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Abstract. The main purpose of this paper is to make the sub-
additivity theorem of the logarithmic Kodaira dimension for mor-
phisms of relative dimension one, which is Kawamata’s theorem,
more accessible. We give a proof without depending on Kawa-
mata’s original paper. For this purpose, we discuss algebraic fiber
spaces whose general fibers are of general type in detail. We also
discuss elliptic fibrations. One of the main new ingredients of our
proof is the effective freeness due to Popa and Schnell, which is a
clever application of Kollár’s vanishing theorem. We note that our
approach to the subadditivity conjecture of the Kodaira dimen-
sion is slightly simpler and clearer than the classical approaches
thanks to the weak semistable reduction theorem by Abramovich
and Karu. Obviously, this paper is heavily indebted to Viehweg’s
ideas.
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1. Introduction

This paper is a completely revised and extremely expanded version
of the author’s unpublished short note [F1]:

• Osamu Fujino, Cn,n−1 revisited, preprint (2003).

Roughly speaking, the final section (see Section 9) of this paper is a
slightly expanded and revised version of the above short note and the
other sections are new. If the reader is familiar with Qn,n−1 and C+

n,n−1

and is only interested in Cn,n−1 (see Theorem 1.1), then we recommend
him to go directly to Section 9.

Let us recall Cn,n−1, that is, the subadditivity theorem of the log-
arithmic Kodaira dimension for morphisms of relative dimension one,
which is the main result of [Kaw1]. Note that [Kaw1] is one of Kawa-
mata’s master theses to the Faculty of Science, University of Tokyo.

Theorem 1.1 ([Kaw1, Theorem 1]). Let f : X → Y be a dominant
morphism of algebraic varieties defined over the complex number field
C. We assume that the general fiber Xy = f−1(y) is an irreducible
curve. Then we have the following inequality for logarithmic Kodaira
dimensions:

κ(X) ≥ κ(Y ) + κ(Xy).

Note that Theorem 1.1 plays very important roles in [F13]. The main
purpose of this paper is to make Theorem 1.1 more accessible. Since the
author is not sure if some technical arguments in [Kaw1] are correct, we
give a proof of Theorem 1.1 without depending on Kawamata’s original
paper [Kaw1]. In general, we have the following conjecture.

Conjecture 1.2 (Subadditivity of logarithmic Kodaira dimension).
Let f : X → Y be a dominant morphism between algebraic varieties
whose general fibers are irreducible. Then we have the following in-
equality

κ(X) ≥ κ(Y ) + κ(Xy),

where Xy is a sufficiently general fiber of f : X → Y .

Therefore, Theorem 1.1 says that Conjecture 1.2 holds true when
dimX − dimY = 1. Conjecture 1.2 is usually called Conjecture Cn,m

when dimX = n and dimY = m. Thus, Theorem 1.1 means that
Cn,n−1 is true. We note the following theorem, which is one of the
main consequences of [F11].

Theorem 1.3. Conjecture 1.2 follows from the generalized abundance
conjecture for projective divisorial log terminal pairs.
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The generalized abundance conjecture is one of the most important
and difficult problems in the minimal model program and is still open.
For the details, see [F11] and [F10].

Before we go further, let us quote the introduction of [F1] for the
reader’s convenience.

In spite of its importance, the proof of Cn,n−1 is not
so easy to access for the younger generation, includ-
ing myself. After [Kaw1] was published, the birational
geometry has drastically developed. When Kawamata
wrote [Kaw1], the following techniques and results are
not known nor fully matured.

• Kawamata’s covering trick,
• moduli theory of curves, especially, the notion of

level structures and the existence of tautological
families,

• various notions of singularities such as rational sin-
gularities, canonical singularities, and so on.

See [Kaw2, §2], [AbK, Section 5], [AbO, Part II], [vaGO],
[Vi2], and [KoM]. In the mid 1990s, de Jong gave us
fantastic results: [dJ1] and [dJ2]. The alteration para-
digm generated the weak semistable reduction theorem
[AbK]. This paper shows how to simplify the proof of
the main theorem of [Kaw1] by using the weak semistable
reduction. The proof may look much simpler than Kawa-
mata’s original proof (note that we have to read [Vi1]
and [Vi2] to understand [Kaw1]). However, the alter-
ation theorem grew out from the deep investigation of
the moduli space of stable pointed curves (see [dJ1] and
[dJ2]). So, don’t misunderstand the real value of this
paper. We note that we do not enforce Kawamata’s ar-
guments. We only recover his main result. Of course,
this paper is not self-contained.

Anyway, it is much easier to give a rigorous proof of Theorem 1.1
without depending on Kawamata’s paper [Kaw1] than to check all the
details of [Kaw1] and correct some mistakes in [Kaw1]. We note that
[Kaw1, Lemma 2] does not take Viehweg’s correction [Vi2] into account.
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1.4 (Background and motivation). In the proof of [Kaw1, Lemma 4],
Kawamata considered the following commutative diagram:

X0

h

}}||
||

||
||

g

��

X1

f !!B
BB

BB
BB

B

X2

in order to prove Rif∗OX1(−D1) = 0 for every i > 0. In the first
half of the proof of [Kaw1, Lemma 4], he proved Rig∗OX0(−D0) = 0
for every i > 0 by direct easy calculations. The author is not sure if
Kawamata’s argument in the proof of [Kaw1, Lemma 4] is sufficient for
proving Rif∗OX1(−D1) = 0 for every i > 0 from Rig∗OX0(−D0) = 0
for every i > 0. Of course, we can check Rif∗OX1(−D1) = 0 for i > 0
as follows.

Let us consider the usual spectral sequence:

Ep,q
2 = Rpf∗R

qh∗OX0(−D0) ⇒ Rp+qg∗OX0(−D0).

Note that h∗OX0(−D0) ' OX1(−D1) by the definitions of D0 and D1.
Since

E1,0
2 ' R1f∗OX1(−D1) ↪→ R1g∗OX0(−D0) = 0,

we obtain R1f∗OX1(−D1) = 0. By applying this argument to h :
X0 → X1, we can prove R1h∗OX0(−D0) = 0. This is a crucial step.
This implies that Ep,1

2 = 0 for every p. Thus we obtain the inclusion

E2,0
2 ' E2,0

∞ ↪→ R2g∗OX0(−D0) = 0.

Therefore, we have E2,0
2 ' R2f∗OX1(−D1) = 0. As above, we obtain

R2h∗OX0(−D0) = 0. This implies that Ep,1
2 = Ep,2

2 = 0 for every p.
Then we get the inclusion

E3,0
2 ' E3,0

∞ ↪→ R3g∗OX0(−D0) = 0

and E3,0
2 ' R3f∗OX1(−D1) = 0. By repeating this process, we finally

obtain Rif∗OX1(−D1) = 0 for every i > 0.
The author does not know whether the above understanding of [Kaw1,

Lemma 4] is the same as what Kawamata wanted to say in the proof
of [Kaw1, Lemma 4] or not. It seemed to the author that Kawamata
only proves that the composition

Rf∗(ϕ01) ◦ ϕ12 : OX2(−D2) −→ Rf∗OX1(−D1)

−→ Rf∗Rh∗OX0(−D0)
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is a quasi-isomorphism in the derived category of coherent sheaves on
X2. Of course, we think that we can easily check the statement of
[Kaw1, Lemma 4] by using the weak factorization theorem in [AKMW],
which was obtained much later than [Kaw1].

As we have already pointed it out above, [Kaw1] does not take
Viehweg’s correction [Vi2] into account. Note that the statement of
[Kaw1, Lemma 2] is obviously wrong. This mistake comes from an
error in [Vi1]. Therefore, we have to correct the statement of [Kaw1,
Lemma 2] and modify some related statements in [Kaw1] in order to
complete the proof of Theorem 1.1 in [Kaw1].

Anyway, the author gave up checking the technical details of [Kaw1]
and correcting mistakes in [Kaw1], and decided to give a proof of Theo-
rem 1.1 without depending on [Kaw1]. We will not use [Kaw1, Lemma
2] nor [Kaw4, Lemma 4]. We will adopt a slightly different approach
to Theorem 1.1 in this paper. The author believes that his decision is
much more constructive. We also note that the reader does not have to
refer to [Vi1] in order to understand the proof of Theorem 1.1 in this
paper. Therefore, the author thinks that the proof of Theorem 1.1 in
this paper is much more accessible than the original proof in [Kaw1].

Let us recall various conjectures related to Conjecture 1.2. Obvi-
ously, Conjecture 1.2 is a generalization of the famous Iitaka conjecture
C.

Conjecture 1.5 (Iitaka Conjecture C). Let f : X → Y be a surjec-
tive morphism between smooth projective varieties with connected fibers.
Then the inequality

κ(X) ≥ κ(Xy) + κ(Y )

holds, where Xy is a sufficiently general fiber of f : X → Y .

The following more precise conjecture is due to Viehweg.

Conjecture 1.6 (Generalized Iitaka Conjecture C+). Let f : X →
Y be a surjective morphism between smooth projective varieties with
connected fibers. Assume that κ(Y ) ≥ 0. Then the inequality

κ(X) ≥ κ(Xy) + max{Var(f), κ(Y )}
holds, where Xy is a sufficiently general fiber of f : X → Y .

In Section 6, we describe that Conjecture 1.6 follows from Viehweg’s
conjecture Q (see Conjecture 1.7 below). For this purpose, we treat
the basic properties of weakly positive sheaves and big sheaves, and
Viehweg’s base change trick in Section 3. Almost everything in Section
3 is contained in Viehweg’s papers [Vi3] and [Vi4]. Moreover, we discuss



6 OSAMU FUJINO

very important Viehweg’s arguments for direct images of pluricanonical
bundles and adjoint bundles in Section 5, which are also contained
in Viehweg’s papers [Vi3] and [Vi4]. Our treatment in Section 6 is
essentially the same as Viehweg’s original one (see [Vi3, §7]). However,
it is slightly simplified and refined by the use of the weak semistable
reduction theorem due to Abramovich–Karu (see [AbK]).

We note that Viehweg’s conjecture Q is as follows:

Conjecture 1.7 (Viehweg Conjecture Q). Let f : X → Y be a surjec-
tive morphism between smooth projective varieties with connected fibers.
Assume that Var(f) = dimY . Then f∗ω

⊗k
X/Y is big for some positive

integer k.

If dimX = n and dimY = m in the above conjectures, then Con-
jectures C, C+, and Q are usually called Conjectures Cn,m, C+

n,m, and
Qn,m respectively.

In [Kaw4], Kawamata proves Conjecture 1.7 under the assumption
that the geometric generic fiber of f : X → Y has a good minimal
model (see [Kaw4, Theorem 1.1]). Note that [Kaw4], which is a gener-
alization of Viehweg’s paper [Vi4], treats infinitesimal Torelli problems
for the proof of Conjecture 1.7. In this paper, we do not discuss infin-
itesimal Torelli problems nor the results in [Kaw4].

In Section 7, we give a relatively simple proof of Viehweg’s conjecture
Q (see Conjecture 1.7) under the assumption that the geometric generic
fiber of f : X → Y is of general type. The main theorem of Section 7,
that is, Theorem 7.1, is slightly better than the well-known results by
Kollár [Ko2] and Viehweg [Vi6] for algebraic fiber spaces whose general
fibers are of general type.

Theorem 1.8 (Theorem 7.1 and Remark 7.3). Let f : X → Y be a
surjective morphism between smooth projective varieties with connected
fibers. Assume that the geometric generic fiber Xη of f : X → Y is of
general type and that Var(f) = dimY . Then there exists a generically
finite surjective morphism τ : Y ′ → Y from a smooth projective variety
Y ′ such that f ′

∗ω
⊗k
X′/Y ′ is a semipositive and big locally free sheaf on

Y ′ for some positive integer k, where X ′ is a resolution of the main
component of X ×Y Y

′ and f ′ : X ′ → Y ′ is the induced morphism.

We do not need the theory of variations of (mixed) Hodge structure
for the proof of Theorem 1.8. One of the main new ingredients of
Theorem 1.8 (see Theorem 7.1) is the effective freeness due to Popa–
Schnell (see [PopS]).

Theorem 1.9 (Theorem 4.1). Let f : X → Y be a surjective mor-
phism from a smooth projective variety X to a projective variety Y
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with dimY = n. Let k be a positive integer and let L be an ample
invertible sheaf on Y such that |L| is free. Then we have

H i(Y, f∗ω
⊗k
X ⊗ L⊗l) = 0

for every i > 0 and every l ≥ nk + k − n. By Castelnuovo–Mumford
regularity, f∗ω

⊗k
X ⊗ L⊗l is generated by global sections for every l ≥

k(n+ 1).

We prove this effective freeness in Section 4 for the reader’s conve-
nience (see Theorem 4.1). The proof of Theorem 4.1 is a clever ap-
plication of a generalization of Kollár’s vanishing theorem and is very
simple. Anyway, we have:

Theorem 1.10 (..., Kollár, Viehweg, ...). Let f : X → Y be a surjec-
tive morphism between smooth projective varieties with connected fibers
whose general fibers are of general type. Then we have

κ(X) ≥ κ(Xy) + max{Var(f), κ(Y )}
= dimX − dimY + max{Var(f), κ(Y )}

where Xy is a sufficiently general fiber of f : X → Y .

In Section 8, we quickly review elliptic fibrations and see that Con-
jecture 1.7 holds for elliptic fibrations. Therefore, we have:

Theorem 1.11 (Viehweg, ...). Let f : X → Y be a surjective mor-
phism between smooth projective varieties with connected fibers whose
general fibers are elliptic curves. Then we have

κ(X) ≥ κ(Xy) + max{Var(f), κ(Y )}
= max{Var(f), κ(Y )}

where Xy is a sufficiently general fiber of f : X → Y .

By combining Theorem 1.10 with Theorem 1.11, we have:

Corollary 1.12 (Viehweg [Vi1]). Let f : X → Y be a surjective mor-
phism between smooth projective varieties whose general fibers are ir-
reducible curves. Then we have

κ(X) ≥ κ(Xy) + κ(Y )

where Xy is a general fiber of f : X → Y .

Note that the proof of Theorem 1.1 in Section 9 uses Theorem 1.10
and Theorem 1.11. More precisely, we use the solution of Conjecture
1.7 for morphisms of relative dimension one. We also note that Kawa-
mata’s original proof of Theorem 1.1 heavily depends on Viehweg’s
paper [Vi1]. We do not directly use [Vi1] in this paper. Therefore, the
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reader can understand the proof of Theorem 1.1 in this paper without
referring to [Vi1].

Finally, this paper is also an introduction to Viehweg’s theory of
weakly positive sheaves and big sheaves. Some of Viehweg’s arguments
in [Vi3] and [Vi4] are simplified by the use of the weak semistable
reduction theorem due to Abramovich and Karu. We hope that this
paper will make Viehweg’s ideas in [Vi3] and [Vi4] more accessible.

Acknowledgments. The author was partially supported by Grant-in-
Aid for Young Scientists (A) 24684002 and Grant-in-Aid for Scientific
Research (S) 24224001 from JSPS. He thanks Tetsushi Ito for useful
discussions. He also thanks Takeshi Abe and Kaoru Sano for answering
his questions. The original version of [F1] was written in 2003 in Prince-
ton. The author was grateful to the Institute for Advanced Study for
its hospitality. He was partially supported by a grant from the National
Science Foundation: DMS-0111298. He would like to thank Professor
Noboru Nakayama for comments on [F1] and Professor Kalle Karu for
sending him [Kar]. Finally, he thanks Jinsong Xu for pointing out a
mistake in a preliminary version of this paper.

We will work over C, the complex number field, throughout this
paper.

2. Preliminaries

In this section, we collect some basic notations and results for the
reader’s convenience. For the details, see [U], [KoM], [Mo], [F6], [F10],
and so on.

2.1 (Generically generation). Let F be a coherent sheaf on a smooth
quasi-projective variety X. We say that F is generated by global sec-
tions over U , where U is a Zariski open set of X, if the natural map

H0(X,F) ⊗OX → F
is surjective over U . We say that F is generically generated by global
sections if F is generated by global sections over some nonempty Zariski
open set of X.

2.2. Let F be a coherent sheaf on a normal variety X. We put

F∗ = HomOX
(F ,OX)

and
F∗∗ = (F∗)∗.

We also put

Ŝα(F) = (Sα(F))∗∗



SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION 9

for every positive integer α, where Sα(F) is the α-th symmetric product
of F , and

d̂et(F) = (∧rF)∗∗

where r = rankF . When X is smooth, d̂et(F) is invertible since it is a
reflexive sheaf of rank one.

We note the following definition of exceptional divisors.

2.3 (Exceptional divisors). Let f : X → Y be a proper surjective
morphism between normal varieties. Let E be a Weil divisor on X.
We say that E is f -exceptional if codimY f(SuppE) ≥ 2. Note that f is
not always assumed to be birational. When f : X → Y is a birational
morphism, Exc(f) denotes the exceptional locus of f .

We sometimes use Q-divisors in this paper.

2.4 (Operations for Q-divisors). Let D =
∑

i aiDi be a Q-divisor on a
normal varietyX, whereDi is a prime divisor onX for every i, Di 6= Dj

for i 6= j, and ai ∈ Q for every i. Then we put bDc =
∑

ibaicDi,
{D} = D − bDc, and dDe = −b−Dc. Note that baic is the integer
which satisfies ai − 1 < baic ≤ ai. We also note that bDc, dDe, and
{D} are called the round-down, round-up, and fractional part of D
respectively.

2.5 (Dualizing sheaves and canonical divisors). Let X be a normal
quasi-projective variety. Then we put ωX = H− dim X(ω•

X), where ω•
X is

the dualizing complex of X, and call ωX the dualizing sheaf of X. We
put ωX ' OX(KX) and call KX the canonical divisor of X. Note that
KX is a well-defined Weil divisor on X up to the linear equivalence.
Let f : X → Y be a morphism between Gorenstein varieties. Then we
put ωX/Y = ωX ⊗ f ∗ω⊗−1

Y .

2.6 (Singularities of pairs). Let X be a normal variety and let ∆ be an
effective Q-divisor on X such that KX +∆ is Q-Cartier. Let f : Y → X
be a resolution of singularities. We write

KY = f ∗(KX + ∆) +
∑

i

aiEi

and a(Ei, X,∆) = ai. Note that the discrepancy a(E,X,∆) ∈ Q can
be defined for every prime divisor E over X. If a(E,X,∆) > −1 for
every exceptional divisor E over X, then (X,∆) is called a plt pair. If
a(E,X,∆) > −1 for every divisor E over X, then (X,∆) is called a
klt pair. In this paper, if ∆ = 0 and a(E,X, 0) ≥ 0 for every divisor E
over X, then we say that X has only canonical singularities.
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For the details of singularities of pairs, see [F6] and [F10].

2.7 (Iitaka dimension and Kodaira dimension). Let D be a Cartier di-
visor on a normal projective variety X. The Iitaka dimension κ(X,D)
is defined as follows:

κ(X,D) =

{
max
m>0

{dim Φ|mD|(X)} if |mD| 6= ∅ for some m > 0

−∞ otherwise

where Φ|mD| : X 99K Pdim |mD| and Φ|mD|(X) denotes the closure of the
image of the rational map Φ|mD|. Let D be a Q-Cartier divisor on X.
Then we put

κ(X,D) = κ(X,m0D)

where m0 is a positive integer such that m0D is Cartier.
LetX be a smooth projective variety. Then we put κ(X) = κ(X,KX).

Note that κ(X) is usually called the Kodaira dimension of X. If X is

an arbitrary projective variety. Then we put κ(X) = κ(X̃,K
eX), where

X̃ → X is a projective birational morphism from a smooth projective

variety X̃.
The following inequality is well known and is easy to check.

Lemma 2.8 (Easy addition). Let f : X → Y be a surjective morphism
between normal projective varieties with connected fibers and let D be
a Q-Cartier divisor on X. Then we have

κ(X,D) ≤ dimY + κ(Xy, Dy)

where Xy is a general fiber of f : X → Y and Dy = D|Xy .

Proof. We take a large and divisible positive integerm such that Φ|mD| :
X 99K PN gives an Iitaka fibration. We consider the following diagram

X

f

��

ϕ //___ PN × Y
p1 //

p2
{{vvvvvvvvv

PN

Y

where ϕ = Φ|mD| × f and p1 and p2 are natural projections. Let Z be
the image of ϕ in PN × Y . Then we obtain that

κ(X,D) = dim p1(Z)

≤ dimZ

= dimY + dimZy

≤ dimY + κ(Xy, D|Xy)

where y is a general point of Y . This is the desired inequality. �
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2.9 (Logarithmic Kodaira dimension). Let V be an irreducible alge-
braic variety. By Nagata, we have a complete algebraic variety V which
contains V as a dense Zariski open subset. By Hironaka, we have
a smooth projective variety W and a projective birational morphism
µ : W → V such that if W = µ−1(V ), then D = W −W = µ−1(V −V )
is a simple normal crossing divisor on W . The logarithmic Kodaira
dimension κ(V ) of V is defined as

κ(V ) = κ(W,KW +D)

where κ denotes Iitaka dimension in 2.7. Note that κ(V ) is well defined,
that is, κ(V ) is independent of the choice of (W,D).

We note the following easy but important example.

Example 2.10. Let C be a (not necessarily complete) smooth curve.
Then we can easily see that

κ(C) =


−∞ C = P1 or A1,

0 C is an elliptic curve or Gm,

1 otherwise.

2.11 (Sufficiently general fibers). Let f : X → Y be a morphism
between algebraic varieties. Then a sufficiently general fiber F of f :
X → Y means that F = f−1(y) where y is any point contained in
a countable intersection of nonempty Zariski open subsets of Y . A
sufficiently general fiber is sometimes called a very general fiber in the
literature.

2.12 (Horizontal and vertical divisors). Let f : X → Y be a dominant
morphism between normal varieties and let D be a Q-divisor on X.
We can write D = Dhor +Dver such that every irreducible component
of Dhor (resp. Dver) is mapped (resp. not mapped) onto Y . If D = Dhor

(resp. D = Dver), D is said to be horizontal (resp. vertical).

In this paper, we will repeatedly use the notion of weakly semistable
morphisms due to Abramovich–Karu (see [AbK] and [Kar]).

2.13 (Weakly semistable morphisms). Let f : X → Y be a projective
surjective morphism between quasi-projective varieties. Then f : X →
Y is called weakly semistable if

(i) the varieties X and Y admit toroidal structures (UX ⊂ X) and
(UY ⊂ Y ) with UX = f−1(UY ),

(ii) with this structure, the morphism f is toroidal,
(iii) the morphism f is equidimensional,
(iv) all the fibers of the morphism f are reduced, and
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(v) Y is smooth.

Note that (UX ⊂ X) and (UY ⊂ Y ) are toroidal embeddings without
self-intersection in the sense of [KKMS, Chapter II, §1]. For the details,
see [AbK] and [Kar].

The following lemma is easy but very useful.

Lemma 2.14. Let f : X → Y and g : Z → Y be weakly semistable.
Then V = X ×Y Z has only rational Gorenstein singularities. We
consider the following commutative diagram.

X

f
��

V

f ′

��

g′oo

Y Zg
oo

Then we have that
g′∗ωX/Y = ωV/Z

and
g∗f∗ω

⊗n
X/Y = f ′

∗g
′∗ω⊗n

X/Y = f ′
∗ω

⊗n
V/Z

for every integer n.

Proof. By the flat base change theorem [Ve, Theorem 2] (see also [H1],
[C], and so on), we see that V is Gorenstein and g′∗ωX/Y = ωV/Z . Since
f and g are weakly semistable, we see that V is smooth in codimension
one. Therefore, V is a normal variety. Since V is local analytically
isomorphic to a toric variety, V has only rational singularities. By the
flat base change theorem (see [H2, Chapter III, Proposition 9.3]), we
obtain g∗f∗ω

⊗n
X/Y = f ′

∗g
′∗ω⊗n

X/Y for every integer n. �

The following lemma is an easy consequence of Kawamata’s covering
trick and Abhyankar’s lemma (see [Kaw2, Corollary 19]).

Lemma 2.15. Let f : Y → X be a finite surjective morphism from a
normal projective variety Y to a smooth projective variety X. Assume
that f is étale over X\ΣY , where ΣY is a simple normal crossing divisor
on X. Then we can take a finite surjective morphism g : Z → Y from
a smooth projective variety Z such that f ◦ g : Z → X is étale over
X \ ΣZ, where ΣZ is a simple normal crossing divisor on X such that
ΣY ≤ ΣZ and that Supp(f ◦ g)∗ΣZ is a simple normal crossing divisor
on Z.

Proof. Without loss of generality, we may assume that f : Y → X is
Galois. We put ΣY =

∑
Di, where Di is a prime divisor for every i and

Di 6= Dj for i 6= j. We write f∗Di = mi(f
∗Di)red for every i. By taking
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a Kawamata cover τ : X̃ → X from a smooth projective variety X̃,

where X̃ is étale over X \Σ
eX , Σ

eX is a simple normal crossing divisor on
X with ΣY ≤ Σ

eX , and τ ∗Di =
∑

j mijDij such that mi divides mij for

every i, j, where τ ∗Di =
∑

j mijDij is the irreducible decomposition of
τ ∗Di. Let Z be the normalization of an irreducible component of the

fiber product Y ×X X̃.

Y

f

��

Z

��

goo

X X̃τ
oo

Then Z is étale over X̃. Therefore, Z is a smooth projective variety.
Moreover, Z → X is étale over X \ ΣZ with ΣZ = Σ

eX and Supp(f ◦
g)∗ΣZ is a simple normal crossing divisor on Z. �

Finally, we give some supplementary results on abelian varieties for
the reader’s convenience (see [F2, §5. Some remaks on Abelian vari-
eties]). We will use Corollary 2.19 in the proof of Theorem 1.1 in
Section 9.

2.16 (On Abelian varieties). Let Y be a not necessarily complete va-
riety and let A be an Abelian variety. We put Z = Y × A. Let
µ : A× A → A be the multiplication. Then A acts on A naturally by
the group law of A. This action induces a natural action on Z. We
denote it by m : Z × A→ Z, that is,

m : ((y, a), b) 7→ (y, a+ b),

where (y, a) ∈ Y ×A = Z and b ∈ A. Let p1i : Z×A×A→ Z×A be the
projection onto the (1, i)-factor for i = 2, 3, and let p23 : Z ×A×A→
A× A be the projection onto (2, 3)-factor. Let p : Z × A× A→ Z be
the first projection and let pi : Z × A× A → A be the i-th projection
for i = 2, 3. We define the projection ρ : Z = Y × A → A. We fix a
section s : A → Z such that s(A) = {y0} × A for a point y0 ∈ Y . We
define morphisms as follows:

πi = pi ◦ (s× idA × idA) for i = 2, 3

π23 = p23 ◦ (s× idA × idA), and

π = ρ× idA × idA.

Let L be an invertible sheaf on Z. We define an invertible sheaf L on
Z × A× A as follows:

L =p∗L⊗ (idZ × µ)∗m∗L⊗ (p∗12m
∗L)⊗−1 ⊗ (p∗13m

∗L)⊗−1

⊗ π∗((π∗
23µ

∗s∗L)⊗−1 ⊗ π∗
2s

∗L⊗ π∗
3s

∗L).
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Lemma 2.17. Under the above notation, we have that

L ' OZ×A×A.

Proof. It is easy to see that the restrictions L to Z × {0} × A and
Z × A × {0} are trivial by the definition of L, where 0 is the origin
of A. We can also check that the restriction of L to s(A) × A × A is
trivial (see [Mu, Section 6, Corollary 2]). In particular, L|{z0}×A×A is
trivial for any point z0 ∈ s(A) ⊂ Z. Therefore, by the theorem of cube
(see [Mu, Section 6, Theorem]), we obtain that L is trivial. �

We write Ta = m|Z×{a} : Z ' Z × {a} → Z, that is,

Ta : (y, b) 7→ (y, b+ a),

for (y, b) ∈ Y × A = Z.

Corollary 2.18. By restricting L to Z × {a} × {b}, we obtain

L⊗ T ∗
a+bL ' T ∗

aL⊗ T ∗
b L,

where a, b ∈ A.

As an application of Corollary 2.18, we have:

Corollary 2.19. Let D be a Cartier divisor on Z. Then we have

2D ∼ T ∗
aD + T ∗

−aD

for every a ∈ A. In particular, if Y is complete and D is effective and
is not vertical with respect to Y × A→ A, then κ(Z,D) > 0.

Proof. We put L = OX(D) and b = −a. Then we have 2D ∼ T ∗
aD +

T ∗
−aD by Corollary 2.18. We assume that D is not vertical. Then

we have SuppD 6= SuppT ∗
aD if we choose a ∈ A suitably. Therefore,

κ(X,D) > 0 if D is effective and is not vertical. �

3. Weakly positive sheaves and big sheaves

In this section, we discuss the basic properties of weakly positive
sheaves and big sheaves. We also discuss Viehweg’s base change trick.
Almost everything is contained in Viehweg’s papers [Vi3] and [Vi4].

Definition 3.1 (Weak positivity and bigness). Let F be a torsion-
free coherent sheaf on a smooth quasi-projective variety W . We say
that F is weakly positive if, for every positive integer α and every
ample invertible sheaf H, there exists a positive integer β such that

Ŝαβ(F)⊗H⊗β is generically generated by global sections. We say that a
nonzero torsion-free coherent sheaf F is big if, for every ample invertible

sheaf H, there exists a positive integer a such that Ŝa(F) ⊗ H⊗−1 is
weakly positive.
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Note that there are several different definitions of weak positivity
(see [Mo, (5.1) Definition]).

Remark 3.2. If Ŝαβ(F)⊗H⊗β is generically generated by global sec-

tions, then Ŝαβγ(F) ⊗ H⊗βγ is also generically generated by global
sections for every positive integer γ.

Remark 3.3. Let L be an invertible sheaf on a smooth projective
varietyX. Then L is weakly positive if and only if L is pseudo-effective.
We also note that L is big in the sense of Definition 3.1 if and only if
L is big in the usual sense, that is, κ(X,L) = dimX.

We will use the notion of semipositive locally free sheaves in Section
7.

Definition 3.4 (Semipositivity). Let E be a locally free sheaf of finite
rank on a smooth projective variety X. If OPX(E)(1) is nef, then E is
said to be semipositive or nef.

Remark 3.5. Let E be a semipositive locally free sheaf on a smooth
projective variety X. Let H be an ample invertible sheaf on X and let
α be a positive integer. Then there exists a positive integer β0 such
that Sαβ(E) ⊗ H⊗β is generated by global sections for every integer
β ≥ β0. Note that OPX(E)(α) ⊗ π∗H is an ample invertible sheaf on
P(E), where π : PX(E) → X. Therefore, E is weakly positive.

We can easily check the following properties of weakly positive sheaves.

Lemma 3.6 ([Vi3, (1.3) Remark and Lemma 1.4]). Let F and G be
torsion-free coherent sheaves on a smooth quasi-projective variety W .
Then we have the following properties.

(i) In order to check whether F is weakly positive, we may replace
W with W \ Σ for some closed subset Σ of codimension ≥ 2.

(ii) Let F → G be a generically surjective morphism. If F is weakly
positive, then G is also weakly positive.

(iii) If Ŝa(F) is weakly positive for some positive integer a, then F
is weakly positive.

(iv) Let δ : W → W ′′ be a projective birational morphism to a
smooth quasi-projective variety W ′′ and let E be a δ-exceptional
Cartier divisor on W . If F ⊗ OW (E) is weakly positive, then
δ∗F is weakly positive.

(v) Let τ : W ′ → W be a finite morphism from a smooth quasi-
projective variety W ′. If τ ∗F is weakly positive, then F is
weakly positive.

(vi) If F is weakly positive, then d̂et(F) is weakly positive.
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(vii) If F and G are weakly positive, then F⊗G/torsion is also weakly
positive.

Proof. (i) and (ii) are obvious by the definition of weakly positive
sheaves. By the natural map

ŜαŜβ(F) → Ŝαβ(F),

which is generically surjective, we obtain (iii). Let us prove (iv). Let
H′′ be an ample invertible sheaf onW ′′ and let H be an ample invertible
sheaf on W . We take a positive integer k such that

H0(W, δ∗H′′⊗k ⊗H⊗−1) = H0(W ′′,H′′⊗k ⊗ δ∗H⊗−1) 6= 0.

For every positive integer α, Ŝαkβ(F⊗OW (E))⊗H⊗β is generically gen-
erated by global sections for some positive integer β since F⊗OW (E) is

weakly positive. Therefore, Ŝαkβ(F ⊗OW (E))⊗ δ∗H′′⊗kβ is generically

generated by global sections. Thus, we obtain that Ŝαkβ(δ∗F)⊗H′′⊗kβ

is generically generated by global sections. This implies that δ∗F is
weakly positive. This is (iv). Let H be an ample invertible sheaf on
W . In order to prove (v), we may shrink W and may assume that
F is locally free by (i). Since τ ∗F is weakly positive, we see that
S2αβ(τ ∗F) ⊗ τ ∗H⊗β is generically generated by global sections for ev-
ery positive integer α and some large positive integer β. We note that
we have a surjection

τ∗τ
∗S2αβ(F) ⊗H⊗β → S2αβ(F) ⊗H⊗β.

Hence we obtain a generically surjective morphism⊕
finite

τ∗OW ′ ⊗H⊗β → S2αβ(F) ⊗H2β.

We may assume that τ∗OW ′ ⊗ H⊗β is generated by global sections
since we may assume that β is sufficiently large (see Remark 3.2). Thus
S2αβ(F)⊗H⊗2β is generically generated by global sections. This means
that F is weakly positive. So we obtain (v). We put r = rank(F).
Let α be a positive integer and let H be an ample invertible sheaf.

Then there exists a positive integer β such that Ŝαβr(F) ⊗ H⊗β is

generically generated. Hence d̂et(F)⊗αb ⊗H⊗b is generically generated

for b = rank(Ŝαβr(F))β. Thus, we obtain (vi). Since we do not use
(vii) in this paper, we omit the proof of (vii) here. For the proof, see
[Vi4, Lemma 3.2 iii)]. Note that the proof of (vii) is much harder than
the proof of the other properties. �

For bigness, we have the following lemma.
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Lemma 3.7 ([Vi4, Lemma 3.6]). Let F be a nonzero torsion-free coher-
ent sheaf on a smooth quasi-projective variety W . Then the following
three conditions are equivalent.

(i) There exist an ample invertible sheaf H on W , some positive

integer ν, and an inclusion
⊕

H ↪→ Ŝν(F), which is an iso-
morphism over a nonempty Zariski open set of W .

(ii) For every invertible sheaf M on W , there exists some positive

integer γ such that Ŝγ(F) ⊗ M⊗−1 is weakly positive. In par-
ticular, F is a big sheaf.

(iii) There exist some positive integer γ and an ample invertible sheaf

M such that Ŝγ(F) ⊗M⊗−1 is weakly positive.

Proof. First, we assume (i). For every positive integer β, there exists a

map
⊕

H⊗β → Ŝβν(F), which is generically surjective. If we choose β
large enough, we may assume that H⊗β ⊗M⊗−1 is very ample. There-

fore, Ŝβν(F) ⊗ M⊗−1 is weakly positive by the generically surjective

map
⊕

H⊗β ⊗M⊗−1 → Ŝβν(F)⊗M⊗−1 by Lemma 3.6 (ii). Thus we
obtain (ii). Since (iii) is a special case of (ii), (iii) follows from (i).

Next, we assume (iii). If Ŝγ(F)⊗M⊗−1 is weakly positive for some

ample invertible sheaf M on W , then Ŝ2βγ(F) ⊗ M⊗−2β ⊗ M⊗β is
generically generated by global sections for some positive integer β.
Thus we get a map ⊕

finite

M⊗β → Ŝ2βγ(F),

which is surjective over a nonempty Zariski open set of W . By choos-

ing rank(Ŝ2βγ(F)) copies of M⊗β such that the corresponding sections

generates the sheaf Ŝ2βγ(F) ⊗ M⊗−β in the general point of W , we
obtain (i) with H = M⊗β and ν = 2βγ. �
Remark 3.8. First, we consider E = OP1 ⊕OP1(1) and X = PP1(E) →
P1. We put OX(1) = OPP1 (E)(1). Then

dimH0(X,OX(m)) = dimH0(P1,
m⊕

k=0

OP1(k)) =
1

2
(m+ 1)(m+ 2)

for every positive integer m. Therefore, OX(1) is a big invertible sheaf
on X. On the other hand, E is not big in the sense of Definition 3.1.
This is because Sm(E) contains OP1 as a direct summand for every
positive integer m. Note that our definition of bigness is different from
Lazarsfeld’s (see [L, Example 6.1.23]). Next, we put F = OP1(−1) ⊕
OP1(1) and consider Y = PP1(F) → P1 with OY (1) = OPP1 (F)(1). Then
we can easily check that OY (1) is big as before. Of course, OY (1)
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is pseudo-effective. However, Sαβ(F) ⊗ OP1(1)⊗β is not generically
generated by global sections for α ≥ 2. Therefore, F = OP1(−1) ⊕
OP1(1) is not weakly positive in the sense of Definition 3.1.

Remark 3.9. Let E be a nonzero locally free sheaf on a smooth
projective variety X such that E is weakly positive. We consider
π : Y = PX(E) → X with OY (1) = OPX(E)(1). Then OY (1) is pseudo-
effective. We can check this fact as follows. Let H be an ample in-
vertible sheaf on X and let α be an arbitrary positive integer. Then
we can take a positive integer β such that Sαβ(E)⊗H⊗β is generically
generated by global sections since E is weakly positive. Thus, we have
H0(Y,OY (αβ) ⊗ π∗H⊗β) = H0(X,Sαβ(E) ⊗ H⊗β) 6= 0. This implies
that OY (1) is pseudo-effective by taking α→ ∞.

3.10 (Viehweg’s base change trick). Let us discuss Viehweg’s clever
base change arguments. They are very useful and important. The
following results are contained in [Vi3, §3]. We closely follow [Mo, §4].

Lemma 3.11 ([Mo, (4.9) Lemma]). Let V be an irreducible reduced
Gorenstein variety and let ρ : V ′ → V be a resolution. Then, for every
positive integer n, we have ρ∗ω

⊗n
V ′ ⊂ ω⊗n

V . Furthermore, if V has only
rational singularities, then we have ω⊗n

V = ρ∗ω
⊗n
V ′ for every positive

integer n.

Proof. Since V is Cohen–Macaulay, we may assume that ρ is finite by
shrinking V in order to check ρ∗ω

⊗n
V ′ ⊂ ω⊗n

V . Since ρ is birational, the
trace map ρ∗ωV ′ → ωV gives ρ∗ωV ′ ⊂ ωV . Since ρ is finite, we obtain
ωV ′ ⊂ ρ∗ωV by ρ∗ωV ′ ⊂ ωV . Therefore, we have

ρ∗ω
⊗n
V ′ ⊂ ρ∗(ωV ′ ⊗ ρ∗ω⊗n−1

V ) = ρ∗ωV ′ ⊗ ω⊗n−1
V ⊂ ω⊗n

V

by induction on n. We further assume that V has only rational singu-
larities. Then it is well known that V has only canonical Gorenstein
singularities. Therefore, we have ω⊗n

V = ρ∗ω
⊗n
V ′ for every positive inte-

ger n. �
Lemma 3.12 (Base Change Theorem, see [Mo, (4.10)]). Let f : V →
W be a projective surjective morphism between smooth quasi-projective
varieties. Let τ : W ′ → W be a flat projective surjective morphism
from a smooth quasi-projective variety W ′. We consider the following
commutative diagram:

V

f

��

Ṽ

ef
��

eρoo V ′ρoo

f ′
~~||

||
||

||

W W ′
τ

oo
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where Ṽ = V ×W W ′ and ρ : V ′ → Ṽ is a resolution. Then we have
the following properties.

(i) There is an inclusion

f ′
∗ω

⊗n
V ′/W ′ ⊂ τ ∗(f∗ω

⊗n
V/W )

for every positive integer n.

Let P be a codimension one point of W ′. Assume that Ṽ has
only rational singularities over a neighborhood of P . Then we
have

f ′
∗ω

⊗n
V ′/W ′ = f̃∗ω

⊗n
eV /W ′ = τ ∗(f∗ω

⊗n
V/W )

at P .
(ii) Let P be a codimension one point of W ′. If τ(P ) is a codimen-

sion one point of W and f is semistable in a neighborhood of

τ(P ), then Ṽ has only rational Gorenstein singularities over a
neighborhood of P .

(iii) There is an inclusion

τ∗f
′
∗ω

⊗n
V ′/W ⊂ (f∗ω

⊗n
V/W ⊗ τ∗ω

⊗n
W ′/W )∗∗,

which is an isomorphism at codimension one point P of W if f
or τ is semistable in a neighborhood of P .

Proof. Since τ is flat, Ṽ is an irreducible reduced Gorenstein variety
and ω

eV /W ′ = ρ̃∗ωV/W by the flat base change theorem [Ve, Theorem 2]

(see also [H1], [C], and so on). Then we have that τ ∗f∗ω
⊗n
V/W = f̃∗ω

⊗n
eV /W

for every positive integer n by the flat base change theorem (see [H2,
Chapter III, Proposition 9.3]). By Lemma 3.11, we have ρ∗ω

⊗n
V ′/W ′ ⊂

ω⊗n
eV /W ′ . Therefore, we obtain f ′

∗ω
⊗n
V ′/W ′ ⊂ τ ∗f∗ω

⊗n
V/W for every positive

integer n. The latter statement in (i) is obvious by the above argument
and Lemma 3.11.

For (ii), it is sufficient to prove that Ṽ has only rational singularities
over a neighborhood of P . By shrinking W around τ(P ), we may
assume that τ(P ) is a smooth divisor on W and that f : V → W is
(weakly) semistable. By shrinking W ′ around P , we may assume that
P = τ−1(τ(P )) and that P is a smooth divisor on W ′. Then we obtain

that f̃ : Ṽ → W ′ is weakly semistable by [AbK, Lemma 6.2]. Thus, Ṽ
has only rational Gorenstein singularities.
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By (i), we have

τ∗f
′
∗ω

⊗n
V ′/W = τ∗f

′
∗(ω

⊗n
V ′/W ′ ⊗ f ′∗ω⊗n

W ′/W )

= τ∗((f
′
∗ω

⊗n
V ′/W ′) ⊗ ω⊗n

W ′/W )

⊂ τ∗((τ
∗f∗ω

⊗n
V/W ) ⊗ ω⊗n

W ′/W )

⊂ (f∗ω
⊗n
V/W ⊗ τ∗ω

⊗n
W ′/W )∗∗

by projection formula. This is nothing but the inclusion in (iii). With-
out loss of generality, we may shrink W and assume that f is also flat
for (iii). Since (iii) is symmetric with respect to f and τ , it is enough
to check that the inclusion is an equality at P when f is semistable in
a neighborhood of P . Then, by (i) and (ii), we have the equality at
P . �

3.13 (Viehweg’s fiber product trick). Let f : V → W be a projective
surjective morphism between smooth quasi-projective varieties and let
V s = V ×W V ×W · · · ×W V be the s-fold fiber product. Let V (s) be
an arbitrary resolution of the component of V s dominating W and let

f (s) : V (s) → W be the induced morphism. Note that f
(s)
∗ ω⊗n

V (s)/W
is

independent of the choice of resolution V (s) for every positive integer
n.

Corollary 3.14 ([Vi3, Lemma 3.5] and [Mo, (4.11) Corollary]). Let
f : V → W be a projective surjective morphism between smooth quasi-
projective varieties. Let s and n be arbitrary positive integers. Then
there exists a generically isomorphic injection

a : (f (s)
∗ ω⊗n

V (s)/W
)∗∗ ↪→

(
s⊗
f∗ω

⊗n
V/W

)∗∗

.

Let P be a codimension one point of W such that f is semistable in a
neighborhood of P . Then a is an isomorphism at P .

Proof. Since deleting closed subsets of W of codimension ≥ 2 does not
change the double dual of torsion-free sheaves, we may assume that
f (i) are flat for i = 1, 2, · · · , s and that f∗ω

⊗n
V/W is locally free on W .

By Lemma 3.12 (iii), we obtain an injection

f (s)
∗ ω⊗n

V (s)/W
↪→ f∗ω

⊗n
V/W ⊗ f (s−1)

∗ ω⊗n
V (s−1)/W

such that the above injection is an isomorphism at P if f is semistable
in a neighborhood of P . This proves the assertion by induction on
s. �
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3.15. Let f : X → Y be a surjective morphism between smooth pro-
jective varieties with connected fibers. Then we can always take a
generically finite surjective morphism τ : Y ′ → Y from a smooth pro-
jective variety Y ′ such that f ′ : X ′ → Y ′ is semistable in codimension
one (see [KKMS] and [Vi3, Proposition 6.1]) or f ′ : X ′ → Y ′ factors
through a weak semistable reduction f † : X† → Y ′ (see [AbK, Theorem
0.3]), where X ′ is a resolution of the main component of X ×Y Y

′.

X

f

��

X ′

f ′

��

oo

Y Y ′
τ

oo

Lemma 3.16. In the notation in 3.15, if f ′
∗ω

⊗n
X′/Y ′ is big for some

positive integer n, then f∗ω
⊗n
X/Y is also big.

Proof. Let H be an ample invertible sheaf on Y . Then there exists a

positive integer a such that Ŝa(f ′
∗ω

⊗n
X′/Y ′) ⊗ τ ∗H⊗−1 is weakly positive

by Lemma 3.7. By removing a suitable closed subset Σ of codimension
≥ 2 from Y , we assume that f∗ω

⊗n
X/Y is locally free and that τ is finite

and flat. Then, by Lemma 3.12, we obtain a generically isomorphic
injection

Ŝa(f ′
∗ω

⊗n
X′/Y ′) ⊗ τ ∗H⊗−1 ⊂ τ ∗(Sa(f∗ω

⊗n
X/Y ) ⊗H⊗−1).

By Lemma 3.6 (i), (ii), and (v), we see that Ŝa(f∗ω
⊗n
X/Y ) ⊗ H⊗−1 is

weakly positive. This means that f∗ω
⊗n
X/Y is big. �

We close this section with a useful observation.

3.17. By Lemma 3.16, we may assume that f : X → Y is semistable
in codimension one or

f : X
δ−→ X† f†

−→ Y

such that f † : X† → Y is weakly semistable and that δ is a resolution
of singularities when we prove Viehweg’s conjecture Q (see Conjecture
1.7).

4. Effective freeness due to Popa–Schnell

In this section, we discuss the effective freeness due to Popa–Schnell
(see [PopS]). The following statement is a special case of [PopS, The-
orem 1.7].
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Theorem 4.1 ([PopS, Theorem 1.4]). Let f : X → Y be a surjective
morphism from a smooth projective variety X to a projective variety
Y with dimY = n. Let k be a positive integer and let L be an ample
invertible sheaf on Y such that |L| is free. Then we have

H i(Y, f∗ω
⊗k
X ⊗ L⊗l) = 0

for every i > 0 and every l ≥ nk + k − n. By Castelnuovo–Mumford
regularity, f∗ω

⊗k
X ⊗ L⊗l is generated by global sections for every l ≥

k(n+ 1).

The proof of Theorem 4.1 is surprisingly easy. Before we prove The-
orem 4.1, we note the following remark.

Remark 4.2. In Theorem 4.1, by Kollár’s vanishing theorem (see [Ko1,
Theorem 2.1 (iii)]), we have

H i(Y, f∗ωX ⊗A⊗l) = 0

for every i > 0 and every l > 0, where A is any ample invertible sheaf
on Y . Therefore, by Castelnuovo–Mumford regularity, we obtain that
f∗ωX ⊗ L⊗l is generated by global sections for every l ≥ n+ 1.

Let us prove Theorem 4.1.

Proof of Theorem 4.1. Let us consider

M = Im
(
f ∗f∗ω

⊗k
X → ω⊗k

X

)
.

By taking blow-ups, we may assume that M is an invertible sheaf such
that ω⊗k

X = M ⊗OX(E) for some effective divisor E on X. We may
further assume that SuppE is a simple normal crossing divisor. We can
take the smallest integer m ≥ 0 such that f∗ω

⊗k
X ⊗ L⊗m is generated

by global sections because L is ample. Then ω⊗k
X ⊗OX(−E) ⊗ f∗L⊗m

is also generated by global sections. Note that ω⊗k
X ⊗ OX(−E) = M,

f∗M = f∗ω
⊗k
X , and f∗f∗M → M is surjective. Therefore, we can take

a smooth general effective divisor D such that Supp(D+E) is a simple
normal crossing divisor on X such that

kKX +mf ∗L ∼ D + E,

where L = OX(L). Thus we have

(k − 1)KX ∼Q
k − 1

k
D +

k − 1

k
E − k − 1

k
mf ∗L.
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So we obtain

kKX −
⌊
k − 1

k
E

⌋
+ lf ∗L

∼Q KX +
k − 1

k
D +

{
k − 1

k
E

}
+

(
l − k − 1

k
m

)
f∗L.

By the vanishing theorem (see, for example, [F6, Theorem 6.3 (ii)]),
which is a generalization of Kollár’s vanishing theorem, we obtain

H i(Y, f∗ω
⊗k
X ⊗ L⊗l) = 0

for every i > 0 if l − k−1
k
m > 0. Note that

f∗OX

(
kKX −

⌊
k − 1

k
E

⌋)
' f∗ω

⊗k
X

by the definition of E. Therefore, if l > k−1
k
m+n, then f∗ω

⊗k
X ⊗L⊗l is

generated by global sections by Castelnuovo–Mumford regularity. By
the choice of m, we obtain

m ≤ k − 1

k
m+ n+ 1.

This implies m ≤ k(n+ 1). Therefore, we obtain that if

l >
k − 1

k
· k(n+ 1) = kn+ k − n− 1

then

H i(Y, f∗ω
⊗k
X ⊗ L⊗l) = 0

for every i > 0. �
By combining Theorem 4.1 with Viehweg’s fiber product trick (see

Corollary 3.14), we can easily recover Viehweg’s weak positivity theo-
rem.

Theorem 4.3 (Viehweg’s weak positivity theorem (see [Vi3, Theorem
III])). Let f : X → Y be a surjective morphism between smooth projec-
tive varieties. Then f∗ω

⊗k
X/Y is weakly positive for every positive integer

k.

The following proof is due to Popa–Schnell (see [PopS]).

Proof. Let f s : Xs = X ×Y X ×Y · · · ×Y X → Y be the s-fold fiber
product. Then we obtain a generically isomorphic injection

a : f (s)
∗ ω⊗k

X(s)/Y
↪→

(
s⊗
f∗ω

⊗k
X/Y

)∗∗
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for every k ≥ 1 and every s ≥ 1 by Corollary 3.14, where X(s) → Xs is
a resolution of the component of Xs dominating Y and f (s) : X(s) → Y
is the induced morphism. Let H be any ample invertible sheaf on Y .
We take a positive integer p such that |H⊗p| is base point free. Then,
by Theorem 4.1, we obtain that

f (s)
∗ ω⊗k

X(s)/Y
⊗ ω⊗k

Y ⊗H⊗pk(n+1)

is generated by global sections for every s ≥ 1 and every k ≥ 1, where
n = dimY . From now on, we fix a positive integer k. We take a
positive integer q such that |H⊗r ⊗ ω⊗−k

Y | is base point free for every
integer r ≥ q. Then (

s⊗
f∗ω

⊗k
X/Y

)∗∗

⊗H⊗β

is generically generated by global sections for every β ≥ q + pk(n+ 1)
by the generically isomorphic injection a. Therefore, for every positive
integer α,

Ŝαβ(f∗ω
⊗k
X/Y ) ⊗H⊗β

is generically generated by global sections for β ≥ q + pk(n+ 1). This
implies that f∗ω

⊗k
X/Y is weakly positive. �

Remark 4.4. The proof of Theorem 4.3 says that(
s⊗
f∗ω

⊗k
X/Y

)∗∗

⊗ ω⊗k
Y ⊗A⊗k(n+1)

is generated by global sections over U , where A is an ample invertible
sheaf on Y such that |A| is free and U is a nonempty Zariski open set
of Y such that f is smooth over U . Note that the inclusion a in the
proof of Theorem 4.3 is an isomorphism over U .

We close this section with an obvious corollary of Theorem 4.1.

Corollary 4.5. Let f : X → Y be a surjective morphism from a
projective variety X to a smooth projective variety Y . Assume that X
has only rational Gorenstein singularities. Let L be an ample invertible
sheaf on Y such that |L| is free and let k be a positive integer. Then

f∗ω
⊗k
X ⊗ L⊗l ' f∗ω

⊗k
X/Y ⊗ ω⊗k

Y ⊗ L⊗l

is generated by global sections for l ≥ k(dimY + 1).

Proof. Since X has only rational Gorenstein singularities, X has only
canonical Gorenstein singularities. Therefore, by replacing X with its



SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION 25

resolution, we may assume that X is a smooth projective variety. Then
this corollary follows from Theorem 4.1. �

We will use this corollary in the proof of Theorem 7.1.

5. Weak positivity of direct images of pluricanonical
bundles

Let us discuss weak positivity of direct images of (pluri-)canonical
divisors and adjoint divisors, and some related topics. We closely follow
[Vi3, §5] and [Vi4, §3].

Lemma 5.1 ([Vi3, Theorem 4.1]). Let f : V → W be a surjective
morphism between smooth projective varieties. Then f∗ωV/W is weakly
positive.

This result is well known. We have already proved a more general
result (see Theorem 4.3) by using the effective freeness due to Popa–
Schnell (see Theorem 4.1). So we omit the detailed proof here. Note
that this lemma can be proved without using the theory of variations of
Hodge structure (see, for example, [Ko1] and [Vi5, 5. Weak positivity]).
We can prove it as an application of Kollár’s vanishing theorem (see
also the proof of Theorem 4.3 and [F5, Section 5]).

For the reader’s convenience, we give a sketch of the original proof
of Lemma 5.1.

Sketch of the proof of Lemma 5.1. Let Σ be a closed subset of W such
that f is smooth over W0 = W \ Σ. Let τ : W ′ → W be a projective
birational morphism from a smooth projective variety W ′ such that
f−1(Σ) is a simple normal crossing divisor on W ′. By Lemma 3.6 (iv),
we can replace W with W ′. In this situation, f∗ωV/W is locally free
and can be characterized as the upper canonical extension of a suitable
Hodge bundle. By Lemma 3.6 (v), (ii), and the unipotent reduction
theorem, we may further assume that all the local monodromies on
Rdf0∗CV0 around Σ are unipotent, where d = dimX − dimY and
f0 = f |V0 : V0 = f−1(W0) → W0. In this case, we know that f∗ωV/W

is a semipositive locally free sheaf by the theory of variations of Hodge
structure (see [Kaw2, Theorem 5]). Therefore, we obtain that f∗ωV/W

is weakly positive (see Remark 3.5). �

Remark 5.2. The Hodge theoretic part of [Kaw2] seems to be insuffi-
cient. So we recommend the reader to see [FF] and [FFS] for the Hodge
theoretic aspect of the semipositivity of f∗ωV/W and some generaliza-
tions.
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The following lemma may look technical and artificial but is a very
important lemma.

Lemma 5.3 ([Vi3, Lemma 5.1]). Let f : V → W be a projective
surjective morphism between smooth quasi-projective varieties. Let L
and M be invertible sheaves on V and let E be an effective divisor on
V such that SuppE is a simple normal crossing divisor. Assume that

L⊗N = M⊗OV (E)

for some positive integer N . We further assume that there exists a
nonempty Zariski open set U of W such that some power of M is
generated by global sections over f−1(U). Then we obtain that

f∗(ωV/W ⊗ L(i))

is weakly positive for 0 ≤ i ≤ N − 1, where

L(i) = L⊗i ⊗OV

(
−
⌊
iE

N

⌋)
.

Proof. Since the statement is compatible with replacing N by NN ′, E
by N ′E, and M by M⊗N ′

for some positive integer N ′, we may assume
that M itself is generated by global sections over f−1(U). Without loss
of generality, we may shrink U if necessary. Let B + F be the zero set
of a general section of M such that every irreducible component of B
is dominant onto W and that SuppF ⊂ V \ f−1(U). By Bertini, we
may assume that B is smooth and Supp(B + E) is a simple normal
crossing divisor on f−1(U). We note that M = OV (B+F ). By taking
a suitable birational modification outside f−1(U), we may assume that
B is smooth and that Supp(B + E + F ) is a simple normal crossing
divisor. In fact, if ρ : V ′ → V is a birational modification which is an
isomorphism over f−1(U) and if L′ = ρ∗L, M′ = ρ∗M, and E ′ = ρ∗E,
then we can easily check that ρ∗(ωV ′ ⊗L′(i)) is contained in ωV ⊗L(i).
By construction, ρ∗(ωV ′ ⊗ L′(i)) coincides with ωV ⊗ L(i) on f−1(U).
When we prove the weak positivity of f∗(ωV/W ⊗ L(i)), by replacing
E with E + F , we may assume that F = 0 (see Lemma 3.6 (ii)).
Note that every irreducible component of F is vertical with respect
to f : V → W . By taking a cyclic cover p : Z ′ → X associated to
L⊗N = B + E, that is, Z ′ is the normalization of SpecX

⊕N−1
i=1 L⊗−i.

Let Z be a resolution of the cyclic cover Z ′ and let g : Z → W be the
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corresponding morphism.

Z
q //

g
((PPPPPPPPPPPPPPP Z ′ p // V

f

��
W

It is well known that Z ′ has only quotient singularities and

p∗q∗ωZ ' p∗ωZ′ '
N−1⊕
i=0

ωV ⊗ L(i).

Thus, we obtain

g∗ωZ/W '
N−1⊕
i=0

f∗(ωV/W ⊗ L(i)).

Therefore, by Lemma 5.1 and Lemma 3.6 (ii), f∗(ωV/W ⊗L(i)) is weakly
positive for every 0 ≤ i ≤ N − 1. �

As an application of Lemma 5.4, we have:

Lemma 5.4 ([Vi3, Corollary 5.2]). Let f : V → W be a projective
surjective morphism between smooth quasi-projective varieties and let

H be an ample invertible sheaf on W such that Ŝν(f∗ω
⊗k
V/W ⊗ H⊗k) is

generically generated by global sections for a given positive integer k
and some positive integer ν. Then f∗ω

⊗k
V/W ⊗H⊗k−1 is weakly positive.

Proof. By replacing W with W \Σ, where Σ is a suitable closed subset
of codimension ≥ 2, we may assume that f is flat and that f∗ω

⊗k
V/W is

locally free. We put L = ωV/W ⊗ f ∗H and

M = Im
(
f ∗(f∗ω

⊗k
V/W ⊗H⊗k) → ω⊗k

V/W ⊗ f∗H⊗k
)
.

By taking blow-ups, we may assume that M is invertible and that
L⊗k = M⊗OV (E) for some effective divisor E on V such that SuppE
is a simple normal crossing divisor. By assumption, we see that M⊗ν

is generated by global sections over f−1(U), where U is a nonempty
Zariski open set of W . By Lemma 5.3, we obtain that f∗(ωV/W ⊗L(k−1))
is weakly positive, where

L(k−1) = L⊗k−1 ⊗OV

(
−
⌊
k − 1

k
E

⌋)
.

Note that

M⊗ f ∗H⊗−1 ⊂ ωV/W ⊗ L(k−1)
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and that

f∗(ωV/W ⊗ L(k−1)) ⊂ f∗ω
⊗k
V/W ⊗H⊗k−1.

By the definition of M, we have

f∗M⊗H⊗−1 = f∗(ωV/W ⊗ L(k−1)) = f∗ω
⊗k
V/W ⊗H⊗k−1.

Thus we obtain that

f∗ω
⊗k
V/W ⊗H⊗k−1

is weakly positive. �
By using Lemma 5.4, Viehweg cleverly obtained:

Theorem 5.5 (Viehweg’s weak positivity theorem (see [Vi3, Theorem
III]). Let f : V → W be a surjective morphism between smooth projec-
tive varieties. Then f∗ω

⊗k
V/W is weakly positive for every positive integer

k.

Note that we have already proved Theorem 5.5 by using the effective
freeness due to Popa–Schnell (see Theorem 4.3). However, we give
Viehweg’s original proof here since it is interesting and useful for some
other applications (see, for example, [F8]).

Proof. We divide the proof into two steps.

Step 1. Let H be any ample invertible sheaf on W . We put

r = min{s ∈ Z>0 ; f∗ω
⊗k
V/W ⊗H⊗sk−1 is weakly positive}.

By definition, we can find a positive integer ν such that

Ŝν(f∗ω
⊗k
V/W ) ⊗H⊗rkν−ν ⊗H⊗ν

is generically generated by global sections. By Lemma 5.4, we have that
f∗ω

⊗k
V/W ⊗H⊗rk−r is weakly positive. The choice of r allows this only if

(r− 1)k− 1 < rk− r, equivalently, r ≤ k. Therefore, f∗ω
⊗k
V/W ⊗H⊗k2−k

is weakly positive.

Step 2. Let α be a positive integer. By Lemma 5.6 below, we can take
a finite flat morphism τ : W → W ′ from a smooth projective varietyW ′

such that τ ∗H = H′⊗d for d = 2α(k2 − k) + 1. We put V ′ = V ×W W ′.
Then we may assume that V ′ is a smooth projective variety by Lemma
5.6 below. Let f ′ : V ′ → W ′ be the induced morphism.

V

f

��

V ′

f ′

��

oo

W W ′
τ

oo



SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION 29

By applying the result obtained in Step 1 to f ′ : V ′ → W ′, we obtain
that

f ′
∗ω

⊗k
V ′/W ′ ⊗H′⊗k2−k

is weakly positive. Since f ′
∗ω

⊗k
V ′/W ′ = τ ∗f∗ω

⊗k
V/W , we see that τ ∗f∗ω

⊗k
V/W ⊗

H′⊗k2−k is weakly positive. Let β be a large positive integer such that

Ŝ2αβ(τ ∗f∗ω
⊗k
V/W ⊗H′⊗k2−k) ⊗H′⊗β = τ ∗Ŝ2αβ(f∗ω

⊗k
V/W ) ⊗ τ ∗H⊗β

is generically generated by global sections. Let Ŵ be a nonempty

Zariski open set of W such that Ŝ2αβ(f∗ω
⊗k
V/W ) is locally free and that

codimW (W \ Ŵ ) ≥ 2. By shrinking W , we may assume that W = Ŵ .
Then we have a surjection

τ∗τ
∗Ŝ2αβ(f∗ω

⊗k
V/W ) ⊗H⊗β → Ŝ2αβ(f∗ω

⊗k
V/W ) ⊗H⊗β.

Therefore, we obtain a homomorphism

τ∗OW ′ ⊗H⊗β → Ŝ2αβ(f∗ω
⊗k
V/W ) ⊗H⊗2β

which is surjective over a nonempty Zariski open set. Without loss of
generality, we may assume that τ∗OW ′ ⊗ H⊗β is generated by global

sections (see Remark 3.2). Thus, Ŝ2αβ(f∗ω
⊗k
V/W )⊗H⊗2β is generated by

global sections over a nonempty Zariski open set.

This means that f∗ω
⊗k
V/W is weakly positive. �

The following covering construction is very important and useful. We
have already used it in the proof of Theorem 5.5. The description of
Kawamata’s covering trick in [EV, 3.19. Lemma] is very useful for our
purpose (see also [AbK, 5.3. Kawamata’s covering] and [Vi7, Lemma
2.5]).

Lemma 5.6. Let f : V → W be a projective surjective morphism
between smooth quasi-projective varieties and let H be a Cartier divisor
on W . Let d be an arbitrary positive integer. Then we can take a finite
flat morphism τ : W ′ → W from a smooth quasi-projective variety W ′

and a Cartier divisor H ′ on W ′ such that τ ∗H ∼ dH ′ and that V ′ =
V ×W W ′ is a smooth quasi-projective variety with ωV ′/W ′ = ρ∗ωV ′/W ′,
where ρ : V ′ → V .

Proof. We take general very ample Cartier divisors D1 and D2 with the
following properties.

(i) H ∼ D1 −D2,
(ii) D1, D2, f

∗D1, and f∗D2 are smooth,
(iii) D1 and D2 have no common components, and
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(iv) Supp(D1+D2) and Supp(f ∗D1+f
∗D2) are simple normal cross-

ing divisors.

We take a finite flat cover due to Kawamata with respect to W and
D1 +D2. Then we obtain τ : W ′ → W and H ′ such that τ ∗H ∼ dH ′.
By the construction of the above Kawamata cover τ : W ′ → W , we
may assume that the ramification locus Σ of τ in W is a general simple
normal crossing divisor. This means that f∗P is a smooth divisor for
any irreducible component P of Σ and that f∗Σ is a simple normal
crossing divisor on V . In this situation, we can easily check that V ′ =
V ×W W ′ is a smooth quasi-projective variety.

V ′ ρ //

f ′

��

V

f

��
W ′

τ
// W

By construction, we can also easily check that ωV ′/W ′ = ρ∗ωV/W by the
Hurwitz formula. �

Remark 5.7. In the proof of Lemma 5.6, let S be any simple normal
crossing divisor on V . Then we can choose the ramification locus Σ of
τ such that f ∗P 6⊂ S for any irreducible component P of Σ and that
f ∗Σ ∪ S is a simple normal crossing divisor on V . If we choose Σ as
above, then we obtain that ρ∗S is a simple normal crossing divisor on
V ′.

Remark 5.8. As an interesting and useful generalization of Theorem
5.5, we have the twisted weak positivity theorem mainly due to Viehweg
and Campana. For the details, see [F9] (see also [F13, Section 8]).

The following lemma is also an application of Lemma 5.3.

Lemma 5.9 ([Vi3, Lemma 5.4]). Let f : V → W be a projective
surjective morphism between smooth quasi-projective varieties. Let k
be a positive integer and let k′ be any multiple of k with k′ ≥ 2. Assume
that we have an inclusion

H ↪→ (f∗ω
⊗k
V/W )∗∗

for some ample invertible sheaf H on W . Then there exists a finite
surjective morphism τ : W ′ → W from a smooth quasi-projective vari-
ety W ′ such that V ′ = V ×W W ′ is a smooth quasi-projective variety
with the following properties:

(i) τ ∗f∗ω
⊗ν
V/W = f ′

∗ω
⊗ν
V ′/W ′ for every positive integer ν, and
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(ii) there exists an ample invertible sheaf H′ on W ′ such that

f ′
∗ω

⊗k′

V ′/W ′ ⊗H′⊗−1

is weakly positive.

V

f

��

V ′oo

f ′

��
W W ′

τ
oo

Proof. By the natural map

H⊗a → Ŝa(f∗ω
⊗k
V/W ) → Ŝ1(f∗ω

⊗ak
V/W ) = (f∗ω

⊗ak
V/W )∗∗,

we may assume that k = k′ > 1. By taking blow-ups, if necessary, we
may assume that there exist an invertible sheaf N on V and a simple
normal crossing divisor

∑
j Ej on V , where Ej is smooth for every j

and Ei 6= Ej for i 6= j, such that

N = Im
(
f ∗f∗ω

⊗k
V/W → ω⊗k

V/W

)
,

N ⊗OV (
∑

j

µjEj) = ω⊗k
V/W ,

N = f ∗H⊗OV (
∑

j

νjEj),

such that νj ≥ 0 if Ej is not f -exceptional. We take a nonempty Zariski
open set U ′ of W such that f is flat over U ′. By shrinking U ′, we may
assume that Ej = Ej|f−1(U ′) is dominant onto U ′ if Ej 6= 0. We put

µj =

{
µj if Ej 6= 0

0 if Ej = 0
and νj =

{
νj if Ej 6= 0

0 if Ej = 0.

We take a large integer b such that b > νj for all j. We take a gen-
eral finite cover τ : W ′ → W such that V ′ = V ×W W ′ is smooth,
τ ∗f∗ω

⊗m
V/W = f ′

∗ω
⊗m
V ′/W ′ for every m ≥ 1, and τ ∗H = A⊗bk+1 for some

ample invertible sheaf A on W ′ by Lemma 5.6 (see also Remark 5.7).
For simplicity, we may assume that W = W ′ and that H = A⊗bk+1. By
Theorem 5.5, f∗ω

⊗k
V/W is weakly positive. Therefore, there exists some

ν > 0 such that

Ŝν(b−1)(f∗ω
⊗k
V/W ) ⊗A⊗ν

is generically generated by global sections. We can take an effec-
tive f -exceptional divisor B on V such that (f∗ω

⊗η
V/W )∗∗ = f∗(ωV/W ⊗
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OV (B))⊗η for every η ≤ ν(b − 1)k. We put L = ωV/W ⊗ OV (B) ⊗
f ∗A⊗−1, N = bk, and

M = L⊗N ⊗OV (−
∑

j

(bµj + νj)Ej).

By construction, we may assume that there is an effective divisor F on
V such that SuppF ⊂ V \ f−1(U ′) and that

OV (F ) = ω⊗k
V/W ⊗OV (kB −

∑
j

(µj + νj)Ej) ⊗ f∗H⊗−1

by choosing B sufficiently large. Then we can check that

M =

(
ω⊗k

V/W ⊗OV (kB −
∑

j

µjEj)

)⊗b−1

⊗ f ∗A⊗OV (F ).

The natural maps

f ∗Ŝν(b−1)(f∗ω
⊗k
V/W ) −→

(
ω⊗k

V/W ⊗OV (kB −
∑

j

µjEj)

)⊗ν(b−1)

−→ M⊗ν ⊗ f ∗A⊗−ν

are surjective on f−1(U ′). Thus the assumptions of Lemma 5.3 are
satisfied, that is, M⊗ν is generated by global sections over f−1(U) for
some nonempty Zariski open set U of W . By the choice of b, we have⌊

(k − 1)(bµj + νj)

bk

⌋
≤ µj +

⌊νj

b

⌋
= µj

for every j. This means that the sheaf ωV/W ⊗ L(k−1) contains N ⊗
f ∗A⊗−(k−1) on f−1(U ′). We put H′ = A⊗k−1. Then the inclusion

f∗(ωV/W ⊗ L(k−1)) → f∗(ω
⊗k
V/W ⊗OV (kB)) ⊗H′⊗−1

is an isomorphism on U ′. Thus, f∗ω
⊗k
V/W ⊗H′⊗−1 is weakly positive by

Lemma 5.3. �
As an application of Lemma 5.9, we have:

Proposition 5.10 ([Vi4, Proposition 3.4]). Let f : V → W be a pro-
jective surjective morphism between smooth quasi-projective varieties.
Let H be an ample invertible sheaf on W and let M be any invertible
sheaf on W . Let k be a positive integer and let k′ be any multiple of
k with k′ ≥ 2. Assume that we have an inclusion H ↪→ (f∗ω

⊗k
V/W )∗∗.

Then
Ŝγ(f∗ω

⊗k′

V/W ) ⊗M⊗−1
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is weakly positive for every large positive integer γ. In particular,
f∗ω

⊗k′

V/W is big.

Proof. By Lemma 5.9, there exist a finite cover τ : W ′ → W and
an ample invertible sheaf H′ on W ′ such that τ ∗(f∗ω

⊗k′

V/W ) ⊗ H′⊗−1 is

weakly positive. For every large positive integer γ, τ ∗M⊗−1⊗H′⊗γ has

a nontrivial global section. Thus, Ŝγ(τ ∗f∗ω
⊗k′

V/W ⊗H′⊗−1) is a subsheaf

of τ ∗(Ŝγ(f∗ω
⊗k′

V/W ) ⊗M⊗−1). Note that the inclusion

Ŝγ(τ ∗f∗ω
⊗k′

V/W ⊗H′⊗−1) ↪→ τ ∗(Ŝγ(f∗ω
⊗k′

V/W ) ⊗M⊗−1)

is an isomorphism at the generic point ofW . This implies that Ŝγ(f∗ω
⊗k′

V/W )⊗
M⊗−1 is weakly positive for every large positive integer γ by Lemma
3.6 (ii) and (v). �

The following theorem is the main theorem of this section.

Theorem 5.11 ([Vi4, Theorem 3.5]). Let f : V → W be a projective
surjective morphism between smooth quasi-projective varieties. Assume
that f is semistable in codimension one. We further assume that

κ(W, d̂et(f∗ω
⊗k
V/W )) = dimW

for some positive integer k. Let M be any invertible sheaf on W and
let k′ be any multiple of k with k′ ≥ 2. Then we obtain that

Ŝγ(f∗ω
⊗k′

V/W ) ⊗M⊗−1

is weakly positive for every large and divisible positive integer γ. In
particular, f∗ω

⊗k′

V/W is big.

Proof. Let H be an ample invertible sheaf on W . By Kodaira’s lemma,

we can find a > 0 such that H is contained in d̂et(f∗ω
⊗k
V/W )⊗a. Let

U be a Zariski open set of W such that codimW (W \ U) ≥ 2, f is
semistable over U , and f∗ω

⊗k
V/W is a locally free sheaf on U . We put

r = rank(f∗ω
⊗k
V/W )|U . Then we have an inclusion of det(f∗ω

⊗k
V/W )|U into

((f∗ω
⊗k
V/W )|U)⊗r. Therefore, H can be seen as a subsheaf of (f∗ω

⊗k
V/W )⊗s

for s = ra on U . Let f (s) : V (s) → W be a desingularization of the
s-fold fiber product V ×W V ×W · · · ×W V . Then

f (s)
∗ ω⊗k

V (s)/W
= (f∗ω

⊗k
V/W )⊗s

holds on U (see Lemma 3.12 and Corollary 3.14). Thus, we have H ↪→
(f

(s)
∗ ω⊗k

V (s)/W
)∗∗. By Proposition 5.10, we obtain that

Ŝν(f (s)
∗ ω⊗k′

V (s)/W
) ⊗M⊗−1 = Ŝν(((f∗ω

⊗k′

V/W )⊗s)∗∗) ⊗M⊗−1
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is weakly positive for every large positive integer ν. Thus Ŝνs(f∗ω
⊗k′

V/W )⊗
M⊗−1 is also weakly positive for every large positive integer ν by
Lemma 3.6 (ii). �

We close this section with an important remark on weakly semistable
morphisms.

Remark 5.12. Theorem 5.11 holds under the assumption that

f : V
δ−→ V † f†

−→W

where δ is a resolution of singularities and f † : V † → W is weakly
semistable. Since f∗ω

⊗k′

V/W = f †
∗ω

⊗k′

V †/W
, we may assume that V = V † for

the proof of Theorem 5.11. By induction on s, we see that V s has only
Gorenstein singularities by the flat base change theorem [Ve, Theorem
2] (see also [H1], [C], and so on).

V s

fs−1

��

V s
poo

q

��
W V

f
oo

Since f : V → W is weakly semistable, we can easily see that V s

is normal and is local analytically isomorphic to a toric variety by
induction on s. Anyway, V s has only rational Gorenstein singularities

and is flat over W . Therefore, f
(s)
∗ ω⊗m

V (s)/W
= f s

∗ω
⊗m
V s/W is a reflexive

sheaf for every positive integer m. By the flat base change theorem
[Ve, Theorem 2] (see also [H1], [C], and so on), ωV s/V ' p∗ωV s−1/W .
Therefore, we have

f s
∗ω

⊗m
V s/W ' f s−1

∗ p∗(p
∗ω⊗m

V s−1/W ⊗ q∗ω⊗m
V/W )

' f s−1
∗ (ω⊗m

V s−1/W ⊗ p∗q
∗ω⊗m

V/W )

' f s−1
∗ (ω⊗m

V s−1/W ⊗ (f s−1)∗f∗ω
⊗m
V/W )

'
(
f∗ω

⊗m
V/W ⊗ (f s−1

∗ ω⊗m
V s−1/W )

)∗∗
'

(
s⊗
f∗ω

⊗m
V/W

)∗∗

by the flat base change theorem (see [H2, Chapter III, Proposition
9.3]) and the projection formula for every positive integer m and every
positive integer s by induction on s. Therefore, the proof of Theorem
5.11 also works in this situation.
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6. From Viehweg’s conjecture to Iitaka’s conjecture

This section is a slight reformulation of [Vi3, §7]. We prove that
Viehweg’s conjecture (see Conjecture 1.7) implies the generalized Iitaka
conjecture (see Conjecture 1.6).

First, let us recall the definition of Viehweg’s variation.

Definition 6.1 (Viehweg’s variation). Let f : X → Y be a surjective
morphism between normal projective varieties. Let K(⊃ C) be an

algebraically closed field contained in C(Y ) such that there is a smooth

projective variety V defined over K and that V ×SpecK SpecC(Y ) and

X ×Y SpecC(Y ) are birational. The minimum of trans.degCK for all
such K is called the variation of f and is denoted by Var(f). We have
0 ≤ Var(f) ≤ dimY .

Next, we recall Viehweg’s conjecture Qn,m (see Conjecture 1.7).

Conjecture 6.2 (Viehweg’s conjecture Qn,m). Let f : X → Y be a
surjective morphism between smooth projective varieties with connected
fibers such that dimX = n and dimY = m. Assume that Var(f) =
dimY . Then f∗ω

⊗k
X/Y is big for some positive integer k.

Remark 6.3. Of course, we should assume that KF is pseudo-effective
in Conjecture 6.2, where F is the geometric generic fiber of f : X → Y .
We note that f∗ω

⊗n
X/Y = 0 for every positive integer n if KF is not

pseudo-effective.

We prepare Fujita’s easy but important lemma (see [Ft, Proposition
1]).

Lemma 6.4 (Fujita’s lemma). Let f : X → Y be a projective surjective
morphism between normal projective varieties with connected fibers. Let
L be an invertible sheaf on X and let M be an invertible sheaf on Y
such that κ(Y,M) = dimY and κ(X,L⊗a ⊗ f∗M⊗−b) ≥ 0 for some
positive integers a and b. then we have

κ(X,L) = κ(Xη,L|Xη
) + κ(Y,M)

where Xη is the geometric generic fiber of f : X → Y .

Proof. By Iitaka’s easy addition formula (see Lemma 2.8), we have

κ(X,L) ≤ dimY + κ(Xη,L|Xη
).

Therefore, it is sufficient to prove

κ(X,L) ≥ κ(Y,M) + κ(Xη,L|Xη
).

By Kodaira’s lemma, we may assume that M is ample. We may fur-
ther assume that M is very ample, the rational map Φ|L| : X 99K V ⊂
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Pdim |L| gives an Iitaka fibration, andH0(X,L⊗f ∗M⊗−1) 6= 0 by replac-
ing L and M with multiplies. An element α 6= 0 ofH0(X,L⊗f ∗M⊗−1)
defines an injection H0(Y,M) ↪→ H0(X,L). Therefore, it gives a pro-
jection

Pdim |L| 99K Pdim |M|.

Hence we obtain the following commutative diagram.

X

f

��

Φ|L| //___ V

π

���
�
�

� � // Pdim |L|

���
�
�

Y
∼

Φ|M|

// W
� � // Pdim |M|

By taking suitable resolutions of X and V in the above diagram, we
may assume that we have

X

f

��

ρ // Ṽ

eπ
��

Y Y

where Ṽ is a smooth projective variety which is birationally equivalent
to V . We take a sufficiently general point y of Y and consider the
mapping

ρy : Xy = f−1(y) → Ṽy = π̃−1(y).

A sufficiently general fiber F of ρy is also a sufficiently general fiber of
ρ. Therefore, we have κ(F,L|F ) = 0. Note that ρ is an Iitaka fibration
with respect to L. Thus, we have

κ(Xy,L|Xy) ≤ κ(F,L|F ) + dim Ṽy

= dim Ṽ − dimY

= κ(X,L) − κ(Y,M)

by Iitaka’s easy addition formula (see Lemma 2.8). On the other hand,
we have κ(Xy,L|Xy) = κ(Xη,L|Xη

). Therefore, we obtain the desired
inequality κ(X,L) ≥ κ(Y,M) + κ(Xη,L|Xη

). �

The big commutative diagram constructed in Lemma 6.5 plays im-
portant roles

Lemma 6.5. Let f : X → Y be a surjective morphism between smooth
projective varieties with connected fibers. Then we have the following
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commutative diagram:

X

f

��

V
αoo

g

��

V ′ρoo

g′

��

ρ′′ // V ′′

g′′

��
Y W

β
oo W ′

τ
oo

τ ′′
// W ′′

such that

(i) V and W are smooth projective varieties.
(ii) α and β are birational.
(iii) all g-exceptional divisors are α-exceptional.
(iv) W ′′ is a smooth projective variety.
(v) V ′′ and W ′ are normal projective varieties.
(vi) dimW ′′ = Var(g′′) = Var(f).
(vii) τ : W ′ → W is a generically finite surjective morphism.
(viii) V ′ is a resolution of W ′×W ′′ V ′′ and is a resolution of the main

component of V ×W W ′ at the same time.
(ix) g′′ : V ′′ → W ′′ and τ ′′ : W ′ → W ′′ have connected fibers and

are weakly semistable.

Proof. We divide the proof into several steps.

Step 1. By the flattening theorem (see, for example, [AbO, 3.3. The
flattening lemma]), we can find a projective birational morphism β :
W → Y from a smooth projective varietyW such that (W×Y X)main →
W induced by β : W → Y is flat, where (W ×Y X)main is the main
component of W ×Y X. Let V → (W ×Y X)main be a projective bi-
rational morphism from a smooth projective variety V . Then we have
the following commutative diagram:

X

f
��

V

g

��

αoo

Y W
β

oo

satisfying (i), (ii), and (iii).

Step 2. Note that Var(f) = Var(g) by definition. Therefore, we can
construct the following commutative diagram:

V

g

��

V ′ρoo

g′

��

ρ′′ // V ′′

g′′

��
W W ′

τ
oo

τ ′′
// W ′′
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such that V ′,W ′, V ′′, and W ′′ are smooth projective varieties, g′′ is
a surjective morphism between smooth projective varieties with con-
nected fibers, dimW ′′ = Var(g′′) = Var(g) = Var(f), τ : W ′ → W is
a generically finite surjective morphism, V ′ is a resolution of the main
component of V ×W W ′ and is a resolution of the main component
of V ′′ ×W ′′ W ′ at the same time. Without loss of generality, we may
assume that τ ′′ has connected fibers.

Step 3. By the weak semistable reduction theorem, we may assume
that g′′ : V ′′ → W ′′ is weakly semistable by taking the base change by
a generically finite surjective morphism W † → W ′′ from a smooth pro-
jective variety W †. By applying the weak semistable reduction theorem
to τ ′′ : W ′ → W ′′, we may further assume that τ ′′ : W ′ → W ′′ is also
weakly semistable by the base change by a generically finite morphism
W †† → W ′′ from a smooth projective variety W †† (see [AbK, Lemma
6.2]). Then we have a commutative diagram of V, V ′, V ′′,W,W ′ and
W ′′ satisfying the properties (iv)–(ix).

Therefore, we have the desired big commutative diagram satisfying
the properties (i)–(ix). �
Lemma 6.6. Let L be an invertible sheaf on Y . Then we have

κ(X,ωX/Y ⊗ f ∗L) ≥ κ(V, ωV/W ⊗OV (B) ⊗ α∗f∗L)

for any effective g-exceptional divisor B on V .

Proof. We can write KV = α∗KX +E and KW = β∗KY +F such that E
is an effective α-exceptional divisor and F is an effective β-exceptional
divisor. Therefore,

KV/W +B = KV −g∗KW +B = α∗KX/Y +E+B−g∗F ≤ α∗KX/Y +E+B.

Note that E + B is an effective α-exceptional divisor. Therefore, we
obtain

κ(X,ωX/Y ⊗ f ∗L) ≥ κ(V, ωV/W ⊗OV (B) ⊗ α∗f∗L)

for any effective g-exceptional divisor B. �
Lemma 6.7 essentially says that Viehweg’s conjecture (see Conjecture

1.7) implies the generalized Iitaka conjecture (see Conjecture 1.6)

Lemma 6.7. Assume that d̂etg′′∗ω
⊗m
V ′′/W ′′ is a big invertible sheaf for

some positive integer m. Then we obtain

κ(X,ωX/Y ⊗ f∗L) ≥ κ(Xη) + max{Var(f), κ(Y,L)}
for every invertible sheaf L on Y with κ(Y,L) ≥ 0, where Xη is the
geometric generic fiber of f : X → Y .
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Proof. We need several steps for the proof of Lemma 6.7.

Step 1. By the proof of Theorem 5.11 (see also Remark 5.12), we have
that g′′∗ω

⊗k
V ′′/W ′′ is big for some positive integer k. Therefore, there is a

positive integer ν such that Ŝν(g′′∗ω
⊗k
V ′′/W ′′) contains an ample Cartier

divisor on W ′′. By the nonzero map

Ŝν(g′′∗ω
⊗k
V ′′/W ′′) → g′′∗ω

⊗νk
V ′′/W ′′ ,

we may assume that g′′∗ω
⊗k
V ′′/W ′′ contains an ample Cartier divisor H on

W ′′ by replacing νk with k.

Step 2. We consider the following commutative diagram:

Ṽ

eg

��

eρ // V ′′

g′′

��
W ′

τ ′′
// W ′′

where Ṽ = W ′ ×W ′′ V ′′. Then we obtain

(τ ′′)∗g′′∗ω
⊗k
V ′′/W ′′ ' g̃∗ω

⊗k
eV /W ′

by the flat base change theorem [Ve, Theorem 2] (see also [H1], [C],

and so on). Note that Ṽ has only rational Gorenstein singularities (see
Lemma 2.14). This implies that g′∗ω

⊗k
V ′/W ′ ' g̃∗ω

⊗k
eV /W ′ . We obtain that

g̃∗ω
⊗k
eV /W ′(' g′∗ω

⊗k
V ′/W ′) contains (τ ′′)∗H. So we have that ω⊗k

eV /W ′ contains

(τ ′′ ◦ g̃)∗H. We note that g̃∗ω
⊗k
eV /W ′ is a reflexive sheaf on W ′.

Step 3. In this step, we will check

κ(V ′, ωV ′/W ′ ⊗ ρ∗α∗f∗L) ≥ κ(Vη) + max{Var(g), κ(W,β∗L)}
= κ(Xη) + max{Var(f), κ(Y,L)},

where Vη is the geometric generic fiber of g and Xη is the geometric
generic fiber of f .

Since ω⊗k
eV /W ′ contains (τ ′′ ◦ g̃)∗H and κ(Y,L) ≥ 0, we obtain

κ(Ṽ , (ω
eV /W ′ ⊗ g̃∗τ ∗β∗L)⊗a ⊗ (τ ′′∗ ◦ g̃)∗OW ′′(−bH)) ≥ 0
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for some positive integers a and b. Then, by Lemma 6.4, we obtain

κ(V ′, ωV ′/W ′ ⊗ ρ∗α∗f ∗L) = κ(V ′, ωV ′/W ′ ⊗ g′∗τ ∗β∗L)

= κ(Ṽ , ω
eV /W ′ ⊗ g̃∗τ ∗β∗L)

= dimW ′′ + κ(Ṽw′′ , (ω
eV /W ′ ⊗ g̃∗τ ∗β∗L)|

eV
w′′

)

= dimW ′′ + κ(V ′′
w′′ , ωV ′′

w′′
) + κ(W ′

w′′ , τ
∗β∗L|W ′

w′′
)

= dimW ′′ + κ(Vη) + κ(W ′
w′′ , τ

∗β∗L|W ′
w′′

).

Note that Ṽw′′ = W ′
w′′ × V ′′

w′′ , where w′′ is the geometric generic point
of W ′′. Since dimW ′′ = Var(g) and

κ(W,β∗L) = κ(W ′, τ ∗β∗L) ≤ dimW ′′ + κ(W ′
w′′ , τ

∗β∗L|W ′
w′′

)

by Lemma 2.8, we obtain

κ(V ′, ωV ′/W ′ ⊗ ρ∗α∗f∗L) ≥ κ(Vη) + max{Var(g), κ(W,β∗L)}
= κ(Xη) + max{Var(f), κ(Y,L)}.

Step 4. Let U be a Zariski open set of W such that g is flat over U
and that codimW (W \ U) ≥ 2. By restricting

V

g

��

V ′

g′

��

ρoo

W W ′
τ

oo

to U , we obtain

VU

g

��

V ′
U

g′

��

ρoo

U W ′
U .τ

oo

Without loss of generality, we may assume that W ′
U is smooth and

τ : W ′
U → U is flat by shrinking U . By the base change theorem (see

Lemma 3.12), we obtain

g′∗ω
⊗l
V ′

U/W ′
U
↪→ τ ∗(g∗ω

⊗l
VU/U) ' g′∗(ρ

∗ω⊗l
VU/U)

for every positive integer l. Therefore, we have

g′∗(ωV ′
U/W ′

U
⊗ g′∗τ ∗β∗L)⊗l ↪→ g′∗(ρ

∗(ωVU/U ⊗ g∗β∗L)⊗l).
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Thus,

H0(V ′, (ωV ′/W ′ ⊗ g′∗τ ∗β∗L)⊗l)

↪→ H0(V ′, ρ∗((ωV/W ⊗ g∗β∗L)⊗l ⊗OV (D)) ⊗OV ′(E))

' H0(V, (ωV/W ⊗ g∗β∗L)⊗l ⊗OV (D))

for some effective Cartier divisorD on V such that SuppD ⊂ V \VU and
some effective ρ-exceptional divisor E on V ′ such that SuppE ⊂ V ′\V ′

U .
This implies that

κ(V ′, ωV ′/W ′ ⊗ ρ∗α∗f ∗L) ≤ κ(V, ωV/W ⊗OV (B) ⊗ α∗f ∗L).

for some effective Cartier divisor B on V such that SuppB ⊂ V \ VU .
Note that B is g-exceptional. Therefore, B is α-exceptional.

Thus, by Lemma 6.6 and the inequalities obtained above, we obtain

κ(X,ωX/Y ⊗ f ∗L) ≥ κ(V, ωV/W ⊗OV (B) ⊗ α∗f ∗L)

≥ κ(V ′, ωV ′/W ′ ⊗ ρ∗α∗f∗L)

≥ κ(Xη) + max{Var(f), κ(Y,L)}.
This is the desired inequality. �

We will apply Lemma 6.7 to algebraic fiber spaces whose geometric
generic fiber is of general type and elliptic fibrations in Section 7 and
Section 8 respectively.

Lemma 6.8. Assume that d̂etg′′∗ω
⊗m
V ′′/W ′′ is a big invertible sheaf for

some positive integer m. Then we have

κ(Y, d̂et(f∗ω
⊗m
X/Y )) ≥ dimW ′′ = Var(f).

Proof. Note that

τ ′′∗g′′∗ω
⊗m
V ′′/W ′′ = g̃∗ω

⊗m
eV /W ′ = g′∗ω

⊗m
V ′/W ′ .

Therefore, we have

κ(W ′, d̂etg′∗ω
⊗m
V ′/W ′) = κ(W ′, d̂etg̃∗ω

⊗m
V ′/W ′)

= κ(W ′, τ ′′∗d̂etg′′∗ω
⊗m
V ′′/W ′′) = dimW ′′.

Let U † be a Zariski open set of Y such that τ ◦ β : W ′ → Y is flat over
U † and that codimY (Y \ U †) ≥ 2. By restricting

X

f

��

V ′

g′

��

α◦ρoo

Y W ′
β◦τ

oo
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to U †, we obtain

XU†

f

��

V ′
U†

g′

��

α◦ρoo

U † W ′
U† .

β◦τ
oo

Without loss of generality, we may further assume that W ′
U† is smooth.

By the base change theorem (see Lemma 3.12), we obtain a generically
isomorphic inclusion

g′∗ω
⊗m
V ′

U†/W ′
U†
↪→ (β ◦ τ)∗(f∗ω⊗m

X
U†/U†).

This implies that there exists an inclusion of invertible sheaves:

d̂etg′∗ω
⊗m
V ′

U†/W ′
U†
↪→ (β ◦ τ)∗d̂et(f∗ω

⊗m
X

U†/U†).

Therefore, we obtain an injection

d̂etg′∗ω
⊗m
V ′/W ′ ↪→ (β ◦ τ)∗d̂et(f∗ω

⊗m
X/Y ) ⊗OW ′(E†)

for some effective (β ◦ τ)-exceptional divisor on W ′. Thus, we obtain

κ(Y, d̂et(f∗ω
⊗m
X/Y )) = κ(W ′, (β ◦ τ)∗d̂et(f∗ω

⊗m
X/Y ) ⊗OW ′(E†))

≥ κ(W ′, d̂etg′∗ω
⊗m
V ′/W ′)

≥ dimW ′′ = Var(f).

This is the desired inequality. �

For some future references, we write the following lemma. The proof
of Lemma 6.8 says:

Lemma 6.9. Let f : X → Y be a surjective morphism between smooth
projective varieties and let τ : Y ′ → Y be a generically finite surjective
morphism from a smooth projective variety Y ′. We take the following
commutative diagram:

X

f

��

X ′

f ′

��

oo

Y Y ′
τ

oo

where X ′ is a resolution of the main component of X ×Y Y
′. Let m be

a positive integer. Then there exists an effective τ -exceptional divisor
E on Y ′ such that

d̂etf ′
∗ω

⊗m
X′/Y ′ ↪→ τ ∗(d̂etf∗ω

⊗m
X/Y ) ⊗OY ′(E).
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In particular, we have

κ(Y, d̂etf∗ω
⊗m
X/Y ) ≥ κ(Y ′, d̂etf ′

∗ω
⊗m
X′/Y ′).

Remark 6.10. As in 3.17, by Lemma 6.9, we may assume that f is
semistable in codimension one or

f : X
δ−→ X† f†

−→ Y

such that f † : X† → Y is weakly semistable and that δ is a resolution

of singularities when we want to prove κ(Y, d̂et(f∗ω
⊗m
X/Y )) = dimY .

7. Fiber spaces whose general fibers are of general type

In this section, we discuss projective surjective morphisms between
smooth projective varieties whose general fibers are of general type.
The main purpose of this section is to prove:

Theorem 7.1. Let f : X → Y be a surjective morphism between
smooth projective varieties with connected fibers. Assume that the geo-
metric generic fiber Xη of f : X → Y is of general type. Then there
exists a generically finite surjective morphism τ : Y ′ → Y from a
smooth projective variety Y ′ with the following property.

Let X ′ be any resolution of the main component of X ×Y Y
′ sitting

in the commutative diagram below:

X ′ //

f ′

��

X

f

��
Y ′

τ
// Y.

Then f ′
∗ω

⊗m
X′/Y ′ is a semipositive locally free sheaf for every nonnegative

integer m. In particular, det f ′
∗ω

⊗m
X′/Y ′ is a nef invertible sheaf for every

nonnegative integer m. We further assume that Var(f) = dimY . Then
det f ′

∗ω
⊗k
X′/Y ′ is a nef and big invertible sheaf for some large and divisible

positive integer k.

Theorem 7.1 is slightly better than the well-known results by Kawa-
mata, Kollár, Viehweg, and others (see [Kaw4], [Ko2], and [Vi6]).

The following remark is very important for various applications.

Remark 7.2. In Theorem 7.1, it is sufficient to assume that τ : Y ′ → Y
is a generically finite surjective morphism from a smooth projective
variety Y ′ such that there exists a weakly semistable morphism f † :
X† → Y ′ in the sense of Abramovich–Karu (see 2.13), where X† →
X ×Y Y

′ is a projective birational morphism and f † : X† → Y ′ is the
induced morphism.
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Remark 7.3. In Theorem 7.1, the bigness of det f ′
∗ω

⊗k
X′/Y ′ implies that

f ′
∗ω

⊗k′

X′/Y ′ is a big locally free sheaf, where k′ is any multiple of k with

k′ ≥ 2. For the details, see Theorem 5.11 and Remark 5.12 (see also
Remark 7.2). Therefore, Theorem 1.8 follows from Theorem 7.1.

By the results explained in Section 6, we have the following result as
an application of Theorem 7.1. Corollary 7.4 says that the generalized
Iitaka conjecture (see Conjecture 1.6) holds for projective surjective
morphisms between smooth projective varieties with connected fibers
whose general fibers are of general type.

Corollary 7.4 (see [Kaw4], [Ko2], and [Vi6]). Let f : X → Y be a
surjective morphism between smooth projective varieties with connected
fibers. Assume that the geometric generic fiber Xη of f : X → Y is of
general type. Then we have the following properties.

(i) There exists a positive integer k such that

κ(Y, d̂et(f∗ω
⊗k
X/Y )) ≥ Var(f).

(ii) If κ(Y,L) ≥ 0, then we have

κ(X,ωX/Y ⊗ f ∗L) ≥ κ(Xη) + max{κ(Y,L),Var(f)}
= dimX − dimY + max{κ(Y,L),Var(f)}.

(iii) We have

κ(X,ωX/Y ) ≥ κ(Xη) + Var(f)

= dimX − dimY + Var(f).

(iv) If κ(Y ) ≥ 0, then we have

κ(X) ≥ κ(Xη) + max{κ(Y ),Var(f)}
= dimX − dimY + max{κ(Y ),Var(f)}.

Proof. Note that (iii) and (iv) are important special cases of the state-
ment (ii). In the big commutative diagram constructed in Lemma 6.5,
we apply Theorem 7.1 to g′′ : V ′′ → W ′′ (see also Remark 7.2). Then
we obtain that det g′′∗ω

⊗m
V ′′/W ′′ is nef and big for some positive integer m.

Therefore, we obtain the desired inequality in (ii) by Lemma 6.7. We
also obtain the desired inequality in (i) by Lemma 6.8. �

Before we start the proof of Theorem 7.1, we prepare several lemmas
for the reader’s convenience.

Lemma 7.5. Let X be a normal variety with only canonical singular-
ities. Then OX(mKX) is Cohen–Macaulay for every integer m.
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Proof. We note that X has only rational singularities when X is canon-
ical. Let r be the smallest positive integer such that rKX is Cartier.
Since the problem is local, we may assume that rKX ∼ 0 by shrink-
ing X. If r = 1, then OX(mKX) ' OX for every integer m. In this
case, OX(mKX) is Cohen–Macaulay for every integer m since X has
only rational singularities. From now on, we assume that r ≥ 2. Let

π : X̃ → X be the index one cover. Then we have

π∗O eX(K
eX) '

r⊕
i=1

OX(iKX).

Since X̃ has only canonical singularities and K
eX is Cartier, O

eX(K
eX)

is Cohen–Macaulay. Since π is finite, OX(iKX) is Cohen–Macaulay for
1 ≤ i ≤ r. By rKX ∼ 0, we obtain that OX(mKX) is Cohen–Macaulay
for every integer m. �

Let us recall the following well-known lemma, which is a special case
of [N1, Corollary 3].

Lemma 7.6 (cf. [N1, Corollary 3]). Let g : V → C be a projective sur-
jective morphism from a normal quasi-projective variety V to a smooth
quasi-projective curve C. Assume that V has only canonical singulari-
ties and that KV is g-semi-ample. Then Rig∗OV (mKV ) is locally free
for every i and every positive integer m.

Proof. Let h : V ′ → V be a resolution of singularities such that Exc(h)
is a simple normal crossing divisor on V ′. We write

KV ′ = h∗KV + E,

where E is an effective h-exceptional Q-divisor. Then we have

dmh∗KV + Ee − (KV ′ + {−(mh∗KV + E)}) = (m− 1)h∗KV .

We note that the right hand side is semi-ample over C. Therefore,

Ri(g ◦ h)∗OV ′(dmh∗KV + Ee)
is locally free for every i and every positive integer m (see, for example,
[F6, Theorem 6.3 (i)]). On the other hand, we have

Rih∗OV ′(dmh∗KV + Ee) = 0

for every i > 0 by the relative Kawamata–Viehweg vanishing theorem,
and

h∗OV ′(dmh∗KV + Ee) ' OV (mKV ).

Therefore, we obtain that

Rig∗OV (mKV )
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is locally free for every i and every positive integer m. �

We will use the following easy criterion of semipositivity in the proof
of Theorem 7.1.

Lemma 7.7. Let E be a locally free sheaf of finite rank on a smooth
projective variety V . Assume that there exists an invertible sheaf M
such that E⊗s ⊗ M is generated by global sections for every positive
integer s. Then E is semipositive.

Proof. We put π : W = PV (E) → V and OW (1) = OPV (E)(1). Since
E⊗s⊗M is generated by global sections, Ss(E)⊗M is also generated by
global sections for every positive integer s. This implies that OW (s)⊗
π∗M is generated by global sections for every positive integer s. Thus,
we obtain that OW (1) is nef, equivalently, E is semipositive. �

Let us start the proof of Theorem 7.1.

Proof of Theorem 7.1. Let us divide the proof into several steps. First,
let us prove the existence of f ′ : X ′ → Y ′ such that f ′

∗ω
⊗m
X′/Y ′ is locally

free.

Step 1 (Weak semistable reduction). By [AbK, Theorem 0.3], there
exist a generically finite morphism τ : Y ′ → Y from a smooth projective
variety Y ′ and f † : X† → Y ′ with the following properties.

(i) X† is a normal projective Gorenstein (see [AbK, Lemma 6.1])
variety which is birationally equivalent to X ×Y Y

′.
(ii) (UX† ⊂ X†) and (UY ′ ⊂ Y ′) are toroidal embeddings without

self-intersection, with UX† = (f †)−1(UY ′).
(iii) f † : (UX† ⊂ X†) → (UY ′ ⊂ Y ′) is toroidal and equidimensional.
(iv) all the fibers of the morphism f † are reduced.

Note that f † : X† → Y ′ is weakly semistable (see 2.13) and is called
a weak semistable reduction of f : X → Y . We also note that X† has
only rational singularities since X† is toroidal. Therefore, X† has only
canonical Gorenstein singularities and is Cohen–Macaulay. Thus, we
have

f †
∗OX†(mKX†/Y ′) ' f ′

∗ω
⊗m
X′/Y ′

for every positive integer m. Therefore, it is sufficient to prove that
f †
∗OX†(mKX†/Y ′) is locally free for every positive integer m. Note that

f † is flat since Y ′ is smooth, X† is Cohen–Macaulay, and f † is equidi-
mensional (see [H2, Chapter III, Exercise 10.9] and [AlK, Chapter V,
Proposition (3.5)]).
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Step 2 (Relative canonical models). By assumption, the geometric
generic fiber of f † : X† → Y ′ is of general type. Therefore, f † : X† →
Y ′ has the relative canonical model f̃ : X̃ → Y ′ by [BCHM]. Note that

f †
∗OX†(mKX†/Y ′) ' f̃∗O eX(mK

eX/Y ′)

for every positive integer m. Therefore, it is sufficient to prove that

f̃∗O eX(mK
eX/Y ′) is locally free for every positive integer m.

Step 3 (Local freeness via the flat base change theorem). We take an
arbitrary point P ∈ Y ′. We take general very ample Cartier divisors
H1, H2, · · · , Hn−1, where n = dimY , such that C = H1∩H2∩· · ·∩Hn−1

is a smooth projective curve passing through P . By [AbK, Lemma 6.2],

we see that X†
C = X† ×Y ′ C → C is weakly semistable. In particular,

X†
C has only rational Gorenstein singularities (see [AbK, Lemma 6.1]).

By adjunction, we see that X̃C = X̃×Y ′C is normal and has only canon-
ical singularities. More precisely, (f †)∗H1 = X†×Y ′H1 = X†

H1
has only

rational Gorenstein singularities since X†
H1

→ H1 is weakly semistable

by [AbK, Lemma 6.1 and Lemma 6.2]. In particular, (f †)∗H1 has only
canonical singularities. Therefore, (X†, (f †)∗H1) is plt by the inversion

of adjunction (see [KoM, Theorem 5.50]). So we have that (X̃, f̃∗H1)
is plt by the negativity lemma (see, for example, [KoM, Proposition

3.51]). Thus, X̃H1 = X̃ ×Y ′ H1 = f̃ ∗H1 is normal (see [KoM, Proposi-
tion 5.51]). By adjunction and the negativity lemma again, we obtain

that X̃H1 has only canonical singularities. By repeating this process

(n−1)-times, we obtain that X̃C has only canonical singularities. Note

that X̃C → C is equidimensional. Therefore, we see that f̃ : X̃ → Y ′ is

equidimensional by the choice of C. Since X̃ is Cohen–Macaulay and

Y ′ is smooth, f̃ is flat (see [H2, Chapter III, Exercise 10.9] and [AlK,
Chapter V, Proposition (3.5)]). Moreover, O

eX(mK
eX) is flat over Y ′ for

every integer m since O
eX(mK

eX) is Cohen–Macaulay (see Lemma 7.5)

and f̃ is equidimensional (see [AlK, Chapter V, Proposition (3.5)]). By
applying Lemma 7.6 and the base change theorem (see [H2, Chapter

III, Theorem 12.11]) to X̃C → C, we obtain that

dimH0(X̃y,O eX(mK
eX/Y ′)|

eXy
)

is independent of y ∈ Y ′ for every positive integer m. By the base
change theorem (see [H2, Chapter III, Corollary 12.9]), we obtain that

f ′
∗ω

⊗m
X′/Y ′ ' f̃∗O eX(mK

eX/Y ′) is locally free for every positive integer m.
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We complete the proof of the local freeness of f ′
∗ω

⊗m
X′/Y ′ . Next, we will

prove that f ′
∗ω

⊗m
X′/Y ′ is semipositive. Our proof depends on the effective

freeness due to Popa–Schnell (see Theorem 4.1). We do not need the
difficult semipositivity theorem in [F8].

Step 4 (Semipositivity). By the proof of the local freeness of f ′
∗ω

⊗m
X′/Y ′ ,

we may assume that f ′ : X ′ → Y ′ is weakly semistable. For simplicity,
we denote f ′ : X ′ → Y ′ by f : X → Y in this step. We take the s-fold
fiber product

f s : Xs = X ×Y X ×Y · · · ×Y X → Y.

Then we see that Xs is normal and Gorenstein. Moreover, Xs has
only rational singularities because Xs is local analytically isomorphic
to a toric variety. Therefore, Xs has only canonical singularities (see
Lemma 2.14 and Remark 5.12). By the flat base change theorem [Ve,
Theorem 2] (see also [H1], [C], and so on), we have ωXs/X ' p∗ωXs−1/Y .
Thus we have

ωXs/Y ' ωXs/X ⊗ q∗ωX/Y

' p∗ωXs−1/Y ⊗ q∗ωX/Y .

We note the following commutative diagram.

Xs−1

fs−1

��

Xs
poo

fs
{{xx

xx
xx

xx
x

q

��
Y X

f
oo

Therefore, by the flat base change theorem (see [H2, Chapter III,
Proposition 9.3]) and the projection formula, we obtain

f s
∗ω

⊗m
Xs/Y ' f s−1

∗ p∗(p
∗ω⊗m

Xs−1/Y ⊗ q∗ω⊗m
X/Y )

' f s−1
∗ (ω⊗m

Xs−1/Y ⊗ p∗q
∗ω⊗m

X/Y )

' f s−1
∗ (ω⊗m

Xs−1/Y ⊗ (f s−1)∗f∗ω
⊗m
X/Y )

' f∗ω
⊗m
X/Y ⊗ f s−1

∗ ω⊗m
Xs−1/Y

'
s⊗
f∗ω

⊗m
X/Y

for every positive integer m and every positive integer s by induction
on s. Note that f∗ω

⊗m
X/Y is locally free for every positive integer m. By
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Corollary 4.5, we see that

f s
∗ω

⊗m
Xs/Y ⊗ ω⊗m

Y ⊗ L⊗m(dim Y +1)

'

(
s⊗
f∗ω

⊗m
X/Y

)
⊗ ω⊗m

Y ⊗ L⊗m(dim Y +1)

is generated by global sections for every positive integer s, where L
is an ample invertible sheaf on Y such that |L| is free. Therefore, by
Lemma 7.7, we obtain that the locally free sheaf f∗ω

⊗m
X/Y is semipositive

for every positive integer m.

Finally, we will prove that det f ′
∗ω

⊗k
X′/Y ′ is big for some positive integer

k under the assumption that Var(f) = dimY . We closely follow the
proof of [Vi7, Theorem 4.34] (see also [Ko3, 3.13. Lemma]).

Step 5 (Bigness). In this step, we denote f̃ : X̃ → Y ′ by f : X → Y
for simplicity. We take a positive integer l such that lKX/Y is f -very
ample such that the multiplication map

δ : Sµ(f∗OX(lKX/Y )) → f∗OX(µlKX/Y )

is surjective for every positive integer µ. We put E = f∗OX(lKX/Y ).
Then we obtain the following commutative diagram.

X

f ��?
??

??
??

?
� � ι // P(E)

p
}}{{

{{
{{

{{

Y

If I is the ideal sheaf of ι(X) on P(E), then we can find some positive
integer µ such that

p∗p∗(I ⊗ OP(E)(µ)) → I ⊗OP(E)(µ)

is surjective. We fix this positive integer µ throughout this step. We
consider

P = P(
r⊕

E∗)
π−→ Y

for r = rankE . We have the universal basis map

s :
⊕

OP(−1) → π∗E .

The map s is injective. Let ∆ be the zero divisor of det(s). We put
Q = f∗OX(µlKX/Y ) and consider the surjective map

δ : Sµ(E) → Q.
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Let B ⊂ π∗Q be the image of the morphism

Sµ(
r⊕

OP(−1)) = Sµ(
r⊕

OP) ⊗OP(−µ)
Sµ(s)−→ Sµ(π∗E)

π∗(δ)−→ π∗Q.

By taking blow-ups of P with centers in ∆, we can obtain a projective
birational morphism τ : P′ → P such that B′ = τ ∗B/torsion is locally
free. We put OP′(1) = τ ∗OP(1) and π′ = π ◦ τ . Then we obtain a
surjective morphism

θ : Sµ(
r⊕

OP′(−1)) → B′.

We have the Plücker embedding

Grass(rank(Q), Sµ(Cr)) ↪→ PM

and the surjection θ corresponds to the morphism

ρ′ : P′ → Grass(rank(Q), Sµ(Cr)) ↪→ PM

such that

det(B′) ⊗OP′(γ) ' ρ′∗OPM (1)

where γ = µ · rankQ. By assumption, we have Var(f) = dimY . Note
that the general fiberXy of f : X → Y is a canonically polarized variety
with only canonical singularities. Thus, the automorphism group of Xy

is finite. Therefore, the morphism ρ′ : P′ → PM is generically finite over
its image. Thus ρ′∗OPM (1) is nef and big on P′. Let H be an ample
Cartier divisor on Y . By Kodaira, we have

H0(P′, ρ′∗OPM (ν) ⊗ π′∗OY (−H)) 6= 0

for some large positive integer ν. Note that π′∗Q and its subsheaf B′

coincide over a nonempty Zariski open set of P′. Thus

π′∗(OY (−H) ⊗ det(Q)ν) ⊗OP′(ν · γ)

has a section. We put α = ν · γ. Then we obtain a nontrivial map

ϕ : (π′
∗OP′(α))∗ = Sα(

r⊕
E) → OY (−H) ⊗ det(Q)ν .

By taking a birational modification g : Y ′ → Y , we have

G ⊗OY ′(F ) = g∗OY (−H) ⊗ g∗(det(Q)ν)

where F is an effective divisor on Y ′ and G is a quotient invertible sheaf
of g∗(Sα(

⊕r E)). Note that G is nef since g∗(Sα(
⊕r E)) is semipositive.
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We put n = dimY = dimY ′. Then we obtain

(det(Q)ν)n = (g∗ det(Q)ν)n

= (g∗OY ′(H) ⊗ G ⊗OY ′(F )) · (g∗ det(Q)ν)n−1

≥ g∗OY ′(H) · (g∗ det(Q)ν)n−1

= g∗OY ′(H) · (g∗OY ′(H) ⊗ G ⊗OY ′(F )) · (g∗ det(Q)ν)n−2

≥ (g∗OY ′(H))2 · (g∗ det(Q)ν)n−2

≥ · · ·
≥ (g∗OY ′(H))n

= Hn > 0.

This means that det f∗OX(µlKX/Y ) is a nef and big invertible sheaf on
Y .

Therefore, we obtain that det f ′
∗ω

⊗k
X′/Y ′ is a nef and big invertible

sheaf on Y ′ for some positive integer k. �

We close this section with a remark on adjunction.

Remark 7.8. In general, X̃y may be non-normal. However, we see

that the canonical divisor K
eXy

is well-defined, X̃y has only semi-log-

canonical singularities, and O
eX(mK

eX/Y ′)|
eXy

' O
eXy

(mK
eXy

) for every

positive integer m, by adjunction. For the details of semi-log-canonical
singularities and pairs, see [F7].

8. Elliptic fibrations

Although the results in this section are more or less well known to
the experts, we discuss elliptic fibrations for the reader’s convenience.
We will use Corollary 8.3 in the proof of Theorem 1.1 in Section 9.
First, let us recall:

Theorem 8.1 (· · · , Kawamata, Nakayama, · · · ). Let f : V → W be a
surjective morphism between smooth projective varieties whose general
fibers are elliptic curves. Assume that there exists a simple normal
crossing divisor Σ on W such that f is smooth over W0 = W \ Σ. We
further assume that all the local monodromies on R1f0∗CV0 around Σ
are unipotent, where f0 = f |V0 : V0 = f−1(W0) → W0. Then we have

(f∗ωV/W )⊗12 ' J∗OP1(1),

where J : W → P1 is the natural extension of the period map p : W0 →
C ' h/SL(2,Z). Note that h = {z ∈ C; Im(z) > 0}.
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Proof. We do not prove this theorem here. Note that this theorem is
a special case of [Kaw3, Theorem 20]. For more detailed description of
the period map p0 : W0 → h/SL(2,Z), see [N2, Corollary 3.2.1]. For
a higher-dimensional generalization, see [F3, Theorem 2.11], where we
discuss period maps of polarized variations of Hodge structure of weight
one. Of course, this theorem is also a special case of [F3, Theorem
2.11]. �

8.2. Let f : X → Y be a projective surjective morphism between
smooth projective varieties whose general fibers are elliptic curves. We
can construct the following commutative diagram:

X

f

��

X ′

f ′

��

ρoo

Y Y ′
τ

oo

such that

(i) τ : Y ′ → Y is a generically finite surjective morphism from a
smooth projective variety Y ′.

(ii) X ′ is a smooth projective variety which is a resolution of the
main component of X ×Y Y

′.
(iii) There exists a simple normal crossing divisor Σ on Y ′ such that

f ′ is smooth over Y ′
0 = Y ′ \Σ, f ′

0 = f ′|X′
0

: X ′
0 = f ′−1(Y ′

0) → Y ′
0

has a section, f ′
0 : X ′

0 → Y ′
0 is an elliptic curve with level 3-

structure.
(iv) All the local monodromies onR1f ′

0∗CX′
0
around Σ are unipotent.

For the details, see, for example, [KatM, Theorem 2.1.2, Theorem 3.7.1,

and so on]. Let M
(3)
1 be the fine moduli scheme of elliptic curves with

level 3-structure (see, for example, [AbO, Theorem 13.1]). Note that

M
(3)
1 is a finite cover of C = h/SL(2,Z). Let C →M

(3)
1 be the universal

family. Then there exists a morphism α : Y ′
0 → M

(3)
1 such that X ′

0 =
C ×

M
(3)
1
Y ′

0 . By Theorem 8.1, we have the period map p : Y ′
0 → C =

h/SL(2,Z) and its extension J : Y ′ → P1. We note the following
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commutative diagram.

M
(3)
1

��
Y ′

0� _

��

α
==|||||||| p // C� _

��
Y ′

J
// P1

Therefore, we see

Var(f) = dimα(Y ′
0) = dim J(Y ′).

By Theorem 8.1,

(f ′
∗ωX′/Y ′)⊗12 ' J∗OP1(1).

This implies that

κ(Y ′, det f ′
∗ωX′/Y ′) = κ(Y ′, f ′

∗ωX′/Y ′) = κ(Y ′, J∗OP1(1)) = Var(f).

By [AbK, Theorem 0.3 and Lemma 6.3], we can take a generically
finite morphism τ ′ : Y ′′ → Y ′ from a smooth projective variety such
that

(v) Suppτ ′∗Σ is a simple normal crossing divisor on Y ′′.
(vi) There exists a projective birational morphism X† → X ′ ×Y ′

Y ′′ such that the induced morphism f † : X† → Y ′′ is weakly
semistable.

Let X ′′ → X† be a birational morphism from a smooth projective
variety X ′′ such that f ′′ : X ′′ → Y ′′ is the induced morphism. In this
case, we see that

τ ′∗f ′
∗ωX′/Y ′ = f ′′

∗ωX′′/Y ′′ .

This is because f ′
∗ωX′/Y ′ is characterized as the canonical extension

of a suitable Hodge bundle and Suppτ ′∗Σ is a simple normal crossing
divisor on Y ′′. Therefore, we have

κ(Y ′′, det f ′′
∗ωX′′/Y ′′) = κ(Y ′′, f ′′

∗ωX′′/Y ′′) = κ(Y ′, f ′
∗ωX′/Y ′) = Var(f).

Moreover, by [F12, Theorem 1.6] (see also Step 4 in the proof of The-
orem 7.1), we see that f ′′

∗ω
⊗m
X′′/Y ′′ is nef for every positive integer m.

By the above description of elliptic fibrations, we have:

Corollary 8.3. Let f : X → Y be a surjective morphism between
smooth projective varieties with connected fibers whose general fibers
are elliptic curves. Then we have the following properties.
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(i) We have
κ(Y, (f∗ωX/Y )∗∗) ≥ Var(f).

Note that (f∗ωX/Y )∗∗ is an invertible sheaf on Y .
(ii) If κ(Y,L) ≥ 0, then we have

κ(X,ωX/Y ⊗ f∗L) ≥ κ(Xη) + max{κ(Y,L),Var(f)}
= max{κ(Y,L),Var(f)}.

(iii) We have

κ(X,ωX/Y ) ≥ κ(Xη) + Var(f)

= Var(f).

(iv) If κ(Y ) ≥ 0, then we have

κ(X) ≥ κ(Xη) + max{κ(Y ),Var(f)}
= max{κ(Y ),Var(f)}.

Proof. The statements (iii) and (iv) are important special cases of (ii).
In the big commutative diagram constructed in Lemma 6.5, we can
choose a weakly semistable morphism g′′ : V ′′ → W ′′ such that we can
apply the result in 8.2 to g′′ : V ′′ → W ′′, that is, κ(W ′′, g′′∗ωV ′′/W ′′) =
Var(f). Note that g′′∗ωV ′′/W ′′ is an invertible sheaf. Therefore, we obtain
the desired inequality in (ii) by Lemma 6.7. We also obtain the desired
inequality in (i) by Lemma 6.8. �

9. Cn,n−1

In this final section, we give a proof of the following theorem (see
Theorem 1.1), which is the main theorem of [Kaw1]. This section is a
revised version of the author’s unpublished short note [F1] written in
2003 in Princeton.

Theorem 9.1 ([Kaw1, Theorem 1]). Let f : V → W be a dominant
morphism of algebraic varieties defined over the complex number field
C. We assume that the general fiber Vw = f−1(w) is an irreducible
curve. Then we have the following inequality for logarithmic Kodaira
dimensions:

κ(V ) ≥ κ(W ) + κ(Vw).

It is easy to see that this statement is equivalent to Theorem 9.2 by
the basic properties of the logarithmic Kodaira dimension.

Theorem 9.2 (Cn,n−1). Let f : V → W be a surjective morphism
between smooth projective varieties with connected fibers. Let C and D
be simple normal crossing divisors on V and W respectively. We put
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V0 := V \ C and W0 := W \ D. Assume that f(V0) ⊂ W0. Then the
inequality

κ(V0) ≥ κ(W0) + κ(F0)

holds, where F0 is a general fiber of f0 = f |V0 : V0 → W0.

Precisely speaking, we will prove the following theorem in this sec-
tion.

Theorem 9.3 (C
′
n,n−1). Let f : X → Y be a surjective morphism

between smooth projective varieties with connected fibers. Let C and D
be simple normal crossing divisors on X and Y respectively. We put
X0 := X \ C and Y0 := Y \ D. Assume that f(X0) ⊂ Y0. Then the
inequality

κ(X,KX + C − f ∗(KY +D)) ≥ κ(F0)

holds, where F0 is a general fiber of f0 = f |X0 : X0 → Y0.

We note:

Proposition 9.4. Theorem 9.3 implies Theorem 9.2.

By this proposition, we see that Theorem 9.3 is sufficient for Theorem
9.1.

Proof of Proposition 9.4. Without loss of generality, we may assume
that κ(W,KW +D) ≥ 0 and κ(F0) ≥ 0 in Theorem 9.2. Therefore, we
have

κ(V,KV + C − f∗(KW +D)) ≥ κ(F0) ≥ 0

by Theorem 9.3. We take a sufficiently large and divisible positive
integer m such that

H0(V,OV (m(KV + C) − f ∗(m(KW +D)))) 6= 0,

and α = Φ|m(KV +C)| : V 99K PN and β = Φ|m(KW +D)| : Y 99K PM are
Iitaka fibrations of KV + C and KW +D respectively. Since

0 6= a ∈ H0(V,OV (m(KV + C) − f ∗(m(KW +D))))

gives an injection

ι : H0(W,OW (m(KW +D))) ↪→ H0(V,OV (m(KV + C))),

we have κ(V,KV + C) ≥ κ(W,KW +D). Therefore, we obtain

κ(V0) ≥ κ(W0) + κ(F0)

when κ(F0) = 0. This is the desired inequality when κ(F0) = 0.
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From now on, we assume that κ(F0) = 1. We consider the following
commutative diagram:

V

f

��

α //___ Vm

q

���
�
�

� � // PN

p

���
�
�

W
β

//___ Wm
� � // PM ,

where Vm and Wm are the images of α and β respectively. Note that
the projection p : PN 99K PM is induced by the inclusion ι. We assume
that κ(V,KV + C) = κ(W,KW +D). Then q is birational. By taking
suitable birational modifications, we may assume that α and β are
morphisms.

V

f

��

α // Vm

q

���
�
�

W
β

// Wm

We take a sufficiently general point P ∈ Wm and consider

V

f

��

V ′? _oo

f ′

��

// P

W W ′? _oo // P

where V ′ = f−1β−1(P ) and W ′ = β−1(P ). We put C ′ = C|V ′ and
D′ = D|W ′ . Then we have κ(V ′, KV ′ +C ′) = κ(W ′, KW ′ +D′) = 0. By
Theorem 9.3, we obtain

0 = κ(V ′, KV ′ + C ′) ≥ κ(V ′, KV ′ + C ′ − f ′∗(KW ′ +D′))

≥ κ(F0) = 1.

This is a contradiction. Therefore, we obtain

κ(V,KV + C) ≥ κ(W,KW +D) + 1 = κ(W,KW +D) + κ(F0).

This is the desired inequality when κ(F0) = 1. �
Before we start the proof of Theorem 9.3, let us recall the following

trivial lemma. We will frequently use it in the proof of Theorem 9.3
without mentioning it.

Lemma 9.5. Let X be a normal projective variety. Let D1 and D2

be Q-Cartier Q-divisors on X. Assume that D1 ≥ D2. Then we have
κ(X,D1) ≥ κ(X,D2).

Proof of Theorem 9.3. We divide the proof into several steps.
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Step 1. By Theorem 2.1 in [AbK] (see also [Kar, Chapter 2, Remark
4.5 and Section 9]), we have the following commutative diagram:

X

f

��

X ′

f ′

��

poo UX′? _oo

��
Y Y ′

q
oo UY ′? _oo

such that p : X ′ → X and q : Y ′ → Y are projective birational mor-
phisms, X ′ has only quotient singularities, Y ′ is smooth, the inclusion
on the right are toroidal embeddings without self-intersection, and such
that

(i) f ′ : (UX′ ⊂ X ′) → (UY ′ ⊂ Y ′) is toroidal and equidimensional.
(ii) We put C ′ := (p∗C)red and D′ := (q∗D)red. Then C ′ ⊂ X ′ \UX′

and D′ ⊂ Y ′ \ UY ′ .

Note that

κ(X0) = κ(X,KX + C) = κ(X ′, KX′ + C ′)

and
κ(Y0) = κ(Y,KY +D) = κ(Y ′, KY ′ +D′).

Since

κ(X,KX + C − f∗(KY +D)) ≥ κ(X ′, KX′ + C ′ − f ′∗(KY ′ +D′)),

we may replace f : X → Y with f ′ : X ′ → Y ′. From now on, we omit
the superscript ′ for simplicity of the notation. So, we may assume that
f : X → Y is toroidal with the above extra assumptions.

Step 2. By taking a Kawamata cover q : Y ′ → Y , we obtain the
following commutative diagram:

X

f

��

X ′poo

f ′

��
Y Y ′

q
oo

such that f ′ : X ′ → Y ′ is weakly semistable, where X ′ is the normal-
ization of X ×Y Y

′ (see [AbK, Section 5]). Note that X ′ is Gorenstein
by [AbK, Lemma 6.1]. We put G := X \ UX and H := Y \ UY . Then
we have

KX + C − f ∗(KY +D) ≥ KX + Chor +Gver − f∗(KY +H).

Therefore, we can check that

p∗(KX + C − f ∗(KY +D)) ≥ KX′/Y ′ + (p∗C)hor.
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We note that (p∗C)hor = p∗(Chor). So, it is sufficient to prove that
κ(X ′, KX′/Y ′ + (p∗C)hor) ≥ κ(F0).

Step 3. Let F be a general fiber of f : X → Y . We put g := g(F ): the
genus of F .

Case (g ≥ 2). In this case,

κ(X ′, KX′/Y ′ + (p∗C)hor) ≥ κ(X ′, KX′/Y ′) ≥ 1 = κ(F0)

by Corollary 7.4 (iii).

Case (g = 1). By the description in 8.2 and Corollary 8.3, we have

κ(X ′, KX′/Y ′) ≥ Var(f ′) = Var(f) ≥ 0.

So, if C is vertical or Var(f) ≥ 1, then we obtain

κ(X ′, KX′/Y ′ + (p∗C)hor) ≥ κ(F0).

Therefore, we may assume that Var(f) = 0 and C is not vertical. Since
Var(f) = 0, there is a finite surjective morphism τ : Y ′′ → Y ′ from a
normal projective variety Y ′′ such that X ′′ = X ′ ×Y ′ Y ′′ is birationally
equivalent to Y ′′ × E, where E is an elliptic curve.

Lemma 9.6. Let τ : Y → Y ′ be a birational morphism from a smooth
projective variety Y such that τ−1(Y ′ \ UY ′), where (UY ′ ⊂ Y ′) is the
toroidal structure of Y ′, is a simple normal crossing divisor on Y . We
have the following commutative diagram:

X ′

f ′

��

X

f
��

πoo

Y ′ Yτ
oo

where X = X ′ ×Y ′ Y . Then f : X → Y is weakly semistable and

κ(X ′, KX′/Y ′ + (p∗C)hor) ≥ κ(X,KX/Y + (π∗p∗C)hor).

Proof of Lemma 9.6. Note that f : X → Y is weakly semistable by
[AbK, Lemma 6.2]. We also note that

KY = τ ∗KY ′ + E

and
KX = π∗KX′ + F,

where E is an effective τ -exceptional divisor on Y and F is an effective
π-exceptional divisor on X. Therefore, we obtain

KX/Y + (π∗p∗C)hor ≤ π∗KX′/Y ′ + F + π∗(p∗C)hor.
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This implies the desired inequality

κ(X ′, KX′/Y ′ + (p∗C)hor) ≥ κ(X,KX/Y + (π∗p∗C)hor)

holds. �
By modifying Y ′ birationally, we may assume that there exists a

simple normal crossing divisor Σ on Y ′ such that τ : Y ′′ → Y ′ is étale
over Y ′ \Σ (see Lemma 9.6). By Lemma 2.15, we may further assume
that Y ′′ is a smooth projective variety. Anyway, we obtain the following
commutative diagram:

X ′

f ′

��

X ′′πoo

f ′′

��
Y ′ Y ′′

τ
oo

where τ : Y ′′ → Y ′ is a finite cover from a smooth projective variety Y ′′,
f ′′ : X ′′ := X ′×Y ′ Y ′′ → Y ′′ is weakly semistable, and f ′′ is birationally
equivalent to Y ′′ × E → Y ′′. Since

π∗(KX′/Y ′ + (p∗C)hor) = KX′′/Y ′′ + π∗((p∗C)hor),

it is sufficient to prove κ(X ′′, KX′′/Y ′′ +π∗((p∗C)hor)) ≥ 1. Let α : X̃ →
Y ′′ × E and β : X̃ → X ′′ be a common resolution. Since X ′′ has only
rational Gorenstein singularities, X ′′ has at worst canonical Gorenstein
singularities. Thus, we obtain

κ(X ′′, KX′′/Y ′′ + π∗((p∗C)hor)) = κ(X̃,K
eX/Y ′′ + β∗π∗((p∗C)hor)).

On the other hand,

K
eX/Y ′′ = K

eX/Y ′′×E +KY ′′×E/Y ′′ =: A

is an effective α-exceptional divisor such that SuppA = Exc(α). Let B
be an irreducible component of β∗π∗((p∗C)hor) such that B is dominant
onto Y ′′. Then

m(A+ β∗π∗((p∗C)hor)) ≥ α∗α∗B,

for a sufficiently large integer m. Therefore, if is sufficient to prove
κ(Y ′′ × E,α∗B) ≥ 1. This holds true by Corollary 2.19. Thus, we
finish the proof when g = 1.

Case (g = 0). As in the above case, we can take a finite cover and
obtain the following commutative diagram:

X ′

f ′

��

X ′′πoo

f ′′

��
Y ′ Y ′′

τ
oo
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where f ′′ is birationally equivalent to Y ′′ × P1 → Y ′′. We can further
assume that all the horizontal components of π∗((p∗C)hor) are mapped
onto Y ′′ birationally.

Lemma 9.7 (cf. [F3, Section 7]). Let f : V → W be a surjective mor-
phism between smooth projective varieties with connected fibers. As-
sume that f is birationally equivalent to W × P1 → W . Let {Ck} be a
set of distinct irreducible divisors such that f : Ck → W is birational
for every k with 1 ≤ k ≤ 3. Then

κ(V,KV/W + C1 + C2) ≥ 0

and
κ(V,KV/W + C1 + C2 + C3) ≥ 1.

Proof of Lemma 9.7. By modifying V and W birationally and replac-
ing Ck with its strict transform, we may assume that there exists a
simple normal crossing divisor Σ on W such that

ϕij : V0 := f−1(W0) ' W0 × P1

with ϕij(Ci|V0) = W0 × {0} and ϕij(Cj|V0) = W0 × {∞} for i 6= j,
where W0 := W \ Σ. We may further assume that there exists ψij :
V → P1 such that ψij|V0 = p2 ◦ ϕij, where p2 is the second projection
W0 ×P1 → P1. We may also assume that

∪
k Ck ∪Suppf∗Σ is a simple

normal crossing divisor on V . Then we obtain

∧ ψij
∗
(
dz

z

)
∈ HomOV

(f ∗OW (KW + Σ),OV (KV + Ci + Cj + (f ∗Σ)red))

' H0(V,OV (KV/W + Ci + Cj + (f ∗Σ)red − f ∗Σ))

⊂ H0(V,OV (KV/W + Ci + Cj))

for i 6= j, where z denotes a suitable inhomogeneous coordinate of P1.
Therefore, we have

dimCH
0(V,OV (KV/W + C1 + C2)) ≥ 1

and
dimCH

0(V,OV (KV/W + C1 + C2 + C3)) ≥ 2.

Thus, we obtain the required result. �
Apply Lemma 9.7 to X̃ → Y ′′, where β : X̃ → X ′′ is a resolution of

X ′′. Then we obtain

κ(X̃,K
eX/Y ′′ + β∗π∗((p∗C)hor)) ≥ κ(F0).

Thus, we complete the proof of Theorem 9.3. �
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