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1. Introduction

This paper is a survey article on the recent developments of semi-
positivity, injectivity, and vanishing theorems for higher-dimensional
complex projective varieties (see, for example, [Fn7], [Fn9], [Fn11],
[FF], and [FFS]).

We know that many important generalizations of the Kodaira vanish-
ing theorem, for example, the Kawamata–Viehweg vanishing theorem,
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Kollár’s injectivity, torsion-free, and vanishing theorems, the Nadel
vanishing theorem, and so on, were obtained in 1980s. They have al-
ready played crucial roles in the study of higher-dimensional complex
projective varieties. We note that the Fujita–Zucker–Kawamata semi-
positivity theorem for direct images of relative canonical bundles has
also played important roles. One of my main motivations was to es-
tablish a more general cohomological package based on the theory of
mixed Hodge structures on cohomology with compact support. Now I
think that our new results are almost satisfactory (see Theorems 2.12,
2.13, and 3.6). They are waiting for applications. I hope that the
reader would find various applications of our semipositivity, injectivity,
and vanishing theorems.

Let us see the contents of this paper. In Section 2, we first discuss
the Hodge theoretic aspect of Kodaira-type vanishing theorems (see,
for example, [EV], [Ko4, Part III], [Fn7], [Fn9], and [Fn11]). I empha-
size the importance of Kollár’s injectivity theorem and its generaliza-
tions. I think that one of the most important recent developments is
the introduction of mixed Hodge structures on cohomology with com-
pact support in order to generalize Kollár’s injectivity theorem (see,
for example, [Fn3], [Fn7], [Fn9], and [Fn11]). Next we discuss Enoki’s
injectivity theorem, which is an analytic counterpart of Kollár’s injec-
tivity theorem. I like Enoki’s idea since it is very simple and powerful.
Enoki’s proof only uses the standard results of the theory of harmonic
forms on compact Kähler manifolds. Although I obtained some gen-
eralizations of Enoki’s injectivity theorem and their applications (see
[Fn4] and [Fn5]), I think that they are not satisfactory for most geo-
metric applications.

In Section 3, we treat several semipositivity theorems for direct im-
ages of relative (log) canonical bundles and relative pluricanonical bun-
dles. The (numerical) semipositivity of direct images of relative (log)
canonical bundles discussed in this paper is more or less Hodge theo-
retic. Note that mixed Hodge structures on cohomology with compact
support are also very useful for semipositivity theorems. By consider-
ing their variations, we can prove a powerful semipositivity theorem by
the theory of gradedly polarizable admissible variation of mixed Hodge
structure (see [FF] and [FFS]). Unfortunately, since I am not familiar
with the recent developments of semipositivity theorems by L2 meth-
ods, I do not discuss the analytic aspect of semipositivity theorems in
this paper. In Subsection 3.1, we explain new semipositivity theorems
for direct images of relative pluricanonical bundles with the aid of the
minimal model program (see [Fn12]). I think that it is highly desirable
to recover them without using the minimal model program.
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In Section 4, we will see that pluricanonical divisors sometimes be-
have much better than canonical divisors. We discuss two different
topics. In Subsection 4.1, we explain Kollár’s famous result on pluri-
genera in étale covers of smooth projective varieties of general type. We
give Lazarsfeld’s proof using the theory of asymptotic multiplier ideal
sheaves for the reader’s convenience and also a proof based on the min-
imal model program. The proof based on the minimal model program
is harder than Lazarsfeld’s proof but is interesting and natural from
the minimal model theoretic viewpoint. In Subsection 4.2, we explain
Viehweg’s ampleness theorem for direct images of relative pluricanon-
ical bundles, which is buried in Viehweg’s papers. I think that these
results may help the reader to understand the reason why we should
consider pluricanonical divisors for the study of higher-dimensional al-
gebraic varieties.

In Section 5, we quickly review the finite generation of (log) canoni-
cal rings due to Birkar–Cascini–Hacon–McKernan. I want to emphasize
that we need the semipositivity theorem discussed in Section 3 when
we treat (log) canonical rings for varieties which are not of (log) gen-
eral type (see [FMo] and [Fn10]). We also explain the nonvanishing
conjecture, which is one of the most important conjectures for higher-
dimensional complex projective varieties.

Section 6 is an appendix, where we collect some definitions with the
intention of helping the reader to understand this paper. The reader
can read each section separately.

Acknowledgments. The author was partially supported by Grant-in-
Aid for Young Scientists (A) 24684002 and Grant-in-Aid for Scientific
Research (S) 24224001 from JSPS. He thanks Professor Steven Zucker
for useful comments and advice. He also thanks Professor Fabrizio
Catanese for answering his questions and Yoshinori Gongyo for various
discussions. Finally, he thanks Shin-ichi Matsumura for sending his
preprints.

We will work over C, the complex number field, throughout this
paper. In this paper, a scheme means a separated scheme of finite type
over C.

2. On injectivity theorems and vanishing theorems

I think that one of the most fundamental results for complex pro-
jective varieties is Kollár’s injectivity theorem (see Theorem 2.1). The
importance of the Kawamata–Viehweg (or Nadel) vanishing theorem
for the study of higher-dimensional complex algebraic varieties is re-
peatedly emphasized in many papers and textbooks (see, for example,
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[KoM] and [Laz]). On the other hand, I think that the importance
of Kollár’s injectivity theorem has not been emphasized so far in the
standard literature.

Let us recall Kollár’s injectivity theorem.

Theorem 2.1 ([Ko1, Theorem 2.2]). Let X be a smooth projective
variety and let L be a semiample Cartier divisor on X, that is, the
complete linear system |mL| has no base points for some positive integer
m. Let D be a member of |kL| for some positive integer k. Then

H i(X,OX(KX + lL)) → H i(X,OX(KX + (l + k)L)),

induced by the natural inclusion OX ↪→ OX(D) ≃ OX(kL), is injective
for every i and every positive integer l.

Remark 2.2. If we assume that L is ample, l = 1, and k is sufficiently
large in Theorem 2.1, then we obtain that

H i(X,OX(KX + L)) ↪→ H i(X,OX(KX + (1 + k)L)) = 0

for every i > 0 by Serre’s vanishing theorem. Therefore, Theorem 2.1
quickly recovers the Kodaira vanishing theorem for projective varieties
(see Theorem 2.3 below).

For the reader’s convenience, we recall:

Theorem 2.3 (Kodaira vanishing theorem for projective varieties).
Let X be a smooth projective variety and let L be an ample Cartier
divisor on X. Then we have

H i(X,OX(KX + L)) = 0

for every i > 0.

We will give a proof of Theorem 2.3 after we discuss E1-degenerations
of Hodge to de Rham type spectral sequences.

Note that Theorem 2.1 is obviously a generalization of Tankeev’s
pioneering result.

Theorem 2.4 ([Tan, Proposition 1]). Let X be a smooth projective
variety with dimX ≥ 2. Assume that the complete linear system |L|
has no base points and determines a morphism Φ|L| : X → Y onto a
variety Y with dimY ≥ 2. Then

H0(X,OX(KX + 2D)) → H0(D,OD((KX + 2D)|D))
is surjective for almost all divisors D ∈ |L|. Equivalently,

H1(X,OX(KX +D)) → H1(X,OX(KX + 2D))

is injective for almost all divisors D ∈ |L|.
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By Theorem 2.1, we can prove:

Theorem 2.5 ([Ko1, Theorem 2.1]). Let X be a smooth projective
variety, let Y be an arbitrary projective variety, and let f : X → Y be
a surjective morphism. Then we have the following properties.

(i) Rif∗OX(KX) is torsion-free for every i.
(ii) Let H be an ample Cartier divisor on Y , then

Hj(Y,OY (H)⊗Rif∗OX(KX)) = 0

for every j > 0 and every i.

Theorem 2.5 (i) and (ii) are called Kollár’s torsion-freeness and the
Kollár vanishing theorem respectively. We give a small remark on
Theorem 2.5.

Remark 2.6. If f = idX : X → X in Theorem 2.5 (ii), then we have
H i(X,OX(KX +H)) = 0 for every i > 0 and every ample Cartier di-
visor H on X. This is nothing but the Kodaira vanishing theorem for
projective varieties (see Theorem 2.3). If f is birational in Theorem
2.5 (i), then Rif∗OX(KX) = 0 for every i > 0 since Rif∗OX(KX) is
a torsion sheaf for every i > 0. This is the Grauert–Riemenschneider
vanishing theorem for birational morphisms between projective vari-
eties.

In [Ko1], Kollár proved Theorem 2.1 and Theorem 2.5 simultane-
ously. Therefore, the relationship between Theorem 2.1 and Theorem
2.5 is not clear in [Ko1]. Now it is well-known that Theorem 2.1 and
Theorem 2.5 are equivalent by the works of Kollár himself and Esnault–
Viehweg (see, for example, [Ko4, Chapter 9] and [EV]). We note that
Theorem 2.1 follows from the E1-degeneration of Hodge to de Rham
spectral sequence.

2.7 (E1-degeneration of Hodge to de Rham spectral sequence). Let V
be a smooth projective variety. Then the spectral sequence

Ep,q
1 = Hq(V,Ωp

V ) ⇒ Hp+q(V,C)
degenerates at E1. This is a direct consequence of the Hodge decom-
position for compact Kähler manifolds.

Therefore, we can see that Theorem 2.1 is a result of the theory of
pure Hodge structures. Thus, it is natural to consider mixed general-
izations of Theorem 2.1.

We do not repeat the proof of Theorem 2.1 depending on the E1-
degeneration of Hodge to de Rham spectral sequence in 2.7 here. For
the details, see, for example, [Ko4, Chapter 9] and [EV].
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2.8. We note Deligne’s famous generalization of the E1-degeneration
in 2.7. Let V be a smooth projective variety and let ∆ be a simple
normal crossing divisor on V . Then the spectral sequence

Ep,q
1 = Hq(V,Ωp

V (log∆)) ⇒ Hp+q(V \∆,C)
degenerates at E1 by Deligne’s theory of mixed Hodge structures for
smooth noncompact algebraic varieties (see [Del]).

Unfortunately, the E1-degeneration in 2.8 seems to produce no use-
ful generalizations of Theorem 2.1. We think that the following E1-
degeneration is a correct ingredient for mixed generalizations of Theo-
rem 2.1.

2.9. Let V and ∆ be as in 2.8. Then the spectral sequence

Ep,q
1 = Hq(V,Ωp

V (log∆)⊗OV (−∆)) ⇒ Hp+q
c (V \∆,C)

degenerates at E1. This is a consequence of mixed Hodge structures
on cohomology with compact support H•

c (V \∆,C).

Remark 2.10. In 2.9, we see that Hq(V,Ωp
V (log∆)⊗OV (−∆)) is dual

to Hn−q(V,Ωn−p
V (log∆)) by Serre duality, where n = dimV . More-

over, Hp+q
c (V \ ∆,C) is dual to H2n−(p+q)(V \ ∆,C) by Poincaré du-

ality. Therefore, we can check the E1-degeneration in 2.9 by the E1-
degeneration in 2.8. However, it is better to discuss mixed Hodge
structures on cohomology with compact support in order to treat more
general situations below (see Theorem 2.12, Theorem 2.13, Theorem
3.6, and so on).

We give a proof of the Kodaira vanishing theorem for projective
varieties by using the E1-degeneration in 2.9 in order to get the reader
to grow more comfortable with the E1-degeneration in 2.9.

Proof of Theorem 2.3. By the standard covering trick (see, for exam-
ple, Step 1 in the proof of [Ko1, Theorem 2.2]), we can reduce Theorem
2.3 to the case when the complete linear system |L| has no base points.
So, we assume that |L| has no base points for simplicity. We take a
smooth member D of |L| by Bertini’s theorem. We put ι : X \D ↪→ X.
By the E1-degeneration of

Ep,q
1 = Hq(X,Ωp

X(logD)⊗OX(−D)) ⇒ Hp+q
c (X \D,C),

we obtain that the natural map

π : Hj(X, ι!CX\D) → Hj(X,OX(−D))

induced by ι!CX\D ⊂ OX(−D) is surjective for every j. Since

ι!CX\D ⊂ OX(−mD) ⊂ OX(−D)
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for every m ≥ 1, we obtain that

π : Hj(X, ι!CX\D) → Hj(X,OX(−mD))
p→ Hj(X,OX(−D))

and that p is surjective for every j. Note that Hj(X,OX(−mD)) = 0
for j < dimX and for m ≫ 0 by the Serre vanishing theorem. Thus
we obtain that Hj(X,OX(−D)) = 0 for j < dimX. By Serre duality,
we have H i(X,OX(KX +D)) = 0 for every i > 0. □

We next give a remark on [EV].

Remark 2.11. Let V be a smooth projective variety and let A + B
be a simple normal crossing divisor on V such that A and B have no
common irreducible components. In [EV], Esnault–Viehweg discussed
the E1-degeneration of

Ep,q
1 = Hq(V,Ωp

V (log(A+B))⊗OV (−B))

⇒ Hp+q(V,Ω•
V (log(A+B))⊗OV (−B))

(see also [DI]). This E1-degeneration contains the E1-degenerations in
2.8 and in 2.9 as special cases. However, they did not pursue geometric
applications of the E1-degeneration in 2.9, that is, in the case when
A = 0.

By using the E1-degeneration in 2.9 and some more general E1-
degenerations arising from mixed Hodge structures on cohomology with
compact support, we can obtain various generalizations of Theorem 2.1
and Theorem 2.5. We write the following useful generalizations with-
out explaining the precise definitions and the notation here (see 6.6,
6.7, 6.8, 6.9 in Section 6).

Theorem 2.12 (Injectivity theorem for simple normal crossing pairs).
Let (X,∆) be a simple normal crossing pair such that ∆ is an R-divisor
on X whose coefficients are in [0, 1], and let π : X → V be a proper
morphism between schemes. Let L be a Cartier divisor on X and let D
be an effective Cartier divisor that is permissible with respect to (X,∆).
Assume the following conditions.

(i) L ∼R,π KX +∆+H,
(ii) H is a π-semiample R-divisor, and
(iii) tH ∼R,π D + D′ for some positive real number t, where D′ is

an effective R-Cartier R-divisor that is permissible with respect
to (X,∆).

Then the homomorphisms

Rqπ∗OX(L) → Rqπ∗OX(L+D),
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which are induced by the natural inclusion OX ↪→ OX(D), are injective
for all q.

Theorem 2.12 is a generalization of Theorem 2.1.

Theorem 2.13. Let f : (Y,∆) → X be a proper morphism from an
embedded simple normal crossing pair (Y,∆) to a scheme X such that
∆ is an R-divisor whose coefficients are in [0, 1]. Let L be a Cartier
divisor on Y and let q be an arbitrary nonnegative integer. Then we
have the following properties.

(i) Assume that L− (KY +∆) is f -semi-ample. Then every asso-
ciated prime of Rqf∗OY (L) is the generic point of the f -image
of some stratum of (Y,∆).

(ii) Let π : X → V be a proper morphism between schemes. Assume
that

f ∗H ∼R L− (KY +∆),

where H is nef and log big over V with respect to f : (Y,∆) →
X. Then we have

Rpπ∗R
qf∗OY (L) = 0

for every p > 0.

Theorem 2.13 (i) and (ii) are generalizations of Theorem 2.5 (i) and
(ii) respectively. For the details, see, for example, [Fn3, Sections 5
and 6], [Fn7, Theorem 1.1], [Fn9, Theorem 1.1], and [Fn11, Chapter
5]. Note that Theorem 2.12 and Theorem 2.13 have already played
crucial roles in the proof of the fundamental theorems for log canonical
pairs and semi-log canonical pairs (see, for example, [Fn3], [Fn6], and
[Fn11]).

Anyway, the formulation of Theorem 2.12 and Theorem 2.13 is nat-
ural and useful from the minimal model theoretic viewpoint, although
it may look unduly technical and artificial.

Remark 2.14. Let V and ∆ be as in 2.8. In the traditional framework,
OV (KV +∆) was recognized to be detΩ1

V (log∆). On the other hand,
in our new framework for vanishing theorems, we see OV (KV +∆) as

HomOV
(OV (−∆),OV (KV ))

and OV (−∆) as the 0th term of Ω•
V (log∆)⊗OV (−∆).

I think that it is not so easy to understand the statements of Theorem
2.12 and Theorem 2.13. So we give a very special case of Theorem 2.12
to clarify the main difference between Theorem 2.1 and Theorem 2.12.
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Theorem 2.15. Let X be a smooth projective variety and let ∆ be a
simple normal crossing divisor on X. Let L be a semiample Cartier
divisor on X and let D be a member of |kL| for some positive integer
k such that D contains no strata of ∆. Then the homomorphism

H i(X,OX(KX +∆+ lL)) → H i(X,OX(KX +∆+ (l + k)L))

induced by the natural inclusion OX ↪→ OX(D) is injective for every
positive integer l and every i.

If ∆ = 0 in the above, then Theorem 2.15 is nothing but Kollár’s
original injectivity theorem (Theorem 2.1).

Remark 2.16. Let ∆ be a simple normal crossing divisor on a smooth
variety X. Let ∆ =

∑
i∈I ∆i be the irreducible decomposition of ∆.

Then a closed subset W of X is called a stratum of ∆ if W is an
irreducible component of ∆i1 ∩ · · · ∩∆ik for some {i1, · · · , ik} ⊂ I.

Remark 2.17. Let ∆ be a simple normal crossing divisor on a smooth
variety V . Then W is a stratum of ∆ if and only if W is a log canonical
center of (V,∆) (see 6.5 in Section 6).

We have discussed the Hodge theoretic aspect of Kodaira-type van-
ishing theorems. For the details and various related topics, see [EV],[Ko4,
Part III], [Fn11], and references therein.

2.1. Complex analytic setting. After Kollár obtained Theorem 2.1,
Enoki (see [Eno, Theorem 0.2]) proved:

Theorem 2.18 (Enoki’s injectivity theorem). Let X be a compact
Kähler manifold and let L be a semipositive line bundle on X. Then,
for any nonzero holomorphic section s of L⊗k with some positive integer
k, the multiplication homomorphism

×s : H i(X,ωX ⊗ L⊗l) −→ H i(X,ωX ⊗ L⊗(l+k)),

induced by ⊗s, is injective for every i and every positive integer l.

Remark 2.19. Let L be a holomorphic line bundle on a compact
Kähler manifold X. We say that L is semipositive if there exists a
smooth hermitian metric h on L such that

√
−1Θh(L) is a semipositive

(1, 1)-form onX, where Θh(L) = D2
(L,h) is the curvature form andD(L,h)

is the Chern connection of (L, h).

Remark 2.20. Let X be a smooth projective variety and let L be
a line bundle on X. If L is semiample, that is, |L⊗k| has no base
points for some positive integer k, then L is semipositive in the sense
of Remark 2.19.
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Enoki’s proof in [Eno] is arguably simpler than the proof of Theorem
2.1 based on Hodge theory. It only uses the standard results in the
theory of harmonic forms on compact Kähler manifolds. Let us see the
ideas of Enoki’s proof of Theorem 2.18.

Idea of Proof of Theorem 2.18. We put n = dimX. Let Hn,i(X,L⊗l)
(resp.Hn,i(X,L⊗(l+k)) be the space of L⊗l-valued (resp. L⊗(l+k)-valued)
harmonic (n, i)-forms on X. By using the Nakano identity and the
semipositivity of L, we can easily check that s ⊗ φ is harmonic for
every φ ∈ Hn,i(X,L⊗l). Therefore,

×s : H i(X,ωX ⊗ L⊗l) −→ H i(X,ωX ⊗ L⊗(l+k)),

is nothing but ⊗s : Hn,i(X,L⊗l) → Hn,i(X,L⊗(l+k)) : φ 7→ s⊗φ, which
is obviously injective. □

We note that Theorem 2.18 is better than Theorem 2.1 by Remark
2.20. Unfortunately, I do not know how to generalize Enoki’s theorem
appropriately for various geometric applications. Although I obtained
some generalizations of Theorem 2.18 and their applications in [Fn4]
and [Fn5], they are not so useful in the minimal model program com-
pared with Theorem 2.12 and Theorem 2.13. Related to Theorem 2.15,
we have:

Conjecture 2.21. Let X be a compact Kähler manifold and let ∆ be
a simple normal crossing divisor on X. Let L be a semipositive line
bundle on X and let s be a nonzero holomorphic section of L⊗k on X
for some positive integer k. Assume that (s = 0) contains no strata of
∆. Then the multiplication homomorphism

×s : H i(X,ωX ⊗OX(∆)⊗ L⊗l) → H i(X,ωX ⊗OX(∆)⊗ L⊗(l+k)),

induced by ⊗s, is injective for every positive integer l and every i.

I do not know the precise relationship between the injectivity theo-
rems of Kollár and Enoki. Thus I pose:

Problem 2.22. Clarify the relationship between Kollár’s injectivity
theorem (Theorem 2.1) and Enoki’s injectivity theorem (Theorem 2.18).

For almost all geometric applications, we use Theorem 2.5 (ii) for
i = 0. Theorem 2.5 (ii) for i = 0 is sufficient for Viehweg’s theory of
weak positivity (see [Vie1], [Vie2], and [Fn14]). See also Subsection
4.2 below. Note that Theorem 2.5 (ii) for i = 0 is a special case of
Ohsawa’s vanishing theorem.

Theorem 2.23 ([Oh1, Theorem 3.1]). Let X be a compact Kähler
manifold, let f : X → Y be a holomorphic map to an analytic space Y
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with a Kähler form σ, and let (E, h) be a holomorphic vector bundle on
X with a smooth hermitian metric h. Assume that

√
−1Θh(E) ≥Nak

IdE ⊗ f ∗σ, that is,
√
−1Θh(E)− IdE ⊗ f ∗σ is semipositive in the sense

of Nakano, where Θh(E) is the curvature form of (E, h). Then

Hj(Y, f∗(ωX ⊗ E)) = 0

for every j > 0.

For the proof of Theorem 2.23, see [Oh1]. I am not so familiar with
Theorem 2.23 and do not know if the formulation of Theorem 2.23 is
natural or not.

Remark 2.24. For the details of σ and f ∗σ in Theorem 2.23, see [Oh1,
§3]. Note that Y is permitted to have singularities.

By comparing Theorem 2.23 with Theorem 2.5 (ii), it is natural to
consider:

Conjecture 2.25. With the same assumptions as in Theorem 2.23,
we have

Hj(Y,Rif∗(ωX ⊗ E)) = 0

for every i and every positive integer j.

We close this section with:

Problem 2.26. Clarify the relationship between Kollár’s vanishing
theorem (Theorem 2.5 (ii)) and Ohsawa’s vanishing theorem (Theorem
2.23).

For Enoki-type injectivity theorems, see, [Eno], [Take], [Oh2], [Fn4],
[Fn5], [Ma1], [Ma2], [Ma3], [Ma4], [Ma5], [GM], etc.

Remark 2.27 (Added in September 2016). After I wrote this paper,
there are some developments. In [Ma8], Shin-ichi Matsumura proved
Conjecture 2.21 under the extra assumption that ∆ is smooth (see
[Ma8, Theorem 1.3 and Corollary 1.4]). He also proved Conjecture
2.25 completely in [Ma6]. For the precise statement, see [Ma6, Theorem
1.3]. In [FMa], he and I obtained a generalization of Enoki’s injectivity
theorem, which can be seen as a generalization of Nedel’s vanishing
theorem (see [FMa, Theorem A]). For some further developments, see
[Fn16] and [Ma7].

3. On local freeness and semipositivity theorems

Let us start with Fujita’s semipositivity theorem in [Fujita].
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Theorem 3.1 ([Fujita, (0.6) Main Theorem]). Let f : M → C be a
surjective morphism from a compact Kähler manifold onto a smooth
projective curve C with connected fibers. Then f∗ωM/C is nef.

Before we go further, let us recall the definition of nef locally free
sheaves.

Definition 3.2 (Nef locally free sheaves). Let E be a locally free sheaf
of finite rank on a complete algebraic variety V . Then E is called nef if
E = 0 or OPV (E)(1) is nef on PV (E), that is, OPV (E)(1) ·C ≥ 0 for every
curve C on PV (E). A nef locally free sheaf E was originally called a
(numerically) semipositive locally free sheaf in the literature.

Remark 3.3. Assume that X is a smooth projective variety for sim-
plicity. Let L be a line bundle on X. Then L is nef in the sense of
Definition 3.2 if and only if L is nef in the usual sense. If L is semi-
positive in the sense of Remark 2.19, then L is nef. However, a nef line
bundle L is not necessarily semipositive in the sense of Remark 2.19.

Remark 3.4. Note that f is not necessarily smooth in Theorem 3.1. If
f is smooth in Theorem 3.1, then the nefness of f∗ωM/C follows directly
from Griffiths’s calculations of connections and curvatures in [Gri].

Although Fujita’s theorem was inspired by Griffiths’s paper [Gri] (see
Remark 3.4), Fujita’s original proof of Theorem 3.1 in [Fujita] is not
so Hodge theoretic. In the introduction of [Fujita], Fujita wrote:

The method looks rather elementary and purely compu-
tational, but it depends deeply (often implicitly) on the
theory of variation of Hodge structures.

Professor Steven Zucker informed me that he read Fujita’s article
[Fujita] when it appeared in 1978 and reproved Fujita’s theorem from
rather basic Hodge theory that appeals to Steenbrink’s work [St]. It is
clear that he had already been very familiar with Schmid’s result (see
[Sc]) on asymptotic behavior of Hodge metrics (see [Zuc1] and [Zuc2]).
I think that he could write [Zuc3] without any difficulties. It seems
that he is the first one who directly applies Hodge theory to obtain
semipositivity results like Theorem 3.1, that is, semipositivity results
for nonsmooth morphisms.

Independently, Kawamata obtained the following semipositivity the-
orem in [Kaw1] by using Schmid’s paper [Sc]. His result is:

Theorem 3.5 ([Kaw1, Theorem 5]). Let f : X → Y be a surjec-
tive morphism between smooth projective varieties with connected fibers
which satisfies the following conditions:
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(i) There is a Zariski open dense subset Y0 of Y such that D =
Y \ Y0 is a simple normal crossing divisor on Y .

(ii) Put X0 = f−1(Y0) and f0 = f |X0. Then f0 is smooth.
(iii) The local monodromies of Rnf0∗CX0 around D are unipotent,

where n = dimX − dimY .

Then f∗ωX/Y is a locally free sheaf and nef.

However, the proof of Theorem 3.5 in [Kaw1] seems to be insufficient
when dimY ≥ 2. We do not repeat the comments on the troubles in
[Kaw1] here. For the details, see the comments in [FFS, 4.6. Remarks].
Fortunately, we have some generalizations of Theorem 3.5 in [Fn2],
[FF], and [FFS] (see, for example, Theorem 3.6 below). The proofs in
[FF] and [FFS] are independent of Kawamata’s arguments in [Kaw1].
Note that our arguments in [FF] and [FFS] need some results on Hodge
theory obtained after the publication of Kawamata’s paper [Kaw1] (see,
for example, [CK], and [CKS]). Kawamata could and did use only
[Del], [Gri], and [Sc] on Hodge theory when he wrote [Kaw1]. Although
I sometimes called Theorem 3.5 the Fujita–Kawamata semipositivity
theorem (see, for example, [FF]), it is probably not accurate. It is
more appropriate to call it the Fujita–Zucker–Kawamata semipositivity
theorem. I apologize for suppressing Zucker’s contribution [Zuc3].

Theorem 3.5 follows from the theory of polarizable variation of pure
Hodge structure. It is natural to consider mixed generalizations of
Theorem 3.5. We have already seen that mixed Hodge structures on
cohomology with compact support are very useful (see Section 2). So,
we consider their variations and prove some powerful generalizations
of Theorem 3.5, which depend on the theory of gradedly polarizable
admissible variation of mixed Hodge structure (see, for example, [SZ],
and [Kas]). We have:

Theorem 3.6 (Semipositivity theorem). Let (X,D) be a simple nor-
mal crossing pair such that D is reduced and let f : X → Y be a projec-
tive surjective morphism onto a smooth complete algebraic variety Y .
Assume that every stratum of (X,D) is dominant onto Y . Let Σ be a
simple normal crossing divisor on Y such that every stratum of (X,D)
is smooth over Y ∗ = Y \Σ. Then Rpf∗ωX/Y (D) is locally free for every
p. We put X∗ = f−1(Y ∗), D∗ = D|X∗, and d = dimX − dimY . We
further assume that all the local monodromies on Rd−i(f |X∗\D∗)!QX∗\D∗

around Σ are unipotent. Then we obtain that Rif∗ωX/Y (D) is a nef lo-
cally free sheaf on Y .

For the definitions and the notation used in Theorem 3.6, see 6.6 and
6.7 in Section 6. Theorem 3.6 was first obtained in [FF]. Then, we gave
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an alternative proof of Theorem 3.6 based on Saito’s theory of mixed
Hodge modules (see [Sa1], [Sa2], and [Sa3]) in [FFS]. As an application
of Theorem 3.6, we establish the projectivity of various moduli spaces
(for the details, see [Fn6], [Fn8], [KvP], etc.). For a new approach, see
[Fn15]. In the introduction of [Fujita], Fujita wrote:

Perhaps our result is closely related with the problem
about the (quasi-)projectivity of moduli spaces. Of course,
however, the relation will not be simple.

Now we know that generalizations of Fujita’s semipositivity theorem
(see Theorem 3.1 and Theorem 3.6) with Viehweg’s covering arguments
(see [Vie1] and [Vie2]) are useful for the projectivity of coarse mod-
uli spaces of stable (log-)varieties (see, for example, [Ko2], [Fn8], and
[KvP]).

Anyway, by Theorem 3.5, we have:

Theorem 3.7 (Fujita, Zucker, Kawamata, · · · ). Let f : X → Y be a
surjective morphism between smooth projective varieties with connected
fibers. Then there exists a generically finite morphism τ : Y ′ → Y from
a smooth projective variety Y ′ with the following property. Let X ′ be
any resolution of the main component of X ×Y Y ′. Then f ′

∗ωX′/Y ′ is a
nef locally free sheaf, where f ′ is the composite X ′ → X ×Y Y ′ → Y ′.

Theorem 3.7 has already played crucial roles in the study of higher-
dimensional algebraic varieties. For some geometric applications, we
have to treat f∗ω

⊗m
X/Y or f ′

∗ω
⊗m
X′/Y ′ with m ≥ 2 (see Section 4). Thus we

have:

Conjecture 3.8 (Semipositivity of direct images of relative pluri-
canonical bundles). Let f : X → Y be a surjective morphism between
smooth projective varieties with connected fibers. Then there exists a
generically finite morphism τ : Y ′ → Y from a smooth projective vari-
ety Y ′ with the following property. Let X ′ be any resolution of the main
component of X ×Y Y ′ sitting in the following commutative diagram:

X ′ //

f ′

��

X

f
��

Y ′
τ

// Y.

Then f ′
∗ω

⊗m
X′/Y ′ is a nef locally free sheaf for every positive integer m.

Note that the local freeness of f ′
∗ω

⊗m
X′/Y ′ for m ≥ 2 in Conjecture 3.8

is highly nontrivial even when f ′ is a smooth projective morphism. The
following theorem by Siu (see [Siu2]) is nontrivial for m ≥ 2 and can
be proved only by using L2 methods. For a simpler proof, see [Pă1].
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Theorem 3.9 (Siu). Let f : X → Y be a smooth projective morphism
between smooth quasiprojective varieties with connected fibers. Then
f∗ω

⊗m
X/Y is locally free for every nonnegative integer m.

Theorem 3.9 is a clever application of the Ohsawa–Takegoshi L2

extension theorem. We have no Hodge theoretic proofs of Theorem
3.9. Therefore, we ask:

Problem 3.10. Find a Hodge theoretic proof or an algebraic proof of
Theorem 3.9.

We note:

Remark 3.11. If Y is projective in Theorem 3.9, then f∗ω
⊗m
X/Y is nef for

every positive integerm by Theorem 3.17 below. Therefore, Conjecture
3.8 holds true when f : X → Y is smooth.

We recommend the reader to see [FF] and [FFS] for the Hodge the-
oretic aspect of semipositivity theorems discussed in this section. Note
that the style of [FF] is the same as my other papers, whereas, [FFS]
is written in the language of Saito’s theory of mixed Hodge modules.

3.1. New semipositivity theorems using MMP. In this subsec-
tion, we discuss new semipositivity theorems obtained through the use
of the minimal model program, following [Fn12] and [Fn13].

Let us start with the definition of (good) minimal models. We rec-
ommend the reader to see 6.2 and 6.5 in Section 6 if he is not familiar
with the minimal model program.

Definition 3.12 (Good minimal models). Let f : X → Y be a projec-
tive morphism between normal quasiprojective varieties. Let ∆ be an
effective Q-divisor on X such that (X,∆) is kawamata log terminal. A
pair (X ′,∆′) sitting in a diagram

X

f   @
@@

@@
@@

@
ϕ //_______ X ′

f ′~~}}
}}
}}
}}

Y

is called a minimal model of (X,∆) over Y if

(i) X ′ is Q-factorial,
(ii) f ′ is projective,
(iii) ϕ is birational and ϕ−1 has no exceptional divisors,
(iv) ϕ∗∆ = ∆′,
(v) KX′ +∆′ is f ′-nef, and
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(vi) a(E,X,∆) < a(E,X ′,∆′) for every ϕ-exceptional divisor E
contained in X.

Furthermore, if KX′ + ∆′ is f ′-semiample, then (X ′,∆′) is called a
good minimal model of (X,∆) over Y . When Y is a point, we usually
omit “over Y ” in the above definitions; we sometimes simply say that
(X ′,∆′) is a relative (good) minimal model of (X,∆).

We also need the notion of weakly semistable morphisms introduced
by Abramovich–Karu (see [AK]).

Definition 3.13 (Weakly semistable morphisms). Let f : X → Y
be a projective surjective morphism between quasiprojective varieties.
Then f : X → Y is called weakly semistable if

(i) the varieties X and Y admit toroidal structures (UX ⊂ X) and
(UY ⊂ Y ) with UX = f−1(UY ),

(ii) with this structure, the morphism f is toroidal,
(iii) the morphism f is equidimensional,
(iv) all the fibers of the morphism f are reduced, and
(v) Y is smooth.

It then follows that X has only rational Gorenstein singularities (see
[AK, Lemma 6.1]). Both (UX ⊂ X) and (UY ⊂ Y ) are toroidal embed-
dings without self-intersection in the sense of [KKMS, Chapter II, §1].
For the details, see [AK].

We propose the following conjecture.

Conjecture 3.14. Let f : X → Y be a weakly semistable morphism
with connected fibers. Then f∗ω

⊗m
X/Y is locally free for every m ≥ 1.

By the argument in [Fn12, Section 4] (see also [Fn13]), we have:

Theorem 3.15 (Local freeness). Let f : X → Y be a weakly semistable
morphism with connected fibers. Assume that the geometric generic
fiber Xη of f : X → Y has a good minimal model. Then f∗ω

⊗m
X/Y is

locally free for every m ≥ 1.

Sketch of Proof of Theorem 3.15. Let us consider the following com-
mutative diagram:

X

f ��?
??

??
??

?
ϕ //_______ X̃

f̃����
��
��
��

Y

where f̃ : X̃ → Y is a relative good minimal model of f : X → Y . We
can always construct a relative good minimal model by the assumption
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that the geometric generic fiber of f has a good minimal model. Then
we have

(♡) f∗ω
⊗m
X/Y ≃ f̃∗OX̃(mKX̃/Y )

for every positive integer m. We note that X has only rational Goren-
stein singularities.

The following lemma due to Nakayama is a variant of Kollár’s torsion-
freeness: Theorem 2.5 (i). It is a key ingredient of the proof of Theorem
3.15.

Lemma 3.16 ([Nak, Corollary 3]). Let g : V → C be a projective sur-
jective morphism from a normal quasiprojective variety V to a smooth
quasiprojective curve C. Assume that V has only canonical singulari-
ties and that KV is g-semiample. Then Rig∗OV (mKV ) is locally free
for every i and every positive integer m.

By the above isomorphism (♡), it is sufficient to prove the local

freeness of f̃∗OX̃(mKX̃/Y ). Let P be an arbitrary closed point of Y .
Since f : X → Y is weakly semistable, we can prove that the diagram

X
ϕ _______

f ��?
??

??
??

? X̃

f̃����
��
��
��

Y

behaves well under the base change by C ↪→ Y , where C is a general
smooth curve on Y passing through P . Roughly speaking, by this ob-
servation, we can reduce the problem to the case when Y is a smooth

projective curve. Note that f and f̃ are both flat. By Lemma 3.16, we

see that dimH0(X̃y,OX̃(mKX̃/Y )|X̃y
) is independent of y ∈ Y . There-

fore, f̃∗OX̃(mKX̃/Y ) is locally free by the flat base change theorem.

Thus, we obtain that f∗ω
⊗m
X/Y is locally free. For the details, see [Fn12,

Section 4] and [Fn13]. □

By the argument in [Fn12, Section 5], we can prove:

Theorem 3.17 (Semipositivity). Let f : X → Y be a weakly semistable
morphism between projective varieties with connected fibers. Let m ≥ 1
be fixed. Assume that f∗ω

⊗m
X/Y is locally free. Then f∗ω

⊗m
X/Y is nef.

Idea of Proof of Theorem 3.17. The following theorem by Popa–Schnell
is a clever and interesting application of the Kollár vanishing theo-
rem: Theorem 2.5 (ii).
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Theorem 3.18 ([PoSc, Theorem 1.4]). Let f : V → W be a surjective
morphism from a smooth projective variety V onto a projective variety
W with dimW = n. Let L be an ample line bundle on W such that
|L| has no base points. Let k be a positive integer. Then

f∗ω
⊗k
V ⊗ L⊗l

is generated by global sections for every l ≥ k(n+ 1).

By Viehweg’s fiber product trick and the local freeness of f∗ω
⊗m
X/Y ,

we can prove that there exists an ample line bundle A on Y such that(
s⊗

f∗ω
⊗m
X/Y

)
⊗A

is generated by global sections for every positive integer s by Theorem
3.18. Here, we used the fact that weakly semistable morphisms behave
well by taking fiber products. This implies that f∗ω

⊗m
X/Y is nef. For the

details, see [Fn12, Section 5]. □
As we saw above, a key ingredient of Theorem 3.15 (resp. Theorem

3.17) is Kollár’s torsion-freeness (resp. Kollár’s vanishing theorem). Of
course, the existence of relative good minimal models plays a crucial
role in the proof of Theorem 3.15.

Remark 3.19. In the proof of Theorem 3.15, we need the finite gen-
eration of relative canonical ring

R(X/Y ) =
∞⊕
m

f∗OX(mKX)

from [BCHM] to construct a relative good minimal model of f : X →
Y . Note that the finite generation of R(X/Y ) is more or less Hodge
theoretic when Xη is not of general type. This is because the reduction
argument due to Fujino–Mori (see Theorem 5.4 below and [FMo]) uses
Theorem 3.5.

Remark 3.20. Let V be a smooth projective variety. It is well-known
that V has a good minimal model when dimV − κ(V ) ≤ 3.

By combining Theorem 3.15 with Theorem 3.17, we obtain:

Theorem 3.21. Let f : X → Y be a surjective morphism between
smooth projective varieties with connected fibers. Assume that

f : X
δ−→ X† f†

−→ Y

such that f † : X† → Y is weakly semistable and that δ is a resolution
of singularities. We further assume that the geometric generic fiber Xη
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of f has a good minimal model. Then f∗ω
⊗m
X/Y is a nef locally free sheaf

for every positive integer m.

By the weak semistable reduction theorem due to Abramovich–Karu
(see [AK]) and Theorem 3.21, we have:

Theorem 3.22. Let f : X → Y be a surjective morphism between
smooth projective varieties with connected fibers. Assume that the geo-
metric generic fiber Xη of f : X → Y has a good minimal model.
Then there exists a generically finite morphism τ : Y ′ → Y from a
smooth projective variety Y ′ with the following property. Let X ′ be any
resolution of the main component of X ×Y Y ′ sitting in the following
commutative diagram:

X ′ //

f ′

��

X

f
��

Y ′
τ

// Y.

Then f ′
∗ω

⊗m
X′/Y ′ is a nef locally free sheaf for every positive integer m.

This means that Conjecture 3.8 holds true under the assumption
that the geometric generic fiber of f has a good minimal model. More
precisely, Conjecture 3.8 follows from Conjecture 3.14 by the weak
semistable reduction theorem due to Abramovich–Karu (see [AK]) and
Theorem 3.17. Moreover, Conjecture 3.14 holds under the assump-
tion that the geometric generic fiber has a good minimal model (see
Theorem 3.15).

We close this section with Takayama’s result. Using complex analytic
methods, Takayama in [Taka] strengthened Theorem 3.21 as follows.

Theorem 3.23 (Takayama). In Theorem 3.21, for every positive in-
teger m, the m-th Narasimhan–Simha Hermitian metric gm on the lo-
cally free sheaf Em = f∗ω

⊗m
X/Y has Griffiths semipositive curvature, the

induced singular Hermitian metric h = e−φ on OPX(Em)(1) of PX(Em)
has semipositive curvature, and the Lelong number of the local weight
φ is zero everywhere on PX(Em). In particular, OPX(Em)(1) is nef.

For the definition of the Narasimhan–Simha Hermitian metric and
the details of Theorem 3.23, see the original paper [Taka]. We point
out that Theorem 3.23 is based on the arguments in [Fn12] and [Fn13].

I am not so familiar with the analytic aspect of semipositivity the-
orems. For the details, see [Ber], [BP1], [BP2], [Mou], [MT1], [MT2],
[MT3], [PăT], [Taka], etc.
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4. Canonical divisors versus pluricanonical divisors

In this section, let us see that mKX with m ≥ 2 sometimes behaves
much better than KX . We will discuss two different topics: Kollár’s
result on plurigenera in étale covers of smooth projective varieties of
general type and Viehweg’s ampleness theorem on direct images of rela-
tive pluricanonical bundles of semistable families of projective varieties.
I was very much impressed by these results.

4.1. Plurigenera in étale covers. Let us recall Kollár’s famous re-
sult on plurigenera in étale covers of smooth projective varieties of
general type (see [Ko3]). For the details and some related topics, see
also [Ko5, 2. Vanishing Theorems] and [Ko4, Chapter 15].

Theorem 4.1 (Kollár). Let X be a smooth projective variety of general
type. Let f : Y → X be an étale morphism from a smooth projective
variety Y . Then we have

h0(Y,OY (mKY )) = deg f · h0(X,OX(mKX))

for every positive integer m ≥ 2.

Here, we will present Lazarsfeld’s proof of Theorem 4.1 following
[Laz, Theorem 11.2.23]. It is actually an easy application of the theory
of asymptotic multiplier ideal sheaves. We will give an alternative proof
of Theorem 4.1 after we discuss canonical models of smooth projective
varieties of general type in Theorem 4.5.

Proof. Let D be a big Cartier divisor on X. Then J (X, ||D||) denotes
the asymptotic multiplier ideal sheaf associated to the complete lin-
ear systems |mD| for all m ≫ 0. For the details of J (X, ||D||), see
[Laz, Chapter 11]. By the Nadel vanishing theorem (see [Laz, Theo-
rem 11.2.12 (ii)]),

H i(X,OX(mKX)⊗ J (X, ||(m− 1)KX ||)) = 0

for every i > 0 and every m ≥ 2. Therefore, we have

h0(X,OX(mKX)⊗ J (X, ||(m− 1)KX ||))
= χ(X,OX(mKX)⊗ J (X, ||(m− 1)KX ||))

for every m ≥ 2. Since J (X, ||mKX ||) ⊂ J (X, ||(m− 1)KX ||) (see [Laz,
Theorem 11.1.8 (ii)]), we have

H0(X,OX(mKX)⊗ J (X, ||mKX ||))
= H0(X,OX(mKX)⊗ J (X, ||(m− 1)KX ||))
= H0(X,OX(mKX))
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for every m ≥ 1 by [Laz, Proposition 11.2.10]. Thus, we obtain

h0(X,OX(mKX)) = χ(X,OX(mKX)⊗ J (X, ||(m− 1)KX ||))
for every m ≥ 2. Similarly, we have

h0(Y,OY (mKY )) = χ(Y,OY (mKY )⊗ J (Y, ||(m− 1)KY ||))
for m ≥ 2. Since f is étale, KY = f ∗KX and

J (Y, ||(m− 1)KY ||) = f ∗J (X, ||(m− 1)KX ||)
by [Laz, Theorem 11.2.16]. Thus we have

χ(Y,OY (mKY )⊗ J (Y, ||(m− 1)KY ||))
= χ(Y, f ∗(OX(mKX)⊗ J (X, ||(m− 1)KX ||)))
= deg f · χ(X,OX(mKX)⊗ J (X, ||(m− 1)KX ||))

form ≥ 2. Therefore, we obtain the desired equality h0(Y,OY (mKY )) =
deg f · h0(X,OX(mKX)) for every m ≥ 2. □

The proof of Theorem 4.1 says that mKX with m ≥ 2 should be
seen as KX + (m− 1)KX . Since m ≥ 2, (m− 1)KX is big. Therefore,
we can apply the Nadel vanishing theorem to

OX(mKX)⊗ J (X, ||(m− 1)KX ||)
= OX(KX + (m− 1)KX)⊗ J (X, ||(m− 1)KX ||).

Obviously, the equality in Theorem 4.1 does not hold for m = 1.

Example 4.2. Let C be a smooth projective curve with the genus

g(C) ≥ 2. Let f : C̃ → C be an étale cover with deg f = n ≥ 2. Then
we have

2g(C̃)− 2 = n(2g(C)− 2)

by Hurwitz’s formula. This implies that g(C̃) = n(g(C)− 1)+1. Thus
we have

h0(C̃,OC̃(KC̃)) ̸= n · h0(C,OC(KC)).

The following example also shows that mKX with m ≥ 2 sometimes
contains much more information than KX .

Example 4.3 (Godeaux surface). We put

Y = (Z5
0 + Z5

1 + Z5
2 + Z5

3 = 0) ⊂ P3.

Then Y is a smooth projective surface such that

OY (KY ) = OP3(−4 + 5)|Y = OY (1)

is very ample. Therefore, Y is of general type,

h0(Y,OY (KY )) = h0(P3,OP3(1)) = 4,
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and q(Y ) = h1(Y,OY ) = 0. We put G = Z/5Z. Then G acts freely on
Y by

[Z0 : Z1 : Z2 : Z3] 7→ [Z0 : ζZ1 : ζ
2Z2 : ζ

3Z3]

where ζ = exp
(

2π
√
−1

5

)
. We put X = Y/G. Then X is a smooth

projective surface with ample canonical divisor. Let f : Y → X be the
natural map. Then f is a finite étale morphism. We can directly check
that h0(X,OX(KX)) = 0 by H0(X,OX(KX)) = H0(Y,OY (KY ))

G.
Note that q(X) = h1(X,OX) = 0, K2

Y = 5, and K2
X = 1. We also

note that X is known as a Godeaux surface. It is well-known that the
linear system |mKX | gives an embedding into a projective space for
every m ≥ 5. Note that

4 = h0(Y,OY (KY )) ̸= deg f · h0(X,OX(KX)) = 0.

4.4 (Canonical models). Let us discuss canonical models of finite étale
covers of smooth projective varieties of general type. The existence of
canonical models was unkonwn when [Ko3] was written. Let π : V →
W be a projective surjective morphism from a smooth quasiprojective
variety V onto a quasiprojective variety W . Assume that KV is π-big.
Then, by [BCHM], the (relative) canonical ring

R(V/W ) =
∞⊕

m=0

π∗OV (mKV )

is a finitely generated OW -algebra. We put

Vc = ProjWR(V/W )

and call it the canonical model of V over W or the relative canonical
model of π : V → W . It is well-known that Vc is birationally equivalent
to V over W , Vc has only canonical singularities, and KVc is ample over
W .

A finite étale morphism between smooth projective varieties of gen-
eral type induces a natural finite étale morphism between their canon-
ical models:

Theorem 4.5. Let f : Y → X be a finite étale morphism between
smooth projective varieties of general type. Let Xc be the canonical
model of X and let Yc be the canonical model of Y . Then there exists
a finite étale morphism fc : Yc → Xc such that

Y

f
��

//___ Yc

fc
��

X //___ Xc
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is commutative.

The following proof was suggested by Yoshinori Gongyo.

Proof. By taking an elimination of indeterminacy of X 99K Xc and the
base change of Y , we may assume that g : X → Xc is a morphism.
Let Y ′ → Xc be the relative canonical model of g ◦ f : Y → Xc

(see [BCHM] and 4.4). Then, by using the negativity lemma (see, for
example, [KoM, Lemma 3.39]), we see that KY ′ = f ′∗KXc and that
f ′ : Y ′ → Xc is finite since KY ′ is f ′-ample. Therefore, KY ′ is ample
since KXc is ample. This implies that Y ′ = Yc, that is, Y ′ is the
canonical model of Y . Note that Y is smooth and is finite over X.
Therefore, Y is the normalization of the main component of X ×Xc Yc.
Thus we obtain the following commutative diagram:

Y

f
��

// Yc

fc
��

X g
// Xc.

By Lemma 4.8 below, we obtain that fc is a finite étale morphism. □

By the proof of Theorem 4.5, we have:

Theorem 4.6. Let f : Y → X be a finite étale morphism between
smooth projective varieties. Let Xm be a minimal model of X. Then
we can construct a commutative diagram:

Y

f

��

φ //___ Ỹ

f̃
��

X //___ Xm

such that f̃ : Ỹ → Xm is a finite étale morphism and that φ is bira-
tional.

For the definition of minimal models, recall Definition 3.12.

Proof. As in the proof of Theorem 4.5, we may assume that g : X →
Xm is a morphism. Let f̃ : Ỹ → Xm be the relative canonical model

of g ◦ f : Y → Xm. Then, by the proof of Theorem 4.5, φ : Y 99K Ỹ

and f̃ : Ỹ → Xm satisfy the desired properties. □

Related to Theorem 4.5 and Theorem 4.6, we have:



24 OSAMU FUJINO

Problem 4.7. Find a projective variety X such that X has only Q-
factorial terminal (or canonical) singularities with nef (or ample) canon-
ical divisor and a finite étale morphism f : Y → X such that Y is not
Q-factorial.

The following lemma is a special case of [NZ, Lemma 3.9].

Lemma 4.8. We consider the following commutative diagram of quasipro-
jective varieties:

Y
q //

f
��

W

h
��

X p
// V

such that

(i) X and Y are smooth,
(ii) p and q are projective birational morphisms,
(iii) V and W are normal and have only rational singularities,
(iv) f is a finite étale morphism, and
(v) h is finite.

Then h is an étale morphism.

We give a proof for the reader’s convenience. It is interesting for
me that the proof of Lemma 4.8 below uses the E1-degeneration of
Hodge to de Rham type spectral sequences for projective simple normal
crossing varieties.

Proof. We take an arbitrary point P ∈ V . By taking a birational
modification of X and the base change of Y , we may assume that
E = Supp(p−1(P )) is a simple normal crossing divisor on X. Since
f is étale, f−1(E) is a simple normal crossing divisor on Y . Note
that f−1(E) is the disjoint union of EQ = Supp(q−1(Q)) for points
Q ∈ h−1(P ). Since V has only rational singularities, Rip∗OX = 0 for
every i > 0.

Claim. The natural map

π : H i(E,C) → H i(E,OE)

induced by the inclusion CE ↪→ OE is surjective for every i.

Proof of Claim. By using the Mayer–Vietoris simplicial resolution of
a projective simple normal crossing variety E, we can construct a co-
homological mixed Hodge complex (KZ, (KQ,WQ), (KC,W, F )) which
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induces a natural mixed Hodge structure on H•(E,Z). By the theory
of mixed Hodge structures, we see that

Ep,q
1 = Hp+q(E,GrpFKC) ⇒ Hp+q(E,C)

degenerates at E1. We can directly check that Gr0FKC is quasi-isomorphic
to OE by using the Mayer–Vietoris simplicial resolution of E. Thus,
we obtain that

π : H i(E,C) → H i(E,OE)

is surjective for every i. □

By the following commutative diagram:

(Rip∗CX)P

��

≃ // H i(E,C)

π
��

(Rip∗OX)P // H i(E,OE),

we obtain that H i(E,OE) = 0 for every i > 0, as Rip∗OX = 0 for every
i > 0. Thus, we obtain χ(E,OE) = 1. By the same argument, we have
χ(EQ,OEQ

) = 1. On the other hand,

χ(f−1(E),Of−1(E)) = deg f · χ(E,OE) = deg f

since f is étale. Therefore, we have

♯h−1(P ) =
∑

Q∈h−1(P )

χ(EQ,OEQ
) = χ(f−1(E),Of−1(E)) = deg f.

This implies that f : EQ → E is an isomorphism for every Q ∈ h−1(P ).
Thus, by the theorem on formal functions, we have

ÔV,P = (p∗OX)
∧
P ≃ (q∗OY )

∧
Q = ÔW,Q

for every Q ∈ h−1(P ). Thus, h is an étale morphism. □

We give an alternative proof of Theorem 4.1, one that is natural from
the minimal model theoretic viewpoint. Unfortunately, it may be more
complicated than Lazarsfeld’s proof given before.

Proof of Theorem 4.1. By Theorem 4.5, we may replace f : Y → X
with fc : Yc → Xc. Note that

h0(Xc,OXc(mKXc)) = h0(X,OX(mKX))

and

h0(Yc,OYc(mKYc)) = h0(Y,OY (mKY ))
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for every m ≥ 1. By the Kawamata–Viehweg vanishing theorem for
singular varieties (see, for example, [Fn11, Corollary 5.7.7]), we have

H i(Xc,OXc(mKXc)) = H i(Yc,OYc(mKYc)) = 0

for every i > 0 and every m ≥ 2. We also note that f ∗
cOXc(mKXc) =

OYc(mKYc) for every m since fc is étale. Therefore, we obtain

h0(Yc,OYc(mKYc)) = χ(Yc,OYc(mKYc))

= deg fc · χ(Xc,OXc(mKXc))

= deg fc · h0(Xc,OXc(mKXc))

for every m ≥ 2. This implies the desired equality. □

Remark 4.9. In Lemma 4.8, the assumption that V and W have only
rational singularities (see (iii) in Lemma 4.8) is indispensable.

Consider the following example. Let C ⊂ P2 be an elliptic curve and
let V ⊂ P3 be a cone over C ⊂ P2. Let p : X → V be the blow-up at
the vertex P of V and let E be the p-exceptional divisor on X. Note
that there is a natural P1-bundle structure π : X → C and E is a
section of π. We take a nontrivial finite étale cover D → C. We put
Y = X ×C D and F = E ×C D. Let H be an ample Cartier divisor on
V . We consider q = Φ|mf∗p∗H| : Y → W for a sufficiently large positive
integer m. Note that q contracts F to an isolated normal singular point
Q of W . Then we have the following commutative diagram

Y
q //

f
��

W

h
��

X p
// V

such that f is étale, h is finite, but h is not étale. Note that h−1(P ) = Q
since f−1(E) = F . It is also false that the singularities of V and W
are rational.

4.2. Viehweg’s ampleness theorem. We treat direct images of rela-
tive pluricanonical bundles. The following theorem is buried in Viehweg’s
papers (see [Vie1] and [Vie2]). The statement seems to be magical.

Theorem 4.10 (Viehweg). Let f : X → Y be a surjective morphism
from a smooth projective variety X onto a smooth projective curve Y
with connected fibers. Then f∗ω

⊗m
X/Y is nef for every positive integer m.

In particular, we have deg det f∗ω
⊗m
X/Y ≥ 0 for every positive integer m.

Assume that f is semistable. If deg det f∗ω
⊗k
X/Y > 0, that is, det f∗ω

⊗k
X/Y
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is ample, for some positive integer k, then f∗ω
⊗k′

X/Y is ample, where k′

is any multiple of k with k′ ≥ 2.

Proof. From Kawamata (see [Kaw2, Theorem 1]), we have that f∗ω
⊗m
X/Y

is nef for every m ≥ 1. Or, by Viehweg’s weak positivity: [Vie1, The-
orem III] (see also [Fn14, Theorem 4.3 and Theorem 5.5] and Remark
4.14 below), f∗ω

⊗m
X/Y is weakly positive for every m ≥ 1. Since Y is

a smooth projective curve, the weak positivity implies that f∗ω
⊗m
X/Y is

nef for every m ≥ 1. By [Vie2, Theorem 3.5] (see also [Fn14, Theorem

5.11]), deg det f∗ω
⊗k
X/Y > 0 implies that f∗ω

⊗k′

X/Y is big in the sense of

Viehweg (see [Fn14, Definition 3.1]) when f is semistable. Then, by
[Vie2, Lemma 3.6] (see also [Fn14, Lemma 3.7]), there is a generically
isomorphic injection ⊕

r

A → Sν(f∗ω
⊗k′

X/Y )

for some ample invertible sheaf A on Y and some positive integer ν,
where r = rankSν(f∗ω

⊗k′

X/Y ). This implies that Sν(f∗ω
⊗k′

X/Y ) is ample by

[Laz, Theorem 6.4.15]. Therefore, f∗ω
⊗k′

X/Y is ample by [Har, Proposition

(2.4)]. □
Roughly speaking, Theorem 4.10 says if f∗ωX/Y is a little bit posi-

tive then f∗ω
⊗m
X/Y is very positive for m ≥ 2. Viehweg’s arguments in

[Vie1] and [Vie2] (see also [Fn14]) use his clever covering trick and fiber
product trick. They are geometric. It seems to be very important to
find a more direct approach to Theorem 4.10. Thus, we have:

Problem 4.11. Find an analytic (and more direct) proof of Theorem
4.10.

The example by Catanese–Dettweller (see [CD1], [CD2], and [CD3])
below says that the condition k′ ≥ 2 in Theorem 4.10 is indispensable.

Example 4.12 (Catanese–Dettweller). There exist a smooth projec-
tive surface X of general type and a smooth projective curve Y such
that f : X → Y is semistable and that f∗ωX/Y = A⊕Q, where A is an
ample vector bundle of rank 2 and Q is a unitary flat vector bundle of
rank 4. Moreover, Q is not semiample. In this case, deg det f∗ωX/Y > 0.
By Theorem 4.10, f∗ω

⊗m
X/Y is ample for every m ≥ 2. However, f∗ωX/Y

is not ample.

Note that the construction of Example 4.12 in [CD2] depends on
the theory of variation of Hodge structure. For the details, see [CD1],
[CD2], and [CD3].
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Problem 4.13. Find similar examples to Example 4.12 that do not
use the theory of variation of Hodge structure.

Although we do not discuss Viehweg’s weak positivity in this paper,
we give a remark on the weak positivity of f∗ω

⊗m
X/Y for the interested

reader:

Remark 4.14. Let f : X → Y be a surjective morphism between
smooth projective varieties with connected fibers. Then f∗ω

⊗m
X/Y is

weakly positive for every positive integer m by Viehweg (see [Vie1]).
Viehweg’s original proof of his weak positivity uses Theorem 3.5. Given
what we know now, we can prove the weak positivity of f∗ω

⊗m
X/Y by

Kollár’s vanishing theorem: Theorem 2.5 (ii). Moreover, Theorem 3.18
drastically simplifies the proof of Viehweg’s weak positivity of f∗ω

⊗m
X/Y .

For the details, see [Fn14].

Anyway, we should consider not only KX but also mKX with m ≥ 2
in order to understand complex projective varieties much better.

5. On finite generation of (log) canonical rings

In this section, we quickly discuss the finite generation of (log) canon-
ical rings due to Birkar–Cascini–Hacon–McKernan (see [BCHM]) and
some related topics (see [FMo] and [Fn10]). For simplicity, we only
treat the absolute setting in this section. However, the relative setting
is very important and is indispensable for some applications (cf. Re-
mark 3.19).

Theorem 5.1. Let X be a smooth projective variety and let ∆ be an
effective Q-divisor on X such that Supp∆ is a simple normal crossing
divisor and that the coefficients of ∆ are less than one. Assume that
KX +∆ is big. Then the log canonical ring

R(X,KX +∆) =
∞⊕

m=0

H0(X,OX(⌊m(KX +∆)⌋))

is a finitely generated C-algebra.

Theorem 5.1 was first obtained in [BCHM]. For the proof of Theorem
5.1, see also [CL] and [Pă2]. We know that the proof of Theorem 5.1 was
greatly influenced by Siu’s extension argument (see [Siu1]) based on the
Ohsawa–Takegoshi L2 extension theorem (see [HM], [CL], and [Pă2])
although [HM] and [CL] only use the Kawamata–Viehweg vanishing
theorem and do not use L2 methods. I feel that Theorem 5.1 is not
Hodge theoretic. It is natural to see that Theorem 5.1 is more closely
related to L2 methods than to Hodge theory.
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By combining Theorem 5.1 with the result in [FMo], we have:

Theorem 5.2. Let X be a smooth projective variety and let ∆ be an
effective Q-divisor on X such that Supp∆ is a simple normal crossing
divisor and that the coefficients of ∆ are less than one. Then the log
canonical ring

R(X,KX +∆) =
∞⊕

m=0

H0(X,OX(⌊m(KX +∆)⌋))

is a finitely generated C-algebra.

Note that we do not assume that KX +∆ is big in Theorem 5.2. As
a corollary of Theorem 5.2, we get when ∆ = 0:

Corollary 5.3. Let X be a smooth projective variety. Then the canon-
ical ring

R(X) =
∞⊕

m=0

H0(X,OX(mKX))

is a finitely generated C-algebra.

We note that the formulation of Theorem 5.1, which may look artifi-
cial, is indispensable for the proof of Corollary 5.3. We will see how to
reduce Theorem 5.2 to Theorem 5.1. I think that this reduction step
is more or less Hodge theoretic. I do not know how to prove Corollary
5.3 without using this reduction argument based on the Fujino–Mori
canonical bundle formula (see [FMo]). We can prove the following the-
orem from [FMo].

Theorem 5.4 (Fujino–Mori). Let X be a smooth projective variety, let
∆ be an effective Q-divisor on X such that Supp∆ is a simple normal
crossing divisor with ⌊∆⌋ = 0. Let f : X → Y be a surjective morphism
between smooth projective varieties with connected fibers. Assume that
κ(Xη, KXη

+ ∆|Xη
) = 0 where Xη is the geometric generic fiber of

f : X → Y . Then we can construct a commutative diagram:

X

f
��

X ′poo

f ′

��
Y Y ′

q
oo

with the following properties.

(i) p and q are projective birational morphisms.
(ii) X ′ and Y ′ are smooth projective varieties.
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(iii) There exists an effective Q-divisor ∆′ on X ′ such that Supp∆′

is a simple normal crossing divisor on X ′ with ⌊∆′⌋ = 0 and
that

H0(X,OX(⌊m(KX +∆)⌋)) ≃ H0(X ′,OX′(⌊m(KX′ +∆′)⌋))
for every positive integer m.

(iv) There exist a positive integer k, a nef Q-divisor M on Y ′, and
an effective Q-divisor D on Y ′ such that SuppD is a simple
normal crossing divisor with ⌊D⌋ = 0 and that

H0(X ′,OX′(⌊mk(KX′ +∆′)⌋))
≃ H0(Y ′,OY ′(⌊mk(KY ′ +M +D)⌋))

for every positive integer m.

We do not give a proof of Theorem 5.4 here. For the details, see
[FMo, Theorem 4.5].

Remark 5.5. Theorem 5.4 is an application of the Fujino–Mori canon-
ical bundle formula discussed in [FMo]. The Q-divisor M is called the
semistable part in [FMo] and now is usually called the moduli part in
the literature. Note that the nefness of M comes from Theorem 3.5.
Therefore, Theorem 5.4 is more or less Hodge theoretic.

Using Kodaira’s lemma and Hironaka’s resolution theorem, we can
prove:

Proposition 5.6. If KY ′ +M +D is big in Theorem 5.4, then there
exist a birational morphism r : Z → Y ′ from a smooth projective variety
Z, an effective Q-divisor ∆Z on Z, and positive integers a and b such
that Supp∆Z is a simple normal crossing divisor with ⌊∆Z⌋ = 0 and
that

H0(Y ′,OY ′(⌊ma(KY ′ +M +D)⌋))
≃ H0(Z,OZ(⌊mb(KZ +∆Z)⌋))

for every positive integer m.

Proof. This is an easy consequence of Kodaira’s lemma on big Q-
divisors and Hironaka’s resolution of singularities. We note that we
can choose ∆Z with ⌊∆Z⌋ = 0 since M is nef and ⌊D⌋ = 0. More
precisely, by Kodaira’s lemma, we have KY ′ +M +D ∼Q A+E, where
A is an ample Q-divisor and E is an effective Q-divisor. Thus we have
(1+ ε)(KY ′ +M +D) ∼Q KY ′ +(M + εA)+D+ εE for every positive
rational number ε. If ε is sufficiently small, then (Y ′, D+ εE) is kawa-
mata log terminal. Since M + εA is ample, we can take an effective
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Q-divisor B such that B ∼Q M + εA and that (Y ′,∆Y ′) is still kawa-
mata log terminal, where ∆Y ′ = B +D + εE. Therefore, we can find
positive integers a and b such that a(KY ′ +M +D) ∼ b(KY ′ + ∆Y ′).
By Hironaka’s resolution theorem, we can take r : Z → Y ′ and ∆Z

such that Supp∆Z is a simple normal crossing divisor with ⌊∆Z⌋ = 0
and that H0(Z,OZ(⌊m(KZ +∆Z)⌋)) ≃ H0(Y ′,OY ′(⌊m(KY ′ +∆Y ′)⌋))
for every positive integer m. Thus we have the desired properties. □

Let us see how to prove Theorem 5.2 by using Theorem 5.1, Theorem
5.4, and Proposition 5.6.

Proof of Theorem 5.2. Let X and ∆ be as in Theorem 5.2. Assume
that κ(X,KX + ∆) ≥ 0 and that KX + ∆ is not big. We consider
the Iitaka fibration Φ|m(KX+∆)| : X 99K Y for some large and divisible
positive integer m. By taking a suitable birational modification, we
may assume that f : X → Y is a surjective morphism between smooth
projective varieties with connected fibers. Then we apply Theorem 5.4
and Proposition 5.6 to f : X → Y . Thus, we see that R(X,KX +∆) is
a finitely generated C-algebra if and only if R(Z,KZ +∆Z) is a finitely
generated C-algebra. By Theorem 5.1, we know that R(Z,KZ +∆Z) is
a finitely generated C-algebra. Therefore, we obtain Theorem 5.2. □

As I explained in Remark 5.5, Theorem 5.4 is more or less Hodge
theoretic. So, we pose:

Problem 5.7. Prove Corollary 5.3 without using Hodge theory.

Remark 5.8. Theorem 3.5 holds true under the assumption that X is
only a compact Kähler manifold. This is because we can use the theory
of variation of Hodge structure even for compact Kähler manifolds.
Therefore, Theorem 5.4 holds true under the assumption that X is a
compact complex manifold in Fujiki’s class C. As a consequence, we
see that Theorem 5.2 holds for compact complex manifolds in Fujiki’s
class C. For the details, see [Fn10, Section 5]. As a special case, we
have the corollary below.

Corollary 5.9. Let X be a compact Kähler manifold. Then the canon-
ical ring

R(X) =
∞⊕

m=0

H0(X,ω⊗m
X )

is a finitely generated C-algebra.

Remark 5.10. There exists a compact complex non-Kähler manifold
whose canonical ring is not a finitely generated C-algebra (see [Fn10,
Example 6.4], which is essentially due to Wilson [Wil]). This means
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that Corollary 5.9 does not hold for compact complex non-Kähler man-
ifolds. The reader can find a smooth morphism f : X → Y from a
compact complex non-Kähler manifold X onto Y = P1 with connected
fibers such that f∗ωX/Y ≃ OP1(−2) (see [Fn10, Example 6.1]). This
example is due to Atiyah. Therefore, Theorem 3.5 does not hold for
compact non-Kähler manifolds. Of course, by this example, we see that
Theorem 5.4 does not hold true without assuming that X is a compact
complex manifold in Fujiki’s class C. For the details, see [Fn10].

As a generalization of Theorem 5.2, we have Conjecture 5.11, where
we are allowing the coefficients of ∆ to equal one.

Conjecture 5.11. Let X be a smooth projective variety and let ∆
be an effective Q-divisor on X such that Supp∆ is a simple normal
crossing divisor and that the coefficients of ∆ are less than or equal to
one. Then the log canonical ring

R(X,KX +∆) =
∞⊕

m=0

H0(X,OX(⌊m(KX +∆)⌋))

is a finitely generated C-algebra.

Remark 5.12. Of course, we think that Conjecture 5.11 also holds for
compact complex manifolds in Fujiki’s class C. However, I could not
reduce Conjecture 5.11 for compact complex manifolds in Fujiki’s class
C to Conjecture 5.11 for projective varieties. Therefore, Conjecture
5.11 for compact complex manifolds in Fujiki’s class C may be much
harder than for projective varieties. For the details, see [Fn10].

I have already discussed Conjecture 5.11 in detail in a joint paper
with Yoshinori Gongyo (see [FG]). In [FG], we clarified the relationship
among various conjectures in the minimal model program related to
Conjecture 5.11. So we do not repeat the discussions about Conjecture
5.11 here. We strongly recommend the interested reader to see [FG].

In order to prove Conjecture 5.11, the following famous conjecture
seems to be unavoidable. I think that it is a very difficult open problem
for higher-dimensional algebraic varieties.

Conjecture 5.13 (Nonvanishing conjecture). Let X be a smooth pro-
jective variety such that the canonical divisor KX is pseudoeffective.
Then we have H0(X,OX(mKX)) ̸= 0 for some positive integer m,
equivalently, κ(X) ≥ 0.

For the reader’s convenience, let us recall the definition of pseudoef-
fective divisors.
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Definition 5.14. Let X be a smooth projective variety and let D be
a Cartier divisor on X. Then D is pseudoeffective if D + A is big for
every ample Q-divisor A on X.

The characterization of pseudoeffective divisors via singular hermit-
ian metrics may be helpful.

Remark 5.15. Let X be a smooth projective variety and let D be a
Cartier divisor on X. Then D is pseudoeffective if and only if OX(D)
has a singular hermitian metric h with

√
−1Θh ≥ 0 in the sense of

currents.

The characterization of uniruled varieties due to Boucksom–Demailly–
Păun–Peternell (see [BDPP]) is important and helps us understand
Conjecture 5.13.

Theorem 5.16. Let X be a smooth projective variety. Then X is
uniruled if and only if KX is not pseudoeffective.

For the reader’s convenience, we recall the definition of uniruled va-
rieties.

Definition 5.17. Let X be a smooth projective variety with dimX =
n. Then X is uniruled if there exist a smooth projective variety Y with
dimY = n− 1 and a dominant rational map Y × P1 99K X.

Therefore, Conjecture 5.13 says that the Kodaira dimension of X is
nonnegative if X is not covered by rational curves. Thus, Conjecture
5.13 looks very reasonable. However, I do not know how to attack it.

Remark 5.18 (Added in September 2016). By Kenta Hashizume’s
recent result, Conjecture 5.13 implies that any projective log canonical
pair (X,∆) such that KX +∆ is pseudoeffective has a minimal model.
For the details, see [Has].

6. Appendix

In this appendix, we collect some definitions, which may help us
understand this paper, for the reader’s convenience. For the details,
see [Fn3] and [Fn11]. Recall that a scheme means a separated scheme
of finite type over C in this paper.

6.1 (Iitaka dimension and Kodaira dimension). Let X be a normal
projective variety and letD be a Q-Cartier divisor onX. Then κ(X,D)
denotes the Iitaka dimension of D. More precisely,

κ(X,D) = lim sup
m→∞

log dimH0(X,OX(⌊mD⌋))
logm

.
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For the definition of ⌊mD⌋, see 6.4 below. Let X be a smooth projec-
tive variety. Then we put κ(X) = κ(X,KX) and call it the Kodaira
dimension of X.

6.2 (Q-factorial). Let X be a normal variety. Then X is called Q-
factorial if every prime divisor D on X is Q-Cartier.

Note that Q-factoriality sometimes plays crucial roles in the minimal
model program. The notion of terminal singularities and canonical
singularities is indispensable in the minimal model program.

6.3 (Terminal singularities and canonical singularities). Let X be a
normal variety such that KX is Q-Cartier. If there exists a projective
birational morphism f : Y → X from a smooth variety Y such that the
exceptional locus Exc(f) =

∑
i∈I Ei is a simple normal crossing divisor

on Y . In this situation, we can write

KY = f ∗KX +
∑
i∈I

aiEi.

If ai > 0 for every i ∈ I, then we say that X has only terminal singular-
ities. If ai ≥ 0 for every i ∈ I, then we say that X has only canonical
singularities. It is well-known that X has only rational singularities
when X has only canonical singularities.

6.4 (Round-down of Q-divisors). Let D =
∑

aiDi be a Q-divisor on
a normal variety X. Note that Di is a prime divisor for every i and
that Di ̸= Dj for i ̸= j. Of course, ai ∈ Q for every i. We put
⌊D⌋ =

∑
⌊ai⌋Di and call it the round-down of D. For every rational

number x, ⌊x⌋ is the integer defined by x− 1 < ⌊x⌋ ≤ x.

In the minimal model program, we usually use the notion of pairs.

6.5 (Singularities of pairs). A pair (X,∆) consists of a normal variety
X and an effective R-divisor ∆ on X such that KX+∆ is R-Cartier. A
pair (X,∆) is called kawamata log terminal (resp. log canonical) if for
any projective birational morphism f : Y → X from a normal variety
Y , a(E,X,∆) > −1 (resp. ≥ −1) for every E, where

KY = f ∗(KX +∆) +
∑
E

a(E,X,∆)E

defines a(E,X,∆). Let (X,∆) be a log canonical pair and let W be a
closed subset of X. Then W is called a log canonical center of (X,∆)
if there are a projective birational morphism f : Y → X from a normal
variety Y and a prime divisor E on Y such that a(E,X,∆) = −1 and
that f(E) = W .
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To help understand Theorem 2.12, Theorem 2.13, and Theorem 3.6,
we quickly explain the notion of simple normal crossing pairs and some
related topics.

6.6 (Simple normal crossing pairs). Let Z be a simple normal cross-
ing divisor on a smooth variety M and let B be an R-divisor on M
such that Supp(B +Z) is a simple normal crossing divisor and that B
and Z have no common irreducible components. We put ∆Z = B|Z
and consider the pair (Z,∆Z). We call (Z,∆Z) a globally embedded
simple normal crossing pair. A pair (X,∆) is called a simple normal
crossing pair if it is Zariski locally isomorphic to a globally embedded
simple normal crossing pair. If (X,∆) is a simple normal crossing pair
and X is a divisor on a smooth variety M , then (X,∆) is called an
embedded simple normal crossing pair. Of course, a globally embed-
ded simple normal crossing pair is automatically an embedded simple
normal crossing pair.

6.7 (Strata and permissibility). Let (X,∆) be a simple normal crossing
pair. Assume that the coefficients of ∆ are in [0, 1]. Let ν : Xν → X
be the normalization. We put

KXν +Θ = ν∗(KX +∆),

that is, Θ is the sum of the inverse images of ∆ and the singular
locus of X. Then we see that (Xν ,Θ) is log canonical. Let W be a
closed subset of X. Then W is called a stratum of (X,∆) if W is an
irreducible component of X or the ν-image of some log canonical center
of (Xν ,Θ). A Cartier divisor D on X is permissible with respect to
(X,∆) ifD contains no strata of (X,∆) in its support. A finite R-linear
combination of permissible Cartier divisors with respect to (X,∆) is
called a permissible R-divisor with respect to (X,∆).

We need the notion of nef and log big divisors for Theorem 2.13.

6.8 (Nef and log big divisors). Let f : (Y,∆) → X be a proper mor-
phism from a simple normal crossing pair (Y,∆) to a scheme X. As-
sume that the coefficients of ∆ are in [0, 1]. Let π : X → V be a
proper morphism between schemes. Let H be an R-Cartier divisor on
X. Then H is nef and log big over V with respect to f : (Y,∆) → X
if H is nef over V and H|f(W ) is big over π ◦ f(W ) for every stratum
W of (Y,∆). Note that if H is ample over V then H is nef and log big
over V with respect to f : (Y,∆) → X.

For Theorem 2.12 and Theorem 2.13, let us recall the definition of
R-linear equivalence.
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6.9 (R-divisors). Let B1 and B2 be two R-Cartier divisors on a scheme
X. Then B1 is linearly (resp. Q-linearly, or R-linearly) equivalent to
B2, denoted by B1 ∼ B2 (resp. B1 ∼Q B2, or B1 ∼R B2) if

B1 = B2 +
k∑

i=1

ri(fi)

such that fi ∈ Γ(X,K∗
X) and ri ∈ Z (resp. ri ∈ Q, or ri ∈ R) for every

i. Here, KX is the sheaf of total quotient rings of OX and K∗
X is the

sheaf of invertible elements in the sheaf of rings KX . We note that
(fi) is a principal Cartier divisor associated to fi, that is, the image of
fi by Γ(X,K∗

X) → Γ(X,K∗
X/O∗

X), where O∗
X is the sheaf of invertible

elements in OX .
Let f : X → Y be a morphism between schemes. If there is an

R-Cartier divisor B on Y such that

B1 ∼R B2 + f ∗B,

then B1 is said to be relatively R-linearly equivalent to B2. It is denoted
by B1 ∼R,f B2 or B1 ∼R,Y B2.

References

[AK] D. Abramovich, K. Karu, Weak semistable reduction in characteristic 0,
Invent. Math. 139 (2000), no. 2, 241–273.

[Ber] B. Berndtsson, Curvature of vector bundles associated to holomorphic
fibrations, Ann. of Math. (2) 169 (2009), no. 2, 531–560.
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[PăT] M. Păun, S. Takayama, Positivity of twisted relative pluricanonical bun-
dles and their direct images, preprint (2014). arXiv:1409.5504 [math.AG]

[PoSc] M. Popa, C. Schnell, On direct images of pluricanonical bundles, Algebra
& Number Theory 8 (2014), no. 9, 2273–2295.

[Sa1] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24
(1988), no. 6, 849–995 (1989).

[Sa2] M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990),
no. 2, 221–333.

[Sa3] M. Saito, On Kollár’s conjecture, Several complex variables and complex
geometry, Part 2 (Santa Cruz, CA, 1989), 509–517, Proc. Sympos. Pure
Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991.

[Sc] W. Schmid, Variation of Hodge structure: the singularities of the period
mapping, Invent. Math. 22 (1973), 211–319.

[Siu1] Y.-T. Siu, Invariance of plurigenera, Invent. Math. 134 (1998), no. 3,
661–673.

[Siu2] Y.-T, Siu, Extension of twisted pluricanonical sections with plurisub-
harmonic weight and invariance of semipositively twisted plurigenera for
manifolds not necessarily of general type, Complex geometry (Göttingen,
2000), 223–277, Springer, Berlin, 2002.

[St] J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76),
no. 3, 229–257.

[SZ] J. Steenbrink, S. Zucker, Variation of mixed Hodge structure. I, Invent.
Math. 80 (1985), no. 3, 489–542.

[Taka] S. Takayama, Singularities of Narasimhan–Simha type metrics on direct
images of relative pluricanonical bundles, Ann. Inst. Fourier (Grenoble)
66 (2016), no. 2, 753–783.

[Take] K. Takegoshi, Higher direct images of canonical sheaves tensorized with
semi-positive vector bundles by proper Kähler morphisms, Math. Ann.
303 (1995), no. 3, 389–416.

[Tan] S. G. Tankeev, n-dimensional canonically polarized varieties, and varieties
of basic type, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 31–44.

[Vie1] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension
for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo,
1981), 329–353, Adv. Stud. Pure Math., 1, North-Holland, Amsterdam,
1983.

[Vie2] E. Viehweg, Weak positivity and the additivity of the Kodaira dimen-
sion. II. The local Torelli map, Classification of algebraic and analytic
manifolds (Katata, 1982), 567–589, Progr. Math., 39, Birkhäuser Boston,
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