ∩ ˜ L i ={0}, ˜ L i ∩ ˜ L j = {0} .

Then  ˆ L i   is a graph of  V( ˆ L 1 , ˆ L i).  We put

V( ˆ L i ,
ˆ L j ) = V( ˆ L 1,

ˆ L j) − V( ˆ L 1 , ˆ L i )

and define

(5.7)
  
η( ˜ L 1,L, ˜ L k ) = n − η( ˜ L 1,

˜ L 2) + L+ η( ˜ L k , ˜ L 1)( ).

We also put

(5.8)
    
MLG(n, k) = ( ˆ L 1,L, ˆ L k ) ˜ L i ∩ ˜ L j = {0}, i ≠ j{ } .

Then  η   is extended continuously to    MLG(n, k) .  It satisfies

(5.9.1)   η( ˜ L 1,L, ˜ L k ) = η( ˜ L 2 ,L, ˜ L k , ˜ L 1)

(5.9.2)   η( ˜ L 1,L, ˜ L k ) = η( ˜ L 1,L, ˜ L l+ 1) + η( ˜ L l ,L, ˜ L k ).

Lemma 5.10 Assume    η( ˜ L 1,L, ˜ L 4 ) = 0 .  Then the following four conditions are equivalent

to each other.

(5.11.1) η( ˜ L 1,
˜ L 2 , ˜ L 3) = 0 .

(5.11.2) η( ˜ L 1,
˜ L 3 , ˜ L 4) = 0 .

(5.11.3) η(L2 ,L3 , L4) = 0.

(5.11.4) η(L1, L2 , L4) = 0 .

Proof: (5.9.1), (5.9.2) and the assumption imply that (5.11.1)  ⇔  (5.11.2) and (5.11.3)

⇔  (5.11.4).  Let  ˆ L i   be a connected component of the inverse image of  Li   in  ˜ T 2 n = Cn .  Let

us identify  C n = T* ˆ L 1   as in § 4.  Then there exist quadratic functions  V( ˆ L 1 , ˆ L i )   such that  ˆ L i
is a graph of  dV( ˆ L 1,

ˆ L i) .  We put  fi = V( ˆ L 1,
ˆ L i)   and  f1 = 0 .  η(Li ,L j)   is the number of

negative eigenvalues of the quadratic function  f j − fi .  Thus Lemma 5.10 is an elementary
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assertion about quadratic forms.  It is possible to give purely algebraic proof of it.  But we

prove it by using  Morse homotopy.  We use the notation in [13], [15].  Let  pi   is the unique

critical point of  fi+ 1 − fi .  We consider the Morse moduli space

  
M g

R n
Rn : f1, f2 , f3, f4( ), p1 , p2 , p3 , p4( )( )  defined in [15] page 101.  ( µ(pi)  there is related to

η(Li ,Li +1)  by  µ(pi) = n − η(L i ,Li +1) .)  Namely 
  
M g

R n
Rn : f1, f2 , f3, f4( ), p1 , p2 , p3 , p4( )( )   is the

union of the following three spaces.

(x , y,t) x ∈U(p1) ∩ U( p2 ), y ∈U( p3) ∩ U(p4), t > 0, y = exp t gradf3 − gradf1( )( )x{ }
(u,v,t) u ∈U(p1) ∩ U(p4), v ∈U( p2 )∩ U( p3), t > 0, v = exp t gradf4 − gradf2( )( )u{ }

U(p1) ∩U(p2 ) ∩ U(p3) ∩U( p4 ).

(See Figure 5.)  Here  U(pi)   is the unstable manifold of  grad( fi+1 − fi) .  The curvature  x, y ,

u,v   are gradient lines of  f4 − f2   and  f3 − f1 ,  respectively.
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Figure 5

By  [15] § 12, we can perturb  fi   without changing it in a neighborhoods of  f j − fk ,  so

that  
  
M g

R n
Rn : f1, f2 , f3, f4( ), p1 , p2 , p3 , p4( )( )   is a one dimensional manifold with boundary.

(We use the assumption   η( ˜ L 1,L, ˜ L 4 ) = 0   here.)  Its boundary is the union of

(5.12.1)
  
M g

R n
Rn : f1, f2 , f3( ), p1, p2 ,q( )( ) × M g

R n
Rn : f1, f3 , f4( ), q, p3 , p4( )( )

and

(5.12.2)
  
M g

R n
Rn : f1, f2 , f4( ), p1,r, p4( )( ) × M g

R n
Rn : f2 , f3, f4( ), p2 , p3,r( )( ) ,

here  q , r   are unique critical point of  f3 − f1   and  f4 − f2   respectively.  (See [10], [15].)

Sublemma 5.13
  
M g

R n
Rn : f1, f2 , f3, f4( ), p1 , p2 , p3 , p4( )( )   is compact.

Before proving Sublemma 5.13, we complete the proof of Lemma 5.10.  We assume

(5.11.1) and (5.11.2).  Then (5.12.1) consists of one point.  Hence, by cobordism argument,

(5.12.2) is nonempty.  It then implies (5.11.3) and (5.114).  (Otherwise one of the factors of

(5.11.2) has negative dimension and is empty in the generic case.)  The proof of Lemma 5.10 is

complete.

Proof of Sublemma 5.13:   We consider a divergent sequence in

  
M g

R n
Rn : f1, f2 , f3, f4( ), p1 , p2 , p3 , p4( )( ) .  Without loss of generality we may assume that we
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have  xi ∈U(p1) ∩ U(p2) , yi ∈U(p3) ∩ U( p4 )   and  ti ≥ 0   such that

yi = exp ti gradf3 − gradf1( )( ) .  If there exists  si ∈[0,1]  such that

lim
i →∞

exp sit i gradf3 − gradf1( )( ) = q

then the limit of such a sequence is in (5.12.2).  Hence we may assume that

(5.14) gradf3 − gradf1 exp ti gradf3 − gradf1( )( ) ≥ c > 0.

Here  s ∈[0,1]  and  c   is independent of  i .  We have

f2 − f1( )(xi) − ( f2 − f1)(p1) ≥ 0

f3 − f2( )(xi) − ( f3 − f2 )(p2 ) ≥ 0

(5.15) ( f4 − f3)(yi ) − f4 − f3( )( p3) ≥ 0

( f1 − f4)(yi ) − f1 − f4( )(p4) ≥ 0

f3 − f1( )(yi ) ≥ f3 − f1( )(x i)

Hence

(5.16)
f4 − f1( )(p4) + f3 − f4( )(p3) ≥ f3 − f1( )(yi)

≥ f3 − f1( )(xi) ≥ ( f2 − f1)(p1) + ( f3 − f2 )(p2 ).

(5.14) and (5.16) imply that  ti   is uniformly bounded.  Moreover (5.15) and (5.16) imply that

f2 − f1( )(xi) − ( f2 − f1)(p1)   and ( f4 − f3)(yi ) − f4 − f3( )( p3)   are uniformly bounded.  Therefore,

since    xi ∈U(p1) ∩ U(p2) , yi ∈U(p3) ∩ U( p4 )  ,  xi   and  yi   are bounded.

This contradicts to the fact that  (xi, yi ,ti)   gives a divergent series of

  
M g

R n
Rn : f1, f2 , f3, f4( ), p1 , p2 , p3 , p4( )( ) .  The proof of Sublemma 5.13 is complete.

Lemma 5.17 Let  a,b,c,e, f ,g   be as in Figure 4.   Then we have :

Q(a,b,c;ω) + Q(c,g,e;ω) = Q(a, f ,e;ω ) + Q(b,g, f ;ω) .

Proof: We use Stokes’ theorem and the fact that  Li  are Lagrangian submanifolds to

show

Q(a,b,c;ω) = Q( f ,c,a;ω) + Q( f ,g,c;ω) + Q( f ,b, g;ω)

and

Q(c, g,e;ω) = Q(a,c, f;ω ) + Q( f ,c, g;ω) + Q(a, f ,e;ω) .

Since  Q(x, y, z;ω) = Q(y, z, x;ω) = −Q(x,z ,y;ω) , we obtain Lemma 5.17.
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Now we are in the position to prove Lemma 5.4 in our case.  Let η( ˜ L 1,
˜ L 2 , ˜ L 3,

˜ L 4 ) = 0 .

(Otherwise both sides are zero.)  Theorem 4.15 implies that

(5.18)

  ϕ ∈M 0( M; L1, L2 , L3; a,b, c)
∑

ψ ∈M 0 (M; L1, L3, L4 ;c ,g ,e)
∑ ± exp − ϕ*ω∫( ) exp − ψ *ω∫( )

is

(5.19) exp −Q(a, b,c;ω) − Q(c,g,e;ω)( )

if (5.11.1) and (5.11.2) hold .  (5.18) is zero otherwise.  On the other hand

(5.20)

  ′ ϕ ∈M 0( M; L1, L2, L4 ;a, f ,e )
∑

′ ψ ∈M 0( M; L2 ,L3 , L4; b, g, f )
∑ ± exp − ′ ϕ *ω∫( ) exp − ′ ψ *ω∫( )

is

(5.21) exp −Q(a, f ,e;ω) − Q(b,g, f ;ω )( )

if (5.11.3) and (5.11.4) hold and is zero otherwise.  Therefore Lemma 5.4 follows from

Lemmata 5.10 and 5.17.

The proof of Lemma 5.4 in our case (and hence the proof of Theorem 5.6)  is complete.

We remark that we can go around Theorem 4.18 by regarding Corollary 4.20 as a definition.

(We need to prove Lemma 4.21 by another way.  We can prove it also by Morse homotopy.)

The proof of Theorem 5.6 above works also.  If we take that way, we do not need to study

holomorphic disks in order to define  m2 .  The story then becomes more elementary and easier

to establish.

We next  follow the way taken by  [10]  and “define” higher multiplication  mk  :

(5.22)
    

mk (τ 2 ,L,τk ) : HF p1(F1,F2 ;τ1,τ2 ) ⊗L⊗

⊗HFpk(Fk ,Fk +1;τk ,τk +1) → HFpk+1(F1,Fk +1;τ1,τ k +1)

where  1 pi
i =1

k

∑ =1 pk +1 .

For simplicity we concentrate to our Example 0.2 such that  ˜ L i ∩ ˜ L j ={0}.  Unfortunately,

our discussion is not rigorous even in this case.  (But if we assume furthermore that  ˜ L i   and
˜ L j   are almost parallel, then our result is rigorous.)

Let  ˆ L i   be affine Lagrangian submanifolds of  C n   and  {ˆ p ij} = ˆ L i ∩ ˆ L j .  We define :
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˜ M ( ˆ L 1 ,L, ˆ L k+ 1) = (ϕ;z1,L, zk + 1)

ϕ : D2 → Cn  is holomorhpic

zi ∈∂D2 , z1,L,zk +1( ) respects the cyclic order of ∂D2

ϕ(zi) = pi,i + 1, ϕ(∂iD
2) ⊆ ˆ L i

 

 
  

 
 
 

 

 
  

 
 
 

.

Here  ∂i D
2   is a part of  ∂D2   between  zi   and  zi + 1. PSL(2,R)   act on it.  Let      M ( ˆ L 1 ,L, ˆ L k+ 1)

be the quotient space.

“Lemma 5.23” After appropriate perturbation,       M ( ˆ L 1 ,L, ˆ L k+ 1)   is a smooth manifold of

dimension    η( ˜ L 1,L, ˜ L k +1) + k − 2 .

Modulo transversality problem mentioned in Remark 5.5 we can prove “Lemma 5.23”.

The “proof” is in  [10].  We remark that k − 2  is the dimension of the moduli space of disks

with k +1  marked points on the boundary.

“Definition 5.24”    Let   η( ˜ L 1,L, ˜ L k +1) + k − 2 = 0 .  We let    m( ˆ L 1,L, ˆ L k + 1)   be the number of

elements of      M ( ˆ L 1 ,L, ˆ L k+ 1)   counted with sign.

In fact the following Lemma 5.25 is necessary for the definition.

“Lemma 5.25” If   η( ˜ L 1,L, ˜ L k +1) + k − 2 = 0   then      M ( ˆ L 1 ,L, ˆ L k+ 1)   is compact for generic

    M ( ˆ L 1 ,L, ˆ L k+ 1) .

We explain the argument to “prove” it later.  We potpone the discussion on the sign

(orientation)  until the end of this section.

“Definition 5.26”   m( ˆ L 1,L, ˆ L k + 1)   is the order counted with sign of      M ( ˆ L 1 ,L, ˆ L k+ 1) .

“Definition 5.27”    Let   
  
Fi ∈CFki

comp (F ˜ L i
,F ˜ L i +1

) , xi ∈ Li .  Then we put

(5.28)

  

mk (τ 2 ,L,τk ) F1 ⊗L⊗ Fk( )(x1, pk +1,1, xk + 1)

=
ˆ L 2,L, ˆ L k

∫ x2,L, xk
∫ m( ˆ L 1 ,L, ˆ L k+ 1) exp −Q( ˆ L 1,L, ˆ L k + 1;ω)( ) F1(x1 , p1,2 ,x2)

LFk(xk , pk, k+ 1, xk+ 1) dτ2( ˆ L 2)Ldτk( ˆ L k )

Here we regards  Fi ,   mk (τ 2 ,L,τk −1) F1 ⊗ L⊗ Fk( )  as Γ   invariant functions on  C n × C n .

We take integration over all  ˆ L i   parallel to  ˜ L i   using transversal measure, and we put

{pi , j} = ˆ L i ∩ ˆ L j .

We put “” since we do not know the convergence of the right hand side.  Also the

transversality problem and the sign convention in “Definition 5.27” must be clarified to make

“Definition 5.27” rigorous. We will clarify these points in some special cases later.
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Definition 5.29 For  n   and  k   we consider the space

    

MLG(n,k,l) = ( ˜ L 1,L, ˜ L k +1)

˜ L i ⊆ Cn are Lagrangian linear subspace

˜ L i ∩ ˜ L j = {0}, for  i ≠ j ,

η( ˜ L 1 ,L, ˜ L k +1) + k − 2 + l = 0

 

 
  

 
 
 

 

 
  

 
 
 .

  ∆(n,k) = π0 MLG(n,k,0)( )  ,      ∆(n,k, l) = π0 MLG(n,k ,l)( ) .

For    ∆ ∈∆(n, k;l)   let     MLG(∆)   be the connected component of      MLG(n,k,l)  corresponding

to it.  Let      (
˜ L 1,L, ˜ L k + 1) ∈MLG(∆)   and  1 ≤ i < j ≤ k + 1.  The space

  C
n ˜ L 1 ×L × Cn ˜ L i − 1 ×C n ˜ L i +1 ×L× C n ˜ L j − 1 ×C n ˜ L j +1 ×L × Cn ˜ L k + 1  is identified with the

set of all configuration of    (
ˆ L 1,L, ˆ L k + 1)   modulo translation.  Hence we can identify

  

C n ˜ L 1 ×L × Cn ˜ L i − 1 ×C n ˜ L i +1 ×L× C n ˜ L j − 1 ×C n ˜ L j +1 ×L × Cn ˜ L k + 1

≅ C n ˜ L 1 ×L× C n ˜ L ′ i −1 ×C n ˜ L ′ i +1 ×L× C n ˜ L ′ j − 1 ×C n ˜ L ′ j +1 ×L× Cn ˜ L k + 1

.

We denote this affine space by      V ( ˜ L 1 ,L, ˜ L k+ 1)  and put

    
V (∆) =

( ˜ L 1,L, ˜ L k +1 )∈MLG (∆ )
U V ( ˜ L 1,L, ˜ L k + 1) .

Conjecture 5.30 For  ∆ ∈∆(n, k) , there exists a codimension one real analytic subset  W(∆)

of    V (∆)   such that    m( ˆ L 1,L, ˆ L k + 1)   is well-defined and locally constant on    V (∆) − W(∆) .

We can verify conjecture easily in the case when  n = 1 .  In fact, if  n = 1   W(∆)  is a

finite union of codimension one affine subspaces. The fact that   m( ˆ L 1,L, ˆ L k + 1)  can jump was

observed in  [23] in case n = 1 .

Let us explain an argument to “prove”  Conjecture 5.30 modulo transversality.  We

consider the moduli space

(5.31)

    
M (∆) =

( ˆ L 1 ,L, ˆ L k+1 )∈V (∆ )
U M ( ˆ L 1,L, ˆ L k +1) .

“Lemma 5.23” implies that for each    (
˜ L 1,L, ˜ L k + 1) ∈∆ ∈∆(n,k;l) ,  the space

    M ( ˆ L 1 ,L, ˆ L k+ 1)   is of    −l  dimensional.  We use its family version and find that

(5.32)     vir dimM (∆) = dimV (∆) − l.

We remark that vir dim  in (5.32) is the virtual dimension, that is the index of the linearized

operator.  Now we consider the case when    l = 0 .  Then if the transversality is satisfied the

space    M (∆)  is a smooth manifold and
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  dimM (∆) = dimV (∆).

We consider the  projection    π : M (∆) →V (∆) .  Then    m( ˆ L 1,L, ˆ L k + 1)   should be the order

counted with sign of    π
− 1( ˆ L 1 ,L, ˆ L k+ 1).  One would be able to prove easily that this number be

independent of    (
ˆ L 1,L, ˆ L k + 1)   if    π : M (∆) →V (∆)   were proper.  (Note that we used Lemma

4.30 to show that  m( ˆ L 1,
ˆ L 2 , ˆ L 3)   is independent of the deformation of  ( ˆ L 1,

ˆ L 2 , ˆ L 3) in § 4. )

However in case when k +1 ≥ 4   the map    π : M (∆) →V (∆)   is not proper.  We have the

following :

Lemma 5.33 Let  ∆ ∈∆(n, k)  and    I ⊆ V (∆)  be a  compact subset.  Then we can

compactify    M (∆)(I) = π −1(I)   to    CM (∆)(I)   such that

    

CM (∆)(I) − M (∆)(I) ⊆
( ˆ L 1,L, ˆ L k +1)∈I
2 ≤ j − i ≤k − 3

U M ( ˆ L 1,L
ˆ L i ,

ˆ L j , ,
ˆ L k +1) × M ( ˆ L i ,L, ˆ L j ).

Lemma 5.33 is proved in a similar way as the proof of Lemma 4.30.

Now we assume that the dimension of  I   is one.  Then by “Lemma 5.23”

(5.34)

    
virdim

( ˆ L 1,L, ˆ L k+ 1)∈I
U M ( ˆ L 1,L

ˆ L i ,
ˆ L j ,L, ˆ L k +1) = η( ˜ L 1,L

˜ L i ,
˜ L j ,L, ˜ L k +1) + k − (j − i) ,

(5.35)

    
virdim

( ˆ L 1,L, ˆ L k+ 1)∈I
U M ( ˆ L i ,L, ˆ L j) = η( ˜ L i ,L, ˜ L j ) + ( j − i) −1 .

We recall

(5.36)   η( ˜ L 1,L, ˜ L k +1) + k − 2 = 0 .

Therefore, using (5.9),  we find :

(5.37)

    
virdim

( ˆ L 1,L, ˆ L k+ 1)∈I
U M ( ˆ L 1,L

ˆ L i ,
ˆ L j ,L, ˆ L k +1) × M ( ˆ L i ,L, ˆ L j ) = 0 .

Namely the boundary    CM (∆)(I) − M (∆)(I)   consists of finitely many points if virtual

dimension is equal to the actual dimension.  In that case (5.37) is nonempty only if

(5.38)   η( ˜ L i ,L, ˜ L j) + (j − i) = 1 or 2.

If we are allowed to apply various perturbation methods established in the theory of

pseudoholomorphic curve then certainly the transversality is achieved.  However in our situation

it is not clear what kind of perturbation is allowed because the wall seems to move if we

change the perturbation.

If the transversality holds then the wall will be described by the union of
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(5.39.1)

    

( ˜ L 1,L, ˜ L k + 1) ∈MLG (∆)

η( ˜ L i ,L, ˜ L j) + ( j − i) = 0,

M ( ˆ L i ,L, ˆ L j ) ≠ ∅ for some ( ˆ L i,L, ˆ L j )

  where  ˆ L a   is paralell to ˜ L a   

 

 
  

 
 
 

 

 
  

 
 
 

and

(5.39.2)

    

( ˜ L 1,L, ˜ L k + 1) ∈MLG (∆)

η( ˜ L 1,L ˜ L i , ˜ L j ,L, ˜ L k+ 1) + k − ( j − i) = 0,

M ( ˆ L 1,L
ˆ L i ,

ˆ L j ,L, ˆ L k +1) ≠ ∅ for some( ˆ L 1,L
ˆ L i,

ˆ L j,L, ˆ L k +1)

  where  ˆ L a   is paralell to ˜ L a   

 

 
  

 
 
 

 

 
  

 
 
 

.

This “proves” Conjecture 5.30.  We remark that “Lemma 5.25” is “proved” also by the

same argument.

Remark 5.40 As we mentioned, our number    m( ˆ L 1,L, ˆ L k + 1)   jumps at the walls W(∆).

There is a similar phenomenon in Gauge theory, that is Donaldson invariant in the case when

b2
+ =1,  and is called wall crossing formula  [5].  We remark that certain remarkable relations

between wall crossing formula to automorphic forms are discovered recently. ([16], [20]) .

At the end of this section, we will prove that Conjecture 5.30 holds in the subdomain of

  V (∆)   where  ˜ L i   are almost parallel to each other. 

We put

Definition 5.41  
  
Q( ˆ L 1,L, ˆ L k +1;ω) = Q

i = 2

k− 1

∑ (pk +1,1, pi,i+ 1, pi +1,i + 2 ;ω) .

In a way similar to Lemma 5.17, we can prove the following two lemmata :

Lemma 5.42   Q( ˆ L 1,L, ˆ L k +1;ω) = Q( ˆ L 2 ,L, ˆ L k+ 1,
ˆ L 1 ;ω) .

Lemma 5.43   Q( ˆ L 1,L, ˆ L k +1;ω) = Q( ˆ L 1,L, ˆ L l+ 1;ω) + Q( ˆ L l ,L, ˆ L k +1;ω).

The following lemma is a generalization of  Lemma 4.24.  We remark that

  Q( ˆ L 1,L, ˆ L k +1;ω)   is regarded as a function on   C
n ˜ L 2 ×L × Cn ˜ L k .

Lemma 5.44 If   (
˜ L 1,L, ˜ L k ) ∈∆ ∈∆(n, k) and   m( ˆ L 1,L, ˆ L k + 1) ≠ 0   then

  Q( ˆ L 1,L, ˆ L k +1;ω) ≥ 0 .

The proof is the same as the proof of Lemma 4.24.  We remark that Lemma 5.44 itself is

rigorous (if we replace    m( ˆ L 1,L, ˆ L k + 1) ≠ 0   by      M ( ˆ L 1 ,L, ˆ L k+ 1) ≠ ∅ .)
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Let    π :V (∆) → MLG(∆)  be the projection. If we assume Conjecture 5.30 then we can

construct our operator  mk   rigorously on the dense subset of    MLG(∆)   with

  (
˜ L 1,L, ˜ L k ) ∈∆ ∈∆(n, k).  Namely we have :

Theorem 5.45 Let    (
˜ L 1,L, ˜ L k + 1) ∈∆ ∈∆(n,k) .  Assume that Conjecture 5.30 holds in a

neighborhood of    (
˜ L 1,L, ˜ L k + 1) , and   π

− 1( ˜ L 1 ,L, ˜ L k+ 1)  intersects transversely with the wall

W(∆) .   We assume also that the measure  τ i(
ˆ L i )  is either equivalent to the  standard

Euclidean measure or a delta measure whose support is disjoint from the wall.  Then the

integral (5.28)  converges.

Proof: We consider the vector space    C
n ˜ L 2 ×L × Cn ˜ L k   and regard   m( ˆ L 1,L, ˆ L k + 1)   as

a function on it.  Then it is easy to see that    m( ˆ L 1,L, ˆ L k + 1)   is invariant of  R+   action

  (
ˆ L 1,

ˆ L 2(v2),L, ˆ L k(vk), ˆ L k + 1) a ( ˆ L 1,
ˆ L 2(cv2 ),L, ˆ L k (cvk), ˆ L k + 1) .  Therefore Conjecture 5.30 implies

that  mk   is uniformly bounded.

Let  D   be a connected component of the domain

(5.46)
  
(v2 ,L,vk ) v i

2 =1∑ , ( ˆ L 1,
ˆ L 2(v2),L, ˆ L k(vk ), ˆ L k + 1) ∉W(∆){ } .

In variance of the wall of R+   action implies that there are only finitely many connected

components of  (5.46)  if Conjecture 5.30 hold.  By Lemma 5.44 and its proof we find that

(5.47)   Q(( ˆ L 1,
ˆ L 2(v2),L, ˆ L k(vk ), ˆ L k +1);ω) > 0

if    (v2 ,L,vk )  is in the closure of  D .  In fact, in the case when    (v2 ,L,vk )  is in the closure of

D,  there exists a union of holomorphic disks such that the sum of the symplectic area of them

is     Q( ˆ L 1,L, ˆ L k +1;ω) .  (Lemma 5.33).  Since    
ˆ L 1 ∩ ˆ L 2 (v2) ∩L ∩ ˆ L k(vk ) ∩ ˆ L k +1 = ∅ , one of

such holomorphic disks is necessary non constant.  (5.47) follows.

(5.47) implies that there exists  δ > 0   such that

(5.48)   Q(( ˆ L 1,
ˆ L 2(v2),L, ˆ L k(vk ), ˆ L k +1);ω) > δ vi∑ 2

for each    (v2 ,L,vk )  with    m( ˆ L 1,
ˆ L 2(v2),L, ˆ L k(vk ), ˆ L k + 1) ≠ 0 .  It is then easy to prove the

convergence of   (5.28) .  The proof of Theorem 5.45 is now complete.

We remark that in the case when all the leaves of  
  
F ˜ L i

  are compact and  τ i   are delta

measure supported on a leaf  Li , the integral (5.28) will be a tensor product of matrix

  mk (L1,L, Lk ) and the trivial map

  L
p1(L1 × L2) × L × Lpk(Lk × Lk +1) → Lq(L1 × Lk+ 1) .

Let us write the formula of matrix    mk (L1,L, Lk ) we obtain.  Let  
  
Li ∩ Li +1 = pi ,1 ,L, pi , Ni{ } .

Then
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HF(Li , Li +1) = ⊕
j
C[pi, j].

We fix    
ˆ L 1 ,L, ˆ L k .  So that  π ˆ L k + 1 ∩ ˆ L 1( ) = pk +1, jk+ 1

  where  π :C n → C n Γ .  We define

  π : Γ k− 1 → 1,L, Ni{ }∏

by

µ(γ )i = j   if  π γ i(
ˆ L i) ∩ γ i +1( ˆ L i +1)( ) = pi, j   where  π :C n → C n Γ .

Now    mk (L1,L, Lk ) :C N1 ⊗L⊗C Nk → C N k+1   is the higher multiplication of Floer homology

whose coefficient is are described by :

(5.49)

  

Zk (L1,L, Lk ) j1,L, jk +1

=
γ = ( γi )∈Γk −1

µ (γ )= j1,L, jk +1( )

∑ m( ˆ L 1,γ 2( ˆ L 2)L,γ k ( ˆ L k ), ˆ L k +1) exp −Q( ˆ L 1,γ 2( ˆ L 2)Lγ k ( ˆ L k), ˆ L k +1;ω)( ) .

Moving  Li   we may regards (5.49) as a function.  If we include imaginary part in the

same way as [18],  [24] then we obtain a holomophic function.  (See Part II.)  However as was

observed in  [23] in case  n = 1 ,  this function is discontinuous at the point where

  (
ˆ L 1,γ 2( ˆ L 2 )L,γ k( ˆ L k ), ˆ L k +1)   meets the wall W(∆).

We go back to the case when the foliations    
  
F ˜ L i

  can be ergodic and will discuss the

properties of  mk .  The following is an analogy of Theorems 4.6 and 4.8.

“Theorem 5.50” Let    Fi ∈ HF(FLi
,FLi +1

) , 
  
fi ∈ C(T2n ,F ˜ L i

) .  Then we have

(5.51.1)   mk (τ 2 ,L,τk ) f1 ∗ F1( ) ⊗L⊗ Fk( ) = f1 ∗ mk (τ2 ,L,τ k ) F1 ⊗L⊗ Fk( ),

(5.51.2)

  

mk (τ 2 ,L,τk ) F1 ⊗L⊗ Fi ⊗ f i +1 ∗ Fi +1( )⊗ L⊗ Fk− 1( )
= mk(τ2,L,τk −1) F1 ⊗L⊗ Fi ∗ fi+1( ) ⊗ Fi + 1 ⊗L⊗ Fk −1( )

,

(5.51.3)
  
mk (τ 2 ,L,τk ) F1 ⊗L⊗ Fk ∗ fk+ 1( )( ) = mk(τ2 ,L,τk ) F1 ⊗L ⊗ Fk( ) ∗ fk +1

(5.51.4)

  

mk (τ 2 ,L,τk ) F1 ⊗L⊗ Fk( ), Fk+ 1 τ k ⊗τ1

= ± mk (τ3 ,L,τ k +1) F2 ⊗L⊗ Fk +1( ), F1 τ1 ⊗τ 2
.

We put this theorem in the quote since we assume Conjecture 5.30 to “prove” it.  The sign

is also to be clarified to make it rigorous.

As we pointed out in  [15],  Formula (5.51.4) seems to be closely related to the theory of

cyclic homology (see [3]).  It may therefore suggests a relation of this paper to  [32].
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The “proof” of “Theorem 5.50” is similar to Theorems 4.6 and 4.8 and is omitted.

We next state the higher associativity relation.

“Theorem 5.52” If   (
˜ L 1,L, ˜ L k + 1) ∈∆ ∈∆(m,k ,1)   we have

(5.53)
  

±mk −l+ 1(F1 ⊗L⊗ Fn ⊗ ml(Fn +1,LFn +l )⊗ Fn +l+ 1 ⊗L⊗ Fk) = 0
n,l
∑ .

“Theorem 5.52” will follow from Lemma 5.43 and the following “Lemma 5.54” , in a

way similar to the “proof” of “Theorem 5.1”.

“Lemma 5.54”  If   (
˜ L 1,L, ˜ L k + 1) ∈∆ ∈∆(n,k ,1) then

(5.55)
  

±mk −l+ 1(
ˆ L 1,L, ˆ L n ,ml( ˆ L n +1,L

ˆ L n +l), ˆ L n +l+1,L
ˆ L k +1)

n,l
∑ = 0 .

The idea of the proof of “Lemma 5.54” is in  [10].   Namely we consider      M ( ˆ L 1 ,L, ˆ L k+ 1) .

It is a one dimensional manifold.  Its boundary gives the right hand side of (5.55).

In the case when ˆ L i   are almost parallel to each other, we can reduce the calculation of

  m( ˆ L 1,L, ˆ L k + 1)   to a problem on quadratic Morse function as follows.

We regards  T* ˆ L 1 = ˜ T 2 n   and let  ˆ L i   be the graph of the exact form  dfi   on  ˆ L 1 .  Here  fi

is a quadratic function on  ˆ L 1 .  We put  0 = f1 .  Let  Li(ε)   be the graph of  εdfi .  Let
ˆ L i(ε) ∩ ˆ L i +1(ε ) = {ˆ p i (ε)}  and  π ˆ p i(ε )( ) = pi .  Then we proved in  [15] the following equality in

the case when    η( ˜ L 1,L, ˜ L k +1) + k − 2 = 0 .

(5.56)
    
M ( ˆ L 1(ε),L, ˆ L k +1(ε )) = Mg

R n
R n : f1,L, fk + 1( ), p1,L, pk +1( )( ).

Here the right hand side is the Morse moduli space defined in  [15] and is similar to

  
M g

R n
Rn : f1, f2 , f3, f4( ), p1 , p2 , p3 , p4( )( )   which we explained during the proof of Lemma 5.7.

We remark that (5.56) is not enough to calculate the number    m( ˆ L 1,L, ˆ L k + 1)   in general

since we do not have an analogy of Lemma 4.30 and hence the order of      M ( ˆ L 1(ε),L, ˆ L k +1(ε ))

may depend on  ε .

Now we are in the position to clarify two points we postponed in the case when  ˆ L i   are

almost parallel to each other.  One is the orientation of  the moduli space

    
˜ M ( ˆ L 1 , ˆ L 2(ε ),L, ˆ L k(ε ), ˆ L k+ 1)  and the other is the proof of Conjecture 5.30.

To prove Conjecture 5.30  in the case when ˆ L i   are almost parallel to each other, we only

need to show the same statement for the Morse moduli space

    
M g

R n
Rn : f1,L, fk +1( ), p1,L, pk + 1( )( ) .  But this is almost obvious in the case of Morse homotopy

of quadratic functions.  Instead of giving the detail of the proof, we will describe the “Morse
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homotopy limit” of the wall  W(∆)  in the case when  k = 4  later.  (Proposition 5.59).

Next we consider the orientation. If we find an orientation on Morse moduli space

    
M g

R n
Rn : f1,L, fk +1( ), p1,L, pk + 1( )( ) , then we can use the number of

    
M g

R n
Rn : f1,L, fk +1( ), p1,L, pk + 1( )( )  counted with sign to define    m( ˆ L 1(ε),L, ˆ L k+ 1(ε)) .  This is

justified by (5.56).  To define an orientation on Morse moduli space, we use the map  EXP

defined in [15] p 160.   We recall that we fixed orientation of the unstable manifolds  U(pi)

and orientation of  ˜ L 1   (end of § 4.)  The map EXP   in our situation is

(5.57)

  

EXP(t) : ˜ L 1 × Gr(t) × U(pi)
j = ih

ih +1− 1

∏
h= 1

m

∏ → ˜ L 1 × ˜ L 1
j = ih

ih+1 −1

∏
 

 
  

 

 
  

h =1

m

∏ .

Here    Gr(t)   is the moduli space of metric Ribbon tree introduced in  [15].  See [15]  for

other notations.

A dense subset of 
    
M g

R n
Rn : f1,L, fk +1( ), p1,L, pk + 1( )( )  is the union of

(5.58)   EXP(t)−1(Diagonal) ,

where    t   runs over trivalent graphs.  (See [15] p 160 the definition of Diagonal.)

We proved in [15] § 14 that    Gr(t)  is diffeomorphic to an open subset of the moduli space

of    z1,L,zk +1[ ]  where  zi ∈∂D2  and  zi   respects cyclic order.  We identify    z1,L,zk +1[ ]  with

  ′ z 1,L, ′ z k +1[ ]  if there exits  ϕ ∈PSL(2,R )  such that  ′ z i = ϕ(zi) .

Using this diffeomorphism we find an orientation on    Gr(t) .  The spaces in (5.57) then

are all oriented.  Therefore (5.58) is oriented.  Thus we obtain an orientation of

    
M g

R n
Rn : f1,L, fk +1( ), p1,L, pk + 1( )( ) .

Finally, we show how the  Morse moduli space  
    
M g

R n
Rn : f1,L, fk +1( ), p1,L, pk + 1( )( )

jumps  in the case when  k = 3.   Let us consider the following figure where  k = 3, n = 2 .
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Figure 6

Here  η(p1) = η(p2) = η(p3) = 1 and  η(p4) = 0.  The lines  p1x  p2x p3y   are unstable manifolds

U(p1) , U(p2) , U(p3) .  (U(p4) = R2 .)  The curve passing  x, y   is the gradient line of f3 − f1 .

The figure shows that  
    
M g

R n
Rn : f1,L, f4( ), p1 ,L, p4( )( )   contains one in this case.

If we move  p2  to the left, then  x   also moves to the left.  Let  z   be the critical point of

f3 − f1 .  (We assume that the index of  f3 − f1   is 1.)  Then, at some moment  x   will meet the

stable manifold of  z .  After that the gradient line of f3 − f1   containing  x  will not meet the

unstable manifold  p3y .  Namely the moduli space   
    
M g

R n
R2 : f1,L, f4( ), p1 ,L, p4( )( )   jumps.

We recall that all stable and unstable manifolds are affine in the case of quadratic Morse

function.   On the other hand, the jump of the moduli space  
    
M g

R n
R2 : f1,L, f4( ), p1 ,L, p4( )( )

occurs when

  
M g

R n
R2 : f1, f2 , f3( ), p1, p2 , z( )( ) × M g

R n
R2 : f3 , f4 , f1( ), p3 , p4 ,z( )( )
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or

  
M g

R n
R2 : f4 , f1, f2( ), p4, p1,w( )( ) × M g

R n
R2 : f2 , f3 , f4( ), p2 , p3 ,w( )( )

becomes nonempty.  Here  z   is the critical point of   f3 − f1   and  w  is a critical point of

f4 − f2 .  Therefore the following proposition holds.

Proposition 5.59 If  k = 3   (and any  n )  the Morse homotopy analogue of the Wall (in

Conjecture 5.30)  is a union of codimension one affine subspaces in  R2n = Cn ˜ L 2 ×C n ˜ L 3 .

The author has no idea how to describe the wall in the general case.
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